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KNN Transformer with Pyramid Prompts for Few-Shot Learning
Anonymous Authors

ABSTRACT
Few-Shot Learning (FSL) aims to recognize new classes with limited
labeled data. Recent studies have attempted to address the challenge
of rare samples with textual prompts to modulate visual features.
However, they usually struggle to capture complex semantic rela-
tionships between textual and visual features. Moreover, vanilla
self-attention is heavily affected by useless information in images,
severely constraining the potential of semantic priors in FSL due
to the confusion of numerous irrelevant tokens during interaction.
To address these aforementioned issues, a 𝑘-NN Transformer with
Pyramid Prompts (KTPP) is proposed to select discriminative infor-
mation with 𝑘-NN Context Attention (KCA) and adaptively modu-
late visual features with Pyramid Cross-modal Prompts (PCP). First,
for each token, the KCA only selects the 𝑘 most relevant tokens to
compute the self-attention matrix and incorporates the mean of all
tokens as the context prompt to provide the global context in three
cascaded stages. As a result, irrelevant tokens can be progressively
suppressed. Secondly, pyramid prompts are introduced in the PCP
to emphasize visual features via interactions between text-based
class-aware prompts and multi-scale visual features. This allows
the ViT to dynamically adjust the importance weights of visual fea-
tures based on rich semantic information at different scales, making
models robust to spatial variations. Finally, augmented visual fea-
tures and class-aware prompts are interacted via the KCA to extract
class-specific features. Consequently, our model further enhances
noise-free visual representations via deep cross-modal interactions,
extracting generalized visual representation in scenarios with few
labeled samples. Extensive experiments on four benchmark datasets
demonstrate significant gains over the state-of-the-art methods,
especially for the 1-shot task with 2.28% improvement on average
due to semantically enhanced visual representations.

CCS CONCEPTS
• Computing methodologies→ Object recognition.

KEYWORDS
Multi-Modality, Prompt, Transformer, Few-Shot Learning

1 INTRODUCTION
Deep learning has achieved significant success in computer vision.
However, it typically relies heavily on large-scale labeled datasets,
which can be costly and sometimes impractical to obtain, such as
in rare disease diagnosis [33, 41] and industrial anomaly detection
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Figure 1: The image annotated as “dog” contains abundant
spurious information such as people, walls, etc.Moreover, the
scale variations present across different images, thus limiting
the performance of ViTs in FSL. Our KTPP achieves coarse-
to-fine filtration of noise, adaptation to spatial variations,
and prompts-guided class-specific visual extraction.

[15, 25]. Instead, humans can recognize new objects from only a few
images. To emulate human learning ability and reduce the depen-
dency on annotated data, Few-Shot Learning (FSL) [50] is proposed
to learn from a limited number of data, which has drawn consid-
erable concern in recent years. Despite of remarkable progress
[1, 7, 13, 14, 20, 50, 60, 68], achieving human-level performance
remains challenging, especially in the 1-shot scenario with only
one labeled sample.

Most methods [7, 13, 14, 50] utilize support features to infer class
prototypes for classification. However, the limited number of la-
beled samples makes it challenging to learn discriminative features,
leading to semantic biases in the generation of class-specific proto-
types. To address this issue, an alternative is to involve integrating
additional semantic information (e.g., category descriptions) with vi-
sual prototypes. Following this view, some studies [6, 31, 61–63, 73]
reveal that integration of semantic priors can enhance prototype
representation. Despite their success, most methods integrate se-
mantic embeddings at a higher hierarchical level (e.g., prototypes
and classifiers), lacking underlying feature interactions and ignor-
ing distribution differences between modalities. Moreover, a recent
study [6] attempted to modulate visual features by semantic embed-
dings of labels as prompts during the extraction process. However,
it struggles to capture complex semantic relationships between
textual and visual features by employing linear layers for direct
and single-scale fusion.

Moreover, several approaches [6, 13, 20] perform interactions
within or across modalities in Vision Transformers (ViTs) via vanilla
self-attention. However, for vanilla self-attention where each patch
is forced to interact with all tokens for computing the attention
matrix, noisy tokens are inevitably introduced into the calculation.
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This incorporation of noisy tokens renders image features vulner-
able to spurious correlations, especially in cluttered backgrounds
and occlusions. As shown in Fig. 1, the image annotated as “dog”
consists of one person, apple, wall, tree, and other class-irrelevant
objects, making the ViT falsely associate these objects with the
label when only few labeled samples are available. Therefore, the
potential of semantic priors is severely constrained in cross-modal
interactions via vanilla self-attention due to the confusion of nu-
merous irrelevant tokens during interaction. As a result, designing
an effective cross-modal fusion strategy and improving the self-
attention mechanism are crucial to achieving deep cross-modal
interactions and filtering out class-irrelevant visual features in FSL
frameworks.

