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A APPENDIX

A.1 Comparison with the SOTA Methods in
Fine-Grained Scenarios

Table 1: Results (%) on CUB-200-2011. Bold font indicates the
best results. Blue font indicates the suboptimal results.

CUB-200-2011 5-way

Method Venue Tshot S shot
ProtoNet [14] NeurIPS’2017 | 71.88 +0.91 87.42 £ 0.48

AM3 [19] NeurIPS’2019 74.1 79.7

AFHN [10] CVPR’2020 70.53 + 1.01 83.95 + 0.63
MixtFSL [1] ICCV’2021 73.94 + 1.10 86.01 = 0.50
CCG+HAN [4] ICCV’2021 74.66 + 0.21 88.37 + 0.12
RENet [8] ICCV’2021 | 79.49 £0.44  91.11 +0.24
DC [20] ICLR’2021 79.56 + 0.87 90.67 + 0.35
APP2S [13] AAAT 2022 77.64 £ 0.19 90.43 + 0.18

RankDNN [6] | AAAT'2023 82.93 91.47
BMI [12] MM’2023 85.79 + 0.33 90.91 + 0.22
LastShot [21] TPAMI’2024 80.20 + 0.21 91.49 + 0.12
KTPP ours 87.30 £ 0.34 91.85 +0.24

To further evaluate the performance of our proposed KTPP
method, experiments are conducted on the fine-grained dataset:
CUB-200-2011 (CUB) [17], which contains 11,788 images across 200
bird subcategories, divided into 100 training, 50 validation, and 50
test categories.

Table 1 presents the fine-grained classification results on CUB. It
can be observed that KTPP significantly surpasses the state-of-the-
art methods on 1-shot and 5-shot tasks. Specifically, KTPP improves
1-shot accuracy by 1.51% and 5-shot accuracy by 0.32% compared
to the state-of-the-art methods. This superiority can be attributed
to the integration of semantically enhanced class-specific features,
which play a crucial role in distinguishing subtle inter-class differ-
ences and capturing shared intra-class representations. Moreover,
compared to semantic-based methods (AM3 [19], BMI [12]), KTPP
also demonstrates substantial improvements, ranging from 0.94% to
13.20% on 1-shot and 5-shot tasks, due to full leverage of semantic
information by deep and pyramid cross-modal interactions.

A.2 Comparison with the SOTA Methods in
Cross-Domain Scenarios

To further validate the effectiveness of the proposed KTPP method
across novel tasks, KTPP is evaluated in the challenging cross-
domain minilmageNet — CUB scenario. Following the standard
protocols [11, 18, 23], we utilize the training set comprising 64
classes from minilmageNet [16] as the source domain for training.
Subsequently, we evaluate the generalization performance of KTPP
on the novel CUB dataset, which serves as the target domain.

Table 2: Results (%) on the cross-domain minilmageNet —
CUB. Bold font indicates the best results. Blue font indicates
the suboptimal results.

MinilmageNet — CUB
Method Venue Tshot = shot
GNN [5] ICLR’2018 45.69 + 0.68 62.25 + 0.65
FT [15] ICLR’2020 47.47 £ 0.75 66.98 + 0.68
ATA [18] IJCAT’2021 45.00 = 0.50 66.22 + 0.50
T3S [22] AAAT' 2022 45.92 69.16
AFA [7] ECCV’2022 46.86 + 0.50 68.25 = 0.50
RDC [11] CVPR’2022 51.20 = 0.50 67.77 = 0.40
StyleAdV (3] CVPR’2023 48.49 + 0.72 68.72 + 0.67
LDP-net [23] CVPR’2023 49.82 70.39
ALFA [2] | TPAMI'2024 - 70.22 + 0.14
KTPP ours 61.75 +0.47 78.97 + 0.37

The cross-domain classification results on minilmageNet — CUB
are shown in Table 2. KTPP shows substantial superiority over its
counterparts. Specifically, KTPP outperforms the state-of-the-art
results by a significant margin, with improvements of 11.93% in
1-shot accuracy and 8.58% in 5-shot accuracy. These improvements
demonstrate the excellent transferability and domain-agnostic ca-
pabilities of KTPP, which is attributed to the rapid adaptation from
training to novel datasets by effectively capturing discriminative
features based on semantic priors. Consequently, our model can
generalize well to novel classes with limited labeled samples, even
in the presence of domain shift.

