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ABSTRACT

Diffusion models have demonstrated a remarkable capability to edit or imitate im-
ages, which has raised concerns regarding the safeguarding of intellectual property.
To address these concerns, the adoption of adversarial attacks, which introduce
adversarial perturbations that can fool the targeted diffusion model into protected
images, has emerged as a viable solution. Consequently, diffusion models, like
many other deep network models, are believed to be susceptible to adversarial
attacks. However, in this work, we draw attention to an important oversight in
existing research, as all previous studies have focused solely on attacking latent
diffusion models (LDMs), neglecting adversarial examples for diffusion models
in the pixel space diffusion models (PDMs). Through extensive experiments, we
demonstrate that nearly all existing adversarial attack methods designed for LDMs,
as well as adaptive attacks designed for PDMs, fail when applied to PDMs. We
attribute the vulnerability of LDMs to their encoders, indicating that diffusion
models exhibit strong robustness against adversarial attacks. Building upon this
insight, we find that PDMs can be used as an off-the-shelf purifier to effectively
eliminate adversarial patterns generated by LDMs, thereby maintaining the in-
tegrity of images. Notably, we highlight that most existing protection methods can
be easily bypassed using PDM-based purification. We hope our findings prompt
a reevaluation of adversarial samples for diffusion models as potential protection
methods.

1 INTRODUCTION

Generative diffusion models (DMs) (Ho et al., 2020; Song et al., 2020; Rombach et al., 2022)
have achieved great success in generating images with high fidelity. However, this remarkable
generative capability of diffusion models is accompanied by safety concerns (Zhang et al., 2023a),
especially on the unauthorized editing or imitation of personal images such as portraits or individual
artworks (Andersen, 2023; Setty, 2023). Recent works (Liang et al., 2023; Shan et al., 2023; Salman
et al., 2023; Xue et al., 2023; Zheng et al., 2023; Chen et al., 2024; Ahn et al., 2024; Liu et al., 2023)
show that adversarial samples (adv-samples) for diffusion models can be applied as a protection
against malicious editing. Small perturbations generated by conventional methods in adversarial
machine learning (Madry et al., 2018; Goodfellow et al., 2014) can effectively fool popular diffusion
models such as Stable Diffusion (Rombach et al., 2022) to produce chaotic results when an imitation
attempt is made. However, a significantly overlooked aspect is that all the existing works focus on
latent diffusion models (LDMs) and the pixel-space diffusion models (PDMs) are not studied. For
LDMs, perturbations are not directly introduced to the input of the diffusion models. Instead, they
are applied externally and propagated through an encoder. It has been shown that the encoder and
decoder of LDMs are vulnerable to adversarial perturbations (Zhang et al., 2023b; Xue et al., 2023),
which means that the adv-samples for LDMs have a very different mechanism of action compared
to the adv-samples for PDMs. Moreover, some existing works (Liang and Wu, 2023; Salman et al.,
2023) show that using an encoder-specific loss can enhance the adversarial attack, (Xue et al., 2023)
further demonstrating that the encoder is the bottleneck for attacking LDMs. Building upon this
observation, in this paper, we draw attention to the problem of rethinking existing adversarial attack
methods for diffusion models by asking the question:

Can we generate adversarial examples for PDMs as we did for LDMs?
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Figure 1: Overview: (a) Recent protection approaches based on adversarial perturbation against latent
diffusion models (LDMs) cannot be used in pixel-space diffusion models (PDMs); The underlying
reason is that the encoder of the Latent Diffusion Model (LDM) amplifies the perturbations, causing
the inputs to the denoiser to have significantly different distributions. In contrast, the inputs of the
PDM maintain large overlap, showing robustness. (b) A strong PDM can be used as a universal
purifier to effectively remove the protective perturbation generated by existing protection methods.
(Best viewed with zoom-in on a computer)

We address this question by systematically investigating adv-samples for PDMs. We conduct
experiments on various LDMs or PDMs with different network architectures (e.g. U-Net (Ho
et al., 2020), Transformer (Peebles and Xie, 2023)), different training datasets, and different input
resolutions (e.g. 64, 256, 512). Through extensive experiments, we demonstrate that all the existing
methods we tested (Liang and Wu, 2023; Zheng et al., 2023; Shan et al., 2023; Xue et al., 2023;
Chen et al., 2024; Salman et al., 2023; Liang et al., 2023), developed to attack LDMs, fail to generate
effective adv-samples for PDMs. Moreover, we conduct adaptive attacks for PDMs, applying
strategies like gradient averaging and attacking the intermediate features, but none of the attacks
can effectively change the reverse diffusion process the way the do to fool LDMs. This implies that
PDMs are more adversarially robust than we think.

Building on the insight that PDMs are strongly robust against adversarial perturbations, we further
propose PDM-Pure, a universal purifier that can effectively remove the protective perturbations of
different scales (e.g. Mist-v2 (Zheng et al., 2023) and Glaze (Shan et al., 2023)) based on PDMs
trained on large datasets. Through extensive experiments, we demonstrate that PDM-Pure achieves
way better performance than all baseline methods.

To summarize, the pixel is a barrier to adversarial attack (Figure 1); the diffusion process in the pixel
space makes PDMs much more robust than LDMs. This property of PDMs also makes real protection
against the misusage of diffusion models difficult since: (1) no existing attacks have proven effective
in attacking PDMs, which means no protection can be achieved by fooling a PDM, (2) all the existing
protections against LDMs can be easily purified using a strong PDM. Our contributions are listed
below.

1. We observe that most existing works on adversarial examples for protection focus on LDMs.
Adpversarial attacks against PDMs are largely overlooked in this field.

2. We fill in the gap in the literature by conducting extensive experiments on various LDMs and
PDMs. We discover that all the existing methods fail to attack the PDMs, indicating that PDMs
are much more adversarially robust than LDMs.

3. Based on this novel insight, we propose a simple yet effective framework termed PDM-Pure that
applies strong PDMs as a universal purifier to remove attack-agnostic adversarial perturbations,
easily bypassing almost all existing protective methods.

