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Abstract
Different gradient-based methods for optimizing overparameterized models can all achieve zero
training error yet converge to distinctly different solutions inducing different generalization prop-
erties. We provide the first complete characterization of implicit optimization bias for p-norm
normalized steepest descent (NSD) and momentum steepest descent (NMD) algorithms in multi-
class linear classification with cross-entropy loss. Our key theoretical contribution is proving
that these algorithms converge to solutions maximizing the margin with respect to the classifier
matrix’s p-norm, with established convergence rates. These results encompass important special
cases including Spectral Descent and Muon, which we show converge to max-margin solutions
with respect to the spectral norm. A key insight of our contribution is that the analysis of general
entry-wise and Schatten p-norms can be reduced to the analysis of NSD/NMD with max-norm by
exploiting a natural ordering property between all p-norms relative to the max-norm and its dual
sum-norm. Our results demonstrate that the multi-class linear setting, which is inherently richer
than the binary counterpart, provides the most transparent framework for studying implicit biases of
matrix-parameter optimization algorithms.

1. Introduction

The ever-increasing training cost of large language models (LLMs) has demanded better optimizer
designs with improved performance and efficiency [1, 10, 20]. The de facto standard optimizers
for deep learning training are Adam and AdamW [30, 34]. However, these algorithms that employ
diagonal preconditioners to independently adjust the learning rate of each coordinate, may fail to
capture their inter-dependencies and fully leverage the geometry of the loss landscape [67]. This
has spurred a series of research efforts on improving Adam or AdamW’s computational efficiency
[17, 21, 43, 68], with LLM-training as the target application domain [28, 32, 39, 56].

A noticeable work by Jordan et al. [28] proposed the Muon optimizer, which was shown to
have remarkable performances on NanoGPT benchmarks. More recently, it has been shown that
Muon can be used for large-scale LLM training with the potential to replace AdamW as the standard
choice [32]. The key step in Muon is to orthogonalize the updates via the Newton-Schulz iteration
[6, 28]. More precisely, the update (denoted as ∆) is (approximately) replaced by the product of its
singular-vector matrices UV T (where the (truncated) singular value decomposition (SVD) of ∆ is
∆ = UΣV T ). Even though the benefits of orthogonalization are not fully understood, Jordan et al.
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Table 1: Summary of margin convergence rates for NSD and NMD algorithms of different norm
constraints for linear multiclass separable data with the CE loss. The (truncated) SVDs of the gradient
and momentum are denoted as ∇ = UΣV T and M = ŨΣ̃Ṽ T respectively.

Method Norm Constraint Update ∆ Refernce Rate 2

NGD
Unit ∥·∥2-ball

∇
∥∇∥2 Hazan et al. [22] -

NMD-GD M
∥M∥2 Cutkosky and Mehta [13] -

SignGD
Unit ∥·∥max-ball

sign(∇) Bernstein et al. [7] -
Signum sign(M) Bernstein et al. [7] -
Spectral-GD

Unit |||·|||∞-ball
UV T Bernstein and Newhouse [6] O( log t+n

t1/2
)

Muon 1 Ũ Ṽ T Jordan et al. [28] O(d log t+dn
t1/2

)
1 We consider EMA-style momentum of the form (4).
2 NGD and SignGD rates are the same as Spectral-GD; Signum and NMD-GD rates are the same as Muon.

[28] pointed out that it could promote updates in directions of small magnitudes given the weight
matrices are typically low-rank. Moreover, if the above SVD approximation is exact and gradient
accumulations are turned off, then Muon becomes spectral descent [6, 12], which is the (normalized)
steepest descent w.r.t the spectral norm [6]. As noted by Bernstein and Newhouse [6], spectral
descent is also Shampoo (which won the AlgoPerf competition [14, 44]) without accumulations in
preconditioners. Thus, Muon can be viewed as (approximate) Shampoo when both optimizers are
without accumulations. In essence, we observe that one important ingredient of Muon or Shampoo
(without accumulations) is the spectral-descent step of the following:

W † = W − ηUV T where ∇L(W ) = UΣV T .

Theoretical investigations of spectral descent or Muon mainly focus on characterizing the
convergence rates of the algorithm (e.g., the rate of decrease of the gradient norm in the non-convex
setting [2, 31, 39]). However, modern machine learning models are overparameterized, leading to
multiple weight configurations that achieve identical training loss but exhibit markedly different
generalization properties [5, 66]. The key insight is that gradient-based methods inherently prefer
“simple” solutions according to optimizer-specific notions of simplicity. Understanding this implicit
bias/regularization requires analyzing not just loss convergence, but the geometric trajectory of
parameter updates throughout training. To this end, our work aims to address the fundamental
question:

What is the implicit bias of spectral descent (and its momentum variants) in linear multiclass
classification with separable data and cross-entropy loss?

The multiclass setting where the parameter is a matrix, is a natural place to study the class
of spectral-descent algorithms, and provides an inherently richer setting. Our work captures this
richness by establishing convergence with respect to not only entry-wise matrix norms, but also
matrix Schatten norms. Hence, while the focus is on spectral descent and Muon, the analysis
establishes implicit bias rates for a wide family of algorithms (Table 1), and we state the results in
the most general form from the perspective of steepest descent with (unit) norm-ball constraints. Our
contributions are:
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1. For multiclass separable data trained with the cross-entropy (CE) loss, we show that the iterates
of normalized steepest descent (NSD) defined with respect to (w.r.t.) any matrix entry-wise or
Schatten norms converge to a solution that maximizes the margin defined w.r.t. the same norm,
with a rate O( 1

t1/2
). This includes sign descent (entry-wise max-norm) [7], normalized gradient

descent (entry-wise 2-norm) [22], and spectral descent (Schatten∞-norm) [6] as special cases.

2. Under the same setting, we utilize the same framework and the same proxy function to show
that the same O( 1

t1/2
) margin convergence rate holds for normalized momentum steepest descent

(NMD). This includes the following algorithms in analogy to the ones above: sign momentum de-
scent [7], normalized momentum gradient descent [13], and Muon [28]. The margin convergence
rates of various algorithms are summarized in Table 1, and numerical validations can be found in
App. A.

2. Preliminaries

Notations We write ∥A∥ to refer to any entry-wise or Schatten p-norm with p ≥ 1, and denote
by ∥A∥∗ the dual-norm with respect to the standard matrix inner product ⟨A,B⟩ = tr(A⊤B). We
denote the gradient and its value at iteration t as ∇ := ∇L(W ) and ∇t := ∇L(Wt) respectively.
Let S : Rk → △k−1 the softmax map of k-dimensional vectors to the probability simplex △k−1

such that for any a ∈ Rk, it holds that S(a) =
[ exp(a[c])∑

c∈[k] exp(a[c])

]k
c=1
∈ △k−1. Let Sc(v) denote the

c-th entry of S(v), and let {ec}kc=1 be the standard basis vectors of Rk.

Setup Consider a multiclass classification problem with training data h1, . . . ,hn and labels
y1, . . . , yn. Each datapoint hi ∈ Rd is a vector in a d-dimensional embedding space (denote
data matrix H = [h1, . . . ,hn]

⊤ ∈ Rn×d), and each label yi ∈ [k] represents one of k classes. We
assume each class contains at least one datapoint. The classifier fW : Rd → R is a linear model
with weight matrix W ∈ Rk×d. The model outputs logits ℓi = fW (hi) = Whi for i ∈ [n], which
are passed through the softmax map to produce class probabilities p̂(c|hi) = Sc(ℓi). We train using
empirical risk minimization (ERM): LERM(W ) := − 1

n

∑
i∈[n] ℓ (Whi; yi) , where the loss function

ℓ takes as input the logits of a datapoint and its label. The predominant choice in classification is the
CE loss: L(W ) := − 1

n

∑
i∈[n] log

(
Syi(Whi)

)
(see App. H for other losses). Define the maximum

margin of the dataset w.r.t. any entry-wise or Schatten p-norm ∥ · ∥ as

γ := max∥W ∥≤1 mini∈[n], c ̸=yi (eyi − ec)
⊤Whi . (1)

Optimization Methods We study iterative algorithms that update the weight matrix via: Wt+1 =
Wt − ηt∆t. For the NSD family [9], the update direction1 w.r.t. the norm ∥·∥ is:

∆t := argmax∥∆∥≤1⟨∇t,∆⟩ . (2)

Note that this reduces to SignGD, Coordinate Descent (e.g., Nutini et al. [37]), or NGD when the
max-norm (i.e. ∥·∥∞), the entry-wise 1-norm (i.e. ∥·∥sum), or the Frobenius Euclidean-norm (i.e.
∥·∥2) is used, respectively. Concretely, the update directions for SignGD and NGD are:

SignGD: ∆t = sign(∇t), and NGD: ∆t = ∇t/∥∇t∥2,
1For p ∈ (1,∞), the norms ∥ · ∥p and |||·|||p are strictly convex, thus there is a unique maximizer defining the update in
Eqn. (2). For p = 1,∞ the maximizer is not necessarily unique and our results hold for any choice of ∆t in the set of
maximizers; see e.g. Ziętak [69].
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where the sign(·) and division ·
· operations are applied entry-wise. In the special case of spectral

norm (i.e. |||·|||∞), this becomes the Spectral-GD, for which ∆t = UtV
T
t , where Ut and Vt are the

left/right singular matrices of ∇t respectively (i.e., ∇t = UtΣtV
T
t with singular values in Σt > 0

arranged in non-increasing order). Finally, note that the Schatten 2-norm case reduces to NGD (as
|||·|||2 = ∥·∥2).

We also consider the NMD family with the following update direction w.r.t. the norm ∥·∥

∆t := argmax∥∆∥≤1⟨Mt,∆⟩ , (3)

where the momentum Mt is computed as the the exponential moving averages of the gradient as

Mt = β1Mt−1 + (1− β1)∇t. (4)

This form of momentum is also known as the heavy-ball or the SGDM-style momentum [16, 33, 40].
Thus, an NMD algorithm chooses the update direction (among all feasible directions in the unit
∥·∥-ball) that best aligns with the momentum instead of the gradient direction (as chosen by an NSD
algorithm). Similar to above, when the max-norm and the Frobenius-norm are used, the resulting
Signum and NMD-GD update directions are:

Signum: ∆t = sign(Mt), and NMD-MD: ∆t = Mt

/
∥Mt∥2.

When spectral norm is used in (3), this becomes Muon 2 for which the SVD is on Mt (i.e.
Mt = ŨtΣ̃tṼ

T
t ) and the update direction is ∆t = ŨtṼ

T
t . Note that Muon reduces to Spectral-GD

when the momentum parameter β1 is set to 0 (similar reductions hold for Signum (to SignGD) and
NMD-GD (to NGD) as well). Discussions on the related works can be found in App B.

Assumptions Establishing the implicit bias of the above mentioned gradient-based optimization
algorithms, requires the following assumptions. First, we assume data are linearly separable, ensuring
the margin γ is strictly positive, an assumption routinely used in previous works [19, 36, 41, 45, 63].

Assumption 1 There exists W ∈ Rk×d such that minc̸=yi(eyi − ec)
TWhi > 0 for all i ∈ [n].

In this work, we consider learning rate schedule ηt = Θ( 1
ta ), where a ∈ (0, 1]. Such schedule

has been studied in the convergence and implicit bias of various optimization algorithms (e.g., Bottou
et al. [8], Nacson et al. [36], and Sun et al. [47]) including Adam [65].

