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Abstract

Scaling data and model size has driven recent001
advances in language modeling, but this strat-002
egy falters under scenarios with strict data con-003
straints, as in the BabyLM Challenge. However,004
insights from Chinchilla paper highlights that005
smaller models trained on more data outper-006
form larger counterparts trained inadequately,007
emphasizing the need for compact architectures.008
Furthermore, while embedding weight tying009
is a common parameter-saving technique, we010
find it significantly diminishes linguistic com-011
petence in compact models.012

In response, we explore alternative architec-013
tural strategies that preserve the parameter-014
efficiency of tied models without sacrificing015
the representational benefits of untied embed-016
dings. Consequently, we introduce SLlama017
a Llama3 architecture variant which incor-018
porates targeted modifications—Repeated Re-019
duced Hidden Size and Projection (RRHP),020
Permutated Weight Attention (PWA), Shared021
Projection Multi-Layer Perceptron (SPMLP),022
and Layer Weight Sharing—to compress trans-023
former components. Without relying on distilla-024
tion, SLlama achieves a 31.72% improvement025
in linguistic knowledge acquisition over the026
BabyLlama baseline, with a comparable GLUE027
score and significantly lower parameter count.028
These results demonstrate that well-designed,029
compact models can rival larger ones under030
strict data constraints.031

1 Introduction032

Large-scale language models (LLMs) have shown033

remarkable performance across a wide array of nat-034

ural language understanding tasks. This success is035

often attributed to the trend of scaling both model036

size and training data, a strategy epitomized by037

recent architectures such as GPT-3 and LLaMA.038

But reliance on massive datasets and billions of039

parameters poses challenges when data availabil-040

ity is limited—a scenario increasingly relevant in041

Figure 1: SLlama - Llama Architecture with Reduced
Embedding, Repeated Projection, Permuted Weight At-
tention, Shared Projection MLP and Weight Sharing

controlled research settings like the BabyLM Chal- 042

lenge. 043

However, the Chinchilla paper offers a pivotal in- 044

sight into this problem by demonstrating that, under 045

fixed compute or data budgets, models with fewer 046

parameters but trained on more data tend to outper- 047

form larger counterparts trained on less data. In 048

contexts where data resource is barely 10M tokens, 049

it is imperative to design architecturally compact 050

models that can learn efficiently from limited data. 051

This often spurs the adoption of embedding weight 052

tying as a parameter-saving technique. Yet, we 053

find that embedding weight tying impairs the lin- 054

guistic competence of small models by collapsing 055

distinct representational roles—input encoding and 056

output prediction—into a single shared space. To 057

address this, we investigate architectural strategies 058

that circumvent the need for weight tying while 059

retaining the parameter efficiency of tied models 060
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and the representational flexibility of untied mod-061

els. Our goal is to develop compact yet competent062

language models optimized for training on just 10063

million tokens—the core constraint of the BabyLM064

Challenge.065

Hence, we introduce SLlama, a parameter-066

efficient variant of the LLaMA3 architecture de-067

signed to balance representational capacity with068

parameter efficiency. SLlama leverages four key069

architectural innovations to reduce a model’s pa-070

rameter count and maximize learning from limited071

data: (1) Repeated Reduced Hidden Size and Pro-072

jection (RRHP), (2) Permutated Weight Attention073

(PWA), (3) Shared Projection Multi-Layer Percep-074

tron (SPMLP), and (4) Hidden Layer Weight Shar-075

ing.076

Crucially, SLlama (2.6M1) is trained without dis-077

tillation of teacher models. Despite this, it achieves078

a 31.72% improvement in linguistic knowledge079

acquisition over the BabyLlama2 baseline (58M),080

maintains comparable performance on GLUE, and081

does so with significantly fewer parameters. These082

results suggest that with thoughtful architectural083

design, smaller models can not only survive but084

thrive in data-scarce environments.085

1.1 Contributions086

Our key contributions are:087

1. We demonstrate that embedding weight tying,088

while widely used for model compression, it089

negatively impacts the linguistic competence090

of small models.091

2. We propose and evaluate architectural strate-092

gies that eliminate the need for weight tying093

while preserving both compactness of weight094

tying and representational flexibility of un-095

tied weights, achieving a 31.72% improve-096

ment over the BabyLlama baseline.097

3. Introduction of SLlama– a novel variant of098

the LLaMA3 architecture tailored for data-099

constrained settings which combines several100

transformer compression techniques to opti-101

mize performance under a 10M token con-102

straint.103

To ensure transparency and reproducibility, we104

release code, trained models, and evaluation scripts105

on GitHub and Hugging Face.106

1number of parameters
2A student Llama Model distilled from two teacher models

Llama(360M) and GPT-2 (705M)