2 RELATED WORKS

Adversarial Examples for DMs Adversarial samples (Goodfellow et al., 2014; Carlini and Wagner,
2017; Shan et al., 2023) are clean data samples perturbed by an imperceptible small noise that can
fool deep neural networks into making wrong decisions. Under white-box conditions, gradient-based
methods are widely used to generate adv-samples. Among them, the projected gradient descent (PGD)
algorithm (Madry et al., 2018) is one of the most effective methods. Recent works (Liang et al., 2023;
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Figure 2: PDMs Cannot be Attacked as LDMs: LDMs can be easily fooled by running PGD to fool
the denoising loss, but PDMs cannot be easily fooled. DiT (Peebles and Xie, 2023) and SD (Rombach
et al., 2022) are LDMs, GD (Dhariwal and Nichol, 2021) AND IF-Stage-II (Shonenkov et al.) are
PDMs (Best viewed with zoom-in)

Salman et al., 2023) show that it is also easy to find adv-samples for diffusion models (AdvDM):
with a proper loss to attack the denoising process, the perturbed image can fool the diffusion models
to generate chaotic images when operating diffusion-based mimicry. Furthermore, many improved
algorithms (Zheng et al., 2023; Chen et al., 2024; Xue et al., 2023) have been proposed to generate
better AdvDM samples. However, to our best knowledge, all the AdvDM methods listed above are
used on LDMs, and those for the PDMs are rarely explored.

Adversarial Perturbation as Protection Adversarial perturbation against DMs turns out to be an
effective method to safeguard images against unauthorized editing (Liang et al., 2023; Shan et al.,
2023; Salman et al., 2023; Xue et al., 2023; Zheng et al., 2023; Chen et al., 2024; Ahn et al., 2024;
Liu et al., 2023). It has found applications (e.g., Glaze (Shan et al., 2023) and Mist (Zheng et al.,
2023; Liang and Wu, 2023)) for individual artists to protect their creations. SDS-attack (Xue et al.,
2023) further investigates the mechanism behind the attack and proposes some tools to make the
protection more effective. However, they are limited to protecting LDMs only. In addition, some
works (Zhao et al., 2023; Sandoval-Segura et al., 2023) find that these protective perturbations can be
purified. For instance, GrIDPure (Zhao et al., 2023) find that DiffPure (Nie et al., 2022) can be used
to purify the adversarial patterns, but they did not realize that the reason behind this is the robustness
of PDMs.

3 PRELIMINARIES

Generative Diffusion Models The generative diffusion model (Ho et al., 2020; Song et al., 2020) is
one type of generative model, and it has demonstrated remarkable generative capabilities in numerous
fields such as images (Rombach et al., 2022; Balaji et al., 2022), 3D data (Poole et al., 2023; Lin
et al., 2022), video (Ho et al., 2022; Singer et al., 2022), stories (Pan et al., 2022; Rahman et al.,
2023) and music (Mittal et al., 2021; Huang et al., 2023) generation. Diffusion models, like other
generative models, are parametrized models pg(Z) that can estimate an unknown distribution ¢(zg).
For image generation tasks, g(xg) is the distribution of real images.

There are two processes involved in a diffusion model, a forward diffusion process and a reverse
denoising process. The forward diffusion process progressively injects noise into the clean image,
and the ¢-th step diffusion is formulated as q(z; | z¢—1) = N (x¢; /1 — Bizy—1, fI). Accumulating
the noise, we have q;(z; | zo) = N(x4; /@ w4—1, (1 — ay)I). Here 8, growing from 0 to 1 are
pre-defined values, oy = 1 — 34, and &y = Hizlas. Finally, x7 will become approximately an
isotropic Gaussian random variable when &; — 0.

Inversely, pg(#:—1|Z¢) can generate samples from Gaussian Zr ~ N(0,I), where py is re-
parameterized by learning a noise estimator €y, the training loss is E; ;. [A(t)||eg(z¢, 1) — €]?]
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weighted by A(t), where e is the noise used to diffuse x( following ¢;(2:|x(). Finally, by iteratively
applying pg(#:—1|%+), we can sample realistic images following pg (o).

Since the above diffusion process operates directly in the pixel space, we call such diffusion models
Pixel-Space Diffusion Models (PDMs). Another popular choice is to move the diffusion process into
the latent space to make it more scalable, resulting in the Latent Diffusion Models (LDMs) (Rombach
etal., 2022). More specifically, LDMs first use an encoder £4 parameterized by ¢ to encode xq into a
latent variable zp = E4(x0). The denoising diffusion process is the same as PDMs. At the end of the
denoising process, £y can be projected back to the pixel space using a decoder D,, parameterized by

’LZ) as ii'() = ’qu(éo)

Adversarial Examples for Diffusion Models Recent works (Salman et al., 2023; Liang et al., 2023)
find that adding small perturbations to clean images will make the diffusion models perform badly
in noise prediction, and further generate chaotic results in tasks like image editing and customized
generation. The adversarial perturbations for LDMs can be generated by optimizing the Monte-Carlo-
based adversarial loss:

ﬁadv(l') = Et,eEztwqt(5¢(.'c))||60(Ztat) - 6\\% (1)

Other encoder-based losses (Shan et al., 2023; Liang and Wu, 2023; Zheng et al., 2023; Xue et al.,
2023) further enhance the attack to make it more effective. With the carefully designed adversarial
loss, one can run Projected Gradient Descent (PGD) (Madry et al., 2018) with /., budget § to generate
adversarial perturbations:

okt — 'PBQO(CCO,J) [xk + nSignvm’“ﬁadv(ka)] 2)

In the above equation, Pp__ (0,5)(-) is the projection operator on the £, ball, where 20 is the clean

image to be perturbed. We use superscript 2* to represent the iterations of the PGD and subscript x;
for the diffusion steps.

4 RETHINKING ADVERSARIAL EXAMPLES FOR DIFFUSION MODELS

4.1 DIFFUSION MODELS DEMONSTRATE STRONG ADVERSARIAL ROBUSTNESS

While there are many approaches that adopt adversarial perturbation to fool diffusion models, most
of them focus only on latent diffusion models due to the wide impact of Stable Diffusion; no attempts
have been made to attack PDMs. This lack of investigation may mislead us to conclude that diffusion
models, like most deep neural networks, are vulnerable to adversarial perturbations, and that the
algorithms used for LDMs can be transferred to PDMs by simply applying the same adversarial loss
in the pixel space formulated as: Logy(2) = Et By, g, (2)ll€0 (@1, ) — €][3.

However, we show through experiments that PDMs are robust against this form of attack (Figure 2),
which means all the existing attacks against diffusion models are, in fact, special cases of attacks
against the LDMs only. We conduct extensive experiments on popular LDMs and PDMs structures
including Diffusion Transformer (DiT), Guided Diffusion (GD), Stable Diffusion (SD), and Deep-
Floyd (IF), and demonstrate in Table 1 that only the LDMs can be attacked and PDMs are not as
susceptible to adversarial perturbations: for PDMs, the image quality does not significantly decrease
due to the perturbation both visually and quantitatively. More details and analysis can be found in the
experiment section.

