
A Pseudocode of Algorithms

The pseudocode of our algorithms for learning and testing spherical Gaussian mixtures follow
immediately from the proofs of Theorem 2.1 and Theorem 2.3. In the following, P is a uniform
mixture of k spherical Gaussians in Rd with unknown �-separated means.

Algorithm 1: Learning Gaussian Mixtures via Testing
Input: Sample access to mixture P . Accuracy parameter ✏ > 0.
Output: Mean estimates µ̂1, µ̂2, . . . , µ̂k.
p 1

2d/2k·�(d/2+1)
·max0r✏/2 r

d
e
�r

2
/2;

N (2 ln k)/p; C ;;
for i = 1, 2, . . . , N do

Draw Xi from P ;
Run Algorithm 2 with µ

⇤ = Xi for ⇥(logN) times;
if Algorithm 2 accepts more than half of the times then

C C [{Xi};
end

Partition C into C1, C2, . . . , Ck such that x, y 2 C are in the same cluster if kx� yk2  2✏;
Arbitrarily pick µ̂1 2 C1, µ̂2 2 C2, . . . , µ̂k 2 Ck;
return µ̂1, . . . , µ̂k;

Algorithm 2: Testing Gaussian Mixtures using Fourier Transform
Input: Sample access to mixture P . Parameters ✏,�,M > 0 and candidate mean µ

⇤ 2 Rd.
Output: “Accept” or “Reject”.
� (�2

/2 + 1)✏2/64;
N ⇥((k/�)2) · e⇥(d+M

2);
Avg 0;
for i = 1, 2, . . . , N do

Draw X ⇠ P and ⇠ ⇠ N (0,�2
Id);

if k⇠k2 M then

Avg Avg + 2d/2k
N

· ek⇠k2
2/4 · e�kX�µ

⇤k2
2/2 · ei⇠>(X�µ

⇤);
end

✓ 1
2

h
e
�(�2

/2+1)✏2/16 + e
�(�2

/2+1)✏2/4
i
;

return “Accept” if ReAvg � ✓ and “Reject” otherwise;

B Auxiliary Lemmas

Lemma B.1. For integers n, k � 0, k! � e
�k

k
k

and
�
n

k

�

�
en

k

�k
.

Proof. By the Taylor expansion of ex, ek =
P+1

j=0
k
j

j! �
k
j

j!

���
j=k

= k
k

k! . Rearranging gives the first

inequality. The second inequality then follows from
�
n

k

�
= n(n�1)···(n�k+1)

k!  n
k

e�kkk =
�
en

k

�k.

We will need the following standard facts about the volume of an `2-ball in high dimensions.
Lemma B.2. The volume of a d-ball of radius r is

Vold(r) =
⇡
d/2

�(d/2 + 1)
· rd  (2r)d.

Furthermore, �(d/2 + 1) = d
O(d)

.

Proof. We refer the reader to Smith and Vamanamurthy [1989] for a proof of the identity. The in-
equality Vold(r)  (2r)d holds since the `2 ball is contained in the `1 ball of radius r, which trivially

13

has volume (2r)d. Finally, the bound �(d/2 + 1) = d
O(d) follows from Stirling’s approximation

�(z) = (1 +O(1/z))
p
2⇡/z(z/e)z .

We need the following tail bound of �2-distributions proved by Laurent and Massart [2000, Equation
(4.3)], to control the probability that a Gaussian random variable has a large norm.
Lemma B.3. Let random variable X be sampled from the �

2
-distribution with d degrees of freedom.

Then, for any t > 0,

Pr
X

h
X � d+ 2

p
dt+ 2t

i
 e

�t
.

Furthermore, for any t � 5d,

Pr
X

[X � t]  e
�t/5

.

The following classic theorem in topology is used in our lower bound proof. See, e.g., Matoušek et al.
[2003] for a proof of the Borsuk–Ulam theorem. We remark that Borsuk–Ulam has been applied in a
similar fashion in the literature of mixture learning [Hardt and Price, 2015, Chen et al., 2020].
Theorem B.4 (The Borsuk–Ulam Theorem). Suppose that n � m and f : Sn ! Rm

is continuous.

Then, there exists x 2 Sn such that f(x) = f(�x).

C Deferred Proofs from Section 2

Proof of Theorem 2.1. The proof proceeds by first generating many candidates for the means
µ1, . . . , µk, and then verifying them using the tester from Theorem 2.3.

Finding candidates. We first show that if we draw sufficiently many samples from P , for every
mean vector µj there is a sample that is O(✏)-close to it. Indeed, for any j 2 [k], the probability that
a sample from P is (✏/2)-close to µj is at least

1

k
· Pr
X⇠N (µj ,Id)

[kX � µjk2  ✏/2] � 1

k
· max
0r✏/2


Vold(r) ·

1

(2⇡)d/2
e
�r

2
/2

�

=
1

k
· max
0r✏/2

"
⇡
d/2

r
d

�(d/2 + 1)
· e

�r
2
/2

(2⇡)d/2

#
(Lemma B.2)

=
1

2d/2k · �(d/2 + 1)
· max
0r✏/2

r
d
e
�r

2
/2 =: p.

Our algorithm first draws N := (2 ln k)/p points X1, X2, . . . , XN from P . The probability that
none of them is (✏/2)-close to µj is at most (1� p)N  1/k2. By a union bound, w.h.p. it holds for
every j 2 [k] that some Xi is (✏/2)-close to µj .

Running the tester. Then, we run the testing algorithm from Theorem 2.3 with µ
⇤ set to each of

the N candidates X1, X2, . . . , XN . For each point Xi, we repeat the tester ⇥(logN) times (with
new samples each time) and take the majority vote of the decisions. By a Chernoff bound, w.h.p. the
decisions are simultaneously correct for all the N points, i.e., for each Xi the majority vote “accepts”
if minj2[k] kµj �Xik2  ✏/2 and “rejects” if this minimum distance is at least ✏.