2 Preliminaries 107

The BabyLM Challenge. Choshen et al. (2024) 108

hosted a second round of shared task where the 109

volume of training data contains restricted to 10M 110

tokens. The training and evaluation data contain 111

words that children under the age of 5 years would 112

have heard. This was to motivate small-scale pre- 113

training which can be a sandbox for developing 114

novel techniques for improving data efficiency. The 115

resulting models would be evaluated3 on linguistic 116

competence (BLiMP), conceptual understanding 117

(GLUE), and general world knowledge (Ewok). 118

Among these assessments, BLiMP is of partic- 119

ular interest to us, as we believe that a language 120

model, true to its name, should exhibit meaningful 121

linguistic competence. Moreover, if such compe- 122

tence can be acquired from as few as 10 million 123

tokens, we believe that collecting comparable vol- 124

umes of data for low-density languages is a fea- 125

sible goal. This would open the door to training 126

pure language models—those untainted by data 127

from other languages and thus less susceptible to 128

cross-linguistic or cultural bias—for linguistically 129

faithful modeling in low-density settings. 130

BLiMP Evaluation Unlike HELM (Liang et al., 131

2022), MMLU (Hendrycks et al., 2020), and 132

FLASK (Cheng et al., 2023), which emphasize 133

high-level task performance and alignment with 134

user intent, BLiMP provides a fine-grained evalua- 135

tion of core linguistic competence. Although older, 136

BLiMP offers detailed probes into phenomena such 137

as anaphor agreement, argument structure, island 138

effects, irregular forms, and ellipsis—structures 139

fundamental to syntactic and semantic understand- 140

ing across languages. While recent frameworks 141

reflect the evolving capabilities of large language 142

models, they often obscure fine-grained linguistic 143

diagnostics by focusing on derived abilities like 144

reasoning and discourse. BLiMP, by contrast, fore- 145

grounds the grammatical structures that underlie 146

these abilities, offering a clearer lens into a model’s 147

linguistic fluency. 148

Initial Experiments. Motivated by our interest 149

in acquiring linguistic competence from just 10 150

million tokens, we adopted a standard approach 151

of sweeping over a range of model configura- 152

tions—varying hidden sizes from 64 to 1024 and 153

the number of decoder layers from 2 to 10—while 154

3Since models thrive on experience, the evaluation sets are
filtered by the Organizers
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tying the embedding layers and language model155

heads. While we initially expected the largest156

model to demonstrate the strongest linguistic com-157

petence, we were surprised to find that the best-158

performing model had a hidden size of 1024 and159

only 4 layers. Across the 24 configurations, we160

observed only weak correlations between model161

size and performance. Further details on this are162

given in the Appendix A.163

Following Chinchilla Hoffmann et al. (2022),164

which recommends doubling training tokens with165

each doubling of model size (approximate ratio166

1:20), a 10M-token budget implies an ideal model167

size of 5M parameters. In practice, this ratio is168

often relaxed. Chinchilla itself uses 70B param-169

eters trained on 1.4T tokens. Based on this, we170

trained two models with a hidden size of 64 and171

6 decoder layers: one with 4.4M parameters and172

untied weights, closely matching the theoretical173

target, and another with 2.4M parameters and tied174

weights, reflecting the more conservative, practi-175

cal design. We show the performance of the two176

models in Table 1

Model Name Model Size BLiMP(%)
Small Tied 2.4M 56.0
Small Untied 4.4M 91.9
Big Tied 120M 64.5
BabyLlama 58M 69.8

Table 1: BLiMP scores for models of different sizes un-
der a 10M token training budget and the baseline model.
Note how the untied model extremely out-perfroms the
tied model, earlier larger models and the baseline model.
The model in italics is the baseline model.