Prior to this study, there may have been a prevailing belief that diffusion models could be easily
deceived. However, our research reveals an important distinction: it is the LDMs that exhibit
vulnerability, while the PDMs demonstrate significantly higher adversarial robustness.
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Models FID-scoret SSIM | LPIPS 1 TA-Score | Type

§=4/255 | Clean Adv A | Clean Adv A | Clean Adv A | Clean Adv A |
DiT-256 131 167  +36 037 035 -0.02 | 044 054 +0.10 0.74 0.70 -0.04 | LDM
SD-V-1.4 44 114 +70 0.68 055 -0.13 | 022 046 +0.24 0.92 0.84 -0.08 | LDM
SD-V-1.5 45 113 +68 0.73 059 -0.14 | 020 038 +0.138 | 094 0.89 -0.05 | LDM
GD-ImageNet 109 109 +0 0.66 0.66 -0.00 | 021 021 +0.00 090 090 -0.00 | PDM
IF-1 186 187 +1 0.59 058 -0.01| 0.14 0.14 +0.00 0.86 0.86 -0.00 | PDM
IF-1I 85 87 +2 0.84 0.84 -000 | 0.15 0.15 +0.00 | 091 091 -0.00 | PDM

§=8/255 | Clean Adv A |Clean Adv A | Clean Adv A | Clean Adv A |
DiT-256 131 186 +55 0.37 031 -0.06 | 044 0.63 +0.19 0.74 0.66 -0.08 | LDM
SD-V-1.4 44 178  +134 | 0.68 044 -0.24 | 022 0.60 +0.38 092 0.78 -0.14 | LDM
SD-V-1.5 45 179  +134 | 073 049 -0.24 | 020 0.51 +0.31 0.94 0.84 -0.10 | LDM
GD-ImageNet | 109 110 +1 066 0.64 -002| 021 022 +0.01 090 0.90 -0.00 | PDM
IF-1 186 188 +2 0.59 059 -0.00 | 0.14 0.14 +0.00 0.86 0.86 +0.00 | PDM
IF-II 85 82 -3 0.84 0.83 -0.01 | 0.15 0.16 +0.01 091 092 +0.01 | PDM

6 =16/255 | clean adv A | clean adv A | clean adv A | clean adv A
DiT-256 131 220 +89 0.37 026 -0.11 | 044 070 +0.26 0.74 0.63 -0.11 | LDM
SD-V-1.4 44 225 +181 | 0.68 034 -034 | 022 0.68 +0.46 092 0.72 -0.20 | LDM
SD-V-1.5 45 226  +181 0.73 037 -036| 020 0.62 +0.42 094 0.78 -0.16 | LDM
GD-ImageNet | 109 110 +1 0.66 0.57 -0.09 | 021 026 +0.05 090 0.89 -0.01 | PDM
IF-1 186 188 +2 059 058 -001 | 0.14 0.15 +0.01 0.86 0.87 +0.01 | PDM
IF-II 85 86 +1 0.84 0.76 -0.08 | 0.15 021 +0.06 091 095 +0.04 | PDM

Table 1: Quantitative Measurement of PGD-based Adv-Attacks for LDMs and PDMs: gradient-
based diffusion attacks can attack LDMs effectively, making the difference A across all evaluation
metrics between edited clean image and edited adversarial image large, which means the quality
of edited images drops dramatically. However, the PDMs are not affected much by the crafted
adversarial perturbations, showing small A before and after the attacks.

4.2 ADAPTIVE ATTACKS FOR PIXEL-SPACE DIFFUSION MODELS

To further test the robustness of pixel-space diffusion models, we proceed by designing more adaptive
attacks for PDMs. We adopt some design code from (Tramer et al., 2020) to craft adaptive attacks.
We first divide the attacks into two categories (C1): attack the full pipeline, which is an end-to-end
attack for the targeted editing pipeline. (C2): use diffusion loss as the objective, which follows
Equation 1.

Then we try other tricks e.g. applying Expectation over Transformation (EoT) (Athalye et al., 2018),
using a targeted attack, and a latent attack (attacking the intermediate layers). We collect the following
attacks to test the robustness of Guided Diffusion (GD), including:

e Attack (1) / (2): (C1) with / without EoT

* Attack (3) / (4): (C2) with targeted / untargeted loss without EoT

¢ Attack (5) / (6): The above two attacks with EoT

» Attack (7) / (8): Latent attack / Latent attack+ in (Shih et al., 2024)

Attacks (1)—(6) are largely ineffective against PDMs, suggesting that end-to-end or Expectation over
Transformation (EoT) attacks are unlikely to yield better results. As demonstrated in Figure 3, all
crafted perturbations fail to induce chaotic generation outcomes in PDMs.

Recent work by (Shih et al., 2024) introduces latent attacks that can effectively deceive diffusion
models. The core idea is to target the intermediate layers of the U-Net architecture in Guided
Diffusion (GD). While this type of attack appears capable of misleading the PDM to edit the object as
something different (see Figure 4), it suffers from two major limitations: The perturbation magnitude
is excessively large, with £, (6) > 150/255. As a result, the appearance of the objects is significantly
altered and further degraded by added Gaussian noise. Consequently, the diffusion model will not
be able to correctly identify the object. For instance, as shown in the last block of Figure 4, when
large Gaussian noise is introduced, the diffusion model mistakenly identifies the chicken as a turtle.
Additionally, such latent attacks are ineffective when the editing strength is low, indicating that the
attack mechanism heavily relies on the magnitude of noise applied. In contrast, attacks against Latent
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Figure 3: Crafting Adaptive Attacks for PDMs: PDM shows robustness against end-to-end attacks
and sampling based attacks, for EoT settings. We use the images in (Zheng et al., 2023) as the
targeted image in the pixel space.
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Figure 4: Latent Attacks for PDMs: (Shih et al., 2024) proposes to attack the intermediate feature
of the denoiser, and use a additional encoder-decoder to regularize the perturbation. This kind of
attack need large perturbation ¢, > 150/255, and it barely work for small editing steps.

Diffusion Models (LDMs) can remain effective even with small perturbation steps, as they are capable
of crafting strong adversarial attacks despite limited noise being added.

4.3 LATENT DIFFUSION MODEL IS VULNERABLE BECAUSE OF THE ENCODER

The previous two sections demonstrate that PDMs exhibit significantly stronger empirical robustness
compared to LDMs. Rather than providing a theoretical proof of the robustness of the diffusion
process in pixel space (which is challenging to establish for DNN-based systems), we offer an
intuitive explanation for why PDMs exhibit greater resilience.

