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Abstract
We show that offline actor-critic reinforcement
learning can scale to large models – such as trans-
formers – and follows similar scaling laws as su-
pervised learning. We find that offline actor-critic
algorithms can outperform strong, supervised, be-
havioral cloning baselines for multi-task training
on a large dataset; containing both sub-optimal
and expert behavior on 132 continuous control
tasks. We introduce a Perceiver-based actor-
critic model and elucidate the key features needed
to make offline RL work with self- and cross-
attention modules. Overall, we find that: i) simple
offline actor critic algorithms are a natural choice
for gradually moving away from the currently pre-
dominant paradigm of behavioral cloning, and ii)
via offline RL it is possible to learn multi-task poli-
cies that master many domains simultaneously,
including real robotics tasks, from sub-optimal
demonstrations or self-generated data.

1. Introduction
In recent years, scaling both model and dataset sizes has led
to multiple breakthroughs in machine learning. In particular,
generative pre-training of large (vision-)language models
on web-scale data is now the standard way to solve many
language and vision tasks (OpenAI, 2023; Alayrac et al.,
2022) and generative models of images and music have,
in the last years, reached unprecedented quality (Rombach
et al., 2021; Kang et al., 2023).

Recent work on scaling up policy learning for control has
shown that, when similar model architectures are used (e.g.
transformers), supervised behaviour cloning (BC) from
large datasets can lead to surprisingly capable multi-task
policies (Reed et al., 2022; Bousmalis et al., 2023; Bro-
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han et al., 2022; Octo Model Team et al., 2023). Although
impressive, these examples come with the drawback that
high-quality (’expert’ demonstration) data is needed for
training. While such high quality data is readily available
for language and vision domains via the internet, in robotics
(and other real world domains) expert data is scarce and
expensive to obtain – and in many cases not available in
the first place. It is thus desirable to use different training
methods, such as reinforcement learning (RL), that can uti-
lize sub-optimal data or data generated without a human in
the loop, i.e. generated by an agent, – which can be more
readily available – while retaining scaling benefits.

However, training large behaviour models via offline RL
methods1 is a largely unexplored area of research. While
first explorations of applying pure Q-learning on larger
multi-task datasets exist (Kumar et al., 2022a; Chebotar
et al., 2023) they either consider non-transformer models
of moderate size (Kumar et al., 2022a) or adapt relatively
small models and incur significant computational overhead
during training (Chebotar et al., 2023). What is missing
is a clear recipe detailing how to scale offline RL to large
transformers accompanied by an efficient model.

In this work we provide such a recipe and introduce the
Perceiver-Actor-Critic (PAC) approach outlined in Figure 1.
We show that a specific class of offline RL algorithms (offline
actor-critic methods) can indeed scale to large models and
datasets without incurring a large additional computational
cost. In addition we etablish, for the first time, that offline
RL follows similar scaling laws to those observed in the
supervised learning regime (Henighan et al., 2020; Kaplan
et al., 2020). We further establish that this class of methods
is ideally suited for slowly moving away from supervised
BC towards RL during training, allowing us to run large
and expensive experiments without fear of instability and to
adapt our method depending on the quality of the data.

We introduce a simple offline actor-critic algorithm that op-
timises a KL-regularized RL objective and can be seen as a
simplified variant of MPO/DIME (Abdolmaleki et al., 2018;

1This is in contrast to online RL of transformer models which
is often applied when large language models are fine-tuned with
RLHF, but is prohibitively expensive in real-world settings.
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Figure 1. PAC is a scalable neural architecture for continuous control able to smoothly interpolate between BC and offline RL. The
system design enables training on heterogenous, multi-modal data of varying quality. We demonstrate that our system achieves higher
performance than BC across a series of model scales. The method also enables a seamless transition into offline and online RL finetuning
for fast adaptation and mastery of control tasks.

2022). We find that regularizing the policy towards the data
distribution (via BC) is sufficient to stabilize offline RL for
large models and also allows convenient interpolation be-
tween BC and RL. We additionally introduce architectural
advances which enable training with RL at scale. E.g. incor-
porating the action into the Q-function via cross-attention
(allowing fast estimation of Q-values for multiple actions)
and incorporating a large number of inputs via Perceiver-
style cross-attention to learned latent variables; enabling
training with many inputs of different modalities (text, pro-
prioception, vision) while enabling inference of a large 1B
parameter model at 20Hz on a local machine.

PAC outperforms BC on a number of benchmarks in con-
tinuous control, including outperforming Gato (Reed et al.,
2022) on Control Suite (Tunyasuvunakool et al., 2020) tasks
and recovers expert performance from heterogeneous data
in a real robot benchmark. This establishes that RL should
be considered a viable alternative to BC for large policies.
Videos of our agent can be found at https://sites.
google.com/view/perceiver-actor-critic .

2. Background and Related Work
Supervised Generalist Agents Several recent works have
trained large transformer-based (Vaswani et al., 2017) gen-
eralist agents via BC by building on previous works in
which control tasks were transformed into sequence pre-
diction problems (Chen et al., 2021; Janner et al., 2021).
Gato (Reed et al., 2022) for example, was trained on tasks
ranging from Atari games to robotics manipulation. Sub-
sequently, large generalist robotics agents (Brohan et al.,
2022; Bousmalis et al., 2023; Zitkovich et al., 2023) have
been trained on large datasets with multiple tasks, object
sets and embodiments, and have been shown to generalize
to new tasks and domains after fine-tuning (Bousmalis et al.,
2023; Open X-Embodiment Collaboration, 2023). Perceiver-
based networks with cross-attention (Jaegle et al., 2021)

have also been applied to robotics to minimize computa-
tional demands when handling voxel observations (Shridhar
et al., 2023; Ze et al., 2023). Finally, Octo Model Team et al.
(2023) used multi-headed attention to predict outputs in a
similar way to the cross-attention in our system.

Offline RL Offline RL methods (Levine et al., 2020;
Lange et al., 2012) learn from fixed datasets without on-
line exploration. Unlike supervised algorithms, they can
learn from suboptimal trajectories and thus more data. How-
ever, they are at risk of issues like overoptimism for unseen
state-action pairs. This is often addressed by regularizing the
policy to stay close to the data (Peng et al., 2019; Wang et al.,
2020; Fujimoto et al., 2019; Wu et al., 2019). Like prior
work (Abdolmaleki et al., 2022; Fujimoto & Gu, 2021),
we combine a BC regularization term with an off-policy
RL method. Other offline RL methods penalize the value
function (Kumar et al., 2020) or prevent value propagation
(Kostrikov et al., 2021) for unseen state-action pairs. While
most offline RL works use relatively small benchmarks,
recent ones have tackled challenging multi-task problems
(Kumar et al., 2022a) and pre-trained robotics generalists
that can be fine-tuned to new tasks (Kumar et al., 2022b).
However, to our knowledge, only the recent Q-Transformer
(Chebotar et al., 2023) provides an example of a transformer
trained with offline RL on larger datasets, albeit with a rela-
tively small model. Our actor-critic-based approach is more
naturally suited for extending BC-based methods and less
computationally demanding. This allows us to explore much
larger models and perform a scaling law analysis.

Scaling Law Analysis Our scaling law analysis mirrors
analyses of large language models for which several studies
have shown smooth power-law relations between model
size and performance (Kaplan et al., 2020; Hoffmann et al.,
2022; Henighan et al., 2020). Some recent works have also
investigated scaling behavior of neural networks for online
RL (Neumann & Gros, 2022; Hilton et al., 2023) albeit
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with relatively small (<40M parameter) models. Lee et al.
(2022) analyzed how performance scaled with the number
of parameters of Decision Transformer (Chen et al., 2021)
style networks and includes plots for a CQL (Kumar et al.,
2020) offline RL baseline for models up to 200M parameters
finding no favourable scaling. In contrast, we find scaling to
work for actor-critic methods and provide a thorough scaling
law analysis. Concurrent work also shows promising scaling
behavior of model-based RL methods (Hansen et al., 2023)
for models up to 300M parameters.

3. Scalable Offline Actor-Critic Learning
We scale up offline actor-critic methods to large models. To
achieve this, we adapt methods from the offline RL literature
and present our proposed algorithm in Section 3.2. We adapt
a Perceiver-IO (Jaegle et al., 2022) architecture to the actor-
critic setting and present our model in Section 3.3.

3.1. Background and Notation

We consider learning in a multi-task Markov decision pro-
cess (MDP), where at each time step t the agent selects an
action at ∈ A for its current state st ∈ S, receives a reward
rt+1 = R(st, at, τ) ∈ R specific to the task τ ∈ T and tran-
sits to the next state st+1 ∼ p(⋅∣st, at). We use the term state
and multimodal observations interchangably, although the
true environment state is often not fully observable.

An RL algorithm seeks to find a policy π(at∣st, τ)
that maximizes the per-task discounted cumulative re-
turn Epπ

[∑
∞
t=0 γ

tR(st, at, τ)] under the trajectory distri-
bution pπ induced by the policy π. The Q-function,
the V-function and the advantage function are defined as:
Qπ(st, at, τ) = Epπ,sk=st,ak=at

[∑
∞
k=t γ

k−tR(sk, ak, τ)],
V π(st, τ) = Eat∼π(⋅∣st,τ) [Q

π(st, at, τ)], Aπ(st, at, τ) =
Qπ(st, at, τ)−V

π(st, τ). We assume the availability of an
offline dataset D = {(st, at, st+1, τ)}, generated by follow-
ing a behavior policy b(at∣st, τ), and access to either the
reward function R or reward annotations.

We also make use of behaviour cloning (BC) terms
for training which can be formalized as minimizing
E(st,τ)∈DDKL[b, π∣st, τ] = −ED logπ(at∣st, τ)+KBC be-
tween the behavior policy b that generated the dataset and
the learned policy π (KBC is a constant offset).

3.2. Offline KL-Regularized Actor-Critic

We target a KL-regularized RL objective, where the goal is
to find a policy πimp that improves over a reference policy π̃
via πimp = argmaxπ J(π) where J(π) is given as:

J(π) = E
(st,τ)∈D

[ E
at∼π
[Qπ
(st, at, τ)] − ηDKL [π, π̃∣st, τ]]

(1)

where η is a hyperparameter determining the strength of the
regularization towards the reference policy π̃. The solution
to this maximization problem is given as (see Appendix A.1
for derivation):

πimp(at∣st, τ)∝ exp(Q
πimp(st,at,τ)/η)π̃(at∣st, τ),

∝ exp(A
πimp(st,at,τ)/η)π̃(at∣st, τ).