177

This early result suggests that weight tying neg-178

atively affects the linguistic competence of small179

language models. While we defer a detailed ex-180

planation of this phenomenon to a later section,181

it is important to acknowledge its impact. De-182

spite this drawback, the parameter savings from183

weight tying are appealing—achieving comparable184

performance with a 2.4M-parameter model rela-185

tive to a 4.4M-parameter model offers clear ad-186

vantages at scale. To mitigate the adverse effects187

of embedding weight tying while preserving its188

parameter efficiency, we introduce several param-189

eter reduction techniques at different transformer190

blocks: Linear Hidden-Size Reduction and Projec-191

tion (LHRP), Attention Hidden-Size Reduction and192

Projection (AHRP), Repeated Reduced Hidden-193

Size Projection (RRHP), Shared Key Query Atten-194

tion (SKQA), Repeat-Reduced-Attention (RRA), 195

Permutated Weight Attention (PWA) and Shared 196

Projection Multi-Layer Perceptron (SPMLP). We 197

adopted existing techniques like Hidden Layer 198

Weight Sharing and intermediate weight reuse. In 199

view of empirical evidences, we streamlined these 200

reduction techniques. The techniques we adopted 201

are collectively named SLlama. 202

3 Model Reduction Techniques 203

Recent studies have focused on minimizing the 204

memory footprint of models by reducing parame- 205

ters within the embedding layer, language model 206

head, and MLP units (Tang et al., 2024; Liu et al., 207

2024; Zhang et al., 2024b). Although vocabulary 208

size (v) reduction is a common practice (Tang 209

et al., 2024), we chose to maintain the vocabu- 210

lary size in the Hugging Face Llama3 implemen- 211

tation (Grattafiori et al., 2024). Our investigation 212

of parameter reduction schemes, detailed below, 213

focuses on the embedding layer, Feed Forward Net- 214

work, and the self-attention blocks of a Transformer 215

model. 216

3.1 Embedding Parameter Reduction 217

Inspired by the Mixed Dimension Embeddings 218

(MDE) approach proposed by Pansare et al. (2022) 219

and Ginart et al. (2021), we explored alternatives 220

to embedding weight sharing by reducing the di- 221

mensionality of the embedding layer. Specifically, 222

we reduced the hidden size (h) of the embedding 223

layer by a factor of four (hr) . Given that the hid- 224

den layers of the decoder are initialized with h, a 225

projection scheme is required to map the reduced 226

embedding dimension to the original hidden size h. 227

We investigated three such projection methods: Lin- 228

ear Hidden-Size Reduction and Projection (LHRP), 229

Attention Hidden-Size Reduction and Projection 230

(AHRP), and Repeated Reduced Hidden-Size and 231

Projection (RRHP). LHRP employs a linear layer 232

as described in Equation 1, effectively reducing the 233

parameters from vh to vhr. This method techni- 234

cally projects the embedding vector into a larger 235

dimensional space, effectively assuming the rela- 236

tionship between the small and large representa- 237

tions is linear. 238

AHRP leverages the conventional attention 239

mechanism described in Equation 2. AHRP utilises 240

vhr+2hr+h2/r parameters instead of vh. Concep- 241

tually, AHRP magnifies the cogent dimensions of 242

the smaller representations. Finally, RRHP initial- 243
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izes the embedding layer with the reduced hidden244

size hr and repeats the resulting representation r245

times before feeding it to the decoder layers, ef-246

fectively repeating the information encoded in the247

smaller representation r times. This method re-248

duces the parameter count by 3vhr.249

Linear(x,A) = xAT + b (1)250

where:251

x ∈ Rm×hr252

A ∈ Rhr×h253

254

3.2 Self-Attention Parameter Reduction255

Optimized attention mechanisms with reduced256

complexity have shown performance comparable257

to standard multi-head attention (MHA) (Zhang258

et al., 2024a; Kitaev et al., 2020). While prior work259

addresses inference-time KV cache memory, our260

focus is on reducing the parameter count of self-261

attention in compact language models. Building262

on earlier embedding reduction strategies, we pro-263

pose three lightweight attention variants: Shared264

Key Query Attention (SKQA), Repeat-Reduced At-265

tention (RRA), and Permutated Weight Attention266

(PWA).267

The design of SKQA stems from the interpre-268

tation of the attention mechanism as a similarity269

selection process, which is particularly relevant in270

language modeling. The attention weights are com-271

puted according to Equation (2), and the attention272

output is derived using Equation (3). Equation (2)273

can be viewed as computing a probability distri-274

bution of inter-token similarity when K and Q are275

equivalent. We investigated the feasibility of this276

similarity-based attention by equating the weights277

of K and Q; effectively reducing parameter count278

by h2.279

Attn_weight(Q,K) = softmax
(
QKT

√
dk

)
(2)280

Attn(Q,K, V ) = Attn_weight(Q,K)V (3)281

where:282

Q ∈ Rhr×hr283

K ∈ Rhr×hr284

V ∈ Rhr×h285

286

RRA, in contrast, was inspired by the Repeated287

Reduced Hidden-Size and Projection reduction288

technique described earlier, that is, Q,K, V ∈ 289

Rh×hr are subsequently repeated. Finally, PWA 290

was motivated by the embedding layer reduction 291

strategy presented by Li et al. (2017); Algorithm 292

1 illustrates its implementation. PWA effectively 293

reduces memory demand from 4h2 to 6h. 294

Algorithm 1 Permutated Weight Attention

Require: h, n,m > 0
Ensure: permutation(n,m) > 3h

permutes← list of permutation(n,m)
θ ← Embedding(n, h)
q_idx← permutes[0:h]
k_idx← permutes[h:2h]
v_idx← permutes[2h:3h]
Q = Linear(x, θ[q_idx])
K = Linear(x, θ[k_idx])
V = Linear(x, θ[v_idx])
attn = Attn(Q,K, V )

3.3 MLP Block Parameter Reduction 295

The Feed-Forward Network (FFN) in Transformers 296

accounts for a large share of parameters, typically 297

using two linear layers: one expanding the hidden 298

size h to nh (with n = 3) and another projecting 299

back to h, totaling 6h2 parameters. LLaMA adds 300

a gated projection layer, increasing this to 7h2. To 301

reduce this overhead, we propose Shared Projec- 302

tion MLP (SPMLP), which ties the weights of 303

the expansion and projection layers, saving 3h2 304

parameters. 305

3.4 Inter-Layer Weight Reduction Strategies 306

To further reduce model size, we explored two com- 307

mon inter-layer weight reduction techniques: layer 308

reuse and weight sharing. Layer reuse (Liu et al., 309

2024) passes the hidden state through a layer mul- 310

tiple times (in our case, twice). Thus, if layer reuse 311

r = 2, the model is intialized with n/r layers 312

where n is the number of layers, effectively reduc- 313

ing model size by 11nh2/2 parameters provided 314

no reduction scheme was introduced. On the other 315

hand, Weight sharing (Lan et al., 2020) ties the 316

weights of multiple layers, significantly reducing 317

the number of parameters to 11ngh
2 where ng is 318

the number of groups the layers are divided into . 319

We implemented both techniques, sharing weights 320

across all layers in the model for the weight-sharing 321

approach. 322
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Model Block
Reduction
Techniques