The vulnerability of the LDMs is caused by the vulnerability of the latent space (Xue et al., 2023),
meaning that although we may set budgets for perturbations in the pixel space, the perturbations in
the latent space can be large. In (Xue et al., 2023), the authors show statistics of perturbations in

|z—2']
[o—g7| Can be as large as 10,

making the inputs into the denoiser (z: = ¢:(z), z; = ¢+(2’)) have smaller overlap (Figure 1 Middle).
In contrast, the inputs into PDMs (z; = q;(), } = g:(«”)) will still have large overlap, since = and
2’ are close to each other due to the limited attack budget.

the latent space over the perturbations in the pixel space and this value

If we decompose the attacks on LDMs into two categories: (a) attacking the encoder and (b) attacking
the diffusion model. We observe that the former is due to the encoder’s adversarial vulnerability,
while the latter results from a significant domain shift. Essentially, the input changes so drastically
that it diverges from the distribution of the training environment, leading to reduced performance and
robustness.

Almost all the copyright protection perturbations (Shan et al., 2023; Liang and Wu, 2023; Zheng
et al., 2023) are based on the insight that it is easy to craft adversarial examples to fool diffusion
models. We need to rethink the adversarial samples for diffusion models since there are a lot of PDMs
that cannot be attacked easily. Next, we show that PDMs can be utilized to purify all adversarial
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(a) PDM-Pure Framework (b) PDM-Pure Applied in [F Models
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Figure 5: PDM-Pure is Easy to Design: (a) PDM-Pure applies SDEdit Meng et al. (2021) in the
pixel space: it first runs forward diffusion with a small step ¢t* and then runs the denoising process. (b)
We adapt the framework to DeepFloyd-IF Shonenkov et al., one of the strongest PDMs. PDM-Pure
can effectively remove strong protective perturbations (e.g. 6 = 16/255). The images we tested are
sized 512 x H12.

patterns generated by existing methods in Section 5. This new landscape poses new challenges to
ensure the security and robustness of diffusion-based copyright protection techniques.

5 PDM-PURE: PDM AS A STRONG UNIVERSAL PURIFIER

Since PDMs are robust to adversarial perturbations, a natural idea emerges: we can utilize PDMs as a
universal purification network. This approach could potentially eliminate any adversarial patterns
without knowing the nature of the attacks. We term this framework PDM-Pure, which is a general
framework to deal with all the perturbations utilized nowadays. To fully harness the capabilities of
PDM-Pure, we need to fulfill two basic requirements: (1) The perturbation adds an out-of-distribution
pattern as reflected in existing works on adversarial purification/attacks using diffusion models (Nie
etal., 2022; Xue et al., 2024) (2) The PDM being used is strong enough to represent p(xy), which
can be largely determined by the dataset they are trained on.

It is effortless to design a PDM-Pure. The key idea behind this method is to run SDEdit in the pixel
space. Given any strong pixel-space diffusion model, we add a small noise to the protected images
and run the denoising process (Figure 5), and then the adversarial pattern should be removed. The
key idea of PDM-Pure is simple. In practice, we need to adjust the pipeline to fit the resolution of the
PDMs being used.

In the main paper, we adopt DeepFloyd-IF (Shonenkov et al.), the strongest pixel-space diffusion
models nowadays as the purifier. We conduct experiments on purifying protected images sized
512 x 512. For images with a larger resolution, purifying in the resolution of 256 x 256 may
lose information. In Appendix I we show that PDM-Pure can also be applied to purify patches of
high-resolution inputs, removing widely used protections like Glaze on artworks. More details about
the how we run DeepFloyd-IF as the purification pipeline are in the Appendix G.

6 EXPERIMENTS
In this section, we conduct experiments with various attacking methods and models to support the
following two conclusions:

* (C1): PDMs are much more adversarially robust than LDMs, and PDMs can not be effectively
attacked using all the existing attacks for LDMs.
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Methods AdvDM AdvDM(-) SDS(-) SDS(+) SDST Photoguard Mist Mist-v2
Before Protection 166 166 166 166 166 166 166 166
After Protection 297 221 231 299 322 375 372 370
Crop-Resize 210 271 228 217 280 295 289 288
JPEG 296 222 229 297 320 359 351 348
Adv-Clean 243 201 204 244 243 266 282 270
LDM-Pure 300 251 235 300 350 385 380 375
GrIDPure 200 182 195 200 210 220 230 210
PDM-Pure (ours) 161 170 165 159 179 175 178 170

Table 2: Quantiative Measurement of Different Purification Methods in Different Scale (FID-
score): We compute the FID-score of edited purified images over the clean dataset. PDM-Pure
achieves the best results on all protection methods, under strong protection with § = 16. GrID-
Pure Zhao et al. (2023) can also perform reasonably, but the performance is limited because the PDM
they used is not strong enough.

* (C2): PDMs can be applied to effectively purify all of the existing protective perturbations. Our
PDM-Pure based on DeepFloyd-IF shows state-of-the-art purification power.

6.1 MODELS, DATASETS, AND METRICS

The models we used can be categorized into LDMs and PDMs. For LDMs, we use Stable Diffu-
sion V-1.4, V-1.5 (SD-V-1.4, SD-V-1.5) (Rombach et al., 2022), and Diffusion Transformer (DiT-
XL/2) (Peebles and Xie, 2023), and for PDMs we use Guided Diffusion (GD) (Dhariwal and Nichol,
2021) trained on ImageNet (Deng et al., 2009), and DeepFloyd Stage I and Stage II (Shonenkov
et al.).

For models trained on the ImageNet (DiT, GD), we run adversarial attacks and purification on a 1k
subset of the ImageNet validation dataset. For models trained on LAION, we run tests on the dataset
proposed in (Xue et al., 2023), which includes 400 cartoon, artwork, landscape, and portrait images.

For protection methods, we consider almost all the representative approaches, including Ad-
vDM (Liang et al., 2023), SDS (Xue et al., 2023), Mist (Liang and Wu, 2023), Mist-v2 (Zheng et al.,
2023), Photoguard (Salman et al., 2023) and Glaze (Shan et al., 2023). We also test the methods in
the design space proposed in (Xue et al., 2023), including SDS(-), AdvDM(-), and SDST. In contrast
to other existing methods, they are based on gradient descent and have shown great performance in
deceiving LDMs.

