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1.	Introduction	
				The	 longstanding	 goal	 of	 performing	 quantitative	
molecular	 dynamics	 simulations	 based	 solely	 on	
nuclear	 charges	 and	 electron	 numbers	 remains	
unfulfilled	despite	significant	scientific	progress.	Most	
existing	 methods	 involve	 trade-offs	 in	 efficiency,	
accuracy,	 scalability,	 or	 transferability	 (EAST)	 [1].	
While	recent	developments	in	machine-learned	force	
fields	 (MLFFs)	 offer	 promising	 solutions,	 challenges	
such	 as	 limited	 scalability,	 incomplete	 treatment	 of	
long-range	 interactions,	 and	 insufficient	 dataset	
coverage	persist	[2].		
				In	this	work,	we	introduce	SO3LR	[3],	a	pretrained	
MLFF	 that	 integrates	 semi-local	 many-body	
interactions	 from	 SO3krates	 [4]	 with	 physically	
grounded	short-range	repulsion,	electrostatics,	and	a	
universal	 van	 der	 Waals	 dispersion	 potential	 [5]	
(Fig.		1A).	We	demonstrate	the	applicability	of	SO3LR	
in	nanosecond-long	simulations	of	units	of	four	major	
biomolecule	 types,	 polyalanine	 systems,	 bulk	 water,	
crambin	 protein,	 N-linked	 glycoprotein,	 and	 a	 lipid	
bilayer	(Fig.		1B).	SO3LR	can	be	scaled	to	simulations	
involving	 up	 to	 ~200k	 atoms,	 with	 a	 latency	 of	
~3	µs/atom/step	 on	 a	 single	 H100	 GPU,	 thus	
approaching	sizes	and	timescales	relevant	for	realistic	
biomolecules.	
	

	
Fig.	1:	Overview	of	the	SO3LR	model	and	simulation	results. 
(A)	 SO3LR	 combines	 the	 SO3krates	 neural	 network	 with	
physically	 inspired	 interactions	 that	 interact	 directly	with	
the	 neural	 network	 model.	 All	 building	 blocks	 are	 jointly	
trained	on	a	carefully	curated	dataset	of	4M	fragments	that	
covers	 a	 broad	 range	 of	 chemical	 space	 and	 interaction	
classes.	 (B)	 SO3LR	 enables	 simulations	 of	 small	
biomolecular	units	of	all	 four	major	types	of	biomolecules,	
and	large-scale	simulations	of	three	types.	
	
	
	

2.	Results	
				The	 dataset,	 architecture,	 and	 training	 details,	 as	
well	 as	 extended	 static	 benchmarks	 and	 simulation	
results	 are	 detailed	 in	 Ref.	 [3].	 In	 this	 abstract,	 we	
focus	 on	 evaluating	 the	 performance	 of	 the	 SO3LR	
long-range	 modules	 and	 the	 folding	 of	 extended	
polyalanine	AcAla15NMe	in	the	gas	phase.	
	
