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A OMITTED PROOFS

A.1 ANALYSIS OF THE UPPER BOUND

In this subsection, we prove Theorem 1, which provides the upper bound for the sample complexity
of Algorithm 1.

Proof of Theorem 1. Consider some i ∈ [n]. The predictor Π gives us an estimate Π(i) ∈ [pi, b · pi]
of the unknown true probability pi. Let ji be the integer for which Π(i) ∈ [ b

ji

n , bji+1

n ]. We treat i as
assigned by the predictor to the interval Iji . Observe that as a consequence, we have

pi ∈
[
bji

n
,
bji+2

n

]
. (1)

Suppose i is observed k times in the sample. Define,

S̃(i) =


1 + ak

(
n
bj

)k · k!
Nk if bji

n ≤
0.5 log n

N

1 if bji

n > 0.5 log n
N and k ≥ 1

0 if bji

n > 0.5 log n
N and k = 0

The ak’s are the Chebyshev polynomial coefficients as per Algorithm 1. Note that as we drew a total
of Pois(N) samples, the number of times each element i appears in the sample is distributed as
Ni = Pois(N · pi) times, and the values Ni are independent across different i’s (this is the standard
Poissonization trick). Thus the S̃(i)’s are also independent. Moreover, note that the value S̃j defined
in Algorithm 1 satisfies S̃j =

∑
i:ji=j S̃(i). Finally, by eq. (2) we have pi · n

bji
∈ [1, b2]. Thus, if

bji

n ≤
0.5 log n

N , we compute the expectation of S̃(i) as (letting j = ji to ease notation),

E[S̃(i)] = 1 +

L∑
k=0

P(Ni = k) · ak
( n

bj

)k
· k!

Nk

= 1 +

L∑
k=0

e−Npi(Npi)
k

k!
· ak

( n

bj

)k
· k!

Nk

= 1 + e−Npi ·
L∑

k=0

ak

(
pi ·

n

bj

)k
= 1 + e−Npi · PL

(
pi ·

n

bj

)
∈ [1− ε, 1 + ε],

since pi · n
bj ∈ [1, b2] and since e−Npi ≤ 1. However, if bji

n > 0.5 log n
N , then E[S̃(i)] equals the

probability that i is sampled, which is 1 − (1 − pi)
N . But since pi > bji

n > 0.5 log n
N , we have

that 1 ≥ E[S̃(i)] > 1 −
(

1− 0.5 log n
N

)N
> 1− e(0.5 log n/N)·N = 1− n−1/2. We note that if i is

never seen (which is possible even if pi 6= 0), we do not know ji. However, in this case, S̃(i) = 0

regardless of the value of ji. Therefore, we get an estimator S̃(i) such that S̃(i) = 0 if pi = 0 and
E[S̃(i)] ∈ [1− ε, 1 + ε] otherwise, assuming ε > n−1/2.

Next we analyze the variance of S̃(i). For i with pi = 0, S̃(i) = 0 always, so Var(S̃(i)) = 0.

Otherwise, if bji

n > 0.5 log n
N , then S̃(i) is always between 0 and 1, so Var(S̃(i)) ≤ 1. Finally, if
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bji

n ≤
0.5 log n

N , then Var(S̃(i)) ≤ E[(S̃(i)− 1)2] and we can write (again with j = ji)

E[(S̃(i)− 1)2] =

L∑
k=0

P(Ni = k) ·
(
ak

(
pi ·

n

bj

)k)2

=

L∑
k=0

e−Npi(Npi)
k

k!
·
(
ak

( n

bj

)k
· k!

Nk

)2

≤
(

max
0≤k≤L

a2
k

)
·

L∑
k=0

(
pi ·

n

bj

)k
·
( n

bj

)k
· k!

Nk

≤
(

max
0≤k≤L

a2
k

)
·

L∑
k=0

(
b2 · k · n

N

)k

, (2)

where for the last inequality we noted that k! ≤ kk, pi · n
bj ≤ b2, and bj ≥ 1.

Now, it is a well known consequence of the Markov Brothers’ inequality that all the coefficients
of the standard degree L Chebyshev polynomial QL(x) are bounded by eO(L) (Markov, 1892).
Since PL =

∑L
k=0 akx

k is just ε ·Q
(

b2+1
2 + x · b

2−1
2

)
, we have that for any fixed b = O(1), the

coefficients ak are all bounded by eO(L) as well. Therefore, for N = C · b2 · L · n1−1/L for some
constant C, we have that b2 · k · n/N ≤ n1/L/C, so we can bound Equation (3) by

eO(L) ·
L∑

k=0

(
n1/L

C

)k

≤ n

(C ′)L

for some other constant C ′.