We measure the SDEdit results after the adversarial attacks using Fréchet Inception Distance
(FID) (Heusel et al., 2017) over the relevant datasets (for models trained on ImageNet such as
GD (Dhariwal and Nichol, 2021) and DiT (Peebles and Xie, 2023) we use a sub-dataset of ImageNet
as the relevant dataset, for those trained on LAION, we use the collected dataset in (Xue et al., 2023)
to calculate the FID). We also use Image-Alignment Score (IA-score) (Kumari et al., 2023), which
can be used to calculate the cosine-similarity between the CLIP embedding of the edited image and
the original image. Also, we use some basic evaluations, where we calculate the Structural Similarity
(SSIM) (Wang et al., 2004) and Perceptual Similarity (LPIPS) (Zhang et al., 2018) compared with
the original images.

All the experiments are written using PyTorch and run in the Linux system, and all of them can be
conducted on four A6000 GPUs.

6.2 (C1) DIFFUSION DENOISING PROCESS IS MORE ROBUST THAN WE THINK

In Table 1, we attack different LDMs and PDMs with one of the most popular adversarial
losses (Zheng et al., 2023) in Equation 1, which can be interpreted as fooling the denoiser us-
ing a Monte-Carlo-based loss. Given the attacked samples, we test the SDEdit results on the attacked
samples, which can be generally used to test whether the samples are adversarial for the diffusion
model or not. We use FID-score (Heusel et al., 2017), SSIM (Wang et al., 2004), LPIPS (Zhang et al.,
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2018), and IA-Score (Kumari et al., 2023) to measure the quality of the attack. If the quality of the
generated images decreases a lot compared to edited clean images, then the attack is successful. We
found that for all LDMs, attacks using the adversarial loss successfully provide protection. However,
for all PDMs, the adversarial attacks do not work. This phenomenon occurs across all scales of
perturbation. For example, when the FID of LDMs increased by over 100, the FID of PDMs remained
nearly unchanged. We also show some visualizations in Figure 2, which illustrate that the perturbation
will affect the LDMs but not the PDMs.

To further investigate how robust the PDM is, we test other advanced attacking methods, including
the End-to-End Diffusion Attacks (E2E-Photoguard) proposed in (Salman et al., 2023) and the
Improved Targeted Attack (ITA) proposed in (Zheng et al., 2023). Though the End-to-End attack
is usually impractical to run, it shows the strongest performance when attacking LDMs. We find
that both attacks are not successful in PDM settings. We show attacked samples and edited samples
in Figure 2, 3, 4 as well as the Appendix H. In conclusion, existing adversarial attack methods for
diffusion models can only work for LDMs, and PDMs are more robust than we think.

6.3 (C2) PDM-PURE: A UNIVERSAL PURIFIER THAT IS SIMPLE YET EFFECTIVE

PDM-Pure is simple: we just run SDEdit to purify the protected image in the pixel space. Given
our assumption that PDMs are quite robust, we can use PDMs trained on large-scale datasets as a
universal black-box purifier. We follow the model pipeline introduced in Section 5 and purify images
protected by various methods as shown in Table 2.

PDM-Pure is effective: from Table 2 we can see that the purification will remove adversarial patterns
for all the protection methods we tested, largely decreasing the FID score for the SDEdit task. Also,
we test the protected images and purified images in more tasks including Image Inpainting (Song
et al., 2020), Textual-Inversion (Gal et al., 2022), and LoRA customization (Hu et al., 2021). We
show purification results for inpainting in Figure 12, and purification results for LoRA in Figure 7.
We show more results in Figure 16 in the appendix.

Both qualitative and quantitative results show that the purified images are no longer adversarial and
can be effectively edited or imitated in different tasks without any obstruction.

Also, PDM-Pure shows SOTA results compared with previous purification methods, including
some simple purifiers based on compression and filtering like Adv-Clean, crop-and-resize, JPEG
Compression, and SDEdit-based methods like GrIDPure (Zhao et al., 2023), which uses patchified
SDEdit with a GD (Dhariwal and Nichol, 2021). We also add LDM-Pure as a baseline to show that
LDMs can not be used to purify the protected images. For GrIDPure, we use Guided-Diffusion
trained on ImageNet to run patchified purification. All the experiments are conducted on the datasets
collected in (Xue et al., 2023) under the resolution of 512 x 512. Results for higher resolutions
are presented in Appendix I. We also test the ablation of timesteps used for PDM-Pure in Appendix
Appendix J, from which we can see the sweet point of timesteps: ¢* around 0.15 works well. We also
find that PDM-Pure works better for cartoon pictures with larger plain color patches. For pictures
with many details like oil paintings, it will lose some detail; however, generally the art style can
still be learned well by LoRA from the attacker’s perspective (e.g. Claude Monet-style in Appendix
Figure 13 ).

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we present novel insights that while many studies demonstrate the ease of finding
adversarial samples for Latent Diffusion Models (LDMs), Pixel Diffusion Models (PDMs) exhibit far
greater adversarial robustness than previously assumed. We are the first to investigate the adversarial
samples for PDMs, revealing a surprising discovery that existing attacks fail to fool PDMs. Leveraging
this insight, we propose utilizing strong PDMs as universal purifiers, resulting in PDM-Pure, a simple
yet effective framework that can purify protective perturbations in a black-box manner.

Pixel is a barrier for real protection against adversarial attacks. Since PDMs are quite robust, they
cannot be easily attacked. PDMs can even be used to purify the protective perturbations, challenging
the current assumption for the safe protection of generative diffusion models. We advocate rethinking
the problem of adversarial samples for generative diffusion models and unauthorized image protection
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based on it. More rigorous studies need to be conducted to better understand the mechanism behind
the robustness of PDMs. Furthermore, we can utilize it as a new structure for many other tasks.

8 LIMITATIONS

In this paper, we present empirical insights demonstrating the robustness of PDMs by attacking
various PDMs using different methods. We do not provide a theoretical analysis of the underlying
mechanisms. For PDM-Pure, though the purification is stronger than previous methods, there is still a
trade-off between purifying power and the preservation of image details, particularly in images with
intricate details. Additionally, we rely on patched purification for larger images, which may result in
subtle edge shadows between patches.

Protected PDM-Purified Inpainting (protected) Inpainting (purified)

o ;

A man fighting with
a tiger, painting

k ds 4 L : : ‘\" e
Figure 6: PDM-Pure makes the Protected Images no longer Protected: PDMs can help effectively
remove adversarial patterns to bypass the protection for LDMs, here we show an example on in-
painting with SDS protection proposed in (Xue et al., 2023). We put more results on more attacks

and more examples in the Appendix Figure 16.