Clustering. We focus on C := {i 2 [N] : majority vote accepts Xi} and define Cj := {i 2 C :
kXi � µjk2  ✏} for j 2 [k]. The correctness of the tester implies that for every i 2 C, Xi must
be ✏-close to some mean vector µj , so

S
j2[k] Cj = C. Furthermore, we claim that {Cj}j2[k] are

pairwise disjoint and thus constitute a partition of C. Suppose towards a contradiction that some
i 2 Cj \Cj0 . Then, since ✏ < �/100, we get kµj �µj0k2  kµj �Xik2+ kµj0 �Xik2  2✏ < �,
a contradiction. We also claim that every Cj is non-empty. This is because we proved earlier that at
least one of the Xi’s is ✏/2-close to µj , and the majority vote must accept such an Xi.

It remains to show that we can easily identify such a partition {Cj} without knowing µ1, . . . , µk. We
note that for any i 2 Cj and i

0 2 Cj0 . If j = j
0, we have

kXi �Xi0k2  kXi � µjk2 + kXi0 � µjk2  2✏.

14

If j 6= j
0, the condition that ✏ < �/100 gives

kXi �Xi0k2 � kµj � µj0k � kXi � µjk2 � kXi0 � µj0k2 � �� 2✏ > 2✏.

Therefore, if we cluster C such that i, i0 2 C belong to the same cluster if and only if kXi�Xi0k2 
2✏, we obtain the exact partition {Cj}. We can then recover µ1, . . . , µk up to an error of ✏ by
outputting an arbitrary element in each of the k clusters.

Runtime. To upper bound the runtime, we note that

N = (2 ln k)/p = O(k log k) · 2d/2�(d/2 + 1) · min
0r✏/2

e
r
2
/2
r
�d

= O(k log k) · dO(d) ·
(
(2/✏)de✏

2
/8
, ✏  2

p
d,

(e/d)d/2, ✏ > 2
p
d

(Lemma B.2)

= O(k log k) ·max{(d/✏)O(d)
, d

O(d)}.

Therefore, the runtime of the algorithm is upper bounded by

O(N logN) = O(k log2 k) ·max
n
(d/✏)O(d)

, d
O(d)

o

times that of the tester from Theorem 2.3. This finishes the proof.

D Deferred Proofs from Section 3

We start with the proof of Lemma 3.1, which we restate below.

Lemma 3.1 For P = 1
k

P
k

j=1 N (µj , Id) and any ⇠ 2 Rd
,

E
X⇠P

h
e
�kXk2

2/2 · ei(⇠
>
X)
i
=

e
�k⇠k2

2/4

2d/2k

kX

j=1

e
�kµjk2

2/4 · ei(µ
>
j ⇠/2) =

e
�k⇠k2

2/4

2d/2k
·Aµ(⇠),

where we define Aµ(⇠) :=
P

k

j=1 e
�kµjk2

2/4 · ei(µ
>
j ⇠/2)

.

Proof of Lemma 3.1. For any v, ⇠ 2 Rd, we have

E
X⇠N (v,Id)

h
e
�kXk2

2/2 · ei(⇠
>
X)
i
= E

X⇠N (v,Id)

2

4
dY

j=1

e
�X

2
j /2 · ei(⇠jXj)

3

5

=
dY

j=1

E
Xj⇠N (vj ,1)

h
e
�X

2
j /2 · ei(⇠jXj)

i
.

(X1, . . . , Xd are independent)

The j-th term in the product above is given by

1p
2⇡

Z +1

�1
e
�(x�vj)

2
/2�x

2
/2 · ei⇠jx dx =

1p
2
· e�⇠

2
j/4 · e�v

2
j/4 · eivj⇠j/2,

so we have

E
X⇠N (v,Id)

h
e
�kXk2

2/2 · ei(⇠
>
X)
i
=

dY

j=1

✓
1p
2
· e�⇠

2
j/4 · e�v

2
j/4 · eivj⇠j/2

◆

=
e
�k⇠k2

2/4

2d/2
· e�kvk2

2/4 · ei(v
>
⇠/2)

.

Finally, the lemma follows from the above identity and averaging over v 2 {µ1, . . . , µk}.

15

Lemma 3.2 For any M,� > 0 that satisfy M
2
/�

2 � 5d,

Tµ =
kX

j=1

e
�(�2

/2+1)kµjk2
2/4 +O

⇣
e
�M

2
/(5�2)

⌘
·

kX

j=1

e
�kµjk2

2/4,

where the O(x) notation hides a complex number with modulus  x.

Proof of Lemma 3.2. Recall that Aµ(⇠) =
P

k

j=1 e
�kµjk2

2/4 · ei(µ
>
j ⇠/2). The contribution of the j-th

term of Aµ(⇠) to Tµ is

E
⇠⇠N (0,�2Id)

h
e
�kµjk2

2/4 · ei(µ
>
j ⇠/2) · [k⇠k2 M]

i

= e
�kµjk2

2/4 ·


E
⇠⇠N (0,�2Id)

h
e
i(µ>

j ⇠/2)
i
+O

✓
Pr

⇠⇠N (0,�2Id)
[k⇠k2 > M]

◆�

= e
�kµjk2

2/4 ·
h
e
��

2kµjk2
2/8 +O

⇣
e
�M

2
/(5�2)

⌘i
(M2

/�
2 � 5d and Lemma B.3)

= e
�(�2

/2+1)kµjk2
2/4 + e

�kµjk2
2/4 ·O

⇣
e
�M

2
/(5�2)

⌘
.

The lemma then follows from a summation over j 2 [k].

To prove Claims 3.3 and 3.4, we need the following lower bound on the norms of the mean vectors.
Lemma D.1. Suppose that µ1, µ2, . . . , µk 2 Rd

are �-separated, and kµ1k2  kµ2k2  · · · 
kµkk2. For any j � 2,

kµjk2 � max

⇢
�

2
,
�j

1/d

4

�
.