(2)

This observation allows us to transform the RL problem of
finding an optimal policy into a weighted supervised learn-
ing problem (cf. Abdolmaleki et al. (2018)). Assuming ac-
cess to an estimate of Qπimp or Aπimp , we can fit a parametric
policy πθ by minimizing its divergence DKL[πimp, πθ ∣st, τ]
to πimp using a sample based estimate. Turning the policy
optimisation problem into an instance of supervised learn-
ing has the major benefit that it is easy to trade-off the policy
optimisation objective with a behavior cloning term, since
all loss terms will be (weighted) negative log likelihoods.

Different choices for estimating Qπimp or Aπimp as well as the
reference policy π̃ lead to different algorithmic variants. We
will concentrate on a Q-function based variant in the main
paper but describe a state-value function (V-function) based
variant in the appendix; which has similar scaling benefits.

We train the policy πθ together with an estimate Qθ ≈

Qπθ ≈ Qπimp of the state-action value function. To bal-
ance losses, we employ tools from the distributional rein-
forcement learning literature (Bellemare et al., 2017) which
transform the problem of learning Qθ into minimizing the
negative log likelihood of a discretized Q-function distri-
bution pθ(q∣st, at, τ). Using the distributional TD operator
(Bellemare et al., 2017) we can compute a sample-based
target Q-distribution Γθ′(q∣st, at, τ) (see Appendix A.2)
where θ′ are the parameters of a target network which is pe-
riodically updated to a time-lagged version of θ. The same
target parameters also give rise to a target policy πθ′ which
we use as the reference policy in Equation (2), i.e. π̃ = πθ′ .
Combining the policy loss, a BC loss, and the KL-based
Q-value loss yields a total loss containing three KL terms:

LQ
(θ) = E

D
[(1 − α)DKL[πimp, πθ ∣st, τ, π̃ = πθ′]

+ αDKL[b, πθ ∣st, τ]

+ βDKL[Γθ′(q∣st, at, τ), pθ(q∣st, at, τ)]]

= −E
D
[(1 − α) E

a′∼πθ′
[w(a′, st, τ) logπθ(a

′
∣st, τ)]

+ α logπθ(at∣st, τ)

+ β E
q∼Γθ′

log pθ(q∣st, at, τ)] +KH ,

(3)
where w(a′, st, τ) =

exp(Qθ(st,a′,τ)/η)
Ea′∼πθ′ [exp(Qθ′ (st,a

′,τ)/η)] and KH

is a constant entropy related offset independent of θ.
The expectation over the data is estimated by sampling
(st, at, st+1, τ) ∈ D, the expectation over action samples

3
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Figure 2. High-level PAC model architecture. Modality-specific encoders transform proprioceptive (P), visual (V), and language (L)
inputs into embedding vectors eI , which are cross-attended by learnable latent queries z0. This is followed by a series of self-attention
blocks to yield the latent encoding zM , which is then queried via additional cross-attention modules to decode the desired outputs. The
policy decoder employs a learnable query qπ to cross-attend zM and outputs the logits of action distributions. The Q-value decoder
employs a query qQ based on the encoded actions to cross-attend zM and outputs the action-specific logits of the distributional Q-function.

from πθ′ is estimated based on N = 10 samples and the
expectation Eq∼Γθ′ can be evaluated analytically. Finally α
and β are multipliers trading off different loss components
(which are relatively easy to set due to all losses correspond-
ing to weighted categorical log likelihoods). We refer to
Appendix A.2 for a step-by-step derivation.

Notably, aside from the KL towards the improved policy
πimp, Equation (3) also includes a KL towards the behaviour
policy b. This additional regularization is necessary to pre-
vent πθ from converging to action samples that have high Q-
values but are far away from those observed in the data (and
are thus at the risk of being overestimated); a common issue
in offline RL with Q-functions (Levine et al., 2020). The
additional BC term prevents this, following prior examples
for using a BC loss as a simple regularisation technique in
offline RL (Abdolmaleki et al., 2022; Fujimoto & Gu, 2021).
We find that this is the only term needed to stabilize learning.
In addition, it gives us a natural way for moving away from
learning via pure behavioral cloning (α = 1) towards pure
policy optimisation against the learned Q-function (α = 0).
This also allows us to perform expensive training runs of
large models with confidence since we can set α to a larger
value such that the policy stays close to BC, guaranteeing
stable training, and can reduce it later during fine-tuning.

3.3. Scalable Architecture for Actor-Critic Learning

With the proposed offline actor-critic algorithm, we now de-
scribe how πθ and Qθ are instantiated with scalable network
architectures. In particular, we aim for an architecture that
is flexible enough to incorporate different modalities of state

observations and task descriptions as well as various action
specifications, while also being computationally efficient
for consuming high-dimensional inputs during learning and
at inference time (to enable 20Hz control of real robots).
In this section, we describe how we adopt a Perceiver-IO
architecture (Jaegle et al., 2021) to achieve the above. The
model is depicted in Figure 2.

Observation Encoding Given multimodal inputs, in par-
ticular proprioceptive and visual observations st = (sPt , s

V
t )

along with visual and language task descriptions τ =
τV , τL), our model first deploys one encoder (ϕ) per
modality to encode the inputs into embedding vectors:
eI = ϕP (sPt ) ⊕ ϕV (sVt ) ⊕ ϕV (τV ) ⊕ ϕL(τL) ∈ RN×DI ,
with N and DI denoting the number and dimensionality
of the embedding vectors. Details of each modality en-
coder are provided in Appendix B.2. For the proprioception
encoder ϕP we propose a novel multi-scale normalizer to
account for arbitrary input scales and provide further de-
tails and ablations on this encoder choice in Appendices B.1
and D.2.1. We highlight that our model uses task descrip-
tions of different modalities (text and vision) and we analyse
this multimodal task conditioning in Appendix D.2.4.

Transformer on Latent Space At this point, the com-
monly adopted approach would be to feed the embedding
sequence eI ∈ RN×DI directly into a transformer consisting
of multiple stacked self-attention blocks. However, for the
domains we consider, the input sequence length amounts
to thousands of tokens for a single time step. As the com-
putational complexity and memory usage of self-attention
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scales quadratically with the sequence length, this common
treatment potentially hinders the learned controller from
being applicable to real robotic systems that impose real-
time constraints. To address this, we adopt the methodology
from the perceiver model (Jaegle et al., 2021). Specifically,
a cross-attention block is placed at the front-end of the net-
work in which the input sequence of embeddings eI are
queried by NZ trainable latent vectors each of size DZ :
z ∈ RNZ×DZ , which outputs latent embeddings z0. This
is followed by M self-attention operations on the latents
which finally yield zM ∈ RNZ×DZ . Since the number of
latent vectors is typically much smaller than the input se-
quence length (NZ ≪ N ) and the self-attention operation
is shifted from the input embeddings to the latent vectors,
this effectively reduces the computation and memory us-
age to O(NZ

2
). We provide more details on the perceiver

backbone in Appendix B.3.

Policy and Value Decoding To implement an actor-critic
algorithm, the model needs to output both a Q-value es-
timate and an action prediction. While the action predic-
tion ât can be directly modeled as a function of the inputs
(st, τ) which are encoded into eI and thus zM , the value
estimate Qθ(st, at, τ) also depends on the action at which
is not encoded in zM . To obtain the two types of outputs
we cross-attend the latent embeddings zM with dedicated
queries. While the queries for the policy are learned vectors,
the Q-value queries are computed by encoding the action
at ∈ RNA

via our multi-scale normalizer. This has the ad-
vantage that the model is less prone to ignoring the action
compared to when the action would be presented as an input
(a common problem when learning Q-values). It also allows
efficient evaluation of the Q-function for multiple action
samples via caching of the action-independent latent zM .
We provide more details in Appendix B.4 and ablate the
importance of the cross-attention for Q-value prediction in
Appendix D.2.2.

4. Experiments
We present three sets of experiments investigating different
aspects of PAC. Section 4.1 analyzes whether PAC follows
scaling laws similar to established supervised learning set-
tings. Section 4.2 compares PAC’s performance after large-
scale training with the RL objective to different BC base-
lines across over 100 continuous control tasks. Finally, Sec-
tion 4.3 studies how PAC can be finetuned by leveraging
its Q-function to hone in on a real robot task and further
improve its performance using self-generated data.

We use a large dataset throughout all experiments which
combines tasks from three different sources: Gato
data (Reed et al., 2022) consist of records of an RL agent
solving 32 simulation tasks in Control Suite (Tunyasuvu-

nakool et al., 2020). RoboCat data (Bousmalis et al., 2023)
operates on the RGB Stacking benchmark (Lee et al., 2021)
using RL in simulation to build pyramid and tower struc-
tures using a 7-DoF Panda robot. It also contains an Inser-
tion task featuring teleoperated simulation data of the same
robot inserting differently sized gears onto pegs. Lastly,
CHEF (Lampe et al., 2023) data contains simulated and
real-world records of a 5-DoF Sawyer robot stacking two
objects in the RGB Stacking benchmark using an RL algo-
rithm. For all episodes in our dataset, a short language
instruction describing the task is added to each frame,
e.g. humamoid.run or panda.sim.pyramid, which
serves as a unique goal instruction to differentiate between
the different tasks. For all RoboCat tasks an additional goal
image is provided as the goal instruciton. We again empha-
size that our model can handle both language and visual goal
descriptions (where present) and refer to Appendix D.2.4
for details about the goal conditioning. In total, our data
mix consists of 3.64M episodes across 102 simulated and
30 real continuous control tasks which equates to approxi-
mately 2.45T tokens for model training (cf. Appendices C.3
and C.4).

4.1. Scaling Analysis for Offline RL Objectives

A central part of our investigation is to understand the inter-
action between offline actor-critic algorithms and scalable
neural network architectures that use (self-)attention. When
trained with supervised objectives, such as next-token pre-
diction, architectures of this type usually follow scaling
laws (Kaplan et al., 2020), i.e. for all performance-optimal
models the number of tokens consumed and the number of
model parameters used follow power-laws in the number of
FLOPs spent. However, it has so far been unclear whether
these scaling laws also extend to RL. To investigate this
relationship, we adopt the methodology from Hoffmann
et al. (2022) (also known as ‘Chinchilla scaling laws’) and
apply it to PAC. We define five different model scales (XXS,
XS, S, M and L) ranging from 32M to 988M parameters to
study the scaling behavior of PAC and report the full model
architecture hyper-parameters in Appendix C.1.