Assumption 2 The learning rate schedule {ηt} is decreasing with respect to t and satisfies the
following conditions: limt→∞ ηt = 0 and

∑∞
t=0 ηt =∞.

Assumption 3 can be satisfied by the above learning rate for a sufficiently large t as shown in
Zhang et al. [65, Lemma C.1]. It is used in our analysis of NMD.

Assumption 3 The learning rate schedule satisfies the following: let β ∈ (0, 1) and c1 > 0 be two
constants, there exist time t0 ∈ N+ and constant c2 = c2(c1, β) > 0 such that

∑t
s=0 β

s(ec1
∑s

τ=1 ηs−τ−
1) ≤ c2ηt for all t ≥ t0.

Finally, we assume that the 1-norm of the data is bounded. Similar assumptions were used in Ji
and Telgarsky [23], Nacson et al. [36], Wu et al. [63], and Zhang et al. [65].

Assumption 4 There exists constant B > 0 such that ∥hi∥1 ≤ B for all i ∈ [n].
2The implementation in Jordan et al. [28] uses Nesterov-type momentum: Newton-Schulz iteration applied to β1Mt +∇t

instead of β1Mt−1 +∇t [32].
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3. Implicit Bias of NSD and NMD

In this section, we show the implicit bias results of NSD and NMD algorithms. To do the analysis,
we introduce a unified framework that relates entry-wise and Schatten p-norms to the entry-wise
max-norm, and construct a proxy function for the loss that closely traces both its value and gradient
(details in App. C). We first state the convergence result of NSD (proof details in App. F).

Theorem 1 Suppose that Ass. 1, 2, and 4 hold. Set learning rate ηt = Θ( 1
t1/2

). The following holds
for the margin gap of NSD’s iterates

γ −
mini∈[n],c ̸=yi(eyi − ec)

TWthi

∥Wt∥
≤ O( log t+ n

t1/2
).

Remark 2 For margin convergence rates of NSD, Nacson et al. [36] showed a rate of O( log t
t1/2

) in
the binary setting, limited to the entry-wise p-norms and the exponential loss. Compared to this,
our results hold for the more practical setting of multiclass data and CE loss. To the best of our
knowledge, this is the first non-asymptotic result on the implicit bias of spectral-GD for linear
multiclass separable data, and it holds for other p-norms as well. Upon completion of this work, we
became aware of an update on the arXiv version of Tsilivis et al. [53], which includes an extension
of their previous results to steepest descent w.r.t. the spectral norm. In comparison to ours, their
gradient-flow analysis applies to homogeneous neural networks with the restriction of infinitesimal
step-sizes. Moreover, it does not include normalization nor momentum (like Muon, which we analyze),
and the convergence is (asymptotic) to a KKT point of a spectral-norm margin maximization problem.

For the analysis of NMD, we additionally use the same proxy function to bound the sum-norm
difference between the gradient and the momentum, which translates to a bound on the dual norm
through the fundamental norm-relationships used in the study of NSD (see Lemma 25 in App. G).
Then, we obtain the following rate for NMD (proof details in App. G).

Theorem 3 Suppose that Ass. 1, 2, 3, and 4 hold, the margin gap of NMD with ηt = Θ( 1
t1/2

) is
O(d log t+dn

t1/2
).

Remark 4 Wang et al. [58] studied implicit bias of un-normalized GD with momentum, and showed
its iterates converge asymptotically to the max 2-norm margin solution. In contrast, our rates are
non-asymptotic and cover a much wider family of algorithms converging to non-Euclidean geometric
margins (w.r.t. entry-wise/Schatten norms). Note the convergence rate of NMD matches that of NSD
(Thm. 1) up to a factor of d. It could be interesting to remove this dependence in a future work.

4. Conclusion

We have characterized the margin convergence rates of Spectral-GD and Muon for multilcass linear
separable data. Given they are special cases of NSD and NMD w.r.t the spectral norm, the analysis is
done on a wider scale by studying NSD/NMD w.r.t any entry-wise or Schatten p-norms. Thus, the
rates also hold for optimizers of other geometries, such as the sign-descent (max-norm) or gradient-
descent (2-norm) family. Future directions include removing the factor-d from the bound of NMD and
studying other related algorithms such as Shampoo that involves non-diagonal preconditioners. It is
also important to extend our results to (multiclass) non-separable settings [51] and nonlinear models
such as diagonal neural nets [38], self-attention mechanisms [3, 29, 48, 49, 55] and homogeneous
neural nets [11, 35, 53], helping further bridge the gap to deep learning practices.
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Figure 1: (a) We normalize the iterates of SignGD w.r.t. the max-norm (denoted as W̄t), compute the
margin (denoted as γW̄t

), then plot its difference to data margins γ∥·∥∞ , γ∥·∥2 , and γ|||·|||∞ (note that
the margin difference is further divided by the corresponding data margin for comparisons). SignGD
favors the margin defined w.r.t. the max-norm. (b, c, and d) Same as (a) with SignGD (max-norm)
replaced by NGD (2-norm), Spectral-GD (spectral-norm), and Muon (spectral-norm) respectively.
NGD favors the 2-norm margin, while Spectral-GD and Muon favor the spectral-norm margin.
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Figure 2: (a) Correlations between the iterates of SignGD (Wt) and max margin separators V∞,
V2, and Vspec against iterations (correlation defined as ⟨W ,V ⟩

∥W ∥2∥V ∥2 ). (b, c, and d) Same as (a) with
SignGD replaced by NGD, Spectral-GD, and Muon respectively. SignGD and NGD correlate well
with V∞ and V2 respectively, while Spectral-GD and Muon correlate well with Vspec.

Appendix A. Experiments

We generate snythetic multiclass separable data as follows: k = 10 class centers are sampled
from a standard normal distribution; within each class, data is sampled from normal distribution
N (0, σ2I), σ = 0.1. We set d = 25, sample 50 data points for each class, and ensure that margin
is positive (thus data is separable). We run different algorithms to minimize CE loss using ηt = η0

ta

(η0 = 0.1 for SignGD and NGD; η0 = 0.05 for Spectral-GD and Muon), where (based on our
theorems) a is set to 1/2. We apply truncated SVD on the gradient and momentum for Spectral-GD
and Muon respectively. Data margins w.r.t. different norms are found via CVXPY [15]. We denote
max-margin classifiers defined w.r.t. the 2-norm, the max-norm, and the spectral-norm as V2, V∞,
and Vspec respectively. Based on the margin-gap results in Figure 1, we observe that SignGD, NGD,
and Spectral-GD favor max-norm, 2-norm, and spectral-norm margin respectively. Besides this, the
behavior of Muon is very similar to that of Spectral-GD (in agreement with our theories). Figure
2 further confirms that the iterates of these algorithms correlate well with the corresponding max
margin separators. Furthermore, based on the experiment results of Signum and NMD-GD shown in
Figure 3, we conclude that their margin convergence properties are the same as SignGD and NGD
respectively.
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Figure 3: Implicit bias of Signum and NMD-GD on multiclass separable data. (a) Relative margin
gap of Signum’s iterates against iterations. (b) Correlation of Signum’s iterates to V∞, V2, and Vspec

against iterations. See Figure 1 and 2 for the definitions of relative margin and correlation. (c) and
(d) Same as (a) and (b) with Signum replaced by NMD-GD.

Appendix B. Related Works

Starting with GD, the foundational result by Soudry et al. [45] showed that gradient descent op-
timization of logistic loss on linearly separable data converges in direction to the L2 max-margin
classifier at a rate O(1/ log(t)). Contemporaneous work by Ji and Telgarsky [23] generalized this by
relaxing the data separability requirement. Ji et al. [26] later connected these findings to earlier work
on regularization paths of logistic loss minimization [42], which enabled extensions to other loss
functions (e.g., those with polynomial tail decay). More recently, Wu et al. [63] extends these results
to the large step size regime with the same O(1/ log(t)) rate. The relatively slow convergence rate to
the max-margin classifier motivated investigation into adaptive step-sizes. Nacson et al. [36] showed
that NGD with decaying step-size ηt = 1/

√
t achieves L2-margin convergence at rate O(1/

√
t).

This rate was improved to O(1/t) by Ji and Telgarsky [25] using constant step-sizes, and further to
O(1/t2) through a specific momentum formulation [27]. Besides linear classifications, implicit bias
of GD has been studied for least squares [4, 18, 19], homogeneous [24, 35, 62] or non-homogeneous
neural networks [11], and matrix factorization [18]; see Vardi [54] for a survey.

All the above mentioned works focus almost exclusively on binary classification. The noticeable
gap in analysis of multiclass classification in most existing literature is highlighted by Thrampoulidis
et al. [52], and more recently emphasized by Ravi et al. [41], who extended the implicit bias result
of Soudry et al. [45] to multiclass classification for losses with exponential tails, including CE,
multiclass exponential, and PairLogLoss. Their approach leverages a framework of Wang and Scott
[61] that allows multiclass losses and separability conditions to be written in margin-based forms
similar to binary cases.

Beyond GD, Gunasekar et al. [19] and Nacson et al. [36] showed that steepest descent w.r.t.
entry-wise p-norms yields updates that in the limit maximize the margin w.r.t the same norm. Sun
et al. [46, 47] showed that the iterates of mirror descent with the potential function chosen as the p-th
power of the p-norm converge to the classifier that maximizes the margin w.r.t. the p-norm. In both
cases, the convergence rate is slow at O(1/ log(t)). Wang et al. [59] further improved the rates for
both steepest descent and mirror descent when p ∈ (1, 2]. Note that all these results apply only to
the exponential loss. More recently, Tsilivis et al. [53] showed that the iterates of steepest descent
algorithms converge to a KKT point of a generalized margin maximization problem in homogeneous
neural networks. Moreover, the implicit bias of Adam (with or without the stability constant) has
been studied in both linear and non-linear settings. Wang et al. [57] demonstrated the normalized
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iterates of Adam (with non-negligible stability constant) converge to a KKT point of a L2-margin
maximization problem for homogeneous neural networks. Zhang et al. [65] studied the implicit bias
of Adam without the stability constant on (linearly) binary separable data. They showed that unlike
GD, the Adam’s iterates converge to a solution that maximizes the margin w.r.t the L∞-norm. The
study of excluding the stability constant is also the focus of another recent work on the implicit bias
of AdamW [64], where the authors again establish that convergence aligns with the L∞ geometry.

Appendix C. A Unified Framework with a Proxy Function

Analyzing margin convergence begins with studying loss convergence through second-order Taylor
expansion of the CE loss ( recall that S′(v) = diag(v)− vv⊤):

L(W +∆) = L(W ) + ⟨∇L(W ),∆⟩+ 1

2n

∑
i∈[n]

h⊤
i ∆

⊤S′(Whi)∆hi + o(∥∆∥3F ), (5)

To bound the loss at Wt+1 = Wt − ηt∆t, we must bound both terms in (5). For NSD updates in Eq.
(2), the first term evaluates to −ηt∥∇L(W )∥∗ (recall that ∥ · ∥∗ is the dual norm). This leads to two
key tasks: (1) Lower-bounding the dual gradient norm; (2) Upper-bounding the second-order term.