Proof of Lemma D.1. Fix j � 2. The first lower bound follows from

�  kµ1 � µjk2  kµ1k2 + kµjk2  2kµjk2.

Now we turn to the second bound. Since µ1, . . . , µj are �-separated, the j balls B(µ1,�/2),
B(µ2,�/2), . . ., B(µj ,�/2) are disjoint and all contained in B(0, kµjk2 +�/2). Thus, we have
j · (�/2)d  (kµjk2 +�/2)d, which implies kµjk2 � �

2 · (j1/d � 1).

For j � 2d, we have j
1/d

/2 � 1 and the lower bound can be relaxed to

kµjk2 �
�

2
·
✓
j
1/d � j

1/d

2

◆
=

�j
1/d

4
.

For 2  j < 2d, we have j
1/d

< 2, so the first lower bound implies kµjk2 � �
2 �

�j
1/d

4 .

With the lower bounds on kµjk2, we are ready to bound S1 =
P

k

j=2 e
�(�2

/2+1)kµjk2
2/4 and S2 =

P
k

j=1 e
�kµjk2

2/4. We first restate and prove Claim 3.3:

Claim 3.3 Assuming (�2
/2 + 1)�2 � 100min{ln k, d},

S1  2e�(�2
/2+1)�2

/64 ·min{k, 2d}.

Proof of Claim 3.3. If k  2d, we apply the bound kµjk2 � �/2 to all j � 2 and get S1  (k �
1) · e�(�2

/2+1)�2
/16, which is stronger than what we need. Otherwise, we apply kµjk2 � �j

1/d
/4

16

and get

S1 
kX

j=2

exp

✓
� (�2

/2 + 1)�2
j
2/d

64

◆


kX

j=2

exp

✓
� (�2

/2 + 1)�2bj1/dc2

64

◆
(j1/d � bj1/dc)

=
+1X

t=1

exp

✓
� (�2

/2 + 1)�2
t
2

64

◆
·

kX

j=2

h
bj1/dc = t

i


+1X

t=1

exp

✓
� (�2

/2 + 1)�2
t
2

64

◆
· (t+ 1)d. (bj1/dc = t =) j < (t+ 1)d)

In the last summation, the ratio between the (t+ 1)-th term and the t-th term is given by

exp

✓
� (�2

/2 + 1)�2(2t+ 1)

64

◆
·
✓
1 +

1

t+ 1

◆d

 exp

✓
�3(�2

/2 + 1)�2

64

◆
·
✓
3

2

◆d

,

which is smaller than 1/2 under the assumption that (�2
/2 + 1)�2 � 100min{ln k, d}. Thus, the

summation is at most twice the first term, i.e., S1  2 · e�(�2
/2+1)�2

/64 · 2d.

Now we restate and prove Claim 3.4:

Claim 3.4 We have

S2 
(
2, �2 � 100d,

1 + 267d
�2 ·max

n�
32d
�2

�d/2
, 1
o
, �2

< 100d.

Furthermore, S2  10 ·min
n
k, 1 +

�
32d
�2

�d/2+1
o

.

Proof of Claim 3.4. Using kµjk2 � �j
1/d

/4 for j � 2, we can upper bound S2 as follows:

S2 =
kX

j=1

e
�kµjk2

2/4  1 +
kX

j=2

exp

✓
��2

j
2/d

64

◆

 1 +
kX

j=2

exp

✓
��2bj2/dc

64

◆
(j2/d � bj2/dc)

= 1 +

bk2/dcX

t=1

exp(��2
t/64) ·

kX

j=2

h
bj2/dc = t

i

 1 +

bk2/dcX

t=1

exp(��2
t/64) · (t+ 1)d/2. (bj2/dc = t =) j < (t+ 1)d/2)

In the last summation, the ratio between the (t+ 1)-th term and the t-th term is given by

Rt :=
exp(��2(t+ 1)/64) · (t+ 2)d/2

exp(��2t/64) · (t+ 1)d/2
= e

��2
/64 ·

✓
1 +

1

t+ 1

◆d/2

.

The first case. When �2 � 100d, for every t � 1 we have

Rt  exp

✓
�100d

64

◆
·
✓
3

2

◆d/2



e
�25/16 ·

r
3

2

!d

< 1/2.

This implies that the summation
Pbk2/dc

t=1 exp(��2
t/64) · (t+ 1)d/2 is dominated by twice its first

term, i.e.,

S2  1 + 2 · e��2
/64 · 2d/2  1 + 2 ·

⇣
e
�25/16 ·

p
2
⌘d

< 2.

17

The second case. By a straightforward calculation,

Rt  e
��2

/128 () 1 +
1

t+ 1
 exp

✓
�2

64d

◆
(= e

1
t+1  exp

✓
�2

64d

◆
() t+ 1 � 64d

�2
.

In other words, the terms in
Pbk2/dc

t=1 exp(��2
t/64) · (t+ 1)d/2 start to decay at a rate of at least

e
�2

/128 after the first O(d/�2) terms. Therefore, we have

S2  1 +

✓
64d

�2
+

1

1� e��2/128

◆
·max

t�1

h
exp(��2

t/64) · (t+ 1)d/2
i
.

Using the inequality 1� e
�x � e�1

e
·min{x, 1} for x � 0, we have

1

1� e��2/128
 e

e� 1
·max

⇢
128

�2
, 1

�

 e

e� 1
·max

⇢
128d

�2
,
100d

�2

�
<

203d

�2
. (1  d and �2

< 100d)

On the other hand, elementary calculus shows that the function t 7! e
��2

t/64 · (t+ 1)d/2 defined
over [0,+1) is maximized at t⇤ = 32d

�2 � 1 if 32d
�2 � 1, and at t⇤ = 0 otherwise. In either case, the

maximum value is upper bounded by max{
�
32d
�2

�d/2
, 1}. Therefore, we conclude that in the second

case,

S2  1 +
267d

�2
·max

(✓
32d

�2

◆d/2

, 1

)
.