To address these aforementioned issues, a 𝑘-NN Transformer
with Pyramid Prompts (KTPP) is proposed to fully leverage seman-
tic information and capture class-specific support features. Specif-
ically, the KTPP mainly consists of two modules: 𝐾-NN Context
Attention (KCA) and Pyramid Cross-modal Prompts (PCP). Firstly,
the KCA selects the 𝑘 most relevant tokens for each token to com-
pute attention weights instead of all tokens, effectively excluding
irrelevant information and reducing the computational burden. As
a result, irrelevant tokens can be progressively suppressed in a
coarse-fine manner via three cascaded stages, as shown in Fig. 1. To
avoid the issue of paying toomuch attention to the local context and
neglecting the discriminative information of global feature [19, 32]
in the top-𝑘 operation, the mean of all tokens is regarded as con-
text prompts which are incorporated to enhance the global context
information of each token. Secondly, the pre-trained CLIP model
[46] has an excellent capability of cross-modal feature alignments,
extracting rich and unbiased semantic embeddings. Therefore, we
exploit the class-aware prompts encoded from class names via the
CLIP. the PCP enables these class-aware prompts to interact with
multi-scale support features, learning pyramid prompts that capture
complex semantic relationships between textual and visual features.
The pyramid structure allows the ViT to dynamically focus on the
support features most relevant to the semantic information, making
it robust to spatial variations. Finally, the augmented support fea-
tures and the class-aware prompts are then interacted via the KCA,
which enables the ViT to further capture discriminative support
features due to the semantically guided class-specific features. As
shown in Fig. 1, the KTPP progressively filters out noisy tokens at
different stages and further enhances noise-free visual representa-
tions via deep cross-modal interactions guided by prompts.

Overall, our contributions are summarized as follows:

• A KTPP method is proposed to fully exploit cross-modal
information and select discriminative visual features.

• A 𝐾-NN Context Attention module is proposed to filter out
class-irrelevant features in a coarse-fine manner, captur-
ing class-specific features in cross-modal interactions and
improving computational efficiency.

• Pyramid Cross-modal Prompts are proposed to enhance vi-
sual features via deep cross-modal interactions, improving
the adaptivity ability to spatial variations.

• The proposed method achieves significant performance in
four FSL benchmarks, particularly improving 1-shot accu-
racy by 1%-4% compared to the state-of-the-art approaches.

2 RELATEDWORK
2.1 Few-Shot Learning
In general, methods for Few-Shot Learning can be divided into two
types. One is optimization-based methods [16, 42, 49, 74], aimed
at quickly adapting models to new data. The other type is metric-
based methods adopted in this work aims to classify by measuring
distances between support and query samples within the feature
space. ProtoNet [50] uses Euclidean distance. Deepemd [68] utilizes
the Earth Mover’s Distance. others [12, 21, 36, 64, 71] have inte-
grated Transformer layers as classifiers. Moreover, recent works
have incorporated textual modality as auxiliary information to
boost generalization on novel classes. AM3 [61] merges seman-
tic and visual prototypes through an adaptive fusion mechanism.
Multiple-Semantics [66] aims to enhance prototype representation
by integrating multiple semantic information TRAML [31] lever-
ages semantic similarities between classes to improve classification
accuracy by a task-relevant adaptive margin loss. SVAE [62] gener-
ates additional visual features from semantic information through
a Conditional Variational Autoencoder (CVAE) [51], resulting in
more reliable prototypes. KTN [45] utilizes graph convolutional
networks and knowledge graphs to explicitly leverage semantic
information for learning classifiers. These methods apply semantic
information at a higher level such as prototypes and classifiers,
which lack foundational visual feature interactions and ignore dis-
tribution differences. In contrast, we utilize ViT as the backbone,
leveraging semantic information in the extraction process to mod-
ulate visual features adaptively.

2.2 Prompt Learning
To diminish the dependency on extensive training datasets and
enhance the flexibility of pre-trained models for downstream tasks,
several prompt-based approaches [6, 10, 23, 46, 53, 72, 73] have
been proposed. CLIP [46] utilizes constructed prompts like “a photo
of a class” to compute similarity scores between image embed-
dings and textual prompts for classification. CoOp [73] introduces
learnable continuous prompt tokens for fine-tuning the pre-trained
CLIP. Further building on CoOp, CoCoOp [72] employs a Meta-Net
to transform each prompt token into instance-specific contexts,
significantly improving model adaptability. MAPLE [23] designs
corresponding prompts for each modality to guide the learning of
the respective modality. VPT [22] introduces learnable parameters
as visual prompts to fine-tune the CLS token of the ViT, enhancing
the flexibility and adaptability of the model. Frozen [53] conducts
multimodal few-shot learning by using image features paired with
text as prompts. SP [6] utilizes textual labeled embedding matching
images as prompts to supplement visual features by employing
linear layers for direct and single-scale fusion. In this paper, we
propose Pyramid Cross-modal Prompts to learn pyramid prompts,
which can dynamically adjust the importance weights of visual fea-
tures based on rich semantic information at different scales, making
models robust to spatial variations.

2.3 Vision Transformer
Vision Transformers (ViTs) have shown remarkable success in nu-
merous computer vision tasks [2, 5, 26, 34, 37, 43, 59, 70], benefiting
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Figure 2: The framework of our proposed KTPP. Image patches are sequentially fed into three cascaded stages where KCA
filters out irrelevant tokens and linear projection extracts multi-scale support features 𝑍𝑆𝑣 . Text-based class-aware prompts 𝑍𝑐𝑝𝑡
are exploited via the CLIP. Pyramid prompts 𝑍𝑝𝑝𝑡 are obtained to enhance support features via the PCA between 𝑍𝑐𝑝𝑡 and 𝑍𝑆𝑣 .
The enhanced support features and 𝑍𝑐𝑝𝑡 are interacted via the KCA to extract class-specific support features.