To conduct our analysis, we train PAC across the different
scales with two different values of α for the BC/RL trade-off.
Setting α = 1.0 results in a BC objective for the policy and
constitutes our baseline BC+Q2 while PAC performs offline
RL with α = 0.75. With a batch size of 512 trajectories of
length five, one epoch of our data mix takes approximately
2.7M steps. Therefore we train each model for 3M updates
to stay in a single-epoch regime.

Following Kaplan et al. (2020); Hoffmann et al. (2022),
the power laws between compute operations C, number of

2Using a Q-value loss term with β > 0 never decreased the
performance in our BC experiments; we keep it for comparability.
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Figure 3. Scaling laws based on the return profile envelope for PAC. We select 100 logarithmically spaced points between 5E+18 and
5E+20 FLOPs on the envelope of the return profiles (left) and use them to fit the scaling laws (middle, right). For both the token and
parameter scaling plots, we indicate the scaling trend with a dashed red line. The dashed green line represents the optimal number of
parameters and compute budget needed to fit the data in one epoch of training. The dashed teal line represents the optimal data and
parameter trade-off for a FLOP budget of 1E+21.

tokens D and number of parameters N for performance-
optimal models of the family are:

N(C) = N0 ∗C
a, D(C) =D0 ∗C

b. (4)

Normally, the coefficients a and b are fitted using compute-
optimal model checkpoints along the loss envelope of the
different training runs for different compute budgets. How-
ever, we observe that the training loss is not a reliable indica-
tor for model performance in our setting (cf. Appendix E.3).
We therefore use an approximation of the average episode
return as a means to select the best performing model for
each compute budget from the respective model family. To
extrapolate from average returns we fit a logistic function to
regress the training steps against average return across all
tasks, normalized in [0,1] (cf. Appendix E.1) to obtain a
return profile for each model. We plot the return profiles for
the PAC family against FLOPs in the left column of Figure 3
and use them to select 100 points on the profiles’ envelopes
to fit the scaling laws of Equation (4). Scaling plots for all
model families are presented in Figure 12 in the Appendix.

The scaling laws are different for the BC and offline RL
settings. When we constrain the data budget to a sin-
gle epoch, i.e. 2.45T tokens, the fits suggest to train a
1.33B parameter model in the BC+Q case whereas in the
case of PAC a smaller model of only 954M parameters
is suggested. This is consistent with our observation that
the L-size of PAC with 988M parameters performs best
which is close to the predicted optimality point while
the BC+Q model likely would benefit from being scaled
up further. Data-wise, BC+Q and PAC scale nearly the
same (b(PAC) ≈ b(BC+Q) ≈ 0.266). However, the RL
objective seems to benefit more from additional param-
eters as the compute budget increases compared to BC
(a(PAC) = 0.920 > a(BC+Q) = 0.828) suggesting that the
capacity needed for the Q-function is larger (though as we

will see the Q-function can learn from lower quality data).

Another way to compare the scaling behaviors between the
BC and offline RL objectives is through the lens of the
Iso-Return contours (analogous to the Iso-Loss landscape
of Hoffmann et al. (2022)) as presented in Figure 4. The
Iso-Return landscape projects the return vs. FLOPs from
the return profiles into the parameters vs. FLOPs space and
indicates the average return via the color gradient. We draw
Isolines between the data points observed during model
evaluation to survey the return landscape of the two model
families. The Isolines of PAC are drawn solid, the ones
of BC+Q are dashed. We also plot the parameter scaling
laws for both model families in red over the landscape to
indicate the direction of ‘optimal scaling’ for both families,
also called the ‘efficient frontier’ (Hoffmann et al., 2022).
In this direction, the return landscape for both is likely to
incline. Comparing the Isolines between both families, we
observe that the RL objective shifts all return plateaus to
the top left compared to the BC baseline. This suggests that
the RL objective can use additional parameters and training
FLOPs increasingly more effectively compared to a pure
BC objective and scales better with increased compute.

4.2. Large-scale Offline Actor-Critic Learning

The scaling analysis above suggests that PAC’s offline RL
outperforms a BC objective when scaled up. We now inves-
tigate whether this still holds when comparing against two
strong BC baselines: Gato (Reed et al., 2022) and Robo-
Cat (Bousmalis et al., 2023). The pre-training phase of
such large models typically only uses a BC objective to
ensure ‘safe’ optimization and reduce the risk of divergence
for these costly training runs. However, if an offline RL
objective could be used safely, this would allow using sub-
optimal data from the start and further enhance subsequent
self-improvement (since a Q-function is available).
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Table 1. Policy success rates across #(T ) tasks in each domain for 100 evaluations per task. The average success rate in the training data
is reported as pD . For Gato:Control, the percentage of achieved expert average reward and the standard-error-based 95% CIs are reported.
For all other domains, the average success rates and their corresponding Wilson score intervals for αW = 0.05 are reported. Best results
(within CI of the best mean) in each row are bold. [† cited from Reed et al. (2022); ★ cited from Bousmalis et al. (2023)]

Domain #(T ) pD BC (Gato† / RC★) FilteredBC BC+Q PAC α-PAC
Gato:Control 32 N/A 63.6† 75.8 [62.5, 78.6] 84.6 [79.6, 89.7] 87.7 [83.8, 91.6] 92.1 [88.4, 95.9]

RC:Tower 7 75 61.0★ [57.3, 64.5] 64.0 [60.4, 67.5] 71.3 [67.8, 74.5] 69.3 [65.8, 72.6] 69.6 [65.9, 72.7]

RC:Pyramid 30 75 64.5★ [62.8, 66.2] 64.0 [62.3, 65.7] 62.4 [60.7, 64.1] 63.5 [61.7, 65.1] 64.9 [63.1, 66.6]

RC:Insertion 3 97 71.3★ [66.0, 76.2] 81.0 [75.8, 84.7] 79.7 [74.8, 83.8] 80.3 [75.5, 84.4] 89.3 [85.0, 92.1]

CHEF:sim 1 28 N/A 17.0 [10.9, 25.5] 11.0 [6.3, 18.6] 55.0 [45.2, 64.4] 52.0 [42.3, 61.5]
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Figure 4. Iso-Return comparison of BC+Q vs PAC. The return
profile (top) contrasts the expected average return between the
BC baseline and the RL objective across all model scales. The
Iso-Return contours (bottom) depict how the reward landscape
over the parameter-FLOPs landscape shifts between using the BC
objective (dashed contours) and the RL objectives (solid contours).
The parameter scaling laws indicating the ‘efficient frontier’ for
both model families are also plotted in red as a reference for the
likely scaling progression of the return landscape.

For our comparison, we consider the following PAC-based
models: PAC (α = 0.75) our main actor-critic model;
BC+Q (α = 1, β > 0) as a baseline which also learns a Q-
function, but never leverages it for policy optimization (we

found this to always be at least as good as pure BC in pre-
liminary experiments); and FilteredBC (α = 1, β = 0)
which does not learn a Q-function and is only trained on
successful episodes of our data mix to mimic a ‘pure’ BC
setting. We also add α-PAC as our best actor-critic model
which uses a different value for the BC/RL trade-off α for
each dataset to obtain the best performance and demonstrate
that our method can be optimally tuned to deal with data of
widely varying quality in the same training mixture. More
detailed ablations on the choice of α and β are presented in
Appendix D.1. For a fair comparison to the 1.2B parameter
versions of Gato and RoboCat, we use PAC in its L-size
with about 1B parameters and train for 3M updates. All
details of the pre-training data mix and optimizer hyper-
parameters are reported in Appendix C.5. Each PAC model
is evaluated across all task families in simulation and the
results are reported in Table 1. Where available, we cite the
baseline results for Gato and RoboCat (RC) directly from
their respective papers. In general, the Q-function-based
PAC outperforms BC across tasks, confirming our hypothe-
sis that offline RL is a viable alternative for training large
models and we note that a V-function based variant also
achieves similar results (see Appendix F.1).

In more detail: On the Control Suite tasks PAC outperforms
all baseline tasks reaching 87.7% of expert performance
and α-PAC even boosts it further to 92.1%.3 It is also worth
noting that our BC baselines already outperform the Gato
results, potentially due to PAC’s improved architecture. On
the RoboCat tasks, PAC performs commensurately with all
BC baselines and outperforms prior work especially on the
more difficult Tower task achieving ≈ 70% success rate,
but the difference is less pronounced since the respective
datasets come from near expert policies (> 75% success).
The biggest difference is observed on the insertion task
where FilteredBC and BC+Q already improve ≈ 10%
over the RoboCat baseline and α-PAC yields another signif-
icant improvement to 89.3%. Finally, for the stacking task
from CHEF which has the poorest data quality – collected
form a sub-optimal policy that only achieved 28% success

3For compatibility we also use the expert performance defini-
tion of Reed et al. (2022).
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Table 2. Success rates with Wilson score intervals for αW = 0.05
for CHEF:real tasks (400 trials per task) for different objectives, as
well as for an RL finetuning run with self-generated data (RLFT).

Domain #(T ) BC+Q α-PAC α-PAC (RLFT)
CHEF: real 5 7.1 69.8 93.2

[6.1, 8.2] [67.8, 71.8] [92.0, 94.2]

– we can observe that PAC learns policies with good suc-
cess rates while all BC baseline are barely able to match
the average performance of the data collecting policy. This
highlights that our method fulfills one of the main promises
of offline RL: it can learn successful policies even from
severely sub-optimal data. We provide an additional com-
parison to a Q-transformer (Chebotar et al., 2023) baseline
(which is non-trivial to scale and does not outperform BC)
in the Appendix D.2.3. Additional ablations regarding the
architectural choices are also presented in the appendix.

4.3. RL Fine-tuning and Self-improvement

We now demonstrate how PAC’s built-in critic can be lever-
aged to transition into different finetuning scenarios and use
this to ‘master’ a target task (i.e. success rate > 90%). For
this we replicate the 5-DoF object stacking scenario of (Lee
et al., 2021) on a Rethink Sawyer arm in the real world.

Initially, we deploy different PAC models which have been
pre-trained for 3M steps on the full data mix from Sec-
tion 4.2. The best of these models (α-PAC) achieves a suc-
cess rate of 69.8% which far exceeds what is learnable from
this data with BC (see Table 2). Additionally we verify that
we can change the value of α during training, by first train-
ing with α = 1 for 3M steps (cf. BC+Q inTable 2) followed
by 3M steps with α = 0, which achieves 61.9% [60.0,63.8],
in line with the α-PAC result. That demonstrates that we
can safely transition from BC to RL at any point during the
training process.