The “furthermore” part. If d

�2  1
100 , the first case implies that

S2  2  10 ·
"
1 +

✓
32d

�2

◆d/2+1
#
.

If d

�2 2 (1
100 ,

1
32], the bound for the second case reduces to

S2  1 +
267d

�2
 1 +

267

32
< 10 ·

"
1 +

✓
32d

�2

◆d/2+1
#
.

If d

�2 >
1
32 , the bound for the second case implies

S2  1 +
267

32
·
✓
32d

�2

◆d/2+1

< 10 ·
"
1 +

✓
32d

�2

◆d/2+1
#
.

Finally, the “furthermore” part follows from the above and the observation that k is a trivial upper
bound on S2.

E Proof of Lower Bound

We first state the formal version of Theorem 1.2:
Theorem E.1. Suppose that k � 3, d  ln k

ln ln k
, C � 100, and ln(8eC)  (1� 1/e) ln k

d
. Then, there

are two mixtures P̃ and Q̃ of k spherical Gaussians in Rd
, such that for some � = ⇥

⇣
dp

C log k

⌘
:

• Both P̃ and Q̃ are �-separated.

• The means of P̃ and Q̃ are not (�/2)-close.

• The total variation distance between P̃ and Q̃ satisfies dTV(P̃ , Q̃)  2k�C
.

18

Setting !(1) = C = k
o(1/d) in Theorem E.1 shows that with a separation of � = o(d/

p
log k),

k
!(1) samples are needed to recover the means up to an O(�) error.

The proof of Theorem E.1 applies standard moment matching techniques in the literature [Hardt and
Price, 2015, Regev and Vijayaraghavan, 2017]. The proof proceeds by first constructing two sets of
 k points in Rd that have the same lower order moments, and then showing that these matching
moments imply that their convolutions with a standard Gaussian are close in TV-distance.

The following lemma states that we can choose the centers of two mixtures P̃ and Q̃ such that their
low-degree mean moments are identical, whereas their parameters are �-apart from each other.

Lemma E.2. Suppose that R > � > 0 and

h
e(t+d)

d

id
 N 

�
R

3�

�d
. There exist 2N points

µ
(P)
1 , . . . , µ

(P)
N

, µ
(Q)
1 , . . . , µ

(Q)
N

in B(0, 2R) such that:

•
���µ(P)

i
� µ

(P)
j

���
2
� � and

���µ(Q)
i
� µ

(Q)
j

���
2
� � for i 6= j.

• For any permutation ⇡ over [N], maxi2[N]

���µ(P)
i
� µ

(Q)
⇡(i)

���
2
� �.

• For any t
0 2 [t], 1

N

P
N

i=1

h
µ
(P)
i

i⌦t
0

= 1
N

P
N

i=1

h
µ
(Q)
i

i⌦t
0

.

Proof of Lemma E.2. Let S be an arbitrary maximal (3�)-separated subset of B(0, R). Then, the
collection {B(µ, 3�) : µ 2 S} must cover the ball B(0, R); otherwise, we could add to S the point
that is not covered. This implies |S| � Vold(R)

Vold(3�) = (R

3�)d � N , so we can choose N arbitrary points
µ1, µ2, . . . , µN from S.

In the following, we construct the point sets {µ(P)
i

} and {µ(Q)
i

} by slightly perturbing {µ1, . . . , µN}.
Let M =

�
t+d

d

�
. For any t

0 � 1, the degree-t0 moment tensor in d dimensions has exactly
�
d+t

0�1
d�1

�

distinct entries. So, among the first t moment tensors, the total number of distinct entries is
✓

d

d� 1

◆
+

✓
d+ 1

d� 1

◆
+ · · ·+

✓
d+ t� 1

d� 1

◆
=

✓
d+ t

d

◆
� 1 = M � 1.

We define a function f : SNd�1 ! RM�1 as follows. Given x 2 SNd�1, we group the Nd

coordinates of x into N groups, and view them as N points x1, x2, . . . , xN 2 Rd. Let c(x) :=
�

maxi2[N] kxik2
and µ

(x)
i

:= µi+ c(x)xi. (c(x) is well-defined, since x 2 SNd�1 guarantees that some
xi is non-zero.) Finally, f(x) 2 RM�1 is defined as the concatenation of the M � 1 entries in the
first t moment tensors of the uniform distribution over {µ(x)

i
}i2[N].

It can be easily verified that f is continuous. Furthermore, our assumption that
h
e(t+d)

d

id
 N

together with Lemma B.1 implies

Nd� 1 � N � 1 �

e(t+ d)

d

�d
� 1 �

✓
t+ d

d

◆
� 1 = M � 1.

Thus, by the Borsuk–Ulam theorem (Theorem B.4), there exists x 2 SNd�1 such that f(x) = f(�x).

We prove the lemma by setting µ
(P)
i

= µ
(x)
i

and µ
(Q)
i

= µ
(�x)
i

. By definition of c(x), we have
kµ(P)

i
� µik2 = kµ(Q)

i
� µik2 = c(x)kxik2  � for every i 2 [N]. Thus, kµ(P)

i
k2  kµik2 +

kµ(P)
i
� µik2  R +�  2R and similarly µ

(Q)
i
2 B(0, 2R) for every i 2 [N]. Furthermore, for

any i 6= j,

kµ(P)
i
� µ

(P)
j
k2 � kµi � µjk2 � kµ(P)

i
� µik2 � kµ(P)

j
� µjk2 � 3����� = �,

and similarly kµ(Q)
i
� µ

(Q)
j
k2 � �. This proves the first condition.