For the proof to proceed, these bounds should satisfy two desiderata: (1) They are expressible as
the same function of W , call it G(W ), up to constants. (2) The function G(W ) is a good proxy for
the loss for small values of the latter. The former helps with combining the terms, while the latter
helps with demonstrating descent. Next, we obtain these key bounds for the CE loss by determining
the appropriate proxy G(W ).

Besides the need for a proxy G(W ), we use the following facts about the sum-norm dominating
any entry-wise/Schatten p-norm. Concretely, for any matrix A and any p ≥ 1:

∥A∥max ≤ |||A|||p ≤ ∥A∥sum, and ∥A∥max ≤ ∥A∥p ≤ ∥A∥sum. (6)

These relationships (proved in Lemma 10 in App. E) are crucial for unifying the analysis of NSD
and NMD algorithms w.r.t. either the entry-wise or the Schatten norms (details below).

Construction of G(W ) Before showing our construction for the CE loss, it is insightful to discuss
how previous works do this in the binary case with labels yb,i ∈ {±1}, classifier vector w ∈ Rd
and binary margin γb := max∥w∥≤1mini∈[n] yb,iw

⊤hi. For exponential loss, Gunasekar et al.
[19] showed that ∥∇L(w)∥ ≥ γbL(w). For logistic loss ℓ(t) = log(1 + exp(−t)), Zhang et al.
[65] proved ∥∇L(w)∥1 ≥ γbG(w), where G(w) = 1

n

∑n
i=1 |ℓ′(yb,iw⊤hi)| and ℓ′ is the first-order

derivative. In both cases, one can take the common form Gb(w) = 1
n

∑n
i=1 |ℓ′(yb,iw⊤hi)|. The

proof relies on showing γ ≤ minr∈△n−1∥HTr∥ via Fenchel Duality [19, 50] and appropriately
choosing r.

In the multiclass setting, where the loss function is vector-valued, it is unclear how to extend
the binary proof or definition of G(W ). To this end, we realize that the key is in the proper
manipulation of the gradient inner product ⟨A,−∇L(W )⟩ (for arbitrary matrix A ∈ Rk×d).
The CE gradient evaluates to ∇L(W ) = 1

n

∑n
i=1(eyi − S(Whi))h

⊤
i and using the fact that

S(Whi) ∈ △k−1, it turns out that we can express (details in Lemma 8): ⟨A,−∇L(W )⟩ =
1
n

∑
i∈[n]

∑
c̸=yi

Sc(Whi)(eyi − ec)
⊤Ahi .

This motivates defining G(W ) as:

G(W ) :=
1

n

∑
i∈[n]

(1− Syi(Whi)) . (7)
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The lemma below, following from the inner-product calculation above and our definition of G(W ),
confirms this is the right choice. For convenience, denote sic := Sc(Whi), for i ∈ [n], c ∈ [k].

Lemma 5 (Lower bounding the gradient dual-norm) For any W ∈ Rk×d and any entry-wise or
Schatten p-norm ∥·∥ with p ≥ 1, it holds that ∥∇L(W )∥∗ ≥ γ · G(W ), where ∥·∥∗ is the dual-norm.

The lemma completes the first task: lower bounding the gradient’s dual norm. Importantly, the
factor in front of G(W ) is the margin γ w.r.t. the norm ∥·∥, which is crucial in the forthcoming
analysis.

G(W ) and second-order term We now show how to bound the second-order term in (5). For this,
we establish the following essential lemma whose proof relies on the relationships in (6).

Lemma 6 For any entry-wise or Schatten p-norm ∥·∥ with p ≥ 1, any s ∈ ∆k−1 in the k-
dimensional simplex, any index c ∈ [k], and v ∈ Rk, it holds that

v⊤
(
diag(s)− ss⊤

)
v ≤ 4(1− sc)∥vvT ∥.

Proof Let S := diag(s)− ss⊤ and q ≥ 1 such that 1/p+ 1/q = 1. By norm duality, it holds that

v⊤Sv = tr
(
Svv⊤

)
≤ ∥S∥q∥vv⊤∥ ≤ ∥S∥sum∥vv

⊤∥,

where ∥·∥q is the dual of ∥·∥ and the second inequality is by (6). Direct calculation yields ∥S∥sum =
2
∑

c∈[k] sc(1− sc). The advertised bound then follows by noting the following
∑

c∈[k] sc(1− sc) ≤
2(1− sc′) for any c′ ∈ [k] (verified in Lemma 12 in App. E).

Next, we apply the above lemma with v ← ∆hi and c ← yi, and further use the inequalities:
∥vvT ∥p = ∥v∥2p ≤ ∥∆∥2p∥h∥2q for entry-wise norms and

∣∣∣∣∣∣vv⊤∣∣∣∣∣∣
p
= ∥v∥22 ≤ |||∆|||

2
∞ ∥h∥22 ≤

|||∆|||2p ∥h∥22 for Schatten norms. Together with Ass. 4, this upper bounds the second-order term in
the CE loss expansion in terms of the proxy function:

2B2∥∆∥2 · 1
n

∑
i∈[n]

(1− Syi(Whi)) .

Properties of G(W ) We now show that G(W ) meets the second desiderata: being a good proxy
for the loss L(W ). This is rooted in the elementary relationships between G(W ) and L(W ), which
are used in the various parts of the proof. Below, we summarize these key relationships.

Lemma 7 (Properties of G(W ) and L(W )) Let W ∈ Rk×d. The followings hold: (i) Under Ass.
4, 2B · G(W ) ≥ ∥∇L(W )∥∗; (ii) 1 ≥ G(W )

L(W ) ≥ 1− nL(W )
2 ; (iii) If W satisfies L(W ) ≤ log 2

n or

G(W ) ≤ 1
2n , then L(W ) ≤ 2G(W ).

Lemma 7 (i) extends Lemma 5 by establishing a sandwich relationship between G(W ) and
the gradient’s dual norm. The lemma’s statements (ii) and (iii) show that G(W ) can substitute for
the loss - it lower bounds L(W ) and serves as an upper bound when either L(W ) or G(W ) is
sufficiently small. Specifically, the ratio G(W )

/
L(W ) converges to 1 as the loss decreases, with the

convergence rate depending on the rate of loss decrease. The key property (ii) may seem algebraically
complex, but it turns out (details in Lemma 17 in App. E) that both sides of the sandwich relationship
follow from the elementary fact that ∀x > 0 : 1− x ≤ e−x ≤ 1− x+ x2/2.
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Appendix D. Facts about CE loss and Softmax

Lemma 8 is on the gradient of the cross-entropy loss. It will be used for showing the form of G(W )
in (7) lower bounds ∥∇L(W )∥ in Lemma 15.

Lemma 8 (Gradient) Let CE loss

L(W ) := − 1

n

∑
i∈[n]

log
(
Syi(Whi)

)
.

For any W , it holds

• ∇L(W ) = − 1
n

∑
i∈[n] (eyi − si)h

⊤
i = − 1

n(Y − S)H⊤

• 1⊤
k∇L(W ) = 0

• For any matrix A ∈ Rk×d,

⟨A,−∇L(W )⟩ = 1

n

∑
i

(1− siyi)

(
e⊤yiAhi −

∑
c ̸=yi sic e

⊤
c Ahi

(1− siyi)

)

=
1

n

∑
i∈[n]

∑
c ̸=yi

sic (eyi − ec)
⊤Ahi (8)

where we simplify S := S(WH) = [s1, . . . , sn] ∈ Rk×n. The last statement yields

⟨A,−∇L(W )⟩ ≥ 1

n

∑
i∈[n]

(1− siyi) · min
c ̸=yi

(eyi − ec)
⊤Ahi. (9)

Proof First bullet is by direct calculation. Second bullet uses the fact that 1⊤(yi − si) = 1 −
1 = 0 since 1⊤si = 1. The third bullet follows by direct calculation and writing s⊤i Ahi =
(
∑

c sicec)
⊤Ahi =

∑
c sic e

⊤
c Ahi.

Lemma 9 is on the Taylor expansion of the loss. It will be used in showing the descent properties of
NSD and NMD.

Lemma 9 (Hessian) Let perturbation ∆ ∈ Rk×d and denote W ′ = W +∆. Then,

L(W ′) = L(W )− 1

n

∑
i∈[n]

⟨(eyi − S(Whi))h
⊤
i ,∆⟩

+
1

2n

∑
i∈[n]

h⊤
i ∆

⊤
(
diag(S(Whi))− S(Whi)S(Whi)

⊤
)
∆hi + o(∥∆∥3) . (10)

Proof Define function ℓy : Rk → R parameterized by y ∈ [k] as follows:

ℓy(l) := − log(Sy(l)) .

From Lemma 8,
∇ℓy(l) = −(ey − S(l)) .
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Thus,
∇2ℓy(l) = ∇S(l) = diag(S(l))− S(l)S(l)⊤

Combining these the second-order taylor expansion of ℓy writes as follows for any l, δ ∈ Rk:

ℓy(l+ δ) = ℓy(l)− (ey − S(l))⊤δ +
1

2
δ⊤
(
diag(S(l))− S(l)S(l)⊤

)
δ + o(∥δ∥3) .

To evaluate this with respect to a change on the classifier parameters, set l = Wh and δ = ∆h for
∆ ∈ Rk×d. Denoting W ′ = W +∆, we then have

ℓy(W
′) = ℓy(W )− ⟨(ey − S(l))h⊤,∆⟩+ 1

2
h⊤∆⊤

(
diag(S(l))− S(l)S(l)⊤

)
∆h+ o(∥∆∥3) .

This shows the desired since nL(W ) :=
∑

i∈[n] ℓyi(Whi) and we can further obtain

ℓy(W
′) = ℓy(W )− ⟨(ey − S(l))h⊤,∆⟩+ 1

2
h⊤∆⊤

(
diag(S(l′))− S(l′)S(l′)⊤

)
∆h, (11)

where l′ = l+ ζδ for some ζ ∈ [0, 1].

We prove the relationships in (6), which are useful for unifying the analysis of entry-wise and
Schatten norms.

Lemma 10 For any matrix A ∈ Rm×n and any entry-wise or Schatten p-norm ∥·∥ with p ≥ 1, it
holds that

∥A∥max ≤ ∥A∥ ≤ ∥A∥sum .

Proof The entry-wise p-norm case is trivial. Here, we focus the Schatten p-norm case. Note that
|||A|||2 coincides with the entrywise 2-norm ∥A∥2, but in general Schatten norms are different from
entry-wise norms. On the other hand, Schatten norms preserve the ordering of norms. Specifically,
por any p ≥ 1, it holds:

|||A|||∞ = σ1 ≤ |||A|||p =

(
r∑
i=1

σpi

)1/p

≤
r∑
i=1

σi = |||A|||1 . (12)

It is also well-known that

|||A|||∞ = max
∥u∥2=∥v∥2=1

u⊤Av ≥ max
i,j
|A[i, j]| = ∥A∥max (13)

where the inequality follows by selecting u = sign(A[i′, j′]) · ei′ and v = ej′ for (i′, j′) such that
|A[i′, j′]| = ∥A∥max and ei′ , ej′ corresponding basis vectors.

Using this together with duality, it also holds that

|||A|||1 ≤ ∥A∥sum . (14)

This follows from the following sequnece of inequalities

|||A|||1 = max
|||B|||∞≤1

⟨A,B⟩ ≤ ∥A∥sum · max
|||B|||∞≤1

∥B∥max ≤ ∥A∥sum · max
|||B|||∞≤1

|||B|||∞ ≤ ∥A∥sum ,

(15)

where the first inequality follows from generalized Cauchy-Scwhartz and the second inequality by
(13).