Next, we follow the iterative improvement protocol
of Lampe et al. (2023) and collect the evaluation trials in
an additional dataset. Afterwards, we add this data to the
data mix (retaining all initial data used in previous sections)
and train the model for another ≈ 250k steps. We repeat
this process multiple times, each time adding more data.
This cycle of feeding back self-generated data to the offline
RL optimization provides a significant performance boost,
increasing the success rate in each round, until eventually
reaching a near-mastery level of 93.2%. Average scores for
each round, and the number of episodes collected for self-
improvement, are summarized in Table 3. More detailed
scores across the sub-tasks can be found in Appendix F.2.

Finally, we repeat this self-improvement experiment for all
Control Suite tasks, adding 10,000 episodes per task and
performing RL finetuning for 500k steps starting from the

Table 3. Success rates with Wilson score intervals for αW = 0.05
for CHEF:real tasks (400 trials per task) across self-improvement
iterations, as well as number of additional episodes collected for
each iteration. Rates are reported for the most challenging object
flipping task (‘set 2’), and the average across all test object sets
(#(T ) = 5).

Iteration Episodes Flipping CHEF:real
α-PAC 330k 53.5 [48.6, 58.3] 69.8 [67.8, 71.8]

RLFT #1 + 110k 66.8 [62.0, 71.2] 84.7 [83.1, 86.2]

RLFT #2 + 75k 76.2 [71.8, 80.2] 89.8 [88.4, 91.1]

RLFT #3 + 11k 91.5 [88.4, 93.9] 93.2 [92.0, 94.2]

checkpoint after three rounds of RLFT in Table 3. This
results in an increase to 94.3% [91.3,97.3], up from 92.1%
achieved by α-PAC.

The fine-tuning experiments highlight that PAC both outper-
forms BC on this challenging, low-quality data and can hill-
climb its performance towards mastery using self-generated
data – a feat that is only possible with an RL style self-
improvement loop. Interestingly, even after mastering the
CHEF:real domain, α-PAC’s performance on the other do-
mains does not decline as a side-effect (cf. Table 20 in the
Appendix). It is also worth noting that the L-sized version
of PAC runs at 20 Hz on a local Nvidia RTX 3090 GPU
during this real-robot experiment.

5. Discussion
In this work, we demonstrated that offline actor-critic meth-
ods can scale to large models of up to 1B parameters and
learn a wide variety of 132 control and robotics tasks. On
these tasks, our RL-trained models outperform strong BC
baselines, especially in the presence of sub-optimal training
data. Our finetuning experiments also showed that RL can
be effectively applied after pre-training without any model
changes, which enabled the mastery of a real robot task
improving from a 70% to a 90% success rate using RL and
autonomously collected data. The scaling analysis provides
insights into the optimal model sizes and training durations
for our datasets and indicates that the performance of offline
RL scales better with compute than pure BC. Finally, our
system allows for a gradual and stable transition between
BC and RL learning, and can process data of various modal-
ities simultaneously, while remaining efficient enough to
allow our biggest model to control a real robot at 20 Hz.

However, our work also has some limitations: First, of-
fline RL requires reward annotations, which can be costly.
Progress in the development of universal reward functions
(Du et al., 2023) or unsupervised reward labeling (Chebotar
et al., 2021) could therefore greatly broaden the applicability
of our method. Second, given the wide variety of domains
considered, we saw no strong indications of transfer across
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tasks. However, we would expect generalization to improve
with the use of datasets which have more overlap between
tasks and domains as in Zitkovich et al. (2023).

Overall, we believe our work could pave the way for training
large models via offline actor-critic methods on ever larger
datasets of robot data. Additionally, an exciting opportunity
lies in further scaling offline actor-critic learning to models
of multiple billion parameters, and combining our systems
with pre-trained VLMs, or even exploring offline actor-critic
RL as an alternative method for generative pre-training in
language models.
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In a broader sense, Perceiver-Actor-Critic shares the major-
ity of safety concerns discussed in Gato (Reed et al., 2022)
and RoboCat (Bousmalis et al., 2023). In particular, our self-
improvement loop has the same safety concerns attached to
the BC-style self improvement in Bousmalis et al. (2023).
It is worth emphasising that our improvement step is car-
ried out offline from human defined reward functions, and
no learning happens while interacting with any real world
system. Additionally, in some sense the fact that we use re-
wards to ’shape’ the behaviour of the learned policies makes
work on safety via value alignment to human preferences
(Russell, 2019; Christiano et al., 2017) more directly appli-
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Appendix
This appendix presents further details and additional experi-
ments of the proposed Perceiver-Actor-Critic (PAC) model
and is arranged as follows: Methodological details are dis-
cussed in Sections A and B, with Section A focusing on
algorithmic details to complement Section 3.2, and Section
B discussing architecture details accompanying Section 3.3.
Then further details on the experimental setups are given in
Appendix C, following which are algorithm-wise sensitivity
analysis and architecture-wise ablation studies in Section D.
Finally, additional experiments are presented in Appendix F.

A. Method Details - Algorithm
A.1. Necessary Optimality Conditions for Policy

We give a short derivation following previous work by Ab-
dolmaleki et al. (2018). The solution to Equation (1) has
to be optimal for every state s and task τ and we will thus
drop these dependencies for simplicity but add a Lagrangian
because the policy is a probability distribution:

πimp = argmax
π

J(π)

= argmax
π

E
π
Q(a) − ηDKL[π, π̃] + λ(1 −E

π
1).

(5)

We can now compute the partial derivative w.r.t. π and set it
to zero:

∂J/∂π = Q(a) − η(log(π(a)/π̃(a)) + 1) − λ = 0 ∀a
(6)

After exponentiation this can be re-arranged into:

exp(Q(a)/η) exp(1 + λ/η) = π(a)/π̃(a) (7)

Since λ is a constant and takes on the role of a normalizing
constant we can write:

π(a) ∼ exp(Q(a)/η)π̃(a) (8)

And Equation (2) can be retrieved by re-introducing the
dependencies on states s and task τ .

A.2. PAC+Q Details

Our default implementation of PAC (called PAC+Q here for
clarity) trains the policy πθ together with an estimate Qθ ≈

Qπθ ≈ Qπimp of the state-action value function. To enable us
to balance losses easily we transform the problem of learn-
ing Qθ into minimizing some negative log likelihood of a
categorical distribution. This is possible by employing tools
from the distributional reinforcement learning literature: In-
stead of parameterizing Qθ directly, we learn a discretized
representation: a categorical distribution pθ(q∣st, at, τ) over
binned values q ∈ {qmin, qmin + ϵ, qmin + 2ϵ, . . . , qmax} with
bin size ϵ, giving rise to the Q-value Qθ(st, at, τ) = Epθ

q.

We use the definition of the distributional TD operator4

following Bellemare et al. (2017) to compute a target Q-
distribution as:

Γθ(q ∣ st, at, τ) =

E
st+1

E
a′∼

πθ(⋅∣st+1,τ)

E
q′∼

pθ(⋅∣st+1,a′,τ)

[1[qt−ϵ/2,qt+ϵ/2](rt + γq
′
)], (9)

where the indicator function 1 is used to map the probability
mass of the transformed Q-value to the nearest target bin.
We can now compute the KL-divergence of our estimate
against this target

DKL[Γθ′(q∣st, at, τ), pθ(q∣st, at, τ)], (10)

based on transitions (st, at, st+1, τ) ∈ D and where θ′ refers
to the parameters of a target network which we periodically
update to a time-lagged version of model parameters θ.

The above target network also gives rise to a target policy
πθ′ and this is what we use as reference policy for the Q-
value based maximisation of Equation (2), i.e. π̃ = πθ′ .
Combining the policy loss, a BC loss, and the Q-Value loss
into a total loss yields three KL terms:

LQ
(θ) =E

D
[(1 − α)DKL[πimp, πθ ∣st, τ, π̃ = πθ′]

+ αDKL[b, πθ ∣st, τ]

+ βDKL[Γθ′(q∣st, at, τ), pθ(q∣st, at, τ)]]

= −E
D
[(1 − α) E

a′∼πθ′
[e

Qθ′ (st,a
′,τ)/η−KQ logπθ(a

′
∣st, τ)]

+ α logπθ(at∣st, τ)

+ β E
q∼Γθ′

log pθ(q∣st, at, τ)] +KH ,

(11)
where KQ = logEa′∼πθ′ [exp(

Qθ′(st,a
′,τ)/η)] is a normal-

izing constant, KH a constant entropy related offset inde-
pendent of θ, the expectation over the data is estimated by
sampling (st, at, st+1, τ) ∈ D, the expectation over action
samples from πθ′ is estimated based on N = 10 samples and
the expectation Eq∼Γθ′ can be evaluated analytically. Finally
α and β are multipliers trading off different loss components
(which are relatively easy to set due to all losses correspond-
ing to categorical log likelihoods).

A.3. PAC+V Details

Our alternative implementation of PAC uses a state-value
function and is called PAC+V here for clarity. It directly
uses the data generating behavior policy as the reference, i.e.

4Analogous to the standard temporal difference operator using
the relation Qπ

(st, at) = rt + γEπ[Q
π
(st+1, at+1)].
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π̃ = b, thus simplifying the losses. Instead of estimating Qπ

we can thus rely on an empirical estimate of the advantage
Aπ(st, at, τ) ≈ Aθ(st, at, τ) = rt+γVθ(st+1, τ)−Vθ(st, τ)
using samples (st, at, st+1, τ) ∈ D from which we learn a
V-function estimate Vθ ≈ V π only As an aside: this also
eliminates the need for a target network.

Analogously to the Q-function we use a categorical distribu-
tion pθ(v∣st, τ) over binned values v ∈ {vmin, vmin+ϵ, vmin+

2ϵ, . . . , vmax} (note that this is now not conditioned on ac-
tions a) yielding the value estimate Vθ(st, τ) = Epθ

v. We
can again compute target Q-values using a distributional TD
operator:

Γθ(q∣st, at, τ) =

E
st+1

E
v′∼pθ(⋅∣st+1,τ)

[1[q−ϵ/2,q+ϵ/2](rt + γv
′
)] .