Model
Size(M)

BLiMP
(Sup.) (%) Ewok (%) GLUE (%) Avg. (%)

Embedding Layer

LHRP 2.8814 60.47 (49.22) 57.58 63.26 57.63
AHRP 2.8820 59.02 (52.80) 56.58 62.41 57.70
RRHP 2.8803 91.94 (77.61) 57.91 63.57 72.76

Self
Attention

PWA 4.3200 91.94 (77.61) 57.52 63.47 72.64
PWAR 2.7800 91.94 (77.61) 57.76 63.02 72.58
RRA 4.3400 59.20 (52.51) 57.88 63.33 58.23
RRAR 2.8100 62.28 (51.65) 57.87 62.83 58.66
SKQA 4.4200 91.94 (77.61) 58.25 63.18 72.75
SKQAR 2.8800 91.94 (77.61) 57.71 63.75 72.75

Decoder Layer

Reuse 2.6700 91.94 (77.61) 57.84 63.83 72.81
ReuseS 2.6700 91.94 (77.61) 57.63 62.40 72.41
Share 2.6300 91.94 (77.61) 57.76 63.14 72.62
ShareS 2.6100 91.94 (77.61) 57.22 62.33 72.28

Table 2: The performance of Llama Architecture based models with with reduction techniques at different
model blocks. TechniqueR utilizes Repeated Reduced Hidden size Projection (RRHP). TechniqueS utilizes Shared
Projection MLP (SPMLP).

4 Further Experiments323

We used a single NVIDIA RTX A6000 to train324

every model in this study.325

Training Data and Hyper-parameter. Our ex-326

periments (both those described in Section 2 and327

this section) utilized the BabyLM challenge dataset328

Choshen et al. (2024), with a complete data de-329

scription available in Warstadt et al. (2023a). After330

initial hyperparameter search, all pretraining em-331

ployed cosine learning rate decay with minimum332

and maximum rates of 4 × 10−5 and 4 × 10−4,333

respectively. We set the gradient accumulation to334

2, batch size to 128, and sequence length to 256.335

Training runs were conducted for 3,000 iterations.336

Baseline Model and Evaluation Tasks The337

Baby Llama model (Timiryasov and Tastet, 2023),338

which was among the leading solutions in the orig-339

inal BabyLM challenge and serves as the state-of-340

the-art baseline for the second BabyLM challenge4,341

was trained using knowledge distillation from two342

larger teacher models (Llama and GPT2), with the343

student model reportedly outperforming the teach-344

ers.345

Evaluations was performed using the pipeline346

provided by Choshen et al. (2024); Gao et al.347

(2023), encompassing four tasks: BLiMP, BLiMP348

supplement (Warstadt et al., 2023c), GLUE (Wang349

et al., 2019), and Ewok (Ivanova et al., 2024).350

4https://github.com/babylm/
evaluation-pipeline-2024?tab=readme-ov-file

These tasks assess linguistic competence (BLiMP), 351

conceptual understanding (GLUE), and general 352

world knowledge (Ewok). 353

Successive Evaluations of the reduction tech- 354

niques We evaluated the impact of the reduction 355

techniques in each model block and report the re- 356

sults in Table 2. Linear Hidden Reduction and Pro- 357

jection (LHRP), Attention Hidden Reduction and 358

Projection (AHRP), Repeated Reduced Hidden- 359

Size and Projection (RRHP) are schemes to reduce 360

parameter count at the embedding layer. Shared 361

Key Query Attention (SKQA), Repeat-Reduced- 362

Attention (RRA), and Permutated Weight Attention 363

(PWA) were applied to the self-attention imple- 364

mentation. Shared Projection MLP (SPMLP) was 365

applied to the MLP of each decoder layer. Lastly, 366

intermediate layer reuse and inter-layer weight shar- 367

ing were applied to the decoder layers. 368

5 Results 369

We begin by examining the extent to which indi- 370

vidual reduction techniques balance parameter effi- 371

ciency and model performance. Following this, we 372

turn our attention to the combined application of 373

the techniques which use least parameters. We refer 374

to the combination of those techquies as SLlama. 375

We analyse the results with the BLiMP (Warstadt 376

et al., 2023c) framework. 377
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Figure 2: SLlama performance in Zero-shot BLiMP tasks relative to Baby Llama and other larger models.