from their proficiency to capture long-range dependencies among
image patches. To match or surpass the performance of CNNs of
similar size trained on ImageNet [11], ViTs are usually trained on
large-scale datasets. Few recent works [4, 13, 20, 58] have explored
the adaptation of ViTs on small datasets. IDMM [4] pretrains ViT
using instance discrimination loss, followed by fine-tuning on the
target dataset. SUN [13] introduces local supervision to enhance de-
pendency learning of tokens. FewTURE [20] also achieves excellent
performance with a fully Transformer-based architecture. SP [6]
utilizes semantic prompts to enhance the visual feature by cross-
modal interactions based on self-attention. Despite these advances,
the fully connected self-attention mechanism in these models usu-
ally introduces noisy tokens, which can degrade the quality of the
representation. KVT [58] attempts to refine this mechanism, yet the
performance is limited in scenarios with few labeled samples due to
excessive focus on local feature context. In this paper, we propose
a 𝑘-NN Context Attention mechanism that progressively filters out
irrelevant information in visual modality via three cascaded stages,
captures discriminative features in cross-modal interactions guided
by semantic information, and enhances global context information
in FSL. To the best of our knowledge, we are the first to consider
the way of integrating cross-modal data and context prompts for
improving 𝑘-NN attention and applying it in FSL.

3 METHOD
We first overview the whole pipeline, and then introduce the pre-
liminary of FSL. Next, two novel components of K-NN Context
Attention (KCA) and Pyramid Cross-modal Prompts (PCP) are pre-
sented.

3.1 Overview
Fig. 2 shows the framework of our proposed KTPP. To suppress irrel-
evant information, the KCA progressively filters out noisy tokens in
three cascaded stages. To exploit rich semantic priors, class-aware
prompts are extracted by inputting class names into the CLIP. To
capture complex semantic relationships between different modal-
ities, pyramid prompts are obtained to enhance support features
by applying the PCP at different scales, enabling the ViT to dy-
namically adjust the importance weights of support features based
on semantic information. Consequently, models are robust to spa-
tial variations. To select discriminative support features, enhanced
support features and class-aware prompts are interacted via the
KCA, which can extract class-specific support features guided by
semantic information. Finally, the ViT can generate generalized
class prototypes for classification.

3.2 Preliminary
Few-Shot Learning (FSL) focuses on generalizing the knowledge
learned from training classes 𝐶train to test classes 𝐶test with only
a few labeled samples, where the training and test categories are
disjoint (𝐶train ∩ 𝐶test = ∅). This task is typically formalized as
an N-way M-shot problem where the training involves N distinct
categories and each category has M labeled images. An episodic
training strategy [55] is adopted, where each episode consists of two
parts: a support set 𝑆 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁×𝑀

𝑖=1 with 𝑁 ×𝑀 labeled samples,
and a query set 𝑄 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁×𝐻

𝑖=1 with 𝑁 × 𝐻 test samples to
evaluate the performance.

In the FSL approach, prototype-based inference is commonly
utilized. Specifically, N class prototypes are obtained by averaging

3
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Figure 3: Illustration of K-NN Context Attention (KCA). For
each query, the 𝑘 highest scorers from the N query-key pairs
are selected for computing attention weights, and the rest
are set to negative infinity. The context prompt is the mean
of all tokens weighted by the KCA.

all samples of each class as follows:

𝑐𝑖 =
1
|𝑆𝑖 |

𝑀∑︁
𝑗=1

𝑓 (𝑥 𝑗 ) , (1)

where 𝑥 𝑗 ∈ 𝑆𝑖 . 𝑆𝑖 denotes the i-th support class. |𝑆𝑖 | represents the
number of samples in each support class. 𝑓 is the feature extractor.

For a query image 𝑞𝑖 , the similarity score between 𝑞𝑖 and all
support classes is determined by calculating the distance function
between 𝑞𝑖 and N class prototypes. The probability of 𝑞𝑖 belonging
to the n-th support class is calculated as follows:

𝑝𝑘 =
exp(𝛾 · 𝑑 (𝑓 (𝑞𝑖 ), 𝑐𝑖 ))∑𝑁
𝑗=1 exp(𝛾 · 𝑑 (𝑓 (𝑞𝑖 ), 𝑐 𝑗 ))

, (2)

where 𝛾 is a temperature parameter. 𝑑 () denotes the distance func-
tion. The support class corresponding to the maximum probability
is regarded as the classification result.

3.3 𝑘-NN Context Attention
Following[55], the vanilla self-attention formula is defined as:

𝑉 = softmax
(
𝑄𝐾𝑇
√
𝑑

)
𝑉 . (3)

The fully connected self-attention mechanism allocates weights to
all tokens without distinguishing noise, making ViTs susceptible to
noisy tokens when only a limited number of samples are available.
To mitigate this issue, we propose a 𝐾-NN Context Attention (KCA)
mechanism, which aims to progressively filter out irrelevant tokens
in a coarse-fine manner via three cascaded stages.

Specifically, the KCA computes the attention matrix 𝐴 ∈ R𝑛×𝑛
by the dot product of all query-key pairs, like vanilla attention:

𝐴 =
𝑄𝐾𝑇
√
𝑑
. (4)

We further construct a masked attention matrix 𝐴 ∈ R𝑛×𝑛 , se-
lecting the 𝑘 most relevant keys for each query, as shown in Fig. 3.
This is achieved by performing the top-𝑘 operation on each row of
the attention matrix to obtain the highest 𝑘 scores and their indexes.

