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1. Introduction 
    Optical transmission spectroscopy, combined with 
machine-learning approaches, offers a convenient 
and noninvasive method for detecting clinically 
significant markers in urine [1]. One of the major 
challenges in developing robust classifiers for 
urinalysis is the imbalance between relatively scarce 
“positive” (out-of-range) samples and a larger set of 
“negative” (within-range) samples [2]. Limited 
volumes of data and markedly skewed class 
distributions can hamper sensitivity to rare—but 
potentially critical—conditions. 
 
To address these obstacles, we investigated synthetic 
data augmentation in the context of a 15-parameter 
clinical urinalysis study that included pH, specific 
gravity, protein, glucose, ketones, bilirubin, white 
blood cells, red blood cells (isomorphic), red blood 
cells (dysmorphic), mucus, casts, urobilinogen, 
bacteria, yeast, and epithelial cells. For illustrative 
purposes, we focus here on six parameters—namely 
pH, protein, ketones, bilirubin, urobilinogen, and 
bacteria—as they span a range of prevalence rates 
and imbalance levels. Two synthetic-data strategies 
(ratio-preserving expansion vs. balanced expansion) 
are tested to explore whether artificially generated 
spectra can improve classification performance [3]. 
 
2. Dataset and Methods 
    Data were collected from 849 urine specimens 
using a custom-built optical transmission 
spectrometer operating across ultraviolet, visible and 
near-infrared wavelengths. Each specimen was 
assigned a “positive” or “negative” label per clinically 
established cutoffs for the abovementioned 
parameters. Synthetic augmentation was adopted to 
boost the training set and potentially enhance model 
sensitivity to these minority classes. Specifically:  
 
1. Ratio-preserving generation. Within each class 
(positive, negative), all pairwise averages of spectra 
were computed and appended, expanding both 
classes proportionally while maintaining the original 
ratio. 
 
2. Balanced generation. Additional synthetic spectra 
were produced only (or primarily) for the minority 
class, aiming to approximate an even split of positive 
and negative samples. 
 
All experiments employed a partial least squares 
(PLS) classifier, evaluated by 5-fold Stratified Group 
Cross-Validation (grouped by patient) [4]. Validation 
metrics—namely sensitivity, specificity, and their 
harmonic mean (F-score)—were computed on the 
held-out folds to gauge generalization performance. 
 
Where appropriate, we acknowledge that confidence 

intervals for these metrics can provide additional 
insight into uncertainty; these intervals and the 
associated statistical considerations will be presented 
and discussed in detail during the oral session. Even 
when confidence intervals are accounted for, the 
improvement trend from synthetic data remains 
consistently positive. 
 
3. Results 
Table 1 summarizes, for six representative 
parameters, the counts before and after synthetic 
augmentation, along with the validation F-scores for: 
(a) no synthetic data (baseline); (b) ratio-preserving 
generation; and (c) balanced generation. 
 
Analyzing these parameter-specific outcomes 
suggests a consistent pattern: 
1) For parameters with very few positives (e.g., 
bilirubin, urobilinogen), ratio-preserving generation 
substantially boosts the F-score relative to both no 
generation and balanced generation. 
2) For moderate positive-class sizes (e.g., protein or 
ketones), ratio-preserving again surpasses balanced 
expansion, though the gap can be narrower. 
3) Even in cases with larger positive sets (e.g., 
bacteria), ratio-preserving yields the highest F-score 
overall. 
 
This aligns with the notion that direct proportional 
expansion of both classes may preserve decision 
boundaries more effectively than artificially 
balancing extreme disparities—at least in the context 
of our PLS-based classification and the present cross-
validation folds. 
 
4. Discussion and Conclusion 
The use of synthetic data demonstrated clear benefits 
across all tested parameters, with ratio-preserving 
generation consistently surpassing balanced 
expansion in validation F-scores. This advantage 
likely arises because class balancing results in a 
smaller overall increase in sample size compared to 
ratio preservation. These findings underscore the 
importance of exploring multiple augmentation 
strategies rather than solely focusing on balancing 
minority classes—particularly in multi-parameter 
urinalysis, where prevalence rates vary significantly. 
 
The results suggest that more sophisticated synthetic 
data pipelines could enhance performance and 
systematically address challenges posed by 
imbalanced medical datasets. The observed 
improvements remain robust even when accounting 
for confidence intervals, indicating a reliable effect. A 
comprehensive discussion of confidence intervals 
and associated caveats will be provided during the 
oral session. Collectively, the results affirm that, 
within this dataset and PLS classification framework, 
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ratio-preserving augmentation yields the most 
substantial performance gains while offering 
opportunities for further refinement through 
advanced synthetic approaches. 
 
Table 1: Validation F-Scores for Six Example Parameters 
under Different Synthetic Data Strategies 
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Parameter Original 
(Pos / Neg) 

Ratio-Preserving 
(Pos / Neg) 

No Generation 
F-score 

Ratio-Preserving 
F-score 

Balanced 
F-score 

pH 32 / 817 528 / 12720 0.681 0.810 0.785 

Protein 196 / 653 19306 / 63903 0.825 0.841 0.832 
Ketones 49 / 800 1225 / 19306 0.755 0.811 0.785 
Bilirubin 10 / 839 55 / 3828 0.854 0.953 0.822 

Urobilinogen 7 / 842 28 / 2556 0.885 0.968 0.943 

Bacteria 269 / 580 36315 / 77815 0.815 0.828 0.825 
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