Lemma 11 is used in bounding the second order term in the Taylor expansion of L(W ).
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Lemma 11 For any entry-wise or Schatten p-norm ∥·∥ with p ≥ 1, any s ∈ ∆k−1 in the k-
dimensional simplex, any index c ∈ [k], and v ∈ Rk, it holds that

v⊤
(
diag(s)− ss⊤

)
v ≤ 4(1− sc)∥vvT ∥.

Proof See main text.

Lemma 12 is used in the proof of Lemma 11.

Lemma 12 For any s ∈ ∆k−1 in the k-dimensional simplex and any index c ∈ [k] it holds that∑
c′

sc′(1− sc′) ≤ 2(1− sc) .

Proof With a bit of algebra and using
∑

c′ ̸=c sc′ = 1− sc the claim becomes equivalent to∑
c′ ̸=c

s2c′ + s2c − 2sc + 1 ≥ 0.

Since this holds true, the lemma holds.

Lemma 13 For any s ∈ ∆k−1 in the k-dimensional simplex, any index c ∈ [k], any ∆ ∈ Rk×d,
and any h ∈ Rd, it holds:

h⊤∆⊤
(
diag(s)− ss⊤

)
∆h ≤ 4B2∥∆∥2 (1− sc) .

Proof We let v := ∆h. For any Schatten p-norm, we have∣∣∣∣∣∣∣∣∣vv⊤
∣∣∣∣∣∣∣∣∣ = ∥v∥22 ≤ |||∆|||2∞ ∥h∥22 ≤ |||∆|||2 ∥h∥22 ≤ B2 |||∆|||2 .

For any entry-wise p-norm, we have

∥∆h∥p = ∥∆h∥p =
∑
j

|e⊤j ∆h|p ≤
∑
j

∥e⊤j ∆∥pp∥h∥p = ∥h∥p∗
∑
ij

|∆[i, j]|p = ∥h∥p∗∥∆∥p .

This implies

∥vvT ∥ = ∥v∥2 = ∥∆h∥2 ≤ ∥∆∥2∥h∥2⋆ ≤ B2∥∆∥2.

Combine these results and apply Lemma 11, we obtain the desired.

The following lemma summarizes the properties of the softmax map that will be used in the
proof of Lemma 26 and ??.

Lemma 14 For any v,v′, q, q′ ∈ Rk and c ∈ [k], the following inequalities hold:

(i) |Sc(v
′)

Sc(v) − 1| ≤ e2∥v−v′∥∞ − 1

17
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(ii) |1−Sc(v′)
1−Sc(v) − 1| ≤ e2∥v−v′∥∞ − 1

(iii) |Sc(v
′)Sc(q′)

Sc(v)Sc(q) − 1| ≤ e2(∥v′−v∥∞+∥q′−q∥∞) − 1

(iv) |Sc(v
′)(1−Sc(q′))

Sc(v)(1−Sc(q)) − 1| ≤ e2(∥v′−v∥∞+∥q′−q∥∞) − 1

(v) | (1−Sc(v′))(1−Sc(q′))
(1−Sc(v))(1−Sc(q)) − 1| ≤ e2(∥v′−v∥∞+∥q′−q∥∞) − 1

Proof We prove each inequality:
(i) First, observe that

|Sc(v
′)

Sc(v)
− 1| = |e

v′c

evc

∑
i∈[k] e

vi∑
i∈[k] e

v′i
− 1|

= |
∑

i∈[k] e
v′c+vi −

∑
i∈[k] e

vc+v′i∑
i∈[k] e

vc+v′i
|

≤
∑

i∈[k] |ev
′
c+vi − evc+v′i |∑

i∈[k] e
vc+v′i

For any i ∈ [k], we have |ev′c+vi−evc+v′i |
evc+v′

i
= |ev′c−vc+vi−v′i−1| ≤ e|v′c−vc+vi−v′i|−1 ≤ e2∥v−v′∥∞−1.

This implies
∑

i∈[k] |ev
′
c+vi − evc+v′i | ≤

(
e2∥v−v′∥∞ − 1

)∑
i∈[k] e

vc+v′i , from which we obtain the
desired inequality.

(ii) For the second inequality:

|1− Sc(v′)

1− Sc(v)
− 1| = |

1− ev
′
c∑

i∈[k] e
v′
i

1− evc∑
i∈[k] e

vi

− 1|

= |
(
∑

j∈[k],j ̸=c e
v′j )(
∑

i∈[k] e
vi)

(
∑

j∈[k],j ̸=c e
vj )(
∑

i∈[k] e
v′i)
− 1|

= |
∑

j∈[k],j ̸=c
∑

i∈[k]
[
ev

′
j+vi − evj+v′i

]∑
j∈[k],j ̸=c

∑
i∈[k] e

vj+v′i
|

≤
∑

j∈[k],j ̸=c
∑

i∈[k] |e
v′j+vi − evj+v′i |∑

j∈[k],j ̸=c
∑

i∈[k] e
vj+v′i

For any j ∈ [k], j ̸= c, and i ∈ [k], we have |ev
′
j+vi−evj+v′i |
evj+v′

i
≤ e2∥v−v′∥∞ − 1. This implies that∑

j∈[k],j ̸=c
∑

i∈[k] |e
v′j+vi − evj+v′i | ≤ (e2∥v−v′∥∞ − 1)

∑
j∈[k],j ̸=c

∑
i∈[k] e

vj+v
′
i , from which the

result follows.
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(iii) For the third inequality:

|Sc(v
′)Sc(q′)

Sc(v)Sc(q)
− 1| = |

ev
′
c∑

i∈[k] e
v′
i

eq
′
c∑

i∈[k] e
q′
i

evc∑
i∈[k] e

vi
eqc∑

i∈[k] e
qi

− 1|

= |

ev
′
c∑

i∈[k] e
v′
i

eq
′
c∑

i∈[k] e
q′
i

evc∑
i∈[k] e

vi
eqc∑

i∈[k] e
q′
i

−

evc∑
i∈[k] e

v′
i

eqc∑
i∈[k] e

q′
i

evc∑
i∈[k] e

v′
i

eqc∑
i∈[k] e

q′
i

|

= |
ev

′
ceq

′
c
∑

i∈[k] e
vi
∑

j∈[k] e
qj

evceqc
∑

i∈[k] e
v′i
∑

j∈[k] e
q′j
−
evceqc

∑
i∈[k] e

v′i
∑

j∈[k] e
q′j

evceqc
∑

i∈[k] e
v′i
∑

j∈[k] e
q′j
|

= |
∑

i∈[k]
∑

j∈[k]
[
ev

′
c+vi+q

′
c+qj − evc+v

′
i+qc+q

′
j
]∑

i∈[k]
∑

j∈[k] e
vc+v′i+qc+q

′
j

|

≤
∑

i∈[k]
∑

j∈[k] |ev
′
c+vi+q

′
c+qj − evc+v

′
i+qc+q

′
j |∑

i∈[k]
∑

j∈[k] e
vc+v′i+qc+q

′
j

For any i ∈ [k] and j ∈ [k], |ev
′
c+vi+q′c+qj−evc+v′i+qc+q′j |

e
vc+v′

i
+qc+q′

j
= |ev

′
c−vc+vi−v′i+q′c−qc+qj−q′j − 1| ≤

e|v
′
c−vc|+|vi−v′i|+|q′c−qc|+|qj−q′j | − 1 ≤ e2(∥v

′−v∥∞+∥q′−q∥∞) − 1. Then, rearranging and summing
over i and j leads to the result.

(iv) For the fourth inequality:

|Sc(v
′)(1− Sc(q′))

Sc(v)(1− Sc(q))
− 1| = |

ev
′
c∑

s∈[k] e
v′s
(1− eq

′
c∑

t∈[k] e
q′t
)

evc∑
s∈[k] e

vs (1− eqc∑
t∈[k] e

qt
)
− 1|

= |

ev
′
c∑

s∈[k] e
v′s

∑
i∈[k],i ̸=c e

q′i∑
t∈[k] e

q′t

evc∑
s∈[k] e

vs

∑
i∈[k],i̸=c e

qt∑
t∈[k] e

qt

− 1|

= |
∑

i∈[k],i ̸=c
∑

t∈[k]
∑

s∈[k] e
v′c+q

′
i+vs+qt∑

i∈[k],i ̸=c
∑

t∈[k]
∑

s∈[k] e
vc+qi+v′s+q

′
t
− 1|

≤
∑

i∈[k],i ̸=c
∑

t∈[k]
∑

s∈[k] |ev
′
c+q

′
i+vs+qt − evc+qi+v′s+q′t |∑

i∈[k],i ̸=c
∑

t∈[k]
∑

s∈[k] e
vc+qi+v′s+q

′
t

For each i ∈ [k], i ̸= c, s ∈ [k], and t ∈ [k], we obtain |ev
′
c+q′i+vs+qt−evc+qi+v′s+q′t |

evc+qi+v′s+q′t
≤ e2(∥v′−v∥∞+∥q′−q∥∞)−

1. Then, rearranging and summing over i, s, and t leads to the result.
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(v) Finally, for the fifth inequality:

|(1− Sc(v′))(1− Sc(q′))
(1− Sc(v))(1− Sc(q))

− 1| = |
(1− ev

′
c∑

s∈[k] e
v′s
)(1− eq

′
c∑

t∈[k] e
q′t
)

(1− evc∑
s∈[k] e

vs )(1− eqc∑
t∈[k] e

qt
)
− 1|

= |

∑
j∈[k],j ̸=c e

v′j∑
s∈[k] e

v′s

∑
i∈[k],i ̸=c e

q′i∑
t∈[k] e

q′t∑
j∈[k],j ̸=c e

vj∑
s∈[k] e

vs

∑
i∈[k],i ̸=c e

qi∑
t∈[k] e

qt

− 1|

= |
∑

j∈[k],j ̸=c
∑

i∈[k],i ̸=c
∑

t∈[k]
∑

s∈[k] e
v′j+q

′
i+vs+qt∑

j∈[k],j ̸=c
∑

i∈[k],i ̸=c
∑

t∈[k]
∑

s∈[k] e
vj+qi+v′s+q

′
t
− 1|

≤
∑

j∈[k],j ̸=c
∑

i∈[k],i ̸=c
∑

t∈[k]
∑

s∈[k] |e
v′j+q

′
i+vs+qt − evj+qi+v′s+q′t |∑

j∈[k],j ̸=c
∑

i∈[k],i ̸=c
∑

t∈[k]
∑

s∈[k] e
vj+qi+v′s+q

′
t

.

For each j ∈ [k] (j ̸= c), i ∈ [k] (i ̸= c), s ∈ [k], and t ∈ [k], we have

|ev
′
j+q

′
i+vs+qt − evj+qi+v′s+q′t |
evj+qi+v

′
s+q

′
t

= |ev
′
j−vj+q′i−qi+vs−v′s+qt−q′t − 1|

≤ e|v
′
j−vj |+|q′i−qi|+|vs−v′s|+|qt−q′t| − 1

≤ e2(∥v′−v∥∞+∥q′−q∥∞) − 1

Then, rearranging and summing over j, i, s, and t leads to the result.

Appendix E. Lemmas on Loss and Proxy Function

Lemma 15 shows that G(W ) upper and lower bound the dual norm of the loss gradient.