In summary, if pi 6= 0, we have that E[S̃(i)] ∈ [1− ε, 1 + ε] and Var(S̃(i)) ≤ ε2n if we choose C
to be a sufficiently large constant, since ε = e−Θ(L) for a constant 1 < b ≤ O(1). This is true even
for bji

n > 0.5 log n
N since ε2n > 1. However, we know that S̃ =

∑logb n
j=0 S̃j =

∑n
i=1 S̃(i), since by

the definition of S̃j , S̃j =
∑

i:ji=j S̃(i). Therefore, since the estimators S̃(i) are independent, we
have that E[S̃] =

∑n
i=1 E[S̃(i)] ∈ (1− ε, 1 + ε) ·S and Var(S̃) =

∑
i:pi 6=0 Var(S̃(i)) ≤ ε2 ·n ·S,

where we use the independence of the S̃(i)’s. Therefore, since S ≤ n, with probability at least 0.9,

|S̃ − S| = O(ε) ·
√
n · S by Chebyshev’s inequality.

Remark. We note that our analysis actually works (and becomes somewhat simpler) even if the
algorithm is modified to define S̃j =

∑
i∈[n]:Π(i)∈Ij

(
1 + aNi

(
n
bj

)Ni · Ni!
NNi

)
for all intervals, as

opposed to S̃j = #{i ∈ [n] : Ni ≥ 1,Π(i) ∈ Ij} for the intervals Ij with bj

n > 0.5 log n
N . However,

because we can decrease the bias as well as the variance for these larger intervals, we modify the
algorithm accordingly. While this does not affect the theoretical guarantees, it demonstrated an
improvement in practice. This threshold was also used in Wu & Yang (2019) (the choice of leading
constant 0.5 in the threshold term 0.5 log n

N is arbitrary, and for simplicity we have adopted the value
they used).

A.2 ANALYSIS OF THE LOWER BOUND

In this subsection, we prove Theorem 2, which proves that the sample complexity of Algorithm 1 is
essentially tight.

Proof of Theorem 2. In order to prove the lower bound, we shall define two distributions P and Q
for which the first k moments are matching, but their support size differs on at least εn elements.
Furthermore, both distributions will be supported on {0} ∪

[
k
n ,

k+1
n , . . . , 2k

n

]
, so that a 2-factor ap-

proximation predictor does not provide any useful information to an algorithm trying to distinguish
the two distributions.
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We start with an overview of the definition of the two distributions and then explain how to formalize
the arguments, following the Poissonnization and rounding techniques detailed in Raskhodnikova
et al. (2009).

Let ε =
(
k · 2k−1 ·

(
2k
k

))−1

for some integer k ≥ 1. Note that ε = e−Θ(k). In order to define the

distributions, we define k + 1 real numbers a0, . . . , ak as ai =
(−1)i·(k

i)
2k−1·(k+i)

for every i ∈ {0, . . . , k}.
Suppose for now that n is a multiple of the least common multiple of 2k−1, k, . . . , 2k, so that ai · n
is an integer for every i. We define P and Q as follows:

• The distribution P : For every ai such that ai > 0, the support of P contains ai ·n elements
j that have probability pj = ai · k+i

n each.

• The distribution Q: For every ai such that ai < 0, the support of Q contains −ai · n
elements j that have probability qj = −ai · k+i

n each.

First we prove that P and Q are valid distributions and that all of their non-zero probabilities are
greater than 1/n.

Claim A.1. P and Q as defined above are distributions. Furthermore, their probability values are
either 0 or greater than 1/n.

Proof. The second part of the claim follows directly from the definition of P and Q. We continue
to prove the first part, that P and Q are indeed distributions. It holds for P that

∑
ai|ai>0

(nai) ·
k + i

n
=

k∑
i=0
i even

n · 1

k + i
·
(
k

i

)
· 1

2k−1
· k + i

n
=

1

2k−1
·

k∑
i=0
i even

(
k

i

)
= 1.

Similarly, for Q,

∑
ai<0

(n(−ai)) ·
k + i

n
=

k∑
i=0
i odd

n · 1

k + i
·
(
k

i

)
· 1

2k−1
· k + i

n
=

1

2k−1
·

k∑
i=0
i odd

(
k

i

)
= 1.

We continue to prove that the first k moments of P and Q are matching, and that their support size
differs by εn.

Claim A.2. Let a1, . . . , ak be defined as above. Then

• For any r ∈ {1, . . . , k}, it holds that
∑k

i=0 ai · (k + i)r = 0.

•
∑k

i=0 ai = ε.

Proof. By plugging the ai’s as defined above,

k∑
i=0

ai · (k + i)r =

k∑
i=0

(−1)i
(
k
i

)
2k−1 · (k + i)

· (k + i)r =
1

2k−1

k∑
i=0

(−1)i
(
k

i

)
· (k + i)r−1.

Hence, letting r′ = r−1, it suffices to prove that
∑k

i=0(−1)i
(
k
i

)
(k+i)r

′
= 0 for all 0 ≤ r′ ≤ k−1.