5.1 Comparison of Reduction Techniques378

Of the three reduction techniques applied to the379

embedding layer, RRHP has the optimal balance380

of reduction and performance as demonstrated in381

Table 2. Recall that, for RRHP, we divide the hid-382

den dimension by four then repeat for further pro-383

cessing. This implies that the model learns salient384

representation of tokens which when repeated, is385

sufficient to undertake down stream tasks. For fur-386

ther experiments we discarded LHRP and AHRP387

At the self attention block, PWA uses the small-388

est number of parameters while maintaining a com-389

petitive overall performance, closely followed by390

SKQA, as shown in Table 2. Relative to SKQA,391

PWA reduces parameter count by a larger factor392

but suffers performance drop. Comparing RRPH to393

PWAR and SKQAR, the performance of the latter394

only dropped by 0.01 while that of PWAR dropped395

by 0.18. We consider this drop as a weakness of396

PWA. However, it’s gain in parameter reduction397

compensates for it’s weakness. We discarded RRA398

and SKQA from subsequent experiments.399

For the MLPs, although we observe a minor400

decline in overall performance when SPMLP is in-401

cluded in the architecture, the parameter reduction402

remains compelling, hence, we include SPMLP403

in the SLlama architecture. Furthermore, Table 2404

includes the performance of models that employ405

intermediate layer weight reuse and layer weight406

sharing in conjunction with SPMLP . The macro-407

average scores across all models show minimal408

variation, thus, the parameter reduction achieved409

through weight-sharing presents a compelling ad- 410

vantage. Note that the discrepancies introduced by 411

PWA and SPMLP in the overall performance of 412

RRPH variants emerge from the GLUE scores and 413

not the BLiMP scores. This signifies that our model 414

reduction techniques are optimised for linguistic 415

competence with a potential slight degradation of 416

conceptual competence. 417

SLlama Architecture The SLlama architecture 418

integrates reduction techniques with least param- 419

eter count while preserving competitive 5 perfor- 420

mance. Specifically, SLlama combines Repeated 421

Reduced Hidden Size and Projection (RRHP), Per- 422

mutated Weight Attention (PWA), Shared Projec- 423

tion Multi-Layer Perceptron (SPMLP), and Layer 424

Weight Sharing to achieve architectural compact- 425

ness. Compared to a similar configuration of Llama 426

architecture, SLlama achieves a 40% reduction in 427

parameter count without compromising linguistic 428

competence. 429

5.2 Comparison with Baselines and other 430

Models 431

We compared SLlama with Baby Llama 432

(58M,distilled), OPT(125M), RoBERTa(base), 433

T5(base), Llama2(58M),GPT-2(705M) in Figure 3 434

and Figure 2. All models are trained on the same 435

BabyLM challenge dataset. Note the superiority of 436

SLlama architecture over other models in BLiMP 437

5By competitive, we mean the drop in performance is less
than 1.0
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Figure 3: Comparing SLlama with other models on
superGLUE

tasks maintaining the prowess of the base Llama438

architecture despite size reduction. Compared439

to Baby Llama(58M) (Timiryasov and Tastet,440

2023), SLlama(2.6M) has around 20× fewer pa-441

rameters and improves linguistic competence by442

31.72% without any knowledge distillation. It also443

maintains a comparable GLUE score without hy-444

perparameter tuning.445

SLlama’s Strong Generalization Across Core446

Grammar The BLiMP tasks span syntactic,447

morphological, semantic, and pragmatic domains.448

SLlama achieves near-perfect accuracy on core449

grammatical phenomena such as anaphor agree-450

ment, filler-gap dependencies, irregular forms,451

and quantifier interpretation. It also excels in452

subject–auxiliary inversion (99.9%) and binding453

(99.98%). Following the observations of Warstadt454

et al. (2023c), this performance suggests that455

SLlama effectively encodes core syntactic depen-456

dencies and morphological regularities despite its457

small size. Such strong generalization indicates458

that, with targeted architectural reductions, even459

highly compact models can acquire grammatical460

competence typically associated with much larger461

models.462

Improvements Over Comparable Models463

Compared to Baby LLaMA (58M, distilled) and464

even LLaMA-360M, SLlama frequently outper-465

forms across categories: 1. Filler-gap: SLlama466

(100%) > Baby LLaMA (71.8%) > LLaMA-360M467

(70.6%) 2. NPI licensing: SLlama (99.11%) >468

LLaMA-360M (57.3%) 3. Island effects: SLlama469

(99.95%) > LLaMA-360M (50.4%) These suggest470

that scaling down parameters does not necessarily471

reduce linguistic competence, and may even472

improve it when guided by effective architectural473

design. 474

6 Discussion 475

We provide an explanation for the degradation in 476

linguistic performance caused by weight tying and 477

discuss how the employed reduction techniques 478

shed light on language processing dynamics in 479

parameter-efficient architectures. 480

6.1 Degraded Linguistic Competence with 481

Weight Tying 482

By weight tying, we refer to the practice of sharing 483

parameters between the input embedding matrix 484

and the language model output head. As demon- 485

strated in Table 1, this technique degrades linguistic 486

competence in small models—a phenomenon war- 487

ranting further investigation. Notably, the findings 488

of Eldan and Li (2023); Press and Wolf (2017); 489

Mnih and Teh (2012) offer insights that may justify 490

this degradation. 491

Mnih and Teh (2012) hypothesized that when 492

tying the embedding weights, rows correspond- 493

ing to semantically similar words should exhibit 494

near-identical representations—such that the in- 495

put embedding encodes synonyms in a comparable 496

manner, while the output embedding assigns sim- 497

ilar score distributions to interchangeable words. 498

Expanding on this, Press and Wolf (2017) empir- 499

ically demonstrated that tying input and output 500

embeddings produces a joint representation more 501

closely aligned to the output embedding of an un- 502

tied model. 503

However, their findings also suggest that untied 504

embeddings evolve into distinct representations. 505

By compressing these distinct roles into a shared 506

space, weight tying limits the model’s ability to re- 507

tain rich input representations essential to linguistic 508

competence. 509

Furthermore, Eldan and Li (2023) confirmed that 510

the embedding and shallow layers of a model host 511

most linguistic information. Given that the poor 512

performance of tied Llama are pronounced on lin- 513

guistic evaluation, we conclude that the drop in 514

performance is due to the observation of Press and 515

Wolf (2017); that is, the embedding aligns more to 516

the output layer and has lost salient linguistic in- 517

formation. Thus, empirically, untying embeddings 518

improves performance on linguistic tasks for small 519

langauge models. 520

This raises the question: would linguistic perfor- 521

mance improve without reducing the hidden size? 522
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In practice, no—LLaMA models with a 64×6 con-523