Lemma 15 (G(W ) as proxy to the loss-gradient norm) Under Assumption 4. For any W ∈
Rk×d, it holds that

2B · G(W ) ≥ ∥∇L(W )∥∗ ≥ γ · G(W ) .

Proof First, we prove the lower bound. By duality and direct application of (9)

∥∇L(W )∥∗ = max
∥A∥≤1

⟨A,−∇L(W )⟩

≥ max
∥A∥≤1

1

n

∑
i∈[n]

(1− siyi)min
c ̸=yi

(eyi − ec)
TAhi

≥ 1

n

∑
i∈[n]

(1− siyi) · max
∥A∥≤1

min
i∈[n],c ̸=yi

(eyi − ec)
TAhi.

Second, for the upper bound, it holds by triangle inequality and relationships (6) that

∥∇L(W )∥∗ ≤ ∥∇L(W )∥sum ≤
1

n

∑
i∈[n]

∥∇ℓi(W )∥sum ,
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where ℓi(W ) = − log(Syi(Whi)). Recall that

∇ℓi(W ) = −(ey − Syi(Whi))h
⊤
i ,

and, for two vectors v,u:
∥∥uv⊤∥∥

sum
= ∥u∥1∥v∥1. Combining these and noting that

∥eyi − Syi(Whi)∥1 = 2(1− syi)

together with using the assumption ∥hi∥ ≤ B yields the advertised upper bound.

Built upon Lemma 15, we obtain a simple bound on the loss difference at two points.

Lemma 16 For any W ,W0 ∈ Rk×d, suppose that L(W ) is convex, we have

|L(W )− L(W0)| ≤ 2B∥W −W0∥.

Proof By convexity of L, we have

L(W0)− L(W ) ≤ ⟨∇L(W0),W0 −W ⟩ ≤ ∥∇L(W0)∥∗∥W0 −W ∥ ≤ 2B∥W0 −W ∥ ,

where the last inequality is by Lemma 15. Similarly, we can also show that L(W ) − L(W0) ≤
2B∥W0 −W ∥.

Lemma 17 shows the close relationships between G(W ) and L(W ). The proxy G(W ) not only
lower bounds L(W ), but also upper bounds L(W ) up to a factor depending on L(W ). Moreover,
the rate of convergence G(W )

L(W ) depends on the rate of decrease in the loss.

Lemma 17 (G(W ) as proxy to the loss) Let W ∈ Rk×d, we have

(i) 1 ≥ G(W )
L(W ) ≥ 1− nL(W )

2

(ii) Suppose that W satisfies L(W ) ≤ log 2
n or G(W ) ≤ 1

2n , then L(W ) ≤ 2G(W ).

Proof (i) Denote for simplicity si := siyi = Syi(Whi), thus L(W ) = 1
n

∑
i∈[n] log(1/si) and

G(W ) = 1
n

∑
i∈[n](1− si). For the upper bound, simply use the fact that ex−1 ≥ x, forall x ∈ [0, 1],

thus log(1/si) ≥ 1− si for all i ∈ [n].
The lower bound can be proved using the exact same arguments in the proof of Zhang et al. [65,

Lemma C.7] for the binary case. For completeness, we provide an alternative elementary proof. It
suffices to prove for n = 1 that for s ∈ (0, 1):

1− s ≥ log(1/s)− 1

2
log2(1/s). (16)

The general case follows by summing over s = si and using
∑

i∈[n] log
2(1/si) ≤

(∑
i∈[n] log(1/si)

)2
since log(1/si) > 0. For (16), let x = log(1/s) > 0. The inequality becomes e−x ≤ 1− x+ x2/2,
which holds for x > 0 by the second-order Taylor expansion of e−x around 0.
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(ii) The sufficiency of L(W ) ≤ log 2
n (to guarantee that L(W ) ≤ 2G(W )) follows from (i) and

L(W ) ≤ log 2
n ≤ 1

n . The inequality log( 1x) ≤ 2(1− x) holds when x ∈ [0.2032, 1]. This translates
to the following sufficient condition on siyi

si =
eℓi[yi]∑
c∈[k] e

ℓi[c]
=

1

1 +
∑

c∈[k],c ̸=yi e
ℓi[c]−ℓi[yi]

≥ 0.2032.

Under the assumption G(W ) ≤ 1
2n , we have 1− si ≤

∑
i∈[n](1− si) = nG(W ) ≤ 1

2 , from which
we obtain si ≥ 1

2 ≥ 0.2032 for all i ∈ [n].

Lemma 18 shows that the data becomes separable when the loss is small. It is used in deriving
the lower bound on the un-normalized margin.

Lemma 18 (Low L(W ) implies separability) Suppose that there exists W ∈ Rk×d such that
L(W ) ≤ log 2

n , then we have

(eyi − ec)
TWhi ≥ 0, for all i ∈ [n] and for all c ∈ [k] such that c ̸= yi. (17)

Proof We rewrite the loss into the form:

L(W ) = − 1

n

∑
i∈[n]

log(
eℓi[yi]∑
c∈[k] e

ℓi[c]
) =

1

n

∑
i∈[n]

log(1 +
∑
c ̸=yi

e−(ℓi[yi]−ℓi[c])).

Fix any i ∈ [n], by the assumption that L(W ) ≤ log 2
n , we have the following:

log(1 +
∑
c ̸=yi

e−(ℓi[yi]−ℓi[c])) ≤ nL(W ) ≤ log(2).

This implies:

e−minc̸=yi
(ℓi[yi]−ℓi[c]) = max

c ̸=yi
e−(ℓi[yi]−ℓi[c])≤ ≤

∑
c ̸=yi

e−(ℓi[yi]−ℓi[c]) ≤ 1.

After taking log on both sides, we obtain the following: ℓi[yi]− ℓi[c] = (eyi − ec)
TWhi ≥ 0 for

any c ∈ [k] such that c ̸= yi.

Lemma 19 shows that the ratio of G(W ) at two points can be bounded by exponentiating the
max-norm of their differences. It is used in handling the second order term in the Taylor expansion
of the loss.

Lemma 19 (Ratio of G(W )) For any ψ ∈ [0, 1], we have the following:

G(W − ψη∆)

G(W )
≤ e2Bψη∥∆∥max ≤ e2Bψη∥∆∥.

Proof Note that the second inequality is by relationships (6). Here, we only prove the first inequality.
By the definition of G(W ), we have:

G(W − ψη∆)

G(W )
=

∑
i∈[n]

(
1− Syi((W − ψη∆)hi)

)∑
i∈[n]

(
1− Syi(Whi)

) .
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For any c ∈ [k] and v,v′ ∈ Rk, we have:

1− Sc(v′)

1− Sc(v)
=

1− ev
′
c∑

i∈[k] e
v′
i

1− evc∑
i∈[k] e

vi

=

∑
j∈[k],j ̸=c e

v′j∑
i∈[k] e

v′
i∑

j∈[k],j ̸=c e
vj∑

i∈[k] e
vi

=

∑
j∈[k],j ̸=c

∑
i∈[k] e

v′j+vi∑
j∈[k],j ̸=c

∑
i∈[k] e

vj+v′i

≤ e2∥v−v′∥∞ .

The last inequality is because e
v′j+vi

evj+v′
i
≤ e|v

′
j−vj |+|vi−v′i| ≤ e2∥v−v′∥∞ , which implies that∑

j∈[k],j ̸=c
∑

i∈[k] e
v′j+vi ≤ e2∥v−v′∥∞∑

j∈[k],j ̸=c
∑

i∈[k] e
vj+v

′
i . Next, we specialize this result

to v′ = (W − ψη∆)hi, v = Whi, and c = yi for any i ∈ [n] to obtain:

1− Syi((W − ψη∆)hi)
)

1− Syi(Whi)
≤ e2ηψ∥∆hi∥∞ ≤ e2Bηψ∥∆∥max .

Then, we rearrange and sum over i ∈ [n] to obtain:
∑

i∈[n]
(
1−Syi((W−ψη∆)hi)

)
≤ e2Bηψ∥∆∥max

∑
i∈[n]

(
1−

Syi(Whi)
)
, from which the desired inequality follows. The second inequality in the lemma statement

follows from the relationship (6).

Appendix F. Implicit Bias of Normalized Steepest Descent

Proof Overview We consider a decay learning rate schedule of the form ηt = Θ( 1
ta ) where

a ∈ (0, 1]. The first step is to show that the loss monotonically decreases after certain time and
the rate depends on G(W ). To obtain this, we apply Lemma 15 and Lemma 11 to upper bound the
first-order and second-order terms in the Taylor expansion of the loss (18), respectively. Next, we
use the decrease in loss to derive a lower bound on the unnormalized margin which involves the ratio
G(W )
L(W ) . A crucial step involved is to find a time t̄2 such that separability (29) holds for all t ≥ t̄2, and

the existence of t̄2 is guaranteed by loss monotonicity such that the condition L(Wt) ≤ log 2
n will be

satisfied for sufficitently large t’s.
Then, we argue that the ratio G(Wt)

L(Wt)
converges to 1 exponentially fast (recalling that 1 ≥ G(Wt)

L(Wt)
≥

1− nL(Wt)
2 ) by showing the loss L(Wt) decreases exponentially fast. We first choose a time t1 after

t0 (recall that t0 is the time that satisfies Assumption 3) such that L(Wt+1) ≤ L(Wt)− ηtγ
2 G(Wt)

for all t ≥ t1. Next, we lower bound G(Wt) using L(Wt). By Lemma 17, there are two sufficient
conditions (namely, L(Wt) ≤ log 2

n =: L̃ or G(Wt) ≤ 1
2n ) that guarantee L(Wt) ≤ 2G(Wt). We

choose a time t2 (after t1) that is sufficiently large such that there exists t∗ ∈ [t1, t2] for which we
have G(Wt∗) ≤ L̃

2 ≤
1
2n . This not only guarantees that L(Wt∗) ≤ 2G(Wt∗) at time t∗, but also

23



IMPLICIT BIAS OF SPECTRAL DESCENT

(crucially due to monotonicity) implies that L(Wt) ≤ L(Wt∗) ≤ 2G(Wt∗) ≤ log 2
n for all t ≥ t2.

Thus, we observe that the other sufficient condition L(Wt) ≤ log 2
n is satisfied, from which we

conclude that L(Wt) ≤ 2G(Wt) for all t ≥ t2. We remark that the choice of t2 depends on L(Wt1)
(whose magnitude is bounded using Lemma 16), and t2 can be used as t̄2 above. To recap, t1 is the
time (after t0) after which the successive loss decrease is lower bounded by the product ηtγG(Wt);
t2 (after t1) is the time after which L(Wt) ≤ log 2

n (thus, both L(Wt) ≤ 2G(Wt) and separability
condition (29) hold for all t ≥ t2).

In this following, we break the proof of implicit bias of NSD into several parts following previous
arguments. Lemma 20 shows the descent properties of NSD. It is used in Lemma 21 to lower bound
the un-normalized margin, and in the proof of Theorem 23 to show the convergence of G(Wt)

L(Wt)
.

Lemma 20 (NSD Descent) Under the same setting as Theorem 23, it holds for all t ≥ 0,

L(Wt+1) ≤ L(Wt)− γηt(1− αs1ηt)G(Wt),

where αs1 is some constant that depends on B and γ.