Prompt: A man and a dog. Prompt: A man and a dog.
x20 e

&% ] 9
by -
Py LoRA LoRA [
Adriaen Brouwer’s P-amtmg (Poisoned) (Purified)
Protected by Mist

Purified by PDM-Pure

Figure 7: PDM-Pure makes the Protected Images no longer LoRA-proof: PDMs can also help
effectively remove adversarial patterns to bypass the protection for LDMs under LoRA settings. Here
we use Mist (Liang and Wu, 2023) to perturb the images. We put more results on more attacks and
more examples in the Appendix Figure 16.
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Appendix

A BROADER IMPACT

We present significant insights in two crucial areas: adversarial machine learning research on
generative diffusion models, and the protection of copyright against the malicious use of diffusion
models. While existing works have revealed the vulnerability of latent diffusion models, we show
that the general diffusion model in the pixel space is quite robust. PDMs reveal two new threats to the
safety application of diffusion models: (1) since PDMs are robust and no existing perturbation can
effectively attack them, it means that copyright protection against PDMs cannot be easily achieved
with existing protective perturbations (2) PDMs can be used to purify the protective noise used to
protect the LDMs, meaning that the current protection for LDMs can be bypassed. We still have
a long way to go to achieve good protection against diffusion models, and more efforts should be
dedicated to enhancing copyright protection for PDMs and making current protective measures more
robust and reliable.

B DETAILS ABOUT DIFFERENT DIFFUSION MODELS IN THIS PAPER

Here we introduce the diffusion models used in this work, which cover different types of diffusion
(LDM, PDM), different training datasets, different resolutions, and different model structures (U-Net,
Transformer):

Guided Diffusion (PDM) We use the implementation and checkpoint from https://github.
com/openai/guided-diffusion, the Guided Diffusion models we used are trained on Im-
ageNet (Deng et al., 2009) in resolution 256 x 256, the editing results are tested on sub-dataset of
ImageNet validation set sized 500.

IF-Stage I (PDM) This is the first stage of the cascaded DeepFloyd IF model (Shonenkov et al.)
from https://github.com/deep—-floyd/IF. Itis trained on LAION 1.2B with text annota-
tion. It has a resolution of 64 x 64. the editing results are tested on the image dataset introduced in
(Xue et al., 2023), including 400 anime, portrait, landscape, and artwork images.

IF-Stage II (PDM) This is the second stage of the cascaded DeepFloyd IF model (Shonenkov
et al.) from https://github.com/deep-floyd/IF. Itis a conditional diffusion model in
the pixel space with 256 x 256, which is conditioned on 64 x 64 low-resolution images. During the
attack, we freeze the image condition and only attack the target image to be edited.

Stable Diffusion V-1.4 (LDM) It is one of the most popular LDMs from https://
huggingface.co/CompVis/stable-diffusion-v1-4,also trained on text-image pairs,
which has been widely studied in this field. It supports resolutions of 256 x 256 and 512 x 512, both
can be easily attacked. The encoder first encodes the image sized H x W into the latent space sized
4 x H/4 x W/4, and then uses U-Net combined with cross-attention to run the denoising process.

Stable Diffusion V-1.5 (LDM) It has the same structure as Stable Diffusion V-1.4, which is also
stronger since it is trained with more steps, from https://huggingface.co/runwayml/
stable-diffusion-v1-5.

DiT-XLL (LDM) It is another popular latent diffusion model, that uses the backbone of the
Transformer instead of the U-Net. We use the implementation from the original repository
https://github.com/facebookresearch/DiT/.
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C DETAILS ABOUT DIFFERENT PROTECTION METHODS IN THIS PAPER

We introduce different protection methods tested in this paper, of which all the original versions are
designed for LDMs. All the adversarial attacks work under white box settings of PGD-attack, varying
from each other with different adversarial losses:

AdvDM AdvDM is one of the first adversarial attacks proposed in (Liang et al., 2023), it used a
Monte-Carlo-based adversarial loss which can effectively attack latent diffusion models, we also call
this loss semantic loss:

Ls(x) =Kt By g, 4 l€a(ze:t) — ell3 3)

PhotoGuard PhotoGuard is proposed in (Salman et al., 2023), it takes the encoder, making the
encoded image close to a target image y, we also call it textural loss:

Lr(x) = —[|€s(x) — Eo(y)I3 ©)

Mist Mist (Liang and Wu, 2023) finds that Ly (x) can better enhance the attacks if the target image
y is chosen to be periodical patterns, the final loss combined Ly (z) and Lg(x):

L = ALr(x)+ Ls(x) (5)

SDS(+) Proposed in (Xue et al., 2023), it is proven to be a more effective attack compared to
the original AdvDM, where the gradient V,£(x) is expensive to compute. By using the score
distillation-based loss, it shows good performance and remains effective at the same time:

(6)

VoLsps(z) = By ., {)\(t)(eg(zt, t)—e) 8‘”}

Oy

SDS(-) Similar to SDS(+), it swaps gradient ascent in the original PGD with gradient descent,
which turns out to be even more effective.

VuLsps(y(@) = ~Er B, [A(txee(zt,t) 9 E’ﬂ

o N

Mist-v2 It was proposed in (Zheng et al., 2023) using the Improved Targeted Attack (ITA), which
turns out to be very effective, especially when the budget is small. It is also more effective to attack
LoRA:

Ls(w) =Bt By, g, (£,2)) ll€a(ze,t) — 20l/3 ()
where zp = £(y) is the latent of the target image, which is the same as the typical image used in Mist.

Glaze It is the most popular protection claimed to safeguard artists from unauthorized imita-
tion (Shan et al., 2023) and is widely used by the community. while it is not open-sourced, it also
attacks the encoder like the Photoguard. Here we only test it in the purification stage, where we show
that the protection can also be bypassed.

End-to-End Attack It is also first proposed in (Salman et al., 2023), which attacks the editing
pipeline in a end-to-end manner. Although it is strong, it is not practical to use and does not show
dominant privilege compared with other protection methods.
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D DETAILS ABOUT THE LATENT ATTACKS FOR PDMSs

In an attempt to extend the latent-space attacks onto PDMs, (Shih et al., 2024) introduces atkPDM-+.
This method uses a pre-trained VAE to attack the PDM by extracting feature vectors from the encoder
network. The attack optimizes the latent vector with a Wasserstein distance objective calculated at
the VAE middle layer activations:

Lottack (xt’ x?dv) S VYA (ue(mid) (xt)’ u@(mzd) (x?dv))

A second optimization cycle is then run to limit the change in pixel-space by optimizing the distance
between the feature vector generated by a pre-trained image classifier taken from the original image
and the decoded attacked latent.