2.1	Performance	of	long-range	modules	
				To	 assess	 electrostatic	 interaction	 quality,	 we	
benchmarked	 partial	 charge	 prediction	 using	 the	
QM7b	 and	 AlphaML	 datasets,	 computed	 at	 the	 LR-
CCSD/d-aug-cc-pVDZ	level	[6].	SO3LR	predicts	dipole	
moments	with	mean	absolute	errors	(MAEs)	of	0.13	D	
in	magnitude	and	5.1°	in	angle	(Fig.	2A).	AlphaML	is	a	
more	 challenging	 benchmark	 that	 spans	 diverse	
chemistries,	 including	 nucleobases,	 amino	 acids,	
carbohydrates,	 drugs,	 and	 hydrocarbons.	 SO3LR	
achieves	 a	 MAE	 of	 0.14	 D	 on	 this	 dataset	 (Fig.	2A),	
demonstrating	 accurate	 and	 transferable	 dipole	
moment	predictions.		
				To	evaluate	overall	noncovalent	interaction	energy	
predictions,	 we	 used	 the	 SAPT10k	 benchmark,	
computed	 at	 the	 SAPT2+(3)(CCD)/aug-cc-pVTZ	
level	[7].	 It	 consists	 of	 70	 subsets,	 featuring	
challenging	 dimer	 binding	 motifs	 dominated	 by	
electrostatics	and/or	dispersion	interactions,	offering	
substantial	diversity	across	chemical	space.	The	model	
achieves	 sub-chemical	 accuracy	 with	 a	 MAE	 of	
0.89	kcal/mol	(Fig.	2B).	Rare	outliers	include	ClO₄⁻–π,	
NO₃⁻–π,	and	SO₂–π	complexes.	This	 is	an	 impressive	
performance	overall,	particularly	given	that	part	of	the	
error	arises	from	the	PBE0+MBD	reference	data.	
	

	
Fig.	2:	(A)	Evaluation	of	SO3LR	on	dipole	moment	prediction	
for	7k	QM7b	molecules	and	AlphaML	showcase	database	[6].	
(B)	 Performance	 of	 the	 model	 evaluated	 on	 the	 unseen	
SAPT10k	 dataset	 [7],	 separated	 into	 neutral	 and	 charged	
subsets.		
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2.1	Folding	of	polyalanine	
				The	 folding	 of	 polyalanine	 presents	 a	 significant	
challenge	 due	 to	 the	 delicate	 balance	 of	 hydrogen	
bonding,	 polarization,	 and	 dispersion	 interactions.	
Previous	 attempts	 to	 simulate	 them	 without	
incorporating	top-down	fragments	using	MLFFs	either	
failed	 to	 correctly	 fold	AcAla15NMe	or	overstabilized	
the	α-helix	[8,	9].	
	

	
Fig.	3:	Secondary	structural	motifs	observed	along	a	typical	
folding	trajectory	of	AcAla15NMe	at	300	K	in	gas	phase.		
	
				We	 performed	 four	 500-ps	 runs.	 The	 extended	
AcAla15NMe	 structure	 folded	 in	 all	 cases	 (Fig.	 3).	
Initially,	the	peptide	primarily	consists	of	turns,	then	
passes	through	a	'wavy'	intermediate,	and	finally	folds	
into	a	helical	form	with	dynamic	transitions	between	
α-	 and	 3₁₀-helices.	 The	 latter	 is	 particularly	
noteworthy,	 as	 empirical	 force	 fields	 tend	 to	
overestimate	the	stability	of	α-helices	[10].	This	result	
underscores	 the	 capability	 of	 our	 approach	 to	
accurately	capture	complex	conformational	dynamics	
driven	by	subtle	long-range	interactions.	
	
3.	Outlook	
				Key	areas	for	enhancing	the	SO3LR	model	 include:	
(i)	 expanding	 the	 DFT+MBD	 training	 sets	 to	
encompass	 a	 broader	 spectrum	 of	 (bio)chemical	
entities,	 such	 as	 ions,	 sugars,	 lipids,	 DNA,	
supramolecules,	 and	 a	 variety	 of	 solvents,	 (ii)	
generating	 higher-level	 coupled	 cluster	 or	 quantum	
Monte	Carlo	reference	data	 for	small	 fragments,	 (iii)	
refining	long-range	interaction	modules	to	effectively	
account	 for	 anisotropic	many-body	 interactions,	 (iv)	
optimizing	SO3LR	for	multi-GPU	architectures,	and	(v)	
extending	 simulations	 to	 treat	 nuclear	 quantum	
effects	 beyond	 classical	 Newtonian	 molecular	
dynamics.	 This	 is	 a	 non-exhaustive	 list	 of	 research	
directions,	all	of	which	are	subject	of	ongoing	efforts	in	
the	community.	
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