In the 𝐴, the selected elements remain unchanged and all others
are set to negative infinity. The formulation is defined as follows:

𝐴𝑖 𝑗 = Mask𝑘−𝑛𝑛 (𝐴𝑖 𝑗 ) =
{
𝐴𝑖 𝑗 if (𝑖, 𝑗) 𝑖𝑛 𝐼 ∈ R𝑛×𝑘

−∞ otherwise
, (5)

where 𝐼 ∈ R𝑛×𝑘 represents the collection of 𝑛 × 𝑘 indexes.
Therefore, the KCA naturally forms a sparse attention matrix,

concentrating the focus of the ViT on class-relevant features. In
the proposed framework, image patches are sequentially fed into
three stages to perform the KCA, thereby progressively filtering out
irrelevant tokens by selecting similar tokens and refining features
in a coarse-fine manner.

In vanilla self-attention, attention weights are calculated based
on the relationships between the position and all other positions, re-
sulting in𝑂 (𝑁 2) computational complexity for a sequence of length
𝑁 . In contrast, the KCA considers only the 𝐾 nearest neighbors for
each position, reducing computational complexity to approximately
𝑂 (𝑁𝐾), where 𝐾 is much smaller than 𝑁 . This approximation sig-
nificantly reduces computational costs and maintains ins relatively
high performance.

However, a potential risk is the over-focus on local features to
the detriment of global context. This limits the generalization of the
ViT to new classes with few samples. To address this problem, an
average representation of the entire tokens is used as the context
prompt to capture global information:

𝑧𝑐𝑝 = Average(softmax(𝐴𝑖 𝑗 )𝑉 ), (6)

where 𝑧𝑐𝑝 represents context prompts. Incorporating 𝑧𝑐𝑝 into each
token can enhance global context information.

The whole KCA formula can be defined as:

�̃� = softmax(Mask𝑘−𝑁𝑁 (𝑄𝐾
𝑇

√
𝑑

))𝑉 + 𝛼𝑧𝑐𝑝 , (7)

where 𝛼 is a learnable parameter, allowing the ViT to adaptively
adjust the coefficient between local and global context information.

3.4 Pyramid Cross-modal Prompts
The proposed Pyramid Cross-modal Prompts (PCP) leverage se-
mantic embeddings to enhance support representations, allowing
the ViT to adaptively modulate support features based on semantic
information, capturing complex semantic correlations between tex-
tual and visual modalities via deep cross-modal interactions. The
key component of PCP is the cross-modal enhancement module
which is illustrated in Fig. 4. It illustrates cross-modal attention to
leverage semantic information and generate semantic-based visual
features.

Specifically, to exploit rich and unbiased semantic information,
class-aware prompts 𝑍𝑐𝑝𝑡 ∈ R𝐿𝑡×𝑑𝑡 from class names are obtained
by the CLIP which has an excellent capability of cross-modal feature
alignments. Additionally, three support features 𝑍𝑆𝑖𝑣 ∈ R𝐿𝑣×𝑑𝑣 at
different scales are extracted via three stages.

Given weight matrices𝑊𝑄𝑡
∈ R𝑑𝑡×𝑑 ,𝑊𝐾𝑣

∈ R𝑑𝑣×𝑑 , and𝑊𝑉𝑣 ∈
R𝑑𝑣×𝑑 , the query𝑄 , key𝐾 , and value𝑉 in the cross-modal attention

4
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Figure 4: Illustration of cross-modal enhancement module in
the PCA. Class-aware prompts𝑍𝑐𝑝𝑡 provide queries𝑄 , dynam-
ically adjusting the importance weights of visual features.

are computed as follows:

𝑄 = 𝑍
𝑐𝑝
𝑡 𝑊𝑄𝑡

∈ R𝐿𝑡×𝑑 ,

𝐾 = 𝑍𝑆𝑖𝑣 𝑊𝐾𝑣
∈ R𝐿𝑣×𝑑 ,

𝑉 = 𝑍𝑆𝑖𝑣 𝑊𝑉𝑣 ∈ R𝐿𝑣×𝑑 .

(8)

Next, the attention weight matrix of textual modality for visual
modality is obtained as:

𝑊𝑣→𝑡 = softmax(𝑄𝐾𝑇 𝛽), (9)

where𝑊𝑣→𝑡 is the attention weight matrix and 𝛽 is a scaling pa-
rameter. Due to discrepancies in modality distributions, the initial
training phase may yield limited relevance between textual and
visual features, resulting in small values within the weight matrix.
To enhance the learning of model parameters, we introduce the
hyperparameter 𝛽 to scale the matrix before applying softmax.

After applying the identical operation to the support features
of the remaining two scales, we derive the pyramid prompts 𝑍 𝑓 𝑝𝑝𝑣→𝑡 ,
representing the inherent semantic details of visual features chosen
by textual features across various levels. Utilizing the multi-scale
operation, ViT captures diverse spatial information, thereby en-
hancing its capability to adapt to spatial variations.