For any fixed k, note that since (k + i)r
′

is a degree r′ polynomial in i, (k + i)r
′

can be written as a
linear combination of

(
i
s

)
for 0 ≤ s ≤ r′ with coefficients b0, . . . , br′ . Therefore, we would like to

prove that:
∑k

i=0(−1)i
(
k
i

)∑r′

s=0 bs
(
i
s

)
= 0. Fix some s in {0, . . . , r′}: it suffices to show that for

any integer k,
∑k

i=0(−1)i
(
k
i

)(
i
s

)
= 0 for all 0 ≤ s ≤ k − 1.
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Since
(
k
i

)
·
(
i
s

)
=
(

k
k−i,i−s,s

)
=
(
k
s

)
·
(
k−s
i−s
)
, by setting k′ = k − s and i′ = i− s, we get

k∑
i=0

(−1)i
(
k

i

)(
i

s

)
=

k∑
i=0

(−1)i
(
k

s

)
·
(
k − s

i− s

)
=

(
k

s

)
·

k′∑
i′=0

(−1)i
′+s

(
k′

i′

)
=

(
k

s

)
· (−1)s · (1− 1)k

′
= 0,

where the last equality is since k′ = k − s ≥ 1. This concludes the proof of the first item.

We continue to prove the second item in the claim:

k∑
i=0

ai = ε. (3)

Recall that ai =
(−1)i·(k

i)
2k−1·(k+i)

, and that ε =
(
k · 2k−1 ·

(
2k
k

))−1

, so plugging these into Equation (4)

and multiplying both sides by 2k−1 ·
(

2k
k

)
, this is equivalent to proving

1

k
=

k∑
i=0

(−1)i

k + i
·
(
k

i

)(
2k

k

)
. (4)

Since
(
k
i

)
·
(

2k
k

)
=
(

2k
k,i,k−i

)
=
(

2k
k+i

)
·
(
k+i
k

)
, the right-hand side of Equation (5) equals

k∑
i=0

(−1)i

k + i
·
(

2k

k + i

)(
k + i

k

)
=

k∑
i=0

(−1)i ·
(

2k

k + i

)
·
(
k + i− 1

k − 1

)
· 1

k
.

Multiplying by k, it suffices to show that

1 =

k∑
i=0

(−1)i ·
(

2k

k + i

)
·
(
k + i− 1

k − 1

)
. (5)

To do this, let j = k + i. Then, note that
(
k+i−1
k−1

)
=
(
j−1
k−1

)
= (j−1)···(j−k+1)

(k−1)! which is a degree
k − 1 polynomial in j. For 1 ≤ j ≤ k − 1 the polynomial equals 0, but for j = 0 the polynomial
equals (−1)k−1. Therefore, the right hand side of Equation (6) equals

2k∑
j=1

(−1)j−k·
(

2k

j

)
· (j − 1) · · · (j − k + 1)

(k − 1)!
= 1+(−1)−k·

2k∑
j=0

(−1)j ·
(

2k

j

)
· (j − 1) · · · (j − k + 1)

(k − 1)!
.

As proven in the first part of this proof, for any P (j) of degree 0 ≤ r ≤ 2k − 1,∑2k
j=0(−1)j

(
2k
j

)
P (j) = 0. Therefore, the summation on the right hand side is 0, so this simpli-

fies to 1, as required.

The following corollary follows directly from the definition of P and Q and the previous claim.

Corollary A.1. The following two items hold for P and Q as defined above.

• E[P r] = E[Qr] for all r ∈ {1, . . . , k}.

• TV (P,Q) = εn.

The above corollary states that indeed P and Q as defined above have matching moments for r = 1
to k, and that they differ by εn in their support size. This concludes the high level view of the
construction of the distributions P and Q. In order to finalize the proof we rely on the standard
Possionization and rounding techniques.

First, by Theorem 5.3 in Raskhodnikova et al. (2009), any s-samples algorithm can be simulated by
an O(s)-Poisson algorithm. Hence, we can assume that the algorithm takes Poi(s) samples, rather
than an arbitrary number s. Second, we can alleviate the assumption that the ai · n values (similarly
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−ai · n) are integral for all i, by rounding down the value in case it is not integral, and choosing
n −

∑k
i=0 dai · ne additional elements in P so that each has probability 1/n (and analogously for

Q). By Claim 5.5 in Raskhodnikova et al. (2009) this process increases the number of values in
P and Q by at most O(k2). Hence, the distributions are now well defined, and we can rely on the
following theorem from Raskhodnikova et al. (2009).

Theorem 1 (Corollary 5.7 in Raskhodnikova et al. (2009), restated.). Let P and Q be random
variables over positive integers b1 < . . . < bk−1, that have matching moments 1 through k − 1.
Then for any Poission-s algorithm A that succeeds to distinguish P and Q with high probability,
s = Ω(n1−1/k).

Therefore, plugging the value of ε, we get an s = Ω(n1−Θ(log(1/ε))) lower bound as claimed.
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