A.3 Ablation Study on More Benchmarks

Table 3: Ablation study of KTPP on CIFAR-FS. “KCA” means
K-NN Context Attention. “PCP” denotes Pyramid Cross-
modal Prompts.

Training phase Module

Pre  Meta TRCA pCP| Shot 5-shot

v 67.18 = 0.55 83.57 £ 0.33
v v 70.22 + 0.54 84.75 + 0.29
v v 74.70 + 0.57 87.82 £ 0.31
v v Vv 78.74 + 0.57 88.83 + 0.31
v v v 82.61 = 0.50 88.67 = 0.30
Vv v v v 83.63 £ 0.57 90.19 + 0.30

To comprehensively evaluate the effectiveness of KCA and PCP
in the proposed KTPP method, we investigate their impact on an-
other dataset: CIFAR-FS [9].

59
60

61

63

64

65

66

67

69

70

71

72

73

74

75

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

108

109

110

111

112

113

114

115

116



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

ACM MM, 2024, Melbourne, Australia

(a) Dog

(b) Jellyfish

7

()Bird  (d) Ship

Image

w/ PCP w/ KCA Baseline

KTPP

(e) Fox

Anonymous Authors

(f) Lipstick

() Dog  (h) Roadsign (i) Orange

Figure 1: The visualization of attention maps obtained by different approaches. Our KTPP w/ KCA and PCP can effectively
select class-specific regions and filter out noisy regions, compared with the baseline.

As shown in Table 3, the experimental results exhibit a similar
tendency to the results on minilmageNet presented in Table 3 (man-
uscript). Firstly, KCA demonstrates significant improvements over
the baseline, improving 1-shot accuracy by 8.52% and 5-shot accu-
racy by 4.08% on the meta phase, benefiting from the extraction of
noise-free visual features via a coarse-fine manner. Secondly, PCP
also surpasses the baseline by a large margin, with improvements
of 12.39% in 1-shot accuracy and 3.92% in 5-shot accuracy. These
improvements show the excellent capability of adaptively modulat-
ing visual features via deep and pyramid cross-modal interactions
in PCP. Finally, by combining KCA and PCP, our model further
achieves the most favorable outcomes due to semantically enhanced
noisy-free visual representations, improving 1-shot accuracy by
13.41% and 5-shot accuracy by 5.44%.

A.4 Visualization of Attention Maps

To intuitively illustrate the effectiveness of the proposed KTPP
method, we visualize attention maps generated by different ap-
proaches.

As shown in Fig. 1, we visualize four different approaches: base-
line, w/ KCA, w/ PCP, and KTPP (i.e. w/ KCA and PCP). Firstly,
in cluttered backgrounds and occlusions, the baseline easily leads
to incorrect classifications such as (a), (c), (i), and (g). Moreover,
the baseline is susceptible to spurious correlations, falsely associ-
ating other objects with the label, as observed in (b), (d), (), and

(f). Secondly, in contrast to the baseline, the utilization of either
KCA or PCP effectively mitigates the influence of class-irrelevant
entities such as (a), (c), (d), (f), (g), and (h). This is because KCA can
progressively filter out irrelevant features and PCP can adaptively
adjust visual features based on semantic information. However,
they still struggle with more complex scenarios when used individ-
ually, as observed in (b), (e), and (i). Finally, through the integration
of KCA and PCP, i.e., KTPP, our model further enhances noise-free
visual representations via deep cross-modal interactions, thereby
effectively selecting discriminative regions and ignoring noisy back-
ground regions in the more complex scenarios.
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