The pyramid prompts are linearly mapped to the dimension of
the support feature 𝑍𝑆3𝑣 for fusion, defined as:

𝑍𝑆𝑣 = 𝑍𝑆3𝑣 + 𝜆
𝑁∑︁
𝑖=1

Linear(𝑍𝑝𝑝𝑖𝑣→𝑡 ), (10)

where 𝑍𝑆𝑣 represents the support features emphasized by the pyra-
mid prompts, 𝑁 is typically set to 3, and 𝜆 as a learnable parameter.

The augmented support features 𝑍𝑆𝑣 and class-aware prompts
𝑍
𝑐𝑝
𝑡 are interacted in the ViT via the KCA. The output 𝑦𝑆𝑣 is calcu-

lated as follows:

𝑦𝑆𝑣 = 𝐾𝐶𝐴

[(
𝑍𝑆𝑣 ∥𝑍𝑐𝑝𝑡

)]
, (11)

where ∥ represents the concatenation operation along the spatial
dimension. The KCA enables the ViT to extract discriminative

support features due to the semantically guided capture of class-
specific features, followed by obtaining more generalized class
prototypes for classification via Eq. 1.

The similarity scores between the query samples and class pro-
totypes are computed via the cosine distance, defined as follows:

𝑝𝑘 =
exp(𝛾 · cos(𝑓 (𝑞𝑖 ), 𝑐𝑖 ))∑𝑁
𝑗=1 exp(𝛾 · cos(𝑓 (𝑞𝑖 ), 𝑐 𝑗 ))

, (12)

where cos() denotes the cosine distance function. The classification
results of the query image 𝑞𝑖 is the support class with maximum
probability.

The ViT is trained by minimizing the Cross-Entropy (CE) loss
function, which can be formulated as follows:

Γ = argmin
𝑀∑︁
𝑖=1

LCE (𝑓 (𝑞𝑖 ) , 𝑦𝑖 ) , (13)

where LCE represents CE loss. 𝑓 () represents the ViT backbone. 𝑞𝑖
and 𝑦𝑖 donate a query image and its corresponding ground-truth
label.

4 EXPERIMENTS
Wefirst present the four benchmark datasets. Next, we introduce the
details of the experiments, followed by the few-shot classification
performance and the model analysis.

4.1 Datasets
The effectiveness of the proposed method is evaluated on four few-
shot datasets: miniImageNet [56], tieredImageNet [47], CIFAR-FS
[30], and FC100 [44]. MiniImageNet and TieredImageNet are both
subsets of ImageNet [11]. MiniImageNet has 64 training classes, 16
validation classes, and 20 test classes. TieredImageNet includes 351
training classes, 97 validation classes, and 160 test classes. CIFAR-FS
and FC100 are derived from the CIFAR-100 dataset [27]. CIFAR-FS
has 64 training classes, 16 validation classes, and 20 test classes
employing a random partitioning strategy. FC100 adopts a unique
superclass partitioning method, featuring 12 superclasses in the
training set (equivalent to 60 classes), and 4 superclasses each in
the validation and test sets, totaling 20 classes. Notably, only the
training set is utilized for model training, with no overlap between
the training, validation, and test sets in few-shot learning settings.

4.2 Implementation Details
Backbone. In all experimental setups, we employ Visformer-T [8]
as the feature extractor. The Visformer-T model boasts a more small
number of parameters, rendering our model smaller compared to
Resnet-12 models [48, 50, 68], or even several times smaller than
the ViT-S/16 and WRN-28 models [20, 49, 57]. KCA Block consists
of two Batchnorm layers, a two-layer MLP, and Multi-Head KCA.
Furthermore, we employ ViT-B/32 CLIP as a text encoder, extracting
an output dimension of 512.

Training Details. Our approach follows a two-phase training
procedure, similar to traditional frameworks such as Meta-baseline
[7], including pre-training and meta-tuning stages. Throughout
both phases, KCA serves as the attention mechanism for the ViT.
Moreover, PCP is employed in the meta-tuning phase. For input
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Table 1: Results (%) for the 5-way 1-shot and 5-way 5-shot settings on MiniImageNet and TieredImageNet. The average accuracy
with 95% confidence interval are reported. Bold font indicates the best results. Blue font indicates the suboptimal results.

Methods Venue Backbone Params MiniImageNet 5-way TieredImageNet 5-way
1-shot 5-shot 1-shot 5-shot

ProtoNet [50] NeurIPS’2017 ResNet-12 12.4M 62.39 ± 0.21 80.53 ± 0.14 68.23 ± 0.23 84.03 ± 0.16
KTN [45] ICCV’2019 ResNet-12 12.4M 61.42 ± 0.72 74.16 ± 0.56 - -
AM3 [61] NeurIPS’2019 ResNet-12 12.4M 65.30 ± 0.49 78.10 ± 0.36 69.08 ± 0.47 82.58 ± 0.31

TRAML [31] CVPR’2020 ResNet-12 12.4M 67.10 ± 0.52 79.54 ± 0.60 - -
DeepEMD [68] CVPR’2020 ResNet-12 12.4M 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58

Meta-Baseline [7] ICCV’2021 ResNet-12 12.4M 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.29 ± 0.18
DeepBDC [60] CVPR’2022 ResNet-12 12.4M 67.34 ± 0.43 84.46 ± 0.28 72.34 ± 0.49 87.31 ± 0.32
SVAE [62] CVPR’2022 ResNet-12 12.4M 74.84 ± 0.23 83.28 ± 0.40 76.98 ± 0.65 85.77 ± 0.50