figuration and those with larger hidden sizes but524

tied weights perform similarly, as shown in Table 3.525

6.2 Implications of the Reduction Techniques526

At the embedding layer, LHRP reveals that linguis-527

tic information encoded in the embedding layer can-528

not be linearly projected into a higher-dimensional529

space without incurring a loss of critical content.530

Similarly, even the more expressive attention mech-531

anism fails to reliably upscale linguistic representa-532

tions without degradation. In contrast, the effective-533

ness of RRHP suggests that repetition, rather than534

projection, offers a more viable path for preserving535

and extending learned linguistic representations.536

Shared Key-Query Attention (SKQA) reframes537

self-attention as a linguistic operation based on to-538

ken similarity. It enforces symmetry by sharing the539

key and query weight matrices. While future work540

may explore omitting one matrix entirely, such sim-541

plifications require careful evaluation. SKQA may542

also be less effective in asymmetric tasks like ma-543

chine translation, where source–target distinctions544

are crucial.545

Additionally, while repetition of learned em-546

beddings (as seen in RRHP) has proven effective,547

our experiments with Reduced Repeated Attention548

(RRA) demonstrate that modifying the attention-549

defining neurons—particularly by altering or com-550

pressing them—can significantly impair model per-551

formance. This highlights a key asymmetry: em-552

bedding representations tolerate structural repeti-553

tion, whereas the attention mechanism is more sen-554

sitive to architectural perturbations during language555

processing.556

7 Related Work557

As large models like PaLM (Chowdhery et al.,558

2022) and GPT-3 (Brown et al., 2020) push perfor-559

mance boundaries, their computational demands560

have prompted interest in data-efficient and com-561

pact alternatives. Data efficiency efforts include562

dataset reduction via k-means clustering (Kaddour,563

2023), deduplication (Lee et al., 2022), and high-564

quality data curation (Mueller and Linzen, 2023; El-565

dan and Li, 2023; Gunasekar et al., 2023; Huebner566

et al., 2021), with studies emphasizing the role of567

data diversity (Lu et al., 2024; Mekala et al., 2024).568

We build on this by training SLlama under the569

10M-token constraint of the BabyLM Challenge570

(Warstadt et al., 2023b,a; Choshen et al., 2024),571

highlighting performance under limited data. 572

Compression techniques such as ROBE (Desai 573

et al., 2022), MEmCom (Pansare et al., 2022), 574

Mixed Dimension Embeddings (Ginart et al., 575

2021), and Slim Embeddings (Li et al., 2017) have 576

reduced large embedding table sizes. For trans- 577

former models, inter-layer weight sharing and fac- 578

torized embeddings (Lan et al., 2020) helped re- 579

duce BERT’s footprint (Devlin et al., 2019). Con- 580

currently, smaller models like OPT (Zhang et al., 581

2022), Phi (Gunasekar et al., 2023), and PanGu-π 582

(Tang et al., 2024) show that careful architectural 583

design—often overlooked under fixed-compute as- 584

sumptions (Kaplan et al., 2020)—can yield com- 585

petitive performance. SLlama continues this trend, 586

introducing novel reductions that preserve linguis- 587

tic competence. 588

Weight sharing, though common (Tang et al., 589

2024; Lan et al., 2020; Ainslie et al., 2023), has 590

uneven effects. While normalized shared embed- 591

dings can mitigate performance loss (Liu et al., 592

2020), we find that tying input-output embeddings 593

degrades linguistic quality. In contrast, sharing 594

attention weights (e.g., key-query) retains expres- 595

sivity, suggesting that selective weight sharing is 596

key to balancing efficiency and capability. 597

8 Conclusion 598

We introduced SLlama, a parameter-efficient 599

adaptation of the LLaMA architecture designed 600

for data- and scale-constrained settings like the 601

BabyLM Challenge. Combining reduction strate- 602

gies—Repeated Reduced Hidden Size and Pro- 603

jection (RRHP), Permutated Weight Attention 604

(PWA), Shared Projection MLP (SPMLP), and 605

Layer Weight Sharing—we show that small models 606

can achieve strong linguistic performance without 607

relying on embedding weight tying, which we find 608

degrades linguistic competence. 609

Our findings suggest that repetition-based pro- 610

jections offer a more robust path for preserving lin- 611

guistic representations than linear expansion or tied 612

embeddings. Moreover, our analysis of SLlama’s 613

components offers a deeper understanding of how 614

architectural efficiency and linguistic expressivity 615

interact, revealing design principles that extend be- 616

yond scaling. 617

SLlama contributes both a performant architec- 618

ture and a conceptual framework for future explo- 619

ration of efficient language models—particularly 620

in low-resource or edge deployment scenarios. 621
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Limitations622