(12)

In order to retrieve target values we can take the expectation
over our policy. However, given that we only have access to
transitions from a behavior policy we require an importance
weighting based correction:

Γθ(v∣st, τ) = E
at∼b(⋅∣st,τ)

πθ(at∣st, τ)

b(at∣st, τ)
Γθ(q∣st, at, τ). (13)

Using the second definition from Equation (2) and choosing
the reference to be the behavior policy b as mentioned above
we can then define the total loss for the V-function based
actor-critic via the two KL terms:

LV
(θ) = E

D
[DKL[πimp, πθ ∣st, τ, π̃ = b]

+ βDKL[Γθ′(v∣st, τ), pθ(v∣st, τ)]]

= −E
D
[exp ((rt+γVθ′(st+1,τ)−Vθ′(st,τ))/η) logπθ(at∣st, τ)

+ β
πθ(at∣st, τ)

b(at∣st, τ)
E

v∼Γθ′(⋅∣st,at,τ)
log pθ(v∣st, τ)] +KH ,

(14)
where KH is again a constant entropy related offset and
where we dropped the normalization constant for the ex-
ponentiated advantage as is common (see e.g. Peng et al.
(2019)). Even though we do not use target networks here,
we keep the notation θ′ to indicate that we do not take gra-
dient w.r.t. the corresponding term. Given that the behavior
policy is used as reference for the policy improvement we do
not need to include an additional BC term here, using only
observed actions is enough to ensure stable learning without
overestimation issues – and this improvement step reverts
to BC for η →∞. The only additional complication in this
equation is that we need to estimate b(at∣st, τ) to compute
importance weights. Two simple strategies are possible for
this: we could either assume the behaviour policy executed

actions from a fixed set, i.e. b(at∣st, τ) = constant in which
case it can be dropped, or we can learn an estimate of b via
maximum likelihood (BC).

B. Method Details - Architecture
In the following we discuss architectural details of the pro-
posed approach. The complete procedure of how the input
observations are processed and how the policy logits and
Q-value logits are calculated is outlined in Algorithm 1,
with detailed shape annotations for all variables; all hy-
perparameters noted in the algorithm are listed in Table 5.
Each sub-procedure outlined in Algorithm 1 is also visually
grouped together in Figure 5.

B.1. Multi-scale Normalizer

We propose multi-scale normalizer that maps an input float
of an arbitrary scale to an NG-dimensional normalized rep-
resentation: ϕmulti-scale ∶ R → [−1,1]NG . It does so by
employing NG fixed gains across a logarithmic scale (e.g.
σ = [10−4,10−3, . . . ,102,103] for NG = 8) to generate
tanh-bounded embeddings of the form:

ϕmulti-scale
(x) = [tanh(σ1x), . . . , tanh(σNG

x)]. (15)

For each input value the multi-scale normalizer thus gener-
ates a multi-dimensional representation vector using gains
on a logarithmic scale. Following this, the attention mech-
anism, for which the multi-scale normalizer is specifically
designed to pair with, can determine the most suitable gain
levels to attend to. This is in contrast to the commonly used
µ-Law scaling (e.g. in Reed et al. (2022)) for encoding con-
tinuous values which is at risk of either insufficient scaling
or saturation if the input data is not within a known range.

B.2. Observation Encoding

As introduced in Section 3.1, the state s and the task descrip-
tion τ can both be composed of different modalities: pro-
prioceptive measurements (P), visual observations (V) and
language descriptions (L), all of possibly domain-dependent
variable sizes; and the actions (A) are treated as just another
input modality. Those input modalities are indicated by su-
perscripts in notations. Note that we assume, without loss of
generality, that the task description τ is episode-dependent
and thus is denoted without a subscript indicating time step.
Also note that the task description for an offline episode can
be sampled and relabeled in hindsight (Andrychowicz et al.,
2017; Riedmiller et al., 2018). So, we make the dependence
on τ explicit in notations. In our experiments we allow for
vision- and language-based task descriptions.

While easily extendable to other input data modalities, our
current format accommodates proprioceptive and visual
observations (sP , sV ) as well as visual and language task
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Figure 5. High-level PAC model architecture, with each sub-procedure outlined in Algorithm 1 visually grouped; note that zM is used in
both policy decoding and Q-value decoding. Details are discussed in Section B.

descriptions (τV , τL):

• Proprioception observations sP ∈ RNP

with NP de-
noting the dimensions of proprioceptive measurements.

• Visual observations sV ∈ RNV ×H×W×C with number
of image observations NV , height H , width W , and
number of channels C for each image.

• Visual task descriptions τV ∈ RNV
τ ×H×W×C with NV

τ

number of images depicting the desired task (e.g., the
last frame from a successful episode).

• Language task descriptions τL ∈ RNL
τ with number of

text tokens NL
τ .

All input modalities across all domains are padded in order
to match this format and we keep track of the valid entries
with a mask. The complete input at time step t is therefore
the concatenation of (st = (sPt , s

V
t ), τ = (τ

V , τL)). This
could also be easily extended to incorporate more than a
single timestep in case of partially observable tasks.

The concatenated input is then mapped via one encoder
per modality into multiple embedding vectors of dimension
DI . The details of each modality encoder are given below.
The output of this mapping will be fed into the perceiver
encoder.

The proprioception encoder ϕP is an instantiation of the
multi-scale normalizer (see Appendix B.1) followed by a
linear layer LP with DI output dimensions to map the
multi-scale representation to the desired shape: ϕP =

LP ⋅ ϕmulti-scale
NG

∶ R→ RNG×DI .

The image inputs are encoded via a ResNet (He et al., 2016).
We omit the last projection layer to obtain NE spatial dimen-
sions for our image embedding ϕV ∶ RH×W×C → RNE×DI ,
where NE depends on the input image size and the down-
sampling specifications of the ResNet. We note that just
like the proprioception embedding, and in contrast to other
approaches, we do not discretize or tokenize image inputs
but use continuous mappings instead.

We assume language inputs to be tokenized by the Sentence-
Piece tokenizer (Kudo & Richardson, 2018) during data
loading. These are then directly embedded using a learn-
able look-up table ϕL ∶ [1..NT ]→ RDI , with NT the total
number of different language tokens.

Applying each encoder to the corresponding input modality
thus generates an encoded input, eI = ϕP (sPt )⊕ϕ

V (sVt )⊕
ϕV (τV )⊕ϕL(τL) ∈ RN×DI , with N = NPNG+N

V NE +

NV
τ NE +N

L
τ .

B.3. Transformer on Latent Space

Most state-of-the-art large-scale models for control take the
encoded input eI ∈ RN×DI and directly feed it into a trans-
former consisting of multiple stacked self-attention blocks.
For the domains in our experiments and the data modalities
that we consider, this input sequence would be of length
N = 2,634 for a single time step (cf. Appendix C.3). As
the computational complexity and memory usage of the
self-attention mechanism scales quadratically with the input
sequence length, this commonly adopted treatment poten-
tially hinders the learned generalist controller from being
applicable to real robotic systems that impose real-time con-
straints, and more generally restricts efficient learning and
inference, let alone providing feasible solutions to extend
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Algorithm 1 Perceiver Actor Critic Model
Input:
sP ∈ RNP

: proprioceptive observations;
sV ∈ RNV ×H×W×C : visual observations;
τV ∈ RNV

τ ×H×W×C : visual task descriptions;
τL ∈ RNL

τ : language task descriptions;
a ∈ RNA

: actions.
Trainable parameters (randomly initialized):
ϕP ∶ R→ RNG×DI , proprioception encoder;
ϕV ∶ RH×W×C → RNE×DI , vision encoder;
ϕL ∶ [1..NT ]→ RDI , language encoder;
z ∈ RNZ×DZ

: latents;
qπ ∈ RNA×NO : policy queries;
Lπ ∶ RNO → RNB : final projection for policy logits;
ϕA ∶ RNA

→ R1×DO : action encoder.
LQ ∶ RNO → RNQ : final projection for Q-value logits.
Output:
yπ ∈ RNA×NB : policy logits;
yQ ∈ R1×NQ : Q-value logits.

// Observation Encoding.
eP = ϕP (sP ) ▷ eP ∈ R(N

PNG)×DI

eV = ϕV (sV ) ▷ eV ∈ R(N
V NE)×DI

eVτ = ϕ
V (sVτ ) ▷ eVτ ∈ R(N

V
τ NE)×DI

eLτ = ϕ
L(τL) ▷ eLτ ∈ RNL

τ ×DI

eI = e
P ⊕ eV ⊕ eVτ ⊕ eLτ ▷ eI ∈ RN×DI

// Input cross-attention.
z0 = X-ATTN(z, eI) ▷ z0 ∈ RNZ×DZ

// Transformer on latent space.
for m = 1 to M do

zm = S-ATTN(zm−1) ▷ zm ∈ RNZ×DZ

end for
// Policy decoding.
ỹπ = X-ATTN(qπ, zM) ▷ ỹπ ∈ RNA×NO

yπ = Lπ(ỹπ) ▷ yπ ∈ RNA×NB

// Q-value decoding.
qQ = ϕ

A(a) ▷ qQ ∈ R1×DO

ỹQ = X-ATTN(qQ, zM) ▷ ỹQ ∈ R1×NO

yQ = LQ(ỹQ) ▷ yQ ∈ R1×NQ

Return yπ , yQ

the temporal context window beyond a few time steps or
include more high-dimensional inputs. To address this chal-
lenge, we adopt the methodology from the perceiver model
(Jaegle et al., 2021) to shift the operation of stacked self-
attention from the input sequence onto a few trainable latent
vectors, which in turn reduces the computational complexity
from a quadratic dependence on the input sequence length
to a linear one.

For ease of discussion, we first give an overview of the at-

tention operator (fATTN) and the attention block (ATTN),
which is the main building block of the perceiver model.
The attention operator takes as inputs three matrices: the
queries Q ∈ RNQ×DQ , the keys K ∈ RNK×DQ and the val-
ues V ∈ RNK×DV , where the queries and the keys match
in their vector dimensionality (DQ) while the keys and
values contain the same number of vectors (NK). The
attention operator is then defined as fATTN(Q,K,V ) =
softmax (QKT

/
√

DQ)V ∈ RNQ×DV , for which the majority
of the computational complexity and memory usage scale
with O (NQ ⋅NK) (the dependency of the scaling factor
on the vector dimensionality is left out to keep the discus-
sion concise). Combining the attention operator fATTN with
linear projection layers, normalization layers, post process-
ing MLPs and skip connections yields the attention block
ATTN(xQ, xK , xV ) (we refer to (Vaswani et al., 2017; Jae-
gle et al., 2021) for more details). Note that this most gen-
eral form admits possibly three different sources of inputs
to be linearly projected to act as Q, K and V respectively:
xQ ∈ RNQ×N1 , xK ∈ RNK×N2 , xV ∈ RNK×N3 (there is no
constraint of N1 matching N2 here as the three input sources
will each go through a linear projection before being fed
into fATTN).