Meta-AdaM [52] NeurIPS’2023 ResNet-12 12.4M 59.89 ± 0.49 77.92 ± 0.43 65.31 ± 0.48 85.24 ± 0.35
ProtoDiff [14] NeurIPS’2023 ResNet-12 12.4M 66.63 ± 0.21 83.48 ± 0.15 72.95 ± 0.24 85.15 ± 0.18
ESPT [48] AAAI’2023 ResNet-12 12.4M 68.36 ± 0.19 84.11 ± 0.12 72.68 ± 0.22 87.49 ± 0.14
FGFL [9] ICCV’2023 ResNet-12 12.4M 69.14 ± 0.80 86.01 ± 0.62 73.21 ± 0.88 87.21 ± 0.61
BMI [35] MM’2023 ResNet-12 12.4M 72.96 ± 0.36 81.94 ± 0.29 75.45 ± 0.44 84.77 ± 0.33
4S [40] MM’2023 ResNet-12 12.4M 74.53 ± 0.68 85.78 ± 0.49 - -

MetaDiff [67] AAAI’2024 ResNet-12 12.4M 64.99 ± 0.77 81.21 ± 0.56 72.33 ± 0.92 86.31 ± 0.62
ALFA [3] TPAMI’2024 ResNet-12 12.4M 66.61 ± 0.28 81.43 ± 0.25 70.29 ± 0.40 86.17 ± 0.35

LastShot [65] TPAMI’2024 ResNet-12 12.4M 67.35 ± 0.20 82.58 ± 0.14 72.43 ± 0.23 85.82 ± 0.16
LEO [49] ICLR’2019 WRN-28 36.5M 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09
Align [1] ECCV’2022 WRN-28 36.5M 65.92 ± 0.60 82.85 ± 0.55 74.40 ± 0.68 86.61 ± 0.59

AMTNet [28] MM’2022 WRN-28 36.5M 70.05 ± 0.46 84.55 ± 0.29 73.86 ± 0.50 87.62 ± 0.33
RankDNN [18] AAAI’2023 WRN-28 36.5M 66.67 ± 0.15 84.79 ± 0.11 74.00 ± 0.15 88.80 ± 0.25
STANet [29] AAAI’2023 WRN-28 36.5M 69.86 ± 0.46 85.16 ± 0.29 74.41 ± 0.50 87.64 ± 0.33
SUN [13] ECCV’2022 Visformer-S 12.4M 67.80 ± 0.45 83.25 ± 0.30 72.99 ± 0.50 86.74 ± 0.33

FewTURE [20] NeurIPS’2022 ViT-S/16 22.0M 68.02 ± 0.88 84.51 ± 0.53 72.96 ± 0.92 86.43 ± 0.67
SP [6] CVPR’2023 Visformer-T 10.3M 72.31 ± 0.40 83.42 ± 0.30 78.03 ± 0.46 88.55 ± 0.32
KTPP ours Visformer-T 11.1M 76.71 ± 0.37 86.46 ± 0.27 80.80 ± 0.43 90.01 ± 0.29

images with a resolution of 224 × 224, Visformer-T sequentially ex-
tracts feature dimensions of 96, 192, and 384. We utilize the AdamW
optimizer [39] with a learning rate of 5e-4. During the pre-training
phase, the number of training epochs is set to 500 for the mini-
ImageNet, CIFAR-FS, and FC100 datasets, and 300 epochs for the
tieredImageNet dataset. A batch size of 512 is employed, and a
cosine learning rate scheduler [38] is utilized for learning rate ad-
justment. In the meta-tuning phase, the model is trained for 100
epochs using the episodic training strategy. All experiments are
conducted on an NVIDIA GeForce RTX 3090 GPU, utilizing PyTorch
for code implementations.

Evaluation Protocol. The proposed method is evaluated in
5-way 1-shot and 5-way 5-shot settings. Each class has 15 test
instances. We randomly sampled 2,000 episodes from the test class.
The average accuracy with 95% confidence interval is reported.

4.3 Comparison with the SOTA Methods
To evaluate the effectiveness of our proposed KTPP, extensive ex-
periments are conducted on four benchmark datasets. Tabs. 1 and
2 present the results of KTPP compared to state-of-the-art methods
under 5-way 1-shot and 5-way 5-shot settings.

KTPP demonstrates substantial superiority over the counterparts
across all settings. Specifically, in the 1-shot settings, KTPP exhibits

notable advancements, outperforming state-of-the-art results by
1.45% to 3.06% across the four benchmarks. KTPP significantly
outperforms previous textual modality-based methods (AM3 [61],
KTN [45], TRAML [31], SVAE [62], and SP [6]), improving 1-shot
accuracy by 4.4% and 5-shot accuracy by 3.04% on miniImageNet
compared to SP. In addition, Compared to previous ViT-based meth-
ods (SUN [13], FewTure [20]), KTPP achieves superior results with
fewer parameters, improving 1-shot accuracy by 7.81% and 5-shot
accuracy by 3.27% on TieredImageNet.

The effectiveness of KTPP is confirmed by the results. This is
attributed to the ability of KTPP to progressively filter out class-
irrelevant features in a coarse-fine manner and capture discrimina-
tive in cross-modal interactions via the KCA. Moreover, pyramid
prompts learned in the PCP contribute to enhancing visual features
through deep cross-modal interactions, improving adaptability to
spatial variations via the pyramid structure.