19

Moreover, we note that for i⇤ 2 argmaxi2[N] kxik2, it holds that c(x)kxi⇤k2 = �. Thus, kµ(P)
i⇤ �

µ
(Q)
i⇤ k2 = 2c(x)kxi⇤k2 = 2�. On the other hand, for any j 6= i

⇤,

kµ(P)
i⇤ � µ

(Q)
j
k2 � kµi⇤ � µjk2 � kµ(P)

i⇤ � µi⇤k2 � kµ(Q)
j
� µjk2 � 3����� = �,

so µ
(P)
i⇤ cannot be matched to any µ

(Q)
j

without incurring an error of �. This proves the second
condition.

Finally, the third condition follows from f(x) = f(�x) and our definition of f .

The following lemma allows us to relate the total variation distance between P̃ and Q̃ to their `2
distance, which is more Fourier-friendly.
Lemma E.3. Let P̃ and Q̃ be two mixtures of spherical Gaussians with all means contained in

B(0, 2R). Then, for any ✏ 2 (0, 1) and R
0 = 2R+

p
d+

p
2 ln(1/✏),

dTV(P̃ , Q̃)  ✏+

p
Vold(R0)

2
kP̃ � Q̃k2,

where Vold(r) denotes the volume of a d-ball with radius r.

Proof of Lemma E.3. By definition of the TV-distance,

dTV(P̃ , Q̃) =
1

2

Z ���P̃ (x)� Q̃(x)
��� dx

 1

2

Z

kxk2�R0

h
P̃ (x) + Q̃(x)

i
dx+

1

2

Z

kxk2R0

���P̃ (x)� Q̃(x)
��� dx.

(2)

To bound the first term above, we note that
R
kxk2�R0 P̃ (x) dx is exactly P̃ (Rd \ B(0, R0)), the

probability that a sample from P̃ has norm greater than R
0. Since the mean of every cluster of P̃ is

contained in B(0, 2R), this probability is upper bounded by the probability that a standard Gaussian
random variable has norm � R

0 � 2R:
P̃
�
Rd \B(0, R0)

�
 Pr

X⇠N(0,Id)
[kXk2 � R

0 � 2R]

= Pr
X⇠�2(d)

h
X � (

p
d+

p
2 ln(1/✏))2

i

 Pr
X⇠�2(d)

h
X � d+ 2

p
d ln(1/✏) + 2 ln(1/✏)

i

 ✏. (Lemma B.3)

Similarly, we have Q̃
�
Rd \B(0, R0)

�
 ✏, so the first term of Equation (2) is upper bounded by ✏.

The second term of Equation (2) can be bounded in terms of the `2 distance between P̃ and Q̃ using
Cauchy-Schwarz:

Z

kxk2R0

���P̃ (x)� Q̃(x)
��� dx 

sZ

kxk2R0

h
P̃ (x)� Q̃(x)

i2
dx ·

sZ

kxk2R0
1 dx

 kP̃ � Q̃k2 ·
p

Vold(R0).

Plugging the above into Equation (2) proves dTV(P̃ , Q̃)  ✏+
p

Vold(R0)

2 kP̃ � Q̃k2.

The following lemma upper bounds the `2-distance between P̃ and Q̃ under the assumption that their
low-degree moments are equal.
Lemma E.4. Suppose that t/(4R) �

p
5d, the supports of P and Q are contained in B(0, 2R), and

the first t moment tensors of P and Q are equal. Let P̃ = P ⇤N (0, Id) and Q̃ = Q ⇤N (0, Id). We

have

kP̃ � Q̃k22  4 exp

✓
� t

2

80R2

◆
+ 2

✓
t

4R

◆d

· (2R)2t

t!
.

20

Proof of Lemma E.4. By the Plancherel theorem,

kP̃ � Q̃k22 =
1

(2⇡)d

Z ���(F P̃)(⇠)� (FQ̃)(⇠)
���
2
d⇠,

where (F P̃)(⇠) :=
R
P̃ (x)ei⇠

>
x dx and (FQ̃)(⇠) :=

R
Q̃(x)ei⇠

>
x dx.5

Since P̃ is the convolution of P and N (0, Id), we have

(F P̃)(⇠) = (FN (0, Id))(⇠) · (FP)(⇠) = e
�k⇠k2

2/2 E
µ⇠P

h
e
i⇠

>
µ

i
.

Similarly, (FQ̃)(⇠) = e
�k⇠k2

2/2 Eµ⇠Q

h
e
i⇠

>
µ

i
and thus,

kP̃ � Q̃k22 =
1

(2⇡)d

Z
e
�k⇠k2

2

���� E
µ⇠P

h
e
i⇠

>
µ

i
� E

µ⇠Q

h
e
i⇠

>
µ

i����
2

d⇠. (3)

Since the first t moments tensors of P and Q are equal, for any ⇠ 2 Rd,
���� E
µ⇠P

h
e
i⇠

>
µ

i
� E

µ⇠Q

h
e
i⇠

>
µ

i����

=

������

+1X

j=0

i
j

j!


E

µ⇠P

⇥
(⇠>µ)j

⇤
� E

µ⇠Q

⇥
(⇠>µ)j

⇤�
������

(Taylor expansion)


+1X

j=0

1

j!

���� E
µ⇠P

⇥
(⇠>µ)j

⇤
� E

µ⇠Q

⇥
(⇠>µ)j

⇤���� (triangle inequality)


+1X

j=t+1

1

j!

���� E
µ⇠P

⇥
(⇠>µ)j

⇤
� E

µ⇠Q

⇥
(⇠>µ)j

⇤���� (identical first t moments)


+1X

j=t+1

2

j!
(2Rk⇠k2)j . (Cauchy-Schwarz)

If k⇠k2  t/(4R), the last summation above can be upper bounded by 2 · (2Rk⇠k2)
t

t! . Otherwise,

we can use the trivial upper bound
���Eµ⇠P

h
e
i⇠

>
µ

i
� Eµ⇠Q

h
e
i⇠

>
µ

i���  2. Plugging these back to
Equation (3) gives

kP̃ � Q̃k22 
1

(2⇡)d

Z

k⇠k2�t/(4R)
4e�k⇠k2

2 d⇠ +
1

(2⇡)d

Z

k⇠k2t/(4R)
4e�k⇠k2

2 · (2Rk⇠k2)
2t

(t!)2
d⇠.