Proof By Lemma 9, we let W ′ = Wt+1, W = Wt, ∆̃t = Wt+1 −Wt, and define Wt,t+1,ζ :=
Wt + ζ(Wt+1 −Wt). We choose ζ∗ such that Wt,t+1,ζ∗ satisfies (11), we have:

L(Wt+1) = L(Wt) + ⟨∇L(Wt), ∆̃t⟩︸ ︷︷ ︸
♠t

+
1

2n

∑
i∈[n]

h⊤
i ∆̃

⊤
t

(
diag(S(Wt,t+1,γhi))− S(Wt,t+1,ζ∗hi)S(Wt,t+1,ζ∗hi)

⊤
)
∆̃t hi︸ ︷︷ ︸

♣t

.

(18)

For the ♠t term, we have by Lemma 15:

♠t = −ηt∥∇L(Wt)∥∗ ≤ −ηtγG(Wt).

For the ♣t term, we let v = ∆̃thi and s = S(Wt,t+1,ζ∗hi), and apply Lemma 13 to obtain

♣t ≤ 4∥∆̃t∥2∥hi∥2∗(1− Syi(Wt,t+1,ζ∗hi)) ≤ 4η2tB
2(1− Syi(Wt,t+1,ζ∗hi)),

where in the second inequality we have used ∥∆̃t∥ ≤ ηt and ∥hi∥∗ ≤ ∥hi∥1 ≤ 1. Putting these two
pieces together, we obtain

L(Wt+1) ≤ L(Wt)− γηtG(Wt) + 2η2tB
2 1

n

∑
i∈[n]

(1− Syi(Wt,t+1,ζ∗hi))

= L(Wt)− γηtG(Wt) + 2η2tB
2G(Wt,t+1,ζ∗)

≤ L(Wt)− γηtG(Wt) + 2η2tB
2 sup
ζ∈[0,1]

G(Wt,t+1,ζ)

= L(Wt)− γηtG(Wt) + 2η2tB
2G(Wt) sup

ζ∈[0,1]

G(Wt + ζ∆̃t)

G(Wt)

(a)

≤ L(Wt)− γηtG(Wt) + 2η2tB
2G(Wt) sup

ζ∈[0,1]
e2Bζ∥∆̃t∥

(b)

≤ L(Wt)− γηtG(Wt) + 2η2tB
2e2Bη0G(Wt), (19)
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where (a) is by Lemma 19 and (b) is by ∥∆̃t∥ ≤ ηt. Letting αs1 = 2B2e2Bη0

γ , Eq. (19) simplifies to:

L(Wt+1) ≤ L(Wt)− γηt(1− αs1ηt)G(Wt),

from which we observe that the loss starts to monotonically decrease after ηt satisfies ηt ≤ 1
αs1

for a
decreasing learning rate schedule.

For a decaying learning rate schedule, Lemma 20 implies that the loss monotonically decreases
after a certain time. Thus, we know that the assumption of Lemma 21 can be satisfied. In the proof
of Theorem 23, we will specify a concrete form of t̃ in Lemma 21.

Lemma 21 (NSD Unnormalized Margin) Suppose that there exist t̃ such that L(Wt) ≤ log 2
n for

all t > t̃, then we have

min
i∈[n],c ̸=yi

(eyi − ec)
TWthi ≥ γ

t−1∑
s=t̃

ηs
G(Ws)

L(Ws)
− αs2

t−1∑
s=t̃

η2s ,

where αs2 is some constant that depends on B.

Proof We let αs2 = 2Be2Bη0 , then from (19), we have for t > t̃:

L(Wt+1) ≤ L(Wt)− γηtG(Wt) + αs2η
2
t G(Wt)

= L(Wt)
(
1− γηt

G(Wt)

L(Wt)
+ αs2η

2
t

G(Wt)

L(Wt)

)
≤ L(Wt) exp

(
−γηt

G(Wt)

L(Wt)
+ αs2η

2
t

G(Wt)

L(Wt)

)
≤ L(Wt̃) exp

(
−γ

t∑
s=t̃

ηs
G(Ws)

L(Ws)
+ αs2

t∑
s=t̃

η2s
)
.

≤ log 2

n
exp
(
−γ

t∑
s=t̃

ηs
G(Ws)

L(Ws)
+ αs2

t∑
s=t̃

η2s
)
, (20)

where the penultimate inequality uses Lemma 17, and the last inequality uses the assumption that
L(Wt) ≤ log 2

n for all t ≥ t̃. Then, we have for all t > t̃:

e−mini∈[n],c̸=yi
(eyi−ec)TWthi = max

i∈[n]
e−minc ̸=yi

(eyi−ec)TWthi

(a)

≤ max
i∈[n]

1

log 2
log
(
1 + e−minc ̸=yi

(eyi−ec)TWthi
)

≤ max
i∈[n]

1

log 2
log(1 +

∑
c ̸=yi

e−(eyi−ec)TWthi) ≤ nL(Wt)

log 2

(b)

≤ exp
(
−γ

t−1∑
s=t̃

ηs
G(Ws)

L(Ws)
+ αs2

t−1∑
s=t̃

η2s
)
.
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(a) is by the following: the assumption L(Wt) ≤ log 2
n implies that minc ̸=yi(eyi − ec)

TWthi ≥ 0

for all i ∈ [n] by Lemma 18. We also know the inequality log(1+e−z)
e−z ≥ log 2 holds for any z ≥ 0.

Then, for any i ∈ [n], we can set z = minc ̸=yi(eyi − ec)
TWthi to obtain the desired inequality; and

(b) is by (20). Finally, taking log on both sides leads to the result.

Next Lemma upper bounds the p-norm of NSD’s iterates using learning rates. It is used in the
proof of Theorem 23.

Lemma 22 (NSD ∥Wt∥) For NSD, we have for any t > 0 that

∥Wt∥ ≤ ∥W0∥+
t−1∑
s=0

ηs.

Proof By the NSD update rule (2), we have

Wt+1 = W0 −
t∑

s=0

ηs∆s.

This leads to ∥Wt∥ ≤ ∥W0∥+
∑t−1

s=0 ηs given ∆s ≤ 1 for all s ≥ 0.

The main step in the proof of Theorem 23 is to determine the time that satisfies the assumption in
Lemma 21 and show the convergence of G(Wt)

L(Wt)
. Then, Lemma 21 and Lemma 22 will be combined

to obtain the final result.

Theorem 23 Suppose that Assumption 1, 2, and 4 hold, then there exists ts2 = ts2(n, γ,B,W0)
such that NSD achieves the following for all t > ts2∣∣∣∣∣mini∈[n],c ̸=yi(eyi − ec)

TWthi

∥Wt∥
− γ

∣∣∣∣∣ ≤ O
(∑t−1

s=ts2
ηse

− γ
4

∑s−1
τ=ts2

ητ
+
∑ts2−1

s=0 ηs +
∑t−1

s=ts2
η2s∑t−1

s=0 ηs

)
.

Proof Determination of ts1 . In Lemma 20 we choose ts1 such that ηt ≤ 1
2αs1

for all t ≥ ts1 .

Considering ηt = Θ( 1
ta ) (where a ∈ (0, 1]), we set ts1 = (2αs1)

1
a = (4B

2e2Bη0

γ )
1
a . Then, we have

for all t ≥ ts1

L(Wt+1) ≤ L(Wt)−
ηtγ

2
G(Wt). (21)

Rearranging this equation and using non-negativity of the loss we obtain γ
∑t

s=ts1
ηsG(Ws) ≤

2L(Wts1
).

Determination of ts2 . By Lemma 16, we can bound L(Wts1
) as follows

|L(Wts1
)− L(W0)| ≤ 2B∥Wts1

−W0∥ ≤ 2B

ts1−1∑
s=0

ηs∥∆s∥ ≤ 2B

ts1−1∑
s=0

ηs,
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where the last inequality is by ∥∆s∥ ≤ 1 for all s ≥ 0. Combining this with the result above and
letting L̃ := log 2

n , we obtain

G(Wt∗) = min
s∈[ts1 ,ts2 ]

G(Ws) ≤
2L(W0) + 4B

∑ts1−1
s=0 ηs

γ
∑ts2

s=ts1
ηs

≤ L̃
2
≤ 1

2n
,

from which we derive the sufficient condition on ts2 to be
∑ts2

s=ts1
ηs ≥

4L(W0)+8B
∑ts1−1

s=0 ηs

γL̃ .

Convergence of G(Wt)
L(Wt)

Given G(Wt∗) ≤ L̃
2 ≤

1
2n , we obtain that L(Wt) ≤ L(Wt∗) ≤ 2G(Wt∗) ≤

L̃ for all t ≥ ts2 , where the first and second inequalities are due to monotonicity in the risk and
Lemma 17, respectively. Thus, the other sufficient condition L(Wt) ≤ log 2

n in Lemma 17 is satisfied,
from which we conclude that L(Wt) ≤ 2G(Wt) for all t ≥ ts2 . Substituting this into (21), we
obtain for all t > ts2

L(Wt) ≤ (1− γηt−1

4
)L(Wt−1) ≤ L(Wts2

)e
− γ

4

∑t−1
s=ts2

ηs ≤ L̃e−
γ
4

∑t−1
s=ts2

ηs

Then, by Lemma 17, we obtain

G(Wt)

L(Wt)
≥ 1− nL(Wt)

2
≥ 1− nL̃e−

γ
4

∑t−1
s=ts2

ηs

2
≥ 1− e−

γ
4

∑t−1
s=ts2

ηs
. (22)

Margin Convergence Finally, we combine Lemma 21, Lemma 22, and (22) to obtain

|
mini∈[n],c ̸=yi(eyi − ec)

TWthi

∥Wt∥
− γ| ≤

γ
(
∥W0∥+

∑t−1
s=ts2

ηse
− γ

4

∑s−1
τ=ts2

ητ
+
∑ts2−1

s=0 ηs
)
+ αs2

∑t−1
s=ts2

η2s

∥W0∥+
∑t−1

s=0 ηs

≤ O(
∑t−1

s=ts2
ηse

− γ
4

∑s−1
τ=ts2

ητ
+
∑ts2−1

s=0 ηs +
∑t−1

s=ts2
η2s∑t−1

s=0 ηs
)

Next, we explicitly upper bound ts2 in Theorem 23 to derive the margin convergence rates of
NSD.

Corollary 24 Consider learning rate schedule of the form ηt = Θ( 1
ta ) where a ∈ (0, 1], under the

same setting as Theorem 23, then we have for SignGD

|
mini∈[n],c ̸=yi(eyi − ec)

TWthi

∥Wt∥
− γ| =


O( t1−2a+n

t1−a ) if a < 1
2

O( log t+n
t1/2

) if a = 1
2

O( n
t1−a ) if 1

2 < a < 1
O( n

log t) if a = 1

Proof Recall that ts1 = (4B
2e2Bη0

γ )
1
a =: Cs1 , and the condition on ts2 is

∑ts2
s=ts1

ηs ≥
4L(W0)+8B

∑ts1−1

s=0 ηs

γL̃ ,

where L̃ = log 2
n . We can apply integral approximations to the terms that involve sums of learning

rates to obtain

ts2 ≤ Cs2n
1

1−a ts1 + Cs3n
1

1−aL(W0)
1

1−a .
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Given ts1 is some constant, this further implies that

ts2−1∑
s=0

ηs = O(t1−as2 ) = O(n+ nL(W0)).