4.4 Model Analysis
4.4.1 Ablation Study. To fairly prove the effectiveness of our
method, we leverage the ViT as the baseline. KCA and PCP are
introduced to investigate their impact, as shown in Table 3. First
KCA is integrated as the attention mechanism into the baseline,
improving the 1-shot and 5-shot accuracy by 3.25% and 2.89% in
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Table 2: Results (%) for the 5-way 1-shot and 5-way 5-shot settings on CIFAR-FS and FC100. The average accuracy with 95%
confidence interval are reported. Bold font indicates the best results. Blue font indicates the sub-optimal results.

Methods Venue Backbone Params CIFAR-FS 5-way FC100 5-shot
1-shot 5-shot 1-shot 5-shot

ProtoNet [50] NeurIPS’2017 ResNet-12 12.4M 72.20 ± 0.70 83.50 ± 0.50 41.54 ± 0.76 57.08 ± 0.76
TADAM [44] NeurIPS’2018 ResNet-12 12.4M - - 40.10 ± 0.40 56.10 ± 0.40
MABAS [24] ECCV’2020 ResNet-12 12.4M 72.80 ± 0.70 84.30 ± 0.50 47.20 ± 0.60 55.50 ± 0.60

Meta-NVG [69] ICCV’2021 ResNet-12 12.4M 73.51 ± 0.92 85.65 ± 0.65 42.31 ± 0.75 58.16 ± 0.78
Meta-AdaM [52] NeurIPS’2023 ResNet-12 12.4M - - 41.12 ± 0.49 56.14 ± 0.49

ALFA [3] TPAMI’2024 ResNet-12 12.4M 76.32 ± 0.43 86.73 ± 0.31 44.54 ± 0.50 58.44 ± 0.42
LastShot [65] TPAMI’2024 ResNet-12 12.4M 76.76 ± 0.21 87.49 ± 0.12 44.08 ± 0.18 59.14 ± 0.18
PN+rot [17] ICCV’2019 WRN-28 36.5M 69.55 ± 0.34 82.34 ± 0.24 - -
Align [1] ECCV’2022 WRN-28 36.5M - - 45.83 ± 0.48 59.74 ± 0.56

AMTNet [28] MM’2022 WRN-28 36.5M 80.38 ± 0.48 89.89 ± 0.32 - -
SUN [13] ECCV’2022 Visformer-S 12.4M 78.37 ± 0.46 88.84 ± 0.32 - -

FewTURE [20] NeurIPS’2022 ViT-S/16 22.0M 72.80 ± 0.88 86.14 ± 0.64 46.20 ± 0.79 63.14 ± 0.73
SP [6] CVPR’2023 Visformer-T 10.3M 82.18 ± 0.40 88.24 ± 0.32 48.53 ± 0.38 61.55 ± 0.41
KTPP ours Visformer-T 11.1M 83.63 ± 0.57 90.19 ± 0.30 51.59 ± 0.40 65.18 ± 0.40

Table 3: Ablation study of KTPP on miniImageNet. “KCA”
means K-NN Context Attention. “PCP” denotes Pyramid
Cross-modal Prompts.

Training phase Module 1-shot 5-shotPre Meta KCA PCP
✓ 63.84 ± 0.38 80.72 ± 0.31
✓ ✓ 65.56 ± 0.37 81.62 ± 0.31
✓ ✓ 67.09 ± 0.37 83.61 ± 0.30
✓ ✓ ✓ 68.75 ± 0.38 84.92 ± 0.29
✓ ✓ ✓ 73.80 ± 0.38 84.34 ± 0.28
✓ ✓ ✓ ✓ 76.71 ± 0.37 86.46 ± 0.27

the pre-training phase. Next, KCA is used in the meta-training
phase, increasing the 1-shot and 5-shot accuracy by 3.19% and 3.3%
This is because KCA can select class-specific features, progressively
filtering out irrelevant features in a coarse-fine manner in three
cascaded stages. Then, PCP is employed in the meta-tuning phase
to learn pyramid prompts via deep interactions between modali-
ties, which allows the ViT to dynamically modulate visual features
based on semantic information, improving adaptability to spatial
variations via the pyramid structure. Therefore, it is observed there
are 8.24% and 2.72% improvements in the 1-shot and 5-shot tasks,
respectively. Finally, when KCA and PCP together are incorporated
into the baseline, a significant improvement of 11.14% and 4.84%
can be observed, due to further capture of discriminative features
guided by semantic information.

4.4.2 The effect of value 𝑘 in KCA. Table 4 shows the different
values of 𝑘 in KCA. “𝑘 = 1” means that each query only selects one
most relevant key to compute the attention matrix. smaller values
of 𝑘 make it difficult to distill noisy tokens due to information
interactions between irrelevant and relevant tokens. large values
of 𝑘 make KCA tend to be a vanilla self-attention mechanism, both
of which lead to performance degradation. For Visformer-T, 𝑘 = 10

Table 4: The effect of value 𝑘 .

The value of 𝑘 1-shot 5-shot
𝑘 = 1 71.55 ± 0.35 83.65 ± 0.29
𝑘 = 5 75.13 ± 0.37 84.49 ± 0.28
𝑘 = 7 75.50 ± 0.35 85.69 ± 0.28
𝑘 = 10 76.71 ± 0.37 86.46 ± 0.27
𝑘 = 15 76.21 ± 0.38 85.92 ± 0.27
𝑘 = 20 75.81 ± 0.38 84.81 ± 0.29
𝑘 = 30 75.01 ± 0.37 84.39 ± 0.30

is optimal on miniImageNet, which enables the ViT to distinguish
class-irrelevant tokens more effectively.