We observe, however, that in this attack the perturbation is clearly visible, and the pixel-wise distance
is large: ||z — xqq0|| > 150.

E DETAILS ABOUT THE EVALUATION METRICS

Here we introduce the quantitative measurement we used in our experiments:

* We measure the SDEdit results after the adversarial attacks using Fréchet Inception Distance
(FID) (Heusel et al., 2017) over the relevant datasets (for models trained on ImageNet such
as GD (Dhariwal and Nichol, 2021) and DiT (Peebles and Xie, 2023) we use a sub-dataset
of ImageNet as the relevant dataset, for those trained on LAION, we use the collected
dataset to calculate the FID). We also use Image-Alignment Score (IA-score) (Kumari et al.,
2023), which can be used to calculate the cosine-similarity between the CLIP embedding
of the edited image and the original image. Also, we use some basic evaluations, where
we calculate the Structural Similarity (SSIM) (Wang et al., 2004) and Perceptual Similarity
(LPIPS) (Zhang et al., 2018) compared with the original images.

* To measure the purification results, we test the Fréchet Inception Distance (FID) (Heusel
et al., 2017) over the collected dataset compared with the dataset generated by running
SDEdit over the purified images in the strength of 0.3.

F DETAILS ABOUT DIFFERENT PURIFICATION METHODS

Adv-Clean: https://github.com/1lllyasviel/AdverseCleaner, a training-free
filter-based method that can remove adversarial noise for a diffusion model, it works well to remove
high-frequency noise.

Crop & Resize: first crops the image by 20% and then resizes the image to the original size, it
turns out to be one of the most effective defense methods (Liang and Wu, 2023).

JPEG compression: (Sandoval-Segura et al., 2023) reveals that JPEG compression can be a good
purification method, and we adopt the 65% as the quality of compression in (Sandoval-Segura et al.,
2023).

LDM-Pure: We also try to use LDMs to run SDEdit as a naive purifier, sadly it does not work,
because the adversarial protection transfers well between different LDMs.

GrIDPure: It is proposed in (Zhao et al., 2023) as a purifier, GrIDPure first divides an image into
patches sized 128 x 128, and then purifies the 9 patches sized 256 x 256. Also, it combined the four
corners sized 128 x 128 to purify it so we have 10 patches to purify in total. After running SDEdit
with a small noise (set to 0.17"), we reassemble the patches into the original size, pixel values are
assigned using the average values of the patches they belong to. More details can be seen in (Zhao
et al., 2023).
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G DETAILS ABOUT PDM-PURE

Here, we explain in detail how to adapt DeepFloyd-IF (Shonenkov et al.), the strongest open-source
PDM as far as we know, for PDM-Pure. DeepFloyd-IF is a cascaded text-to-image diffusion model
trained on 1.2B text-image pairs from LAION dataset (Schuhmann et al., 2022). It contains three
stages named IF-Stage I, II, and III. Here we only use Stage II and III since Stage I works in a
resolution of 64 which is too low. Given a perturbed image xy « ;7 sized W x H, we first resize it
into Teaxe4 and Tosex256. Then we use a general prompt P to do SDEdit (Meng et al., 2021) using
the Stage II model:

vy = IF-I(2¢ 41, Teaxoa, P) ®)

where t = Tegic — 1,...,1,0, 21, = Tasex2s6- A larger Tigie may be used for larger noise. zg is
the purified image we get in the 256 x 256 resolution space, where the adversarial patterns should
be already purified. We can then use IF Stage III to further up-sample it into 1024 x 1024 with
Z1024x1024 = IF-III(x0, p). Finally, we can sample into H x W as we want through downsampling.
This whole process is demonstrated in Figure 5. After purification, the image is no longer adversarial
to the targeted diffusion models and can be effectively used in downstream tasks.

H MORE EXPERIMENTAL RESULTS

In this section, we present more experimental results.

H.1 MORE VISUALIZATIONS OF ATTACKING PDMSs

We show more results of attacking LDMs and PDMs in Figure 8, where we attack them with a
different budget 6 = 4, 8, 16. We can see that all the LDMs can be easily attacked, while the PDMs
cannot be attacked, even the largest perturbations will not fool the editing process. In fact, the editing
process is trying to purify the strange perturbations.

H.2 MORE VISUALIZATIONS OF PDM-PURE AND BASELINE METHODS

We show more qualitative results of the proposed PDM-Pure based on IF. First, we show purified
samples of PDM-Pure in Figure. 10, from which we can see that PDM-Pure can remove large
protective perturbations and largely preserve details.

Compared with GrIDPure (Zhao et al., 2023), we find that PDM-Pure shows better results when the
noise is large and colorful, as is illustrated in Figure 11. Also, though GrIDPure merges patches, it
still shows boundary lines between patches.

Compared with other baseline purification methods such as Adv-Clean, Crop-and-Resize, and JPEG
compression, PDM-Pure shows much better results (Figure 9) for different kinds of protective noise,
showing that it is capable to serve as a universal purifier. We choose AdvDM, Mist, and SDS as the
representative of three kinds of protection.

H.3 MORE VISUALIZATIONS OF PDM-PURE FOR DOWNSTREAM TASKS

After applying PDM-Pure to the protected images, they are no longer adversarial to LDMs and can
be easily edited or imitated. Here we will demonstrate more results on editing the purified images on
downstream tasks.

In Figure 12, we show more results to prove that the purified images can be edited easily, and the
quality of the editing results is high. It means that PDM-Pure can bypass the protection very well for
inpainting tasks.

In Figure 13 we show more results on purifying Mist (Liang and Wu, 2023) and Glaze (Shan et al.,
2023) perturbations, and then running LoRA customized generation. From the figure, we can see that
PDM-Pure can make the protected images easy to imitate again.
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DiT (LDM) ____ Guided-Diffusion (PDM

Xadv Edit(x4qy) Edit(xq4y) Xadv Edit(xqqv) Edit(xXqav)

SD-V1.4 (LDM) IF-Stage I1 (PDM)

Xadv Edit(x adv) Edit(xadv) Xadv Edit(xadv) Edit(x adu)

IF-Stage I (PDM) 64x64

Yoav  EditC(raw)  Edit(aa) Yaav  Edit(rawy)  Edit(aa)
Figure 8: PDMs cannot be Attacked as LDMs: we conduct experiments on various models with
various budgets, even the largest budget will not affect the PDMs, showing that PDMs are adversarially
robust. For each block, the first column is the attacked image, and the second and third columns are
edited images, where the third column adopts larger editing strength.
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Adv-Clean

Protected Crop&Resize JPEG-65

Figure 9: PDM-Pure Compared With Other Baseline Methods: we test all the baselines on three
typical kinds of protection methods, with § = 16/255. PDM-Pure shows strong performance.