While this study demonstrates promising results,623

several limitations must be considered. Our find-624

ings are primarily based on the LLama architecture,625

and while certain trends may generalize, further626

research is needed to assess the applicability of627

our techniques across diverse model architectures.628

Additionally, the BabyLM dataset, while useful629

for studying small-data training, lacks linguistic630

diversity, limiting the evaluation of our models to631

English. Future work should explore performance632

on more diverse datasets, including low-resource633

languages, and assess the models’ ability to acquire634

commonsense and factual knowledge.635

Moreover, real-world deployment challenges re-636

main, particularly regarding performance on edge637

devices, where quantization-related degradation638

has yet to be fully examined. The scalability of639

our compression techniques to larger models and640

datasets also requires further investigation. Ulti-641

mately, striking an optimal balance between model642

efficiency and linguistic richness is an ongoing643

challenge, and future research should focus on re-644

fining model reduction strategies to ensure robust645

language representation while maintaining compu-646

tational efficiency.647
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A Initial Experiments of Model Sweep 1054

Characterizing the Llama Architecture To iso- 1055

late the effect of distillation, we conducted exper- 1056

iments to characterize the inherent capabilities of 1057

the Llama architecture and to establish the rela- 1058

tionship between its key configuration parameters 1059

(hidden size, intermediate size, and number of lay- 1060

ers) and performance on the aforementioned eval- 1061

uation tasks. Following the recommendations of 1062

Tang et al. (2024), we tie the embedding layer and 1063

language model head, a widely used strategy to im- 1064

prove parameter efficiency in small-scale language 1065

models. Starting with a hidden size of 64 (to mini- 1066

mize resource consumption), we varied the number 1067

of layers from 2 to 12. 1068

We observed that the macro-average scores for 1069

models with six and eight layers were similar, as 1070

were those for models with ten and twelve layers. 1071

Based on this, we focused subsequent experiments 1072

on layer counts of 2, 4, 6, and 10 while logarithmi- 1073

cally increasing the hidden size from 64 to 1,024. 1074

The model with a hidden size of 512 and 2 layers 1075

achieved the best average macro score. However, 1076

the model with hidden size 64 and 6 layers have a 1077

competitive macro score while requiring less time 1078

to train and evaluate. In order to minimize com- 1079

putational cost, memory usage, and experimental 1080

time, subsequent experiments were based on the 1081
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latter configuration (hidden size 64 and 6 layers).1082

Finally, to ascertain the plausibility of weight tying,1083

we trained a 64 by 6 model with untied weights.1084

Characterizing the Llama Architecture We1085

present the results of the experiment to characterize1086

the inherent ability of Llama architecture without1087

distillation in Table 1. We observed that the re-1088

lationship between macroscore and model size is1089

not direct. Further analysis presented in Figure1090

4, shows the correlation between model size pa-1091

rameters (hidden size and number of layers) and1092

the model’s performance across the different eval-1093

uation dimensions (linguistic competence, world1094

knowledge, and conceptual understanding). While1095

statistical significance was generally weak, several1096

trends emerged: 1) a weak but consistent positive1097

correlation between hidden size and BLiMP score1098

(linguistic knowledge); 2) an inconsistent positive1099

relationship between hidden size and GLUE score;1100

3) a strong and consistent negative correlation be-1101

tween hidden size and world knowledge; 4) an in-1102

consistent positive trend between the number of lay-1103

ers and linguistic competence; 5) a weak positive1104

trend between the number of layers and conceptual1105

understanding; and 6) a noticeable weak negative1106

trend between the number of layers and linguistic1107

competence. While these observations suggest the1108

need to carefully balance horizontal (hidden size)1109

and vertical (number of layers) scaling, particularly1110

while training on limited data, more data is needed1111

to fully concretize these claims. However, the pos-1112

itive impact of increasing layer count for smaller1113

hidden sizes was evident, supporting previous find-1114

ings of Liu et al. (2024).1115

The result in 3 influenced our hyper-parameter1116

selection.1117

B Architectural Comparison1118

We compare different language model architectures1119

and present them in Table 4. All models are trained1120

on the same dataset but for different epoches.1121

C SuperGLUE scores1122

We also include the performance of other architec-1123

ture reported in other studies in Table 5. While1124

our emphasis is not superGLUE, it is noteworthy1125

to demonstrate that the architecture maintains de-1126

cent conceptual competence relative to the larger1127

models.1128
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Figure 4: Correlation of hidden size and number of layers to BLiMP and GLUE scores with Spearman correlations
of and 0.38 0.88, respectively.