Getting back at the encoded input eI ∈ RN×DI , a stan-
dard transformer would instantiate the attention block in
the form of self-attention (using the same data source for
the queries as for the keys-and-values): S-ATTN(eI) =
ATTN(xQ = eI , xK = eI , xV = eI). With eI containing N
vectors of dimentionality DI , the computation required by
the self-attention blocks will scale quadratically with the in-
put sequence length: O (N2), which imposes challenges for
meeting real-time control constraints or enabling efficient
learning and inference.

We address this issue with a perceiver-style backbone. In-
stead of applying self-attention directly on the input se-
quence, NZ learnable vectors are created with each being
of size DZ . We refer to those trainable vectors as the la-
tents z ∈ RNZ×DZ . The number of latent vectors is typi-
cally much smaller than the length of the input sequence:
NZ ≪ N (e.g., NZ = 32 in our experiments). With this,
we instantiate the attention block in another form, namely
a cross-attention between the latents and the normal in-
puts: X-ATTN(z, eI) = ATTN(xQ = z, xK = eI , xV = eI),
where the latents are used as the data source for the queries
and the input sequence for the keys-and-values. This cross-
attention block thus scales linearly with the input sequence
length: O(NZ ⋅N), and is positioned at the front-end of
our PAC model (cf. Figure 2), incorporating information
from the inputs into the latent vectors. Following this, a
standard transformer stack composed of M self-attention
blocks is applied on the latent space: zm+1 = S-ATTN(zm),
which finally outputs an encoding zM ∈ RNZ×DZ . We
note that the quadratic computational scale of those self-
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attention blocks is decoupled from the input sequence length
to be O(NZ

2
). This effectively shifts conducting the self-

attention operation from the inputs to the latents, in our case
reducing the computation and memory usage by a factor of
(2,634/32)2 ≈ 6,775.

B.4. Policy and Value Decoding

To obtain the two types of outputs, we create dedicated
query vectors for each output which are then used to query
the latent encodings zM ; querying information from zM is
again implemented via cross-attention following the decod-
ing architecture of Perceiver-IO (Jaegle et al., 2022)) and
deriving keys and values from the latents zM .

Specifically, to acquire an action prediction of shape NA ×

NB , with NA denoting the cardinality of the action space
∣A∣ and NB the number of bins each element gets discretized
into, we create NA learnable policy queries qπ ∈ RNA×NO

to cross-attend to zM , X-ATTN(qπ, zM), and get a NA ×

NO shaped output, which are then linearly projected to
NA ×NB shaped policy logits.

Whereas for the Q-value estimate, since the information
about the action are not contained in the encoded latents zM
but required for getting the estimate, the Q-value queries
qQ should not be simply created as randomly initialized
trainable vectors as for qπ. Instead, they are computed by
encoding the action at ∈ RNA

via an action encoder ϕA com-
posed of an multi-scale normalizer ( RNA

→ [−1,1]N
A×NG ,

cf. Equation (15) ) followed by two linear projections ( LA1 ∶

[−1,1]
NA×NG → R(N

A×NG)×DO , LA2 ∶ R(N
A×NG)×DO →

R1×DO ): ϕA = LA2 ⋅LA1 ⋅ϕmulti-scale
NG

∶ RNA

→ R1×DO . The
generated value query qQ ∈ R1×DO contains only one vector
of size DO, since for each action the Q-value estimate only
needs to output one quantity. Note that in constrast to how
the observation encoders (ϕP , ϕV , ϕL) are introduced in
Section B.2 as mappings from each individual element to
the corresponding encoding, here the action encoder ϕA is
denoted as the mapping from the full action dimension NA

to its corresponding encoding. qQ is then used to query the
latents via cross-attention, X-ATTN(qQ, zM), the output of
which (1×NO) is then mapped to 1×NQ to generate the NQ

logits. Incorporating the action information by encoding
it into a query at the decoding stage instead of concatenat-
ing it along with the other observations at the input has the
advantage that this way the action is less likely to be ig-
nored by the model (a common problem encountered when
learning Q-values). It also allows efficient evaluation of the
Q-function for multiple action samples: the latent represen-
tation zM is not dependent on the action and therefore needs
to be computed only once to be queried by multiple action
samples.

C. Experimental Details
C.1. Architecture Hyperparameters for Scaling

We vary three parameters of the architecture as detailed
in Table 4: The size of the latent vectors DZ , the number
of self-attention blocks M and the widening factor W of the
attention blocks which define the ratio between the residual
MLPs’ hidden size to input size. With all the other fixed
hyperparameters reported in Appendix C.2, the resulting
model sizes range from 32M parameters (comparable to RT-
1 (Brohan et al., 2022) and Q-Transformer (Chebotar et al.,
2023)) to 988M parameters (close to the largest versions
of Gato (Reed et al., 2022) and RoboCat (Bousmalis et al.,
2023).

Table 4. Hyperparameters of PAC’s different model scales.
Scale #(params) DZ M W
XXS 32M 768 4 1
XS 73M 1024 8 1
S 164M 1280 10 2
M 391M 1536 12 4
L 988M 2048 18 4

C.2. Fixed Architecture Hyperparameters

Table 5 provides an overview of all employed model param-
eters which are kept fixed across model scales. NP , NV ,
NV

τ , NL
τ , NA all refer to input dimensions and are chosen

to accommodate all tasks the data is originating from. NE

and NT also relate to input dimensions, but depend on the
pre-processing that is applied to the data (e.g. the Senten-
cePiece tokenizer for text input, or a ResNet and for image
input). NG is the number of scales (gains) for our proposed
multi-scale normalizer. Finally, NB and NQ refer to the
number of discrete value bins used for the discretization of
the action and Q-value respectively, NZ refers to the number
of latent vectors.

Table 5. Constant hyperparameters of PAC across all model scales.
Hyperparameter Value
NP : proprioception dimensions 223
NV : image observations 5
NV

τ : goal images 3
NL

τ : text tokens for task descriptions 50
NA: action dimensions 38
NG: multi-scale normalizer scales 8
NE : visual tokens per image 100
NT : language token vocabulary size 32,000
N : total number of input embedding vectors 2634
NZ : number of Perceiver latents 32
NB : action bins 101
NQ: Q-value bins 101
DI : token embedding size for each modality 256
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Table 6. The data mixture used for the scaling experiments. For each domain we report the modalities (P = proprioception, V = vision, L
= language, A = actions), the number of tasks, the number of episodes recorded, the effective number of trajectories (each consisting of
five timesteps), the number of tokens contributed, the percentage of successful episodes and the weight λ of the domain during the data
sampling process. [* = success rate only available for five stacking tasks; ** = success rate average only computed across 82 tasks with available success rates]

Domain Mod #(T ) #(Ep) #(Traj) #(Tok) success λ
Gato: Control P, L, A 32 468k 187M 430B 47% 8
CHEF: sim P, V, L, A 30 755k 60M 430B 28%* 2
CHEF: real P, V, L, A 30 2M 169M 1.12T 12%* 2
RC: Tower P, V, L, A 7 121k 19M 122B 72% 1
RC: Pyramid P, V, L, A 30 194k 31M 195B 52% 1
RC: Insertion P, V, L, A 3 100k 40M 154B 97% 2

∑ = 132 3.638M 506M 2.45T avg = 42%**

C.3. Data Modalities and Tokenization

Images At each timestep, PAC processes up NV +NV
τ in-

put images. For domains which provide fewer observations
or goal images, these inputs are zero-padded and masked out
for the subsequent processing. Across all our experiments,
we use an image resolution of 80 × 80 pixels. Each image is
encoded using a simple ResNet (He et al., 2016) with three
blocks using (32, 64, 64) channels, 3 × 3 pooling kernels
and 2 × 2 striding. After the convolutions, each image has
been downsampled to 10 × 10 ‘image tokens’ which are
projected into an embedding space of DI dimensions. Un-
der this embedding scheme, each image is counted as 100
tokens in our experiments. Our default implementation uses
eight image observations at each timestep resulting in the
processing of 800 image tokens.

Proprioception and Actions Our multi-scale normalizer
(cf. Appendix B.1) represents each floating point number
of the proprioceptive reading as NG tokens. Each of these
tokens is then projected into an embedding space of DI

dimensions. Our default implementation uses 223 proprio-
ception observations at each timestep resulting in the pro-
cessing of 1,784 proprioception tokens. In domains with
fewer proprioception observations, the remaining inputs are
zero-padded and masked out for the subsequent processing.

Language In order to differentiate between different tasks
in the same domain, e.g. to tell the model whether to ex-
ecute a run, stand or walk policy in Control Suite’s
humanoid domain, we feed a simplified task instruction as
a language task description (τL) at each timestep. For each
dataset, the task instruction is constructed from the dataset
name (cf. Table 9) and looks like humanoid.walk or
sim.insert.large gear. We use the SentencePiece
tokenizer (Kudo & Richardson, 2018) to tokenize the task
instruction where each token represents an integer index
into a vocabulary of NT tokens. Each language token is
subsequently projected into an embedding space of DI di-
mensions. In our default implementation, we use at most 50

language tokens for the task instruction and zero-pad and
mask language tokens in cases of shorter instructions.

In summary, our default implementation processes a total
amount of 2,634 input tokens per timestep broken down
into: 800 image tokens, 1,784 proprioception tokens and 50
text tokens.

C.4. Data Mixtures

During our scaling experiments (cf. Section 4.1), we use a
data mixture consisting of 51 datasets and depict a selection
of them in Figure 6. We partition the datasets into six groups
as outlined in Table 6. When sampling trajectories during
training, we first sample uniformly across all groups with
a weight of λ and then sample uniformly within the group
to draw a trajectory sample from a concrete dataset. The
effective sampling ratio for each dataset is shown as Peff

in Table 9. To maintain the sampling ratios over the entire
training process, we simply loop all underlying datasets
deterministically such that none of them is ever exhausted.

During our large-scale pre-training experiments (cf. Sec-
tion 4.2), we augment the data mixture already used in the
scaling experiments (see the previous section), but add the
full amount of RoboCat data for the Tower and Pyramid
domains from Bousmalis et al. (2023) to enable a fair com-
parison with prior work. The adjusted overall data mixture is
shown in Table 10 and the changes to the individual datasets
are reported in Table 11.