Using Lemma B.3 and the assumption that t/(4R) �
p
5d, the first term above is upper bounded by

4 · 1

(2⇡)d/2

Z

kxk2�t/(4R)
e
�kxk2

2/2 dx = 4 Pr
X⇠N (0,Id)

[kXk2 � t/(4R)]  4 exp

✓
� t

2

80R2

◆
.

To bound the second term, we note that the function x 7! e
�x

x
t is maximized at x = t. Thus, the

second term is upper bounded by

1

(2⇡)d
·Vold(t/(4R)) · 4e�t

(2R)2ttt

(t!)2
 2

✓
t

4R

◆d

· (2R)2t

t!
.

Here we use 2�dVold(r)  r
d (Lemma B.2), 4/⇡d

< 2, and e
�t
t
t  t! (Lemma B.1).

Now we are ready to prove Theorem E.1 by combining Lemmas E.2 through E.4 with carefully
chosen parameters.

5Here the 1
(2⇡)d

factor comes from that our definition of the Fourier transform differs from the standard one
by a factor of 2⇡ on the exponent.

21

Proof of Theorem E.1. Let R > � > 0 and integers N, t be parameters to be chosen later. Assuming

that
h
e(t+d)

d

id
 N 

�
R

3�

�d, by Lemma E.2, there exist two distributions P and Q such that: (1)

P (resp. Q) is the uniform distribution over N points µ(P)
1 , . . . , µ

(P)
N

(resp. µ(Q)
1 , . . . , µ

(Q)
N

) that are
�-separated and contained in B(0, 2R); (2) P and Q have the same first t moments; (3) the two
mixtures P̃ = P ⇤N (0, Id) and Q̃ = Q ⇤N (0, Id) are �-far from each other in their parameters.

Then, applying Lemmas E.3 and E.4 to P̃ and Q̃ gives

dTV(P̃ , Q̃)  ✏+

p
Vold(R0)

2
·

s

4 exp

✓
� t2

80R2

◆
+ 2

✓
t

4R

◆d

· (2R)2t

t!
.

We will set ✏ = k
�C and ensure the following:

p
Vold(R0)  1/✏, exp

✓
� t

2

80R2

◆
 ✏

4
/2,

✓
t

4R

◆d

· (2R)2t

t!
 ✏

4
.

These together imply dTV(P̃ , Q̃)  2✏ = 2k�C as desired.

Choice of parameters. With some calculation, we can show that the above conditions can be

satisfied by setting t = 4C ln k and R =
p
C ln k

10 . Now we set the separation � so that
h
e(t+d)

d

id


N 
�

R

3�

�d could hold. Since d  ln k  t, it is sufficient to guarantee 2et
d
 R

3� , which holds for

� = Rd

6et =
d

240e
p
C ln k

= ⇥
⇣

dp
C log k

⌘
.

It remains to verify a few additional assumptions that are required for applying the lemmas. First, our
choice of N must be at most k. This is equivalent to k �

�
2et
d

�d
=
�
8eC ln k

d

�d. Since for any d > 0,
✓
ln k

d

◆d

= exp (d ln ln k � d ln d)  exp (d ln ln k � d ln d)|
d=e�1 ln k

= k
1/e

,

it is then sufficient to have (8eC)d  k
1�1/e, but this is guaranteed by the assumption that ln(8eC) 

(1 � 1/e) ln k

d
. Second, we need to verify that R > �. This is equivalent to 24eC ln k > d, which

clearly holds given C � 100 and d  ln k

ln ln k
. Finally, we need t/(4R) �

p
5d to apply Lemma E.4.

This inequality is equivalent to 20C ln k � d, which also clearly holds.

Detailed calculation. We first show that
p
Vold(R0)  1/✏. Recall that R0 = 2R +

p
d +p

2 ln(1/✏) = 2R+
p
d+
p
2C ln k. We have

ln
p
Vold(R0)  d

2
ln(4R+ 2

p
d+ 2

p
2C ln k) (Lemma B.2)

 d

2
ln(16R

p
2dC ln k) (x, y, z � 2 =) x+ y + z  xyz)

 ln k

2 ln ln k
· ln

2

416
p
2

10

p
C ln k ·

s
C ln2 k

ln ln k

3

5 (choice of R and d  ln k

ln ln k
)

 ln k

2 ln ln k
· ln(eC) +

ln k

2 ln ln k
· 3
2
ln ln k (16

p
2/10 < e)

 C ln k

2
+

3C ln k

400
< C ln k. (C � 100)

This proves
p
Vold(R0)  k

C = 1/✏.

Then, we ensure that exp
⇣
� t

2

80R2

⌘
 ✏

4
/2 = k

�4C
/2. This is equivalent to R  tp

80 ln(2k4C)
,

which holds given our choice of R = t

40
p
C ln k

.

22

Finally, we deal with the constraint that
�

t

4R

�d · (2R)2t

t!  ✏
4 = k

�4C . After taking a logarithm on
both sides, the above inequality reduces to

d ln t+ 2t ln(2R) + 4C ln k  d ln(4R) + ln(t!).

Since ln(t!) � t ln t� t (Lemma B.1) and t = 4C ln k, it is sufficient to have

2t ln(2R) + d ln t+ 2t  t ln t.

We will show that in the left-hand side above, the first term is at most t ln t� 3t, while the second
terms is bounded by t. This would finish the proof. Indeed, we have

2t ln(2R) = t ln(2R)2 = t ln
C ln k

25
 t ln

t

e3
= t ln t� 3t.