Model Hidden Size Layers BLiMP GLUE EWoK BLiMP-Sup Macro Avg.
model1 1024 10 59.75% 63.51% 54.09% 49.45% 56.70%
model2 1024 2 59.10% 62.33% 53.86% 52.31% 56.90%
model3 1024 4 64.53% 65.24% 53.30% 48.47% 57.89%
model4 1024 6 54.21% 65.25% 53.94% 50.87% 56.07%
model5 128 10 60.72% 64.99% 56.14% 48.48% 57.58%
model6 128 2 54.37% 63.89% 55.96% 48.51% 55.68%
model7 128 4 54.68% 65.02% 56.10% 53.65% 57.36%
model8 128 6 55.89% 63.70% 56.96% 48.48% 56.26%
model9 256 10 59.32% 64.44% 55.65% 51.32% 57.68%
model10 256 2 57.20% 64.57% 55.13% 56.06% 58.24%
model11 256 4 58.03% 64.50% 55.72% 50.43% 57.17%
model12 256 6 55.67% 63.34% 55.96% 49.66% 56.16%
model13 512 10 58.60% 64.41% 55.13% 46.85% 56.25%
model14 512 2 62.26% 63.50% 55.36% 53.28% 58.60%
model15 512 4 63.44% 63.57% 55.73% 48.21% 57.74%
model16 512 6 62.37% 64.07% 55.59% 51.58% 58.40%
model17 64 10 59.54% 64.44% 58.01% 49.77% 57.94%
model18 64 2 53.74% 62.90% 57.99% 55.07% 57.42%
model19 64 4 52.85% 63.34% 57.91% 48.00% 55.52%
model20 64 6 57.03% 62.20% 57.02% 48.71% 56.24%
model21 768 10 59.87% 62.75% 54.85% 49.57% 56.76%
model22 768 2 59.31% 63.06% 54.48% 54.54% 57.85%
model23 768 4 56.08% 65.51% 54.07% 53.49% 57.29%
model24 768 6 57.49% 63.67% 53.74% 53.18% 57.02%

Table 3: Evaluation scores across models with varying hidden sizes and number of layers. Best values per metric
are in bold.
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Task
OPT

(125M)
RoBERTa

(base)
T5

(base)
LLaMA2

(58M)
LLaMA2
(360M)

GPT-2
(705M)

Baby LLaMA
(58M, distilled)

SLlama
(2.6M)

Anaphor Agr. 63.80 81.50 68.90 87.00 87.60 89.60 89.80 100.00
Arg. Structure 70.60 67.10 63.80 72.30 73.50 73.50 73.10 74.98
Binding 67.10 67.30 60.40 71.20 72.10 71.50 72.70 99.98
Control/Raising 66.50 67.90 60.90 67.50 67.40 68.40 67.50 80.11
Det.-Noun Agr. 78.50 90.80 72.20 87.80 89.60 87.40 90.80 95.03
Ellipsis 62.00 76.40 34.40 67.30 68.50 69.90 73.30 73.13
Filler-Gap 63.80 63.50 48.20 70.90 70.60 70.20 71.80 100.00
Irregular Forms 67.50 87.40 77.60 74.10 68.90 83.10 93.10 100.00
Island Effects 48.60 39.90 45.60 57.30 50.40 51.60 51.20 99.95
NPI Licensing 46.70 55.90 47.80 51.10 57.30 50.50 56.50 99.11
Quantifiers 59.60 70.50 61.20 64.20 59.00 69.80 73.30 100.00
Subj.-Verb Agr. 56.90 65.40 65.00 73.00 69.70 67.50 75.40 87.29
Hypernym 50.00 49.40 48.00 48.70 49.40 49.20 49.30 79.45
QA Congruence (easy) 54.70 31.30 40.60 50.00 53.10 56.20 51.60 57.81
QA Congruence (tricky) 31.50 32.10 21.20 32.70 41.80 45.50 41.80 50.91
Subj.-Aux. Inversion 80.30 71.70 64.90 77.40 84.30 81.70 88.50 99.90
Turn Taking 57.10 53.20 45.00 63.90 68.60 65.70 66.10 100.00

Table 4: Comparative performance of SLlama and larger models on BLiMP tasks. Results for baseline models
(OPT, RoBERTa, T5, LLaMA, GPT-2, and Baby LLaMA) are taken from the original baseline paper. All models,
including SLlama, are trained on the same 10M-token dataset.

Task
OPT

(125M)
RoBERTa

(base)
T5

(base)
Baby Llama

(58M)
SLlama
(2.6M)

CoLA (MCC) 15.2 25.8 11.3 14.3 6.1
SST-2 81.9 87.0 78.1 87.2 80.1
MRPC (F1) 72.5 79.2 80.5 82.0 81.8
QQP(F1) 60.4 73.7 66.2 83.0 73.2
MNLI 57.6 73.2 48.0 72.9 59.7
MNLI-mm 60.0 74.0 50.3 73.7 31.7
QNLI 61.5 77.0 62.0 81.1 61.8
RTE 60.0 61.6 49.4 61.6 48.2
BoolQ 63.3 66.3 66.0 67.2 64.0
MultiRC 55.2 61.4 47.1 58.9 60.0
WSC 60.2 61.4 61.4 61.4 63.5

Table 5: Performance on super GLUE
. Evaluations are accuracy except specified otherwise. All models are pretrained on the training dataset.
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Parameter Value
eval_interval 250
log_interval 10
eval_iters 150
eval_only False
wandb_log True
wandb_project further_baby_experiments
wandb_run_name test_llama_c_alone
gradient_accumulation_steps 2
batch_size 128
block_size block_size
dropout 0.1
learning_rate 4e-4
max_iters 3000
weight_decay 0.0
warmup_iters 200
lr_decay_iters 5000
min_lr 4e-5
train_or_dev train
out_dir test_baby

Table 6: Training configuration for SLlama experiments
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