Next, we focus on the term
∑t−1

s=ts2
η2s . For a > 1

2 , this term can be bounded by some constant.

For a < 1
2 , we have

∑t−1
s=ts2

η2s = O(t1−2a), and it evaluates to O(log t) for a = 1
2 . Finally,

we have that
∑t−1

s=0 ηs = O(t1−a) for a < 1 and
∑t−1

s=0 ηs = O(log t) for a = 1. The term∑t−1
s=ts2

ηse
− γ

4

∑s−1
τ=ts2

ητ is bounded by some constant as shown in Zhang et al. [65, Corollary 4.7].

Appendix G. Implicit Bias of Normalized Momentum Steepest Descent

Recall that ∥·∥ refer to either entry-wise or Schatten p-norm with its dual norm denoted as ∥·∥∗.

Lemma 25 Consider the following W † := W − η∆, where ∆ ∈ Rk×d is defined in (3). Let
M ∈ Rk×d be any matrix. It holds:

⟨∇L(W ),W † −W ⟩ ≤ 2η∥Ω∥sum − ηγG(W ),

where Ω is defined to be Ω := M −∇L(W ).

Proof We define Ω := M −∇L(W ) to obtain

⟨∇L(W ),W † −W ⟩ = ⟨∇L(W )−M ,W † −W ⟩+ ⟨M ,W † −W ⟩
= −η⟨∇L(W )−M ,∆⟩ − η⟨M ,∆⟩
(a)

≤ η∥∇L(W )−M∥∗∥∆∥ − η∥M∥∗
(b)

≤ η∥M −∇L(W )∥∗ − η∥M −∇L(W ) +∇L(W )∥∗
(c)

≤ η∥Ω∥sum − η∥Ω− (−∇L(W ))∥∗
(d)

≤ η∥Ω∥sum − η(∥∇L(W )∥∗ − ∥Ω∥∗)
= 2η∥Ω∥sum − η∥∇L(W )∥∗
(e)

≤ 2η∥Ω∥sum − ηγG(W ),

where (a) is by Cauchy Schwarz inequality and ⟨M ,∆⟩ = ∥M∥∗, (b) is by ∥∆∥ ≤ 1, (c) is via
Lemma 10, (d) is by reverse triangle inequality, and (e) is via Lemma 15.

The following Lemma bounds the entries of the momentum (Mt) of NMD in terms of the product
of ηt with the sume of Gc(Wt) and Qc(Wt).
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Lemma 26 Suppose that Ass. 1, 2, 3, and 4 hold. Let c ∈ [k] and j ∈ [d]. There exists time t0 such
that for all t ≥ t0:

|Mt[c, j]− (1− βt+1
1 )∇L(Wt)[c, j]| ≤ αMηt

(
Gc(Wt) +Qc(Wt)

)
,

where αM := B(1− β1)c2.

Proof For any fixed c ∈ [k] and j ∈ [d],

|Mt[c, j]− (1− βt+1
1 )∇L(Wt)[c, j]| = |

t∑
τ=0

(1− β1)βτ1
(
∇L(Wt−τ )[c, j]−∇L(Wt)[c, j]

)
|

≤
t∑

τ=0

(1− β1)βτ1 |∇L(Wt−τ )[c, j]−∇L(Wt)[c, j]|︸ ︷︷ ︸
♣

.

(23)

We first notice that for any W ∈ Rk×d, we have∇L(W )[c, j] = eTc ∇L(W )ej = − 1
n

∑
i∈[n] e

T
c

(
eyi−

S(Whi)
)
hTi ej = − 1

n

∑
i∈[n] e

T
c

(
eyi − S(Whi)

)
hij . Then, the gradient difference term becomes

♣ = | − 1

n

∑
i∈[n]

eTc
(
eyi − S(Wt−τhi)

)
hij +

1

n

∑
i∈[n]

eTc
(
eyi − S(Wthi)

)
hij |

= | 1
n

∑
i∈[n]

eTc
(
S(Wt−τhi)− S(Wthi)

)
hij |

= | 1
n

∑
i∈[n]

(
Sc(Wt−τhi)− Sc(Wthi)

)
hij |

≤ B 1

n

∑
i∈[n]

|Sc(Wt−τhi)− Sc(Wthi)|

= B
1

n

∑
i∈[n],yi ̸=c

|Sc(Wt−τhi)− Sc(Wthi)|︸ ︷︷ ︸
♣1

+B
1

n

∑
i∈[n],yi=c

|Sc(Wt−τhi)− Sc(Wthi)|︸ ︷︷ ︸
♣2

Next, we link the ♣1 and ♣2 terms with G(W ). Starting with the first term, we obtain:

♣1 =
1

n

∑
i∈[n],yi ̸=c

Sc(Wthi)|
Sc(Wt−τhi)

Sc(Wthi)
− 1|

(a)

≤ 1

n

∑
i∈[n],yi ̸=c

Sc(Wthi)(e
2∥(Wt−τ−Wt)hi∥∞ − 1)

(b)

≤ 1

n

∑
i∈[n],yi ̸=c

Sc(Wthi)(e
2B∥Wt−τ−Wt∥max − 1)

(c)

≤
(
e2B

∑τ
s=1 ηt−s∥∆t−s∥max − 1

)( 1
n

∑
i∈[n],yi ̸=c

Sc(Wthi)
)

(d)

≤
(
e2B

∑τ
s=1 ηt−s − 1

)
Qc(Wt),
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where (a) is by Lemma 14, (b) is by ∥hi∥1 ≤ B for all i ∈ [n], (c) is by (2) and triangle inequality,
and (d) is by ∥∆t−s∥max ≤ ∥∆t−s∥ ≤ 1 (for any entry-wise or Schatten p-norm) and the definition
of G(Wt). For the second term, we obtain:

♣2 =
1

n

∑
i∈[n],yi=c

|Sc(Wt−τhi)− Sc(Wthi)|

=
1

n

∑
i∈[n],yi=c

|Syi(Wt−τhi)− 1 + 1− Syi(Wthi)|

=
1

n

∑
i∈[n],yi=c

(
1− Syi(Wthi)

)
|Syi(Wt−τhi)− 1

1− Syi(Wthi)
+ 1|

=
1

n

∑
i∈[n],yi=c

(
1− Syi(Wthi)

)
|1− Syi(Wt−τhi)

1− Syi(Wthi)
− 1|

(e)

≤ 1

n

∑
i∈[n],yi=c

(
1− Syi(Wthi)

)
(e2∥(Wt−τ−Wt)hi∥∞ − 1)

(f)

≤
(
e2B

∑τ
s=1 ηt−s − 1

)
Gc(Wt),

where (e) is by Lemma 14, and (f) is by the same approach taken for ♣1. Based on the upper bounds
for ♣1 and ♣2, we obtain the following: ♣ ≤ 2B

(
e2αB

∑τ
s=1 ηt−s − 1

)
(Gc(Wt) +Qc(Wt)). Then,

we substitute this into (23) to obtain:

|Mt[c, j]− (1− βt+1
1 )∇L(Wt)[c, j]| ≤ B(1− β1)(Gc(Wt) +Qc(Wt))

t∑
τ=0

βτ1
(
e2B

∑τ
s=1 ηt−s − 1

)
(g)

≤ B(1− β1)c2ηt(Gc(Wt) +Qc(Wt)),

where (g) is by the Assumption 3.

Lemma 27 Let Ωt = Mt −∇L(Wt), where Mt is defined in (4). Then, it holds

∥Ωt∥sum ≤ 2Bβ
t/2
1 G(Wt) + 2αMdηtG(Wt),

where αM := B(1− β1)c2.

Proof For simplicity, we drop the subscripts t. Denote Tc(W ) := Gc(W ) + Qc(W ). Then, by
Lemma 26, we have for any c ∈ [k] and j ∈ [d]:

M [c, j] = (1− βt+1
1 )∇L(W )[c, j] + αMηTc(W )ϵm,c,j

= ∇L(W )[c, j]− βt+1
1 ∇L(W )[c, j] + αMηTc(W )ϵm,c,j ,

where αM := B(1 − β1)c2 and ϵm,c,j is some constant s.t. |ϵm,c,j | ≤ 1. Recall that Ω :=
M −∇L(W ), then we have

|Ω[c, j]| = |M [c, j]−∇L(W )[c, j]|
= | − βt+1

1 ∇L(W )[c, j] + αMηTc(W )ϵm,c,j |
≤ βt+1

1 |∇L(W )[c, j]|+ αMηTc(W ).

30



IMPLICIT BIAS OF SPECTRAL DESCENT

This implies the following:

∥Ω∥sum =
∑
c,j

|Ω[c, j]| ≤ βt+1
1

∑
c,j

|∇L(W )[c, j]|+ αMη
∑
c,j

Tc(W )

= βt+1
1 ∥∇L(W )∥sum + 2αMdηG(W )

≤ 2Bβ
t/2
1 G(W ) + 2αMdηG(W ),

where in the last inequality we have used Lemma 15.

Lemma 28 Suppose that there exist t̃ such that L(Wt) ≤ log 2
n for all t > t̃, then we have

min
i∈[n],c ̸=yi

(eyi − ec)
TWthi ≥ γ

t−1∑
s=t̃

ηs
G(Ws)

L(Ws)
− a2

∑
η2s −Q

where a2 = (4αM + 2B2e2Bη0)d and Q = 4Bη0
1

1−β1/2
1

.

Proof We follow a similar approach as Lemma 20 to show the descent of NMD. Specifically, we
apply Lemma 25 to bound the first-order term. For the Hessian term, we apply Lemma 13 and
Lemma 19 similar to NSD. Then, we can obtain the following

L(Wt+1) ≤ L(Wt)− ηtγG(Wt) + 2ηt∥Ωt∥sum + 2η2tB
2e2Bη0G(Wt)

(a)

≤ L(Wt)− ηtγG(Wt) + 4Bβ
t/2
1 ηtG(Wt) + 4αMη

2
t dG(Wt) + 2η2tB

2e2Bη0G(Wt)

(b)

≤ L(Wt)− ηtγG(Wt) + a1β
t/2
1 ηtG(Wt) + a2η

2
t dG(Wt)

≤ L(Wt̃) exp
(
−γ

t∑
s=t̃

ηs
G(Ws)

L(Ws)
+ a1

t∑
s=t̃

β
s/2
1 ηs + a2d

t∑
s=t̃

η2s
)

(c)

≤ log 2

n
exp
(
−γ

t∑
s=t̃

ηs
G(Ws)

L(Ws)
+ a2d

t∑
s=t̃

η2s +Q
)
,

where (a) is by Lemma 25. In (b), we have defined a1 := 4B and a2 = (4αM + 2B2e2Bη0)d. In
(c), we have used the assumption and defined Q := a1η0

1

1−β1/2
1

≥ a1
∑t

s=t̃ β
s/2
1 ηs. The rest of the

proof follows the same steps as Lemma 21.

Theorem 29 Suppose that Ass. 1, 2, 3, and 4 hold. Set learning rate ηt = Θ( 1
t1/2

). The margin gap
of NMD’s iterates satisfy

γ −
mini∈[n],c ̸=yi(eyi − ec)

TWthi

∥Wt∥
≤ O(

d log t+ dn

t1/2
).
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Proof Given the updates of NMD are normalized (i.e., ∥∆∥ ≤ 1), we can obtain the following via
Lemma 28:

γ −
mini∈[n],c ̸=yi(eyi − ec)

TWthi

∥Wt∥
≤
γ(∥W0∥+

∑t2−1
s=0 ηs +

∑t−1
s=t2

ηse
γ
4

∑s−1
τ=t2

ητ ) + a2d
∑t−1

s=t2
η2s +Q

∥W0∥+
∑t−1

s=0 ηs

≤ O(

∑t−1
s=t2

ηse
− γ

4

∑s−1
τ=t2

ητ +
∑t2−1

s=0 ηs + d
∑t−1

s=t2
η2s∑t−1

s=0 ηs
).