For the second term, we have

d ln t  ln k

ln ln k
· ln(4C ln k)  ln k · ln(4C) + ln k < 4C ln k = t,

so d ln t  t holds. This completes the proof of the theorem.

F Extension to Non-Gaussian Mixtures

Given a probability distribution D over Rd, the location family defined by D is

{Dµ : µ 2 Rd},
where each Dµ is the distribution of X + µ when X is drawn from D. In other words, Dµ is obtained
by translating the distribution D by µ.

We focus on the following testing problem: Given a mixture P = 1
k

P
k

j=1 Dµj of k distributions
from a known location family with �-separated locations µ1, . . . , µk, we need to determine whether
the parameter of some component is close to a given µ

⇤ 2 Rd. We prove the following theorem:

Theorem F.1. Let P = 1
k

P
k

j=1 Dµ be a uniform mixture of k � 2 distributions from the location

family defined by D with �-separated locations in Rd
. Let ✏ < min{�/32,�/(32

p
min{d, ln k})}

and µ
⇤ 2 Rd

. There is an algorithm that, given distribution D and samples from P , either “accepts”

or “rejects”, such that it:

• Accepts with probability � 2/3 if minj2[k] kµj � µ
⇤k2  ✏/2.

• Rejects with probability � 2/3 if minj2[k] kµj � µ
⇤k2 � ✏.

The runtime (and thus the sample complexity) of the algorithm is upper bounded by

O

k
2(�/✏)4

mink⇠k2M

��EX⇠D
⇥
ei⇠

>X
⇤��2

!
,

where M . 1
� (
p
d log k +

q
(d+ log k) log �

✏
+ log �

✏
).

We remark that Theorem F.1 together with our proof strategy of Theorem 2.1 easily gives the
following guarantee for learning the parameters µ1, µ2, . . . , µk.
Corollary F.2. Under the setting of Theorem F.1, there is an algorithm that, given distribution D
and samples from P , outputs µ̂1, . . . , µ̂k that are w.h.p. ✏-close to the actual parameters µ1, . . . , µk.

The runtime of the algorithm is upper bounded by

O

(�/✏)4 · (k3/�) log(k/�)

mink⇠k2M

��EX⇠D
⇥
ei⇠

>X
⇤��2

!
,

where � = PrX⇠D [kXk2  ✏/2] and M . 1
�

⇣p
d log k +

q
(d+ log k) log �

✏
+ log �

✏

⌘
.

We will generalize the techniques that underlie Theorem 2.3, which focuses on the special case where
D is a spherical Gaussian.

23

F.1 Proof of Theorem F.1

As in the proof of Theorem 2.3, we first examine the Fourier transform of the mixture P . For any
⇠ 2 Rd, we have

E
X⇠P

h
e
i⇠

>
X

i
=

1

k

kX

j=1

E
X⇠D

h
e
i⇠

>(X+µj)
i
=

(FD)(⇠)

k
Aµ(⇠),

where we define Aµ(⇠) :=
P

k

j=1 e
iµ

>
j ⇠ and shorthand (FD)(⇠) = EX⇠D

h
e
i⇠

>
X

i
.

The above identity allows us to estimate Aµ(⇠) accurately, as long as the magnitude of the Fourier
transform is not too small at frequency ⇠. Note that, here, the definition of Aµ(⇠) is slightly different
from that in Lemma 3.1, which has an extra factor of e�kµjk2

2/4. This is because we directly look at
the Fourier transform of P without the extra “Gaussian truncation”.

As in the Gaussian case, we focus on the expectation of Aµ(⇠) when ⇠ is drawn from a truncated
Gaussian distribution. We have the following analogue of Lemma 3.2:
Lemma F.3. For any M,� > 0 that satisfy M

2
/�

2 � 5d,

Tµ := E
⇠⇠N (0,�2Id)

[Aµ(⇠) · [k⇠k2 M]] =
kX

j=1

e
��

2kµjk2
2/2 + k ·O

⇣
e
�M

2
/(5�2)

⌘
,

where the O(x) notation hides a complex number with modulus  x.

Now we are ready to prove Theorem F.1.

Proof of Theorem F.1. The identity EX⇠P

h
e
i⇠

>
X

i
= (FD)(⇠)

k
Aµ(⇠)gives

Tµ = E
⇠⇠N (0,�2Id)

[Aµ(⇠) · [k⇠k2 M]] = E
⇠⇠N(0,�2Id)

X⇠P

"
ke

i⇠
>
X

(FD)(⇠)
· [k⇠k2 M]

#
.

Let �M := mink⇠k2M |(FD)(⇠)|. The above together with a Chernoff bound shows that we can
estimate Tµ up to any error � > 0 using O(k2��2

�
�2
M

) samples.

By Lemma F.3,
���Tµ � e

��
2kµ1k2

2/2
��� 

kX

j=2

e
��

2kµjk2
2/2 + ke

�M
2
/(5�2)

,

assuming that M2
/�

2 � 5d. We will pick � and M carefully, so that both terms above are at most
� := �

2
✏
2
/32. Let cTµ be an estimate of Tµ with error  �. In the case that kµ1k2  ✏/2, we get

RecTµ � ReTµ � � � e
��

2kµ1k2
2/2 � 3� � e

��
2
✏
2
/8 � 3�.

Similarly, we have RecTµ  e
��

2
✏
2
/2 + 3� when kµ1k2 � ✏. If we pick � such that �2

✏
2  1, we

have
e
��

2
✏
2
/8 � e

��
2
✏
2
/2 � 1

4
�
2
✏
2 = 8�.

This means that the range of RecTµ when kµ1k2  ✏/2 is disjoint from that when kµ1k2 � ✏, which
allows the tester to correctly distinguish the two cases.

Finally, it follows from Claim 3.3 and elementary algebra that all the conditions that we need can be
satisfied by picking

�
2 =

512

�2

✓
min{d, ln k}+ ln

�

✏

◆
and M

2 = 10�2

✓
d+ ln k + ln

�

✏

◆
.