Original Image

SDS

Case 1

AdvDM

Mist

PhotoGuard

Protected Purified Potected " urified

Figure 10: More Purification Results of PDM-Pure: we show purification results compared with
the clean image, working on SDS, AdvDM, Mist, and PhotoGuard.
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Purification Results: PDM-Pure (IF) vs GrIDPure

Protected by AdvDM Protected by Mist

Protected Image

Clean Image GrIDPure PDM-Pure (IF)

Clean Image PDM-Pure (IF)

..

Protected Edit (GrIDPure) Edit (PDM-Pure) Protected Edit (GrIDPure)  Edit (PDM-Pure)

Protected Edit (GrIDPure) Edit (PDM-Pure) Protected Edit (GrIDPure)  Edit (PDM-Pure)

Figure 11: PDM-Pure vs GrIDPure: PDM-Pure is better than GrIDPure, especially when the
adversarial pattern is strong such as AdvDM. The bottom half of this figure shows the editing results
of purified images, we can see that the editing results of GrIDPure still have some artifacts.

Protected (Mist) Inpainting PDM-Pure + Inpainting Protected (Mist) Inpainting PDM-Pure + Inpainting

K\
Prompt: A girl, Japanese Anime Prompt: A truck by the sea
‘ R ap—
- Py
| A
Prompt: A plane flying over a city Prompt: A woman in a wedding

Figure 12: More Results of PDM-Pure Bypassing Protection for Inpainting: after purification, the
protected images can be easily inpainted with high quality. The protective perturbations are generated
using Mist with 6 = 16/255, which is a strong perturbation.
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Mist

Prompt: ‘a painting of a forest’

PDM-Pure

Glaze

PDM-Pure

Prompt: ‘a painting of a forest’

Figure 13: More Results of PDM-Pure Bypassing Protection for LoRA: after purification, the
protected images can be imitated again. Here we show examples using 5 paintings of Claude Monet.

I PDM-PURE FOR HIGHER RESOLUTION

In this paper, we mainly apply PDM-Pure for images sized 512 x 512, which is also the most widely
used resolution for latent diffusion models. When the resolution is 512 x 512, running SDEdit
using Stage II of DeepFloyd makes sense, while if the image size becomes larger, details may
be lost because of the downsampling. Hopefully, we can still do purification patch-by-patch with
PDM-Pure, in Figure 14 we show purification results on images with different resolutions protected
by Glaze (Shan et al., 2023).

J ABLATIONS OF t* IN PDM-PURE

The PDM-Pure on DeepFloyd-IF we used in this paper uses the default settings of SDEdit with
t* = 0.1T. And we respace the diffusion model into 100 steps, so we only need to run 10 denoising
steps. It can be run on one A6000 GPU, occupying 22G VRAM in 30 seconds.

Here we show some ablation about the choice of ¢*. In fact, in many SDEdit papers, ¢t* can be
roughly defined by trying different ¢* that can be used to purify different levels of noise. We try
t* =0.01,0.1,0.2, in Figure 15 we can see that when ¢t* = 0.01 the noise is not fully purified, and
when t* = 0.2, the details in the painting are blurred. It should be noted that the sweet spot for
different images and different noises can be slightly different, so one is advised to do some trials
before purification.
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509 x 503 (w x h)

T want fo be Aad T want fo be T want fo be And T want to be
a human a mermaid! Lets frade! a human a mecmaid! Lets trade!
. y A

o

Figure 14: PDM-Pure Working On Images with Higher Resolution: we show the results of
applying PDM-Pure for images with higher resolutions, the images are protected using Glaze (Shan
et al., 2023). We can see from the figure that the adversarial patterns (in the red box) can be effectively
purified (in the green box). Zoom in on the computer for a better view.
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7 l;rotectedn v 7 PDM—Pufe 7 7 ﬁ]?M—Purg PDM-Pure
AdvDM (t* =0.01) (t*=0.1) (t*=0.2)

Protected PDM-Pure PDM-Pure PDM-Pure
AdvDM (t* =0.01) (t*=0.1) (t*=0.2)

Protected PDM-Pure PDM-Pure PDM-Pure
AdvDM (t* = 0.01) (" =0.1) (t" = 0.2)

Figure 15: PDM-Pure with Different ¢*
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(a) Inpainting
PDM-Purified Inpainting (protected) Inpainting (purified)

Protected

A man wearing
glasses, cartoon

A boat floating on
the sea

A man fighting with
a tiger, painting

AdvDM (6o, = 16) PDM-Purified

(¢) LoRA Customization

Prompt: A man and a dog.

LoRA
(Poisoned)

Adriaen Brouwer’s Painting
Protected by Mist

B x20 (Same Dataset as above)

SD-V-1.5

LoRA
Purified by PDM-Pure (Clean)

Figure 16: PDM-Pure for inpainting, textual inversion and LoRA
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Raw Edit-03 Edit-0.5 Raw Edit-0.3 Edit-0.5 Raw Edit-03 Edit-0.5
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Figure 17: More results for adaptive attacks for PDM: here we show attacking results for one PDM
(Guided-Diffusion (Dhariwal and Nichol, 2021)), we conduct SDEdit with two different strengths
0.3 and 0.5 to test the attacking performance. We show results for targeted/untargeted attack with
gradent aggregation (Targeted/Untargeted EOT), we also show results for latent attacks following the
settings in (Shih et al., 2024). We can see all the attacks is not that successful for the pixel-space
diffusion model.

Methods AdvDM  AdvDM(-) SDS(-) SDS(+) SDST Photoguard Mist Mist-v2

Clean 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Attacked 0.73 0.70 0.68 0.76 0.61 0.61 0.62 0.63
PDM-Pure 0.94 0.93 0.92 0.93 0.93 0.94 0.93 0.93

Table 3: IA Score of SDEdit results After Purification
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Protected Image DiffPure + SDXL SD-X4-Upscaler

Figure 18: LDM as Purifier: When protection is applied to the given LDM, DiffPure combined with
the LDM will fail to function effectively, as the purification process can be easily fooled. Additionally,
the LDM-based upscaler lacks stability, often resulting in poor detail quality.
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