Then, we follow the same approach as Corollary 24 for a decreasing learning rate of the form
ηt = Θ( 1

ta ). Specifically, we have t1 = Θ(d1/a) and t2 ≤ C1n
1

1−a t1 + C2n
1

1−aL(W0)
1

1−a . This
leads to

t2−1∑
s=0

ηs = O(t1−a2 ) = nt1−a1 + nL(W0) + d log(t).

Thus, we have the margin gap upper bounded by O(nd+d log(t)
t1/2

).

Appendix H. Other multiclass loss functions

H.1. Exponential Loss

The multiclass exponential loss is given as

Lexp(W ) :=
1

n

∑
i∈[n]

∑
c ̸=yi

exp
(
−(eyi − ec)

⊤Whi

)
.

The gradient of Lexp(W ) is

∇Lexp(W ) =
1

n

∑
i∈[n]

∑
c ̸=yi

− exp(−(eyi − ec)
TWhi)(eyi − ec)h

T
i .

Thus, for any matrix A ∈ Rk×d, we have

⟨A,−∇Lexp(W )⟩ = 1

n

∑
i∈[n]

∑
c ̸=yi

exp
(
−(eyi − ec)

⊤Whi

)
· (eyi − ec)

⊤Ahi .

This motivates us to define G(W ) as

Gexp(W ) =
1

n

∑
i∈[n]

∑
c ̸=yi

exp
(
−(eyi − ec)

⊤Whi

)
,

from which we recognize that Gexp(W ) = Lexp(W ). Then, the proof follows similar steps as the
CE loss.
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H.2. PairLogLoss

The PairLogLoss loss [60] is given as

Lpll(W ) :=
1

n

∑
i∈[n]

∑
c ̸=yi

log
(
1 + exp

(
−(eyi − ec)

⊤Whi

))
.

Note that L = 1
n

∑
i∈[n]

∑
c ̸=yi f

(
(eyi − ec)

⊤Whi
)

where f(t) := log(1 + e−t) denotes the
logistic loss. Therefore, the Taylor expansion of PLL writes:

Lpll(W +∆) = L(W ) +
1

n

∑
i∈[n]

∑
c ̸=yi

f ′
(
(eyi − ec)

⊤Whi

)
· (eyi − ec)

⊤∆hi

+
1

n

∑
i∈[n]

∑
c ̸=yi

f ′′
(
(eyi − ec)

⊤Whi

)
· h⊤

i ∆
⊤(eyi − ec)(eyi − ec)

⊤∆hi + o
(
∥∆∥3

)
.

(24)

From the above, the gradient of the PLL loss is:

∇Lpll(W ) =
1

n

∑
i∈[n]

∑
c̸=yi

f ′
(
(eyi − ec)

⊤Whi

)
· (eyi − ec)h

⊤
i

=
1

n

∑
i∈[n]

∑
c̸=yi

− exp
(
−(eyi − ec)

⊤Whi
)

1 + exp (−(eyi − ec)⊤Whi)
(eyi − ec)h

⊤
i (25)

Thus, for any matrix A ∈ Rk×d,

⟨A,−∇Lpll(W )⟩ = 1

n

∑
i∈[n]

∑
c ̸=yi

|f ′
(
(eyi − ec)

⊤Whi

)
| · (eyi − ec)

⊤Ahi . (26)

This motivates us to define

Gpll(W ) =
1

n

∑
i∈[n]

∑
c̸=yi

∣∣∣f ′ (−(eyi − ec)
⊤Whi

)∣∣∣ = 1

n

∑
i∈[n]

∑
c ̸=yi

exp
(
−(eyi − ec)

⊤Whi
)

1 + exp (−(eyi − ec)⊤Whi)

(27)

Lemma 30 (Analogue of Lemma 15 for PLL) For any W , the PairLogLoss (PLL) satisfies:

2B · Gpll(W ) ≥ ∥∇Lpll(W )∥ ≥ γ · Gpll(W ) .

Proof The lower bound follows immediately from (26) and expressing ∥∇Lpll(W )∥∗ = max∥A∥≤1⟨A,−∇Lpll(W )⟩.
The lower bound follows from triangle inequality applied to (25):

∥∇Lpll(W )∥sum ≤
1

n

∑
i∈[n]

∑
c ̸=yi

∣∣∣f ′ (−(eyi − ec)
⊤Whi

)∣∣∣ ∥eyi − ec∥1∥hi∥1 ≤ 2B · G(W ) ,

and use the relationships in (6), i.e. ∥∇Lpll(W )∥ ≤ ∥∇Lpll(W )∥sum for any entry-wise or Schatten
p-norm with p ≥ 1.
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For bounding with G(W ) the second-order term in the Taylor expansion of PLL, note the
following. First, for all i ∈ [n], c ̸= yi:

h⊤
i ∆

⊤(eyi − ec)(eyi − ec)
⊤∆hi = ⟨(eyi − ec)(eyi − ec)

⊤,∆hih
⊤
i ∆

T ⟩

≤
∥∥∥(eyi − ec)(eyi − ec)

⊤
∥∥∥
sum

∥∥∥∆hih
⊤
i ∆

T
∥∥∥
max

≤ ∥eyi − ec)∥21 · (∥∆hi∥∞)2

≤ 4 · (∥∆∥max)
2 · ∥hi∥21 ≤ 4B2(∥∆∥max)

2

≤ 4B2∥∆∥2.

Second, the (easy to check) property of logistic loss that f ′′(t) ≤ |f ′(t)|. Putting these together:

1

n

∑
i∈[n]

∑
c ̸=yi

f ′′
(
(eyi − ec)

⊤Whi

)
· h⊤

i ∆
⊤(eyi − ec)(eyi − ec)

⊤∆hi ≤ 4B2 · G(W ) · (∥∆∥)2 .

Finally, we verify PLL satisfies Lemma 17.

Lemma 31 (Analogue of Lemma 17 for PLL) Let W ∈ Rk×d, we have

(i) 1 ≥ Gpll(W )
Lpll(W ) ≥ 1− nLpll(W )

2

(ii) Suppose that W satisfies Lpll(W ) ≤ log 2
n or Gpll(W ) ≤ 1

2n , then Lpll(W ) ≤ 2Gpll(W ).

Proof (i) The upper bound follows by the well-known self-boundedness property of the logistic loss,
namely |f ′(t)| ≤ f(t)

To prove the upper bound, it suffices to prove for for x > 0:

x

1 + x
≥ log(1 + x)− 1

2
log2(1 + x). (28)

The general case follows by summing over xic = exp
(
−(eyi − ec)

⊤Whi
)
, i ∈ [n], c ̸= yi since

then we have

G(W ) =
∑
i∈[n]

∑
c ̸=yi

xic
1 + xic

≥
∑
i∈[n]

∑
c̸=yi

log(1 + xic)−
1

2

∑
i∈[n]

∑
c ̸=yi

log2(1 + xic)

≥
∑
i∈[n]

∑
c̸=yi

log(1 + xic)−
1

2

∑
i∈[n]

∑
c ̸=yi

log(1 + xic)

2

,

where the last line used log(1 + xic) ≥ 0. For (16), let a = log(1 + x) > 0. The inequality becomes
e−a ≤ 1− a+ a2/2, which holds for a > 0 by the second-order Taylor expansion of e−a around 0.

(ii) Denote L := Lpll and G := Gpll. Given L ≤ log(2)
n ≤ 1

n , we have 1 − nL
2 ≥

1
2 , then the

first part follows from (i). For the second part, denote lic := (eyi − ec)
⊤Whi, i ∈ [n], c ̸= yi. For

L ≤ 2G to hold, it is sufficient to show that log(1 + e−lic) ≤ 2 e−lic

1+e−lic
for all i ∈ [n], c ̸= yi. This

holds true when lic ≥ −1.366, which is clearly satisfied given the assumption G ≤ 1
2n implying

lic ≥ 0.
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Lemma 32 (Analogue of Lemma 19 for PLL) For any ψ ∈ [0, 1], we have the following:

Gpll(W − ψη∆)

Gpll(W )
≤ e2Bψ∥△W ∥ + 2

Proof For logistic loss f(z) = log(1 + e−z), for any z1, z2 ∈ R, we have the following∣∣ f ′(z1)
f ′(z2)

∣∣=∣∣ 1 + ez2

1 + ez1

∣∣ =∣∣ 1 + ez2 − ez1 + ez1

1 + ez1

∣∣
=
∣∣ ez2 − ez1

1 + ez1
+ 1

∣∣≤∣∣ ez2 − ez1
1 + ez1

∣∣ +1

≤
∣∣ ez2−z1 − 1

∣∣ +1

≤ e|z2−z1| + 2.

Denote xWic := (eyi − ec)
TWhi and xW

′
ic := (eyi − ec)

T (W −ψη∆)hi, then we have for i ∈ [n],
c ̸= yi

f ′(xW
′

ic )

f ′(xWic )
= |f

′(xW
′

ic )

f ′(xWic )
| ≤ e|xWic −xW ′

ic | + 2 = eψη|(ec−eyi )
T∆hi| + 2 = eψη|⟨∆,(ec−eyi )h

T
i ⟩| + 2

≤ eψη∥∆∥max∥(ec−eyi )h
T
i ∥sum + 2

= eψη∥∆∥max∥ec−eyi∥sum∥hi∥sum + 2

≤ e2Bψη∥∆∥max + 2.

This leads to
∑

i∈[n]
∑

c ̸=yi f
′(xW

′
ic ) ≤ (e2Bψ∥∆W ∥max + 2)

∑
i∈[n]

∑
c̸=yi

f ′(xWic ). Rearrange and
using the definition of Gpll(W ) and relationships in (6), we obtain the desired.

Lemma 33 (Analogue of Lemma 18 for PLL) Suppose that there exists W ∈ Rk×d such that
Lpll(W ) ≤ log 2

n , then we have

(eyi − ec)
TWhi ≥ 0, for all i ∈ [n] and for all c ∈ [k] such that c ̸= yi. (29)

Proof Denote xic = (eyi − ec)
TWhi. Then, by the assumption, we have for any i ∈ [n], c ̸= yi

log(1 + e−xic) ≤
∑
i∈[n]

∑
c̸=yi

log(1 + e−xic) ≤ log(2).

This implies that xic ≥ 0 for all i ∈ [n], c ̸= yi.

Lemma 34 (Analogue of Lemma 16 for PLL) For any W ,W0 ∈ Rk×d, suppose that L(W ) is
convex, we have

|Lpll(W )− Lpll(W0)| ≤ 2B∥W −W0∥.

Proof This lemma is a direct consequence of Lemma 30 and can be proved in the same way as
Lemma 16.

Thus, we have proved all the Lemmas for Gpll(W ) and its relationships to Lpll(W ) in analogous
to those in section E. The proof of NSD ((2)) with PairLogLoss follow the same steps as with
cross-entropy loss given in section F.
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