The time complexity of the testing algorithm is then upper bounded by

O
�
k
2
�
�2

�
�2
M

�
. k

2(�/✏)4

mink⇠k2M |(FD)(⇠)|2 ,

24

where

M =

p
5120

�

s✓
min{d, ln k}+ ln

�

✏

◆✓
d+ ln k + ln

�

✏

◆

. 1

�

p
d log k +

r
(d+ log k) log

�

✏
+ log

�

✏

!
.

F.2 Examples

We give a few concrete applications of Theorem F.1 and Corollary F.2. For simplicity, we focus on
the parameter regime that d = 1, � = O(1) and �/✏ = O(1), where the runtime of the learning
algorithm (from Corollary F.2) can be simplified into

O

✓
(k3/�) log(k/�)

min|⇠|M |EX⇠D [ei⇠X] |2

◆

for � = PrX⇠D [|X|  ✏/2] and some M = O

⇣p
log k

�

⌘
. We note that for all of the following

applications, it holds that � = ⌦(✏) = ⌦(�). Also recall that the EX⇠D
⇥
e
i⇠X
⇤

term is simply the
characteristic function of D at ⇠.

• Unit-Variance Gaussian. For D = N (0, 1), the characteristic function of D is given by
e
�⇠

2
/2. This implies

min
|⇠|M

��� E
X⇠D

⇥
e
i⇠X
⇤���

2
= e

�M
2

,

and the runtime reduces to k
O(1/�2). Note that Theorem 2.3 gives a runtime of O(k2) ·

e
O(min{log k,log(1/�)}/�2) for the one-dimensional unit-variance Gaussian case, which is

strictly better than k
O(1/�2) when 1/� is sub-polynomial.

• Cauchy distribution. The Cauchy distribution with location parameter 0 and scale parame-
ter 1 has probability density function f(x) = 1

⇡(1+x2) and characteristic function ⇠ 7! e
�|⇠|.

Thus, we can learn a mixture of k Cauchy distributions (with unit scale) in time

O((k3/�) log(k/�)) · eO(
p
log k/�) = O(k3) · eO(

p
log k/�)

,

which is polynomial in k for � = ⌦(1/
p
log k), and almost cubic in k for � = ⌦(1).

• Logistic distribution. The logistic distribution with location 0 and scale 1 has PDF f(x) =
e
�x

(1+e�x)2 and CF ⇠ 7! ⇡⇠

sinh⇡⇠
. Then, using the inequality

��� sinh(x)
x

���  e
|x|, we obtain a

learning algorithm with the same runtime as in the Cauchy case: O(k3) · eO(
p
log k/�).

• Laplace distribution. The Laplace distribution with fixed scale 1 and location 0 has a
characteristic function of ⇠ 7! 1

1+⇠2
. Applying Corollary F.2 gives a learning algorithm with

runtime
O
�
(k3/�)(1 +M

2)2 log(k/�)
�
= Õ

�
k
3
/�5

�
,

which is polynomial in both k and 1/�.

F.3 Application #1: Mixture of Exponential Distributions

An important family of distributions over R that is not included in the location family is the family of
exponential distributions, {Exp(�) : � > 0}. Nevertheless, we can learning mixtures of exponential
distributions using Corollary F.2 and a simple reduction: When X ⇠ Exp(�), the random variable
Y := � lnX has a density of f(x) = �e

�x · e��e
�x

, which is exactly the Gumbel distribution with
location ln� and scale 1. The problem is then reduced to learning a mixture of unit-scale Gumbel
distributions.

25

The characteristic function of a Gumbel distribution with location 0 and scale 1 is given by

⇠ 7! �(1� i⇠),

where the Gamma function has modulus

|�(1� i⇠)| =

s
⇡⇠

sinh(⇡⇠)
� e

�(⇡/2)|⇠|
.

Applying Corollary F.2 then shows that, assuming that ln�1, . . . , ln�k are �-separated, we can
recover these k parameters up to error O(�) in time O(k3) · eO(

p
log k/�). Equivalently, we can

recover the parameters �1, . . . ,�k up to a multiplicative factor of eO(�) and a permutation.

F.4 Application #2: Mixture of Linear Regressions in One Dimension

In one dimension, a mixture of k linear regressions is specified by k weights w1, . . . , wk 2 R. A
labeled data point (X,Y) from the model is sampled by drawing X ⇠ N (0, 1), j ⇠ Uniform([k])
and drawing Y ⇠ N (wjx, 1).

There is a simple reduction from this setting to learning mixtures of unit-variance Gaussians. Note
that conditioning on the realization of X and j, Y/X is distributed as N (wj , 1/X2). Thus, if
|X| � 1 and we draw � ⇠ N (0, 1� 1/X2), Y/X + � follows a Gaussian distribution with mean wj

and variance 1. Since |X| � 1 happens with probability ⌦(1), we reduce the problem of learning
w1, . . . , wk to learning the means of a mixture of k unit-variance Gaussians, with a constant factor
blowup in the time and sample complexities. Therefore, applying Theorem 1.1 shows that if the
weights w1, . . . , wk are �-separated for � = ⌦

⇣q
log log k

log k

⌘
, we can recover the weights up to an

O(�) error in poly(k) time.

26

	Introduction
	Overview of Results
	Proof Overview
	Related Work
	Organization of the Paper

	From Learning to Testing
	Solve the Testing Problem using Fourier Transform
	Pseudocode of Algorithms
	Auxiliary Lemmas
	Deferred Proofs from Section 2
	Deferred Proofs from Section 3
	Proof of Lower Bound
	Extension to Non-Gaussian Mixtures
	Proof of Theorem F.1
	Examples
	Application #1: Mixture of Exponential Distributions
	Application #2: Mixture of Linear Regressions in One Dimension