Table 5: The performance of different backbone architectures.
* denotes results produced by our model.

method backbone 1-shot 5-shot
ProtoNet [50] Resnet-12 62.39 ± 0.21 80.53 ± 0.14
ProtoNet* [50] Visformer-T 62.48 ± 0.45 79.78 ± 0.30

Meta-Baseline [7] ResNet-12 63.17 ± 0.23 79.26 ± 0.17
Meta-Baseline* [7] Visformer-T 62.59 ± 0.40 79.88 ± 0.35

ours Visformer-T 76.71 ± 0.37 86.46 ± 0.27

4.4.3 Backbone Architectures. Table 5 presents two baseline
approaches based on Resnet-12 and corresponding reimplementa-
tions based on Visformer-T. Results are reported on miniImageNet.
It is evident that directly replacing ResNet-12 with Visformer-T
fails to improve results. Instead, our KTPP significantly surpasses
baseline approaches with the identical Visformer Architecture due
to select discriminative information and adaptively module visual
features.
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Table 6: Comparison with state-of-the-art prompt and sparse
attention methods on miniImageNet.

Method 1-shot 5-shot

Prompt VPT [22] 66.89 ± 0.35 83.42 ± 0.27
SP [6] 73.28 ± 0.40 85.23 ± 0.28

Sparse attention KVT [58] 69.57 ± 0.44 84.78 ± 0.29
ours KTPP 76.71 ± 0.37 86.46 ± 0.27

4.4.4 Analysis of Prompt and Sparse Attention methods. Ta-
ble 6 shows the results of different Prompt and Sparse Attention
methods. To fairly compare performance, we use the same ViT archi-
tectures in the FSL settings. We simply replace PCP with VPT [22]
and SP [6] in the meta-tuning phase. However, VPT lacks seman-
tic information by directly introducing some prompt parameters.
Moreover, SP struggles to capture complex semantic relationships
due to direct fusion. Instead, KTPP employs PCP to learn pyramid
prompts, which allow the ViT to adaptively adjust visual features
based on semantic information, making it robust to spatial varia-
tions via pyramid structure. Next, we directly replace KCA with
KVT [58] in the whole training process. However, KVT has a poor
generalization to new classes in sparse scenarios with only few
labeled samples. Unlike KVT, we utilize semantic information to
further extract discriminative visual features via cross-modal in-
teraction in KCA. Meanwhile, the mean of all tokens as context
prompts to enhance the global context information of each token.
As a result, Our KTPP significantly outperforms the state-of-the-art
prompt and sparse attention methods.

Table 7: The effect of different classifiers on the FSL test.

Metrics for classifier 1-shot 5-shot
EU 73.47 ± 0.35 83.53 ± 0.30
CO 76.33 ± 0.37 86.16 ± 0.30
LR 76.71 ± 0.37 86.46 ± 0.27

4.4.5 Classifier Selection Strategy. Table 7 shows three dif-
ferent classifiers and the results on miniImageNet are reported.
Classification is achieved based on the distance between the sup-
port and query features in the feature space. Cosine distance to
achieve nearest neighbor classification gets better results than Eu-
clidean distance. Moreover, the Linear logistic regression classifier
gets the best results due to constructing more support samples.

4.4.6 Image Resolution. Table 8 shows three common image
resolutions in FSL. The ViT gets similar results at different resolu-
tions, reflecting the adaptability of the proposed method to image
resolution due to the full utilization of diverse spatial information.

4.4.7 Visualization. To qualitatively analyze the effectiveness
of KTPP, we illustrate the t-SNE [54] results of baseline and KTPP.
Fig. 5 shows the visualization of samples with novel classes on
three benchmark datasets. In contrast to the spatially cluttered
distribution of baseline, our KTPP allows the ViT to capture class-
specific features so that intra-class images are closer together and
inter-class images are further apart.

KTPP

Baseline KTPP

Baseline KTPP

Baseline

Figure 5: T-SNE visualization results on novel classes from
three benchmark datasets. ViT with KTPP performs better
compared to ViT with baseline.

Table 8: The effect of different image resolutions.

Image resolution 1-shot 5-shot
80 × 80 76.19 ± 0.40 86.02 ± 0.29
84 × 84 75.86 ± 0.40 85.86 ± 0.30
224 × 224 76.71 ± 0.37 86.46 ± 0.27

5 CONCLUSION
In this paper, we propose 𝑘-NN Transformer with Pyramid Prompts
(KTPP) for Few-Shot Learning. KTPP mainly consists of 𝑘-NN Con-
text Attention (KCA) and Pyramid Cross-modal Prompts (PCP).
Specifically, KCA achieves progressively noisy filtration via a coarse-
to-fine manner in the three cascaded stages and extracts discrimi-
native features guided by semantic information. In PCP, pyramid
prompts are generated to enhance visual features via deep cross-
modal interactions between textual and multi-scale visual features.
This enables the ViT to dynamically module the importance weights
of visual features based on semantic information and make it robust
to spatial variations via pyramid structure. Experimental results
demonstrate the effectiveness of our KTPP model.
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