C.5. Optimization Hyperparameters

For all large-scale experiments (cf. Sections 4.1 and 4.2)
we use optimizer hyperparameters as reported in Table 12.
Importantly, we use the AdamW optimizer (Loshchilov &
Hutter, 2017) with a learning rate schedule which starts
at lr init, ramps up linearly for lr warmup steps
to lr peak and is then cosine-annealed to lr end over
lr decay steps which amounts to approximately one
epoch in our data mix. In line with the protocol of Hoff-
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Figure 6. A selection of the domains and tasks in our data mix.
Top left: Control Suite features 32 different continuous control
tasks across 15 different embodiments with a great variance in
proprioception and action spaces. Top right: Stacking RGB ob-
jects into different configurations (pyramides and towers) with a
simulated Panda arm. Bottom left: Inserting gears onto pegs in
simulation. Bottom right: Performing the RGB stacking task on
a real Sawyer robot.

mann et al. (2022), we decay the learning rate by one order
of magnitude over one epoch. We set lr decay steps
according to the respective epoch lengths for each of our
experiments, i.e. to 2.7e6 in the scaling experiments and to
4.7e6 in the pre-training experiments.

For all PAC models, we keep the TD loss scale β constant
at 38 while varying the BC vs RL trade-off α between 1.0
for our BC+Q and FilteredBC baselines and 0.75 for the
PAC model series. α-PAC sets β = 19 and α of 0.75 for the
Control Suite and RoboCat data (i.e. leaning more towards
BC given the high average success rates in the data) and
β = 1,900, α = 0.0 for the CHEF datasets (i.e. relying fully
on the RL term in the presence of highly sub-optimal data).
All PAC+V models use α = 0.0, β = 38 and a temperature τ
of 1e-4.

D. Sensitivity and Ablation Experiments
D.1. Sensitivity to Hyperparameters

Here we report additional experiments that demonstrate the
influence of some of the hyperparameters and that informed
the settings that we used in other experiments.

D.1.1. BC LOSS SCALE α

In order to perform offline reinforcement learning (RL), we
simply interpolate between the behavioral cloning (BC) loss
and the RL loss via a parameter α. We found that, depending
on the nature of the data, different parameters work best for
different datasets. Empirically, we observed that the more
‘expert data’ there is (i.e. a higher base success rate of the
tasks in the dataset), the higher the contribution of the BC
loss should be. Conversely, less expert data can benefit more
from RL. As seen in Table 7, for the control suite, averaged
over 32 tasks, setting α at around 0.8 works best. This is
because most of the data has been collected by expert agents
and therefore small divergence from BC distribution can
gain improvement over the BC. This value is different for,
for example, CHEF data, where α = 0.0 (i.e pure RL) works
best mainly because the data expert level is low and this
dataset contains more low quality data.

Table 7. Control Suite performance of an XS-sized model using
different BC loss scales α. The percentage of achieved expert
average reward across 100 trials per task and the standard-error-
based 95% CIs are reported.

Domain #(T ) α=0.0 α=0.4 α=0.8 α=1.0
Gato: Control 32 36.8 74.3 85.1 82.4

[33.9, 39.6] [70.2, 78.3] [80.4, 89.8] [76.5, 88.2]

D.1.2. POLICY LOSS SCALE β

For efficient learning we share the network parameters be-
tween the policy and critic networks. This, however, re-
quires some adjustments to balance these two losses for
optimal performance. Therefore, we introduce a hyperpa-
rameter, β, that trades off the policy loss and the critic loss.
To illustrate the sensitivity of this parameter, we use the
CHEF tasks and perform pure reinforcement learning by
setting BC loss scale α = 0.0 while sweeping over different
values of β. As can be seen in Table 8, for this task, a lower
contribution of the policy loss leads to better results. In
general, we have found that setting the β value to 0.005
achieves good performance across various tasks.

Table 8. Simulated RGB stacking performance of an XS-sized
model using different policy loss scales β. The average success
rates across 100 trials per task and their corresponding Wilson
score intervals for αW = 0.05 are reported.

Domain #(T ) β=1.0 β=0.1 β=0.01 β=0.005
CHEF: sim 1 22.0 29.0 76.0 83.0

[15.0, 31.7] [21.0, 38.5] [66.8, 83.3] [74.5, 89.1]

D.2. Architecture Ablations

To understand what architectural decisions contribute to
the performance we conduct a set of ablation studies. In
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particular we look into the multi-scale normalizer for encod-
ing continuous inputs, the output action-cross-attention to
generate Q-values, and the task conditioning. For compute
efficiency reasons we perform these experiments on a subset
of the data and with smaller model sizes.

D.2.1. INPUT ENCODING

Our multi-scale normalizer is used for embedding both the
proprioception observations and actions. We compare the
multi-scale normalizer against a vanilla linear encoder and
a token-based encoder similar to the one used by Reed
et al. (2022). The linear encoder directly embeds the in-
puts to a single embedding using a linear layer followed
by a normalization layer. The token-based encoder uses
a lookup-table-based encoder analogous to the language
encoder. Across all tokenization variants, the embedded pro-
prioception tokens are separately cross-attended while the
embedded action tokens are projected to a single embedding
vector.

Table 13 reports separate results on the control suite tasks
(using our XS-sized model) and RoboCat pyramid and tower
tasks (using our S-sized model), where for better compa-
rability with RoboCat (Bousmalis et al., 2023) we set the
number of action bins to 1024. For Control Suite the lin-
ear embedder shows the lowest performance, likely caused
by not being able to deal with the range of proprioception
measurements. Based on the µ-law discretization, encoder
is able to address the high range of measurements. How-
ever for the RoboCat tasks the µ-law encoder performs the
worst, possibly due to discarding neighborship relations in
the data. It also comes with a larger memory footprint due
to the lookup table embedding. The multi-scale normalizer
addresses all these issues and performs best.

D.2.2. ACTION CROSS-ATTENTION

In addition to using a perceiver backbone for our model, a
key design choice was also to use the action as output query
rather than having it as an input. This has the advantage
that we can use a common encoder for the policy and the
Q-value estimator and enables quick evaluation of actions
because the latent can be cashed. Furthermore, this shortens
the path from actions to Q-values and the action is thus less
likely to be ignored. In the last column of Table 13 we
ablate this architectural choice against using the action as
input modality for control suite tasks, where we made use
of attention masking in order to hide the action input from
the policy output. We observe a decrease in performance,
likely due to the aforementioned reasons.

D.2.3. COMPARISON TO Q-TRANSFORMER AND
RETURN CONDITIONED OFFLINE RL

We present additional results for a Q-transformer baseline
when training a XS (73M parameters) model on the 32 do-
mains from the control suite in table Table 14. As can be
observed from the table, in aggregate the Q-transformer
baseline is not better than BC. However, when separating
results out by domain we can observe that Q-transformer
matches the performance of PAC for lower dimensional do-
mains (e.g. cartpole, finger turn) but fails in some of the
higher dimensional domains such as dog walk and humanoid
walk. In addition we ran a baseline that uses return condi-
tioning to train on all data but then uses the same threshold
as used for FilteredBC at test time (again training an XS
model). This serves as a sensible reference roughly corre-
sponding to a Decision Transformer implementation. We
see that this recovers performance roughly equivalent to BC
again but does not result in further improvement. Finally,
we also ablated the choice of the distributional Q-function
(no dist. Q) in the table, verifying that the performance
benefit of PAC over other methods is not just due to the
distributional Q-function (though it clearly benefits from it).

Details on Q-transformer implementation A naive ap-
plication of Q-transformer (Chebotar et al., 2023) to our
setting is not feasible due to the costly iterative (arg-)max
computation involved; which would be prohitively expen-
sive in our setting where we consider up to 38 action di-
mensions. We thus implement a version with independent
Q-functions for each action dimension. In particular, we
parameterize Q values per action dimension as Qθ(a

i, st, τ)
and aggregate Q-values accross dimensions for bootstrap-
ping in the TD-update according to:

Vθ(st) =
1

∣A∣

∣A∣

∑
i=o

max
ai

Qθ(a
i, st, τ), (16)

using this definition we can implement the loss

L
QT
(θ) = E

(s′,a,r,s′)∈D
[

∣A∣

∑
i=0
(r + γVθ(s

′
) −Qθ(a

i, s, τ))2]

+α E
(s′,a,r,s′)∈D

[ ∑
a′≠ai

(Qθ(a
′, s, τ) − 0)2],

(17)
where the first term corresponds to the TD-loss and the
second term implements a conservatism bias.

This is essentially a cooperative multi-agent RL formulation
as in Seyde et al. (2023). We also experimented with learn-
ing an additional V-function instead of aggregating across
dimensions (and then regressing Q-values by using this V-
function for bootstrapping which however gave statistically
equivalent results. We swept over the hyperparameter alpha
(in [0.1,1.,10.]) as well as learning rates in order to provide
a fair comparison.
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Table 9. Data mixture of our scaling experiments. For each dataset, we report the number of trajectories and tokens contributed (#(Traj)
and #(Tok)), the number of proprioception, vision and action dimensions in the raw data (NP , NV , NA) and the probability Peff with
which we sample from each dataset during training.

Dataset Group #(Traj) #(Tok) NP NV NA Peff

Control Suite
acrobot.swingup 10,843,200 5.75E+09 6 0 1 1/64
ball in cup.catch 5,292,800 3.44E+09 8 0 2 1/64
cartpole.balance 10,473,600 5.13E+09 5 0 1 1/64
cartpole.swingup 10,704,800 5.25E+09 5 0 1 1/64
cartpole.three poles 10,012,800 7.31E+09 11 0 1 1/64
cartpole.two poles 4,875,200 2.97E+09 8 0 1 1/64
cheetah.run 7,672,800 8.12E+09 17 0 6 1/64
dog.run 4,238,800 4.43E+10 223 0 38 1/64
dog.stand 4,162,400 4.45E+10 223 0 38 1/64
dog.trot 4,163,200 4.45E+10 223 0 38 1/64
dog.walk 5,861,600 6.27E+10 223 0 38 1/64
finger.spin 4,257,200 2.94E+09 9 0 2 1/64
finger.turn easy 9,893,200 8.01E+09 12 0 2 1/64
finger.turn hard 6,794,000 5.50E+09 12 0 2 1/64
fish.swim 6,172,800 7.96E+09 21 0 5 1/64
fish.upright 6,682,400 8.62E+09 21 0 5 1/64
hopper.hop 7,054,000 7.12E+09 15 0 4 1/64
hopper.stand 3,620,400 3.66E+09 15 0 4 1/64
humanoid.run 4,632,000 1.75E+10 67 0 21 1/64
humanoid.stand 5,181,200 1.95E+10 67 0 21 1/64
humanoid.walk 7,566,800 2.85E+10 67 0 21 1/64
pendulum.swingup 7,992,400 3.28E+09 3 0 1 1/64
point mass.easy 3,980,400 1.95E+09 4 0 2 1/64
quadruped.escape 3,102,000 1.48E+10 101 0 12 1/64
quadruped.run 1,730,400 6.66E+09 78 0 12 1/64
quadruped.walk 4,457,600 1.72E+10 78 0 12 1/64
reacher.easy 5,501,200 3.14E+09 6 0 2 1/64
swimmer.swimmer15 5,483,600 1.78E+10 61 0 14 1/64
swimmer.swimmer6 98,000 1.42E+08 25 0 5 1/64
walker.run 1,988,000 2.88E+09 24 0 6 1/64
walker.stand 7,401,200 1.07E+10 24 0 6 1/64
walker.walk 5,334,400 7.73E+09 24 0 6 1/64

CHEF
sim.lift 10,072,080 7.16E+10 129 19,200 5 1/48
sim.open 10,072,080 7.16E+10 129 19,200 5 1/48
sim.place 10,072,080 7.16E+10 129 19,200 5 1/48
sim.reach grasp 10,072,080 7.16E+10 129 19,200 5 1/48
sim.stack 10,072,080 7.16E+10 129 19,200 5 1/48
sim.stack leave 10,072,080 7.16E+10 129 19,200 5 1/48
real.lift 28,224,012 1.87E+11 129 12,800 5 1/48
real.open 28,224,012 1.87E+11 129 12,800 5 1/48
real.place 28,224,012 1.87E+11 129 12,800 5 1/48
real.reach grasp 28,224,012 1.87E+11 129 12,800 5 1/48
real.stack 28,224,012 1.87E+11 129 12,800 5 1/48
real.stack leave 28,224,012 1.87E+11 129 12,800 5 1/48

RoboCat
panda.sim.triple stack.success 13,992,960 8.80E+10 44 51,200 7 1/32
panda.sim.triple stack.failure 5,439,066 3.42E+10 44 51,200 7 1/32
panda.sim.pyramid.success 15,998,400 1.01E+11 44 51,200 7 1/32
panda.sim.pyramid.failure 15,024,082 9.45E+10 44 51,200 7 1/32
sim.insert large gear 13,372,152 5.18E+10 21 32,000 7 1/24
sim.insert medium gear 14,182,310 5.49E+10 21 32,000 7 1/24
sim.insert small gear 12,260,934 4.74E+10 21 32,000 7 1/24
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Table 10. The data mixture used for the pre-training experiments. For each domain we report the modalities (P = proprioception, V =
vision, L = language, A = actions), the number of tasks, the number of episodes recorded, the effective number of trajectories (each
consisting of five timesteps), the number of tokens contributed, the percentage of successful episodes and the weight λ of the domain
during the data sampling process. [* = success rate only available for five stacking tasks; ** = success rate average only computed across 82 tasks with available

success rates]
Domain Mod #(T ) #(Ep) #(Traj) #(Tok) success λ
Gato: Control P, L, A 32 468k 187M 430B 47% 4
CHEF: sim V, P, L, A 30 755k 60M 430B 28%* 1
CHEF: real V, P, L, A 30 2M 169M 1.12T 12%* 1
RC: Tower V, P, L, A 7 100k 16M 100B 75% 2
RC: Pyramid V, P, L, A 30 601k 96M 604B 75% 5
RC: Insertion V, P, L, A 3 100k 40M 154B 97% 1

∑ = 132 4.024M 567M 2.84T avg = 58%**

Table 11. Data mixture of our scaling experiments. For each dataset, we report the number of trajectories and tokens contributed (#(Traj)
and #(Tok)), the number of proprioception, vision and action dimensions in the raw data (NP , NV , NA) and the probability Peff with
which we sample from each dataset during training. Group entries abbreviated by . . . are identical with the ones reported in Table 9.

Dataset Group #(Traj) #(Tok) NP NV NA Peff

Control Suite
. . . 4/14

CHEF
. . . 2/14

RoboCat
panda.sim.triple stack.success.eval set 2 1,244,000 7.82E+9 44 51,200 7 1/42
panda.sim.triple stack.failure.eval set 2 681,818 4.29E+9 44 51,200 7 1/42
panda.sim.triple stack.success.eval set 4 7,363,360 4.63E+10 44 51,200 7 1/42
panda.sim.triple stack.failure.eval set 4 1,843,906 1.16E+10 44 51,200 7 1/42
panda.sim.triple stack.success.eval set 5 3,439,040 2.16E+10 44 51,200 7 1/42
panda.sim.triple stack.failure.eval set 5 1,366,208 8.59E+10 44 51,200 7 1/42
panda.sim.pyramid.success.eval set 1 15,024,000 9.45E+10 44 51,200 7 5/140
panda.sim.pyramid.failure.eval set 1 4,367,962 2.75E+10 44 51,200 7 5/140
panda.sim.pyramid.success.eval set 2 13,409,760 8.43E+10 44 51,200 7 5/140
panda.sim.pyramid.failure.eval set 2 5,763,134 3.63E+10 44 51,200 7 5/140
panda.sim.pyramid.success.eval set 3 13,249,600 8.33E+10 44 51,200 7 5/140
panda.sim.pyramid.failure.eval set 3 5,749,294 3.62E+10 44 51,200 7 5/140
panda.sim.pyramid.success.eval set 4 15,385,920 9.68E+10 44 51,200 7 5/140
panda.sim.pyramid.failure.eval set 4 3,767,426 2.47E+10 44 51,200 7 5/140
panda.sim.pyramid.success.eval set 5 15,318,240 9.64E+10 44 51,200 7 5/140
panda.sim.pyramid.failure.eval set 5 4,053,880 2.55E+10 44 51,200 7 5/140
sim.insert large gear 13,372,152 5.18E+10 21 32,000 7 1/42
sim.insert medium gear 14,182,310 5.49E+10 21 32,000 7 1/42
sim.insert small gear 12,260,934 4.74E+10 21 32,000 7 1/42

Table 12. Optimizer hyperparameters for all model scales across all experiments.
Hyperparameter XXS (32M) XS (73M) S (164M) M (391M) L (988M)
lr init 1e-6 1e-6 1e-7 1e-7 1e-7
lr peak 1e-4 1e-4 5e-5 3e-5 3e-5
lr end 1e-5 1e-5 5e-6 3e-6 3e-6
lr warmup steps 1.5e4 1.5e4 1.5e4 1.5e4 1.5e4
adamw beta1 0.9 0.9 0.9 0.9 0.9
adamw beta2 0.95 0.95 0.95 0.95 0.95
adamw weight decay 1e-3 1e-3 1e-3 1e-3 1e-3
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Table 13. Different architectural ablations trained separately on Control Suite (XS-sized model) and RoboCat pyramid and tower (S-sized
model). For Gato:Control we report the percentage of achieved expert average reward and the standard-error-based 95% CIs. For RoboCat
(RC) we report the average success rates and their corresponding Wilson score intervals for αW = 0.05. We use 100 trials per task. Best
results (within CI of the best mean) in each row are bold.

Domain #(T ) Linear Encoder µ-Law Encoder Multi-scale Normalizer w/o output action
Gato:Control 32 79.6 [74.5, 84.6] 82.7 [77.2, 88.1] 86.7 [82.4, 90.9] 76.8 [72.6, 81.1]

RC:Tower 7 68.1 [64.6, 71.5] 50.7 [47.0, 54.4] 69.1 [65.6, 72.5] N/A
RC:Pyramid 30 63.5 [61.7, 65.2] 36.1 [34.4, 37.8] 65.8 [64.1, 67.5] N/A

Table 14. Comparison between XS sized models for different objectives on Control domains. We show both aggregate performance over
tasks as well as per domain results for selected lower dimensional and higher dimensional domains. We implement a Q-transformer style
update as well as a simple return conditioned baseline (RC). Neither outperforms BC. Ind. denotes that the Q-transformer is implemented
with the simplification of independent Q-values per action dimension. All results are percentage of expert performance, established by an
independent RL training run per domain, following (Reed et al., 2022).

Domain #(T ) PAC PAC (no dist. Q) BC Q-transformer (ind.) RC
Gato:Control 32 86.7 [82.4, 90.9] 83.5 [81.2, 84.2] 82.4 [81.6, 83.8] 64.8 [60.1, 65.8] 80.8 [78.3, 82.4]
Cartpole 97.0 96.8 95.3 99.5 95.6
Finger turn-hard 98.3 98.4 95.7 96.3 97.5
Dog trot 86.5 75.7 69.8 12.7 70.4
Humanoid walk 92.4 71.2 60.6 24.5 62.9

D.2.4. TASK CONDITIONING

In this ablation study we investigate how PAC uses its two
different task modalities: the goal image τV and the lan-
guage instruction τL. Specifically, we probe whether a
trained model can react to task specifications where one
of the modalities is missing and whether it can be adapted
to perform better on task conditions which differ from the
training setup. To conduct this investigation, we take a
PAC model of size M that has been pre-trained on all data
(Control Suite, CHEF and RoboCat). Note that out of all
these domains, Robocat Tower and Robocat Pyramid are
the only ones that have visual task descriptions available
besides language task descriptions while all other domains
have only language ones and therefore their visual task de-
scriptions are merely padded zeros. We then evaluate this
model with different modalities for task specification being
available: Vision+Lang: both modalities τV and τL are
present therefore the same as the setup during pretraining;
Vision: only visual task descriptions τV are present and the
language ones are masked out; Lang: only τL are available;
No Goal: both task description modalities are masked out.

The evaluation results are presented in the Pretrained rows
of Table 15. A notable observation is that the pretrained
model is still very performant when only the language
task description τV is available, albeit this differs from
the task conditioning during pretraining where the model
has only seen visual and language task descriptions both
being present for the Tower and Pyramid domains; while
the success rate drops substaintially when only visual task
descriptions τV are present. One hypothesis of such an

imbalanced performance of the pretrained model when con-
ditioning on τV or τL could be the following: Since all data
domains the model has seen during the pretraining phase
have τL available while Tower and Pyramid are the only
ones with τV , the NL = 50 language task description to-
kens are attended to for every single datapoint while the
NV

τ ×NE = 300 visual task description tokens are masked
out except for when learning on the Tower and Pyramid
domains of robocat. Therefore we suspect the model would
learn to attend more to the language task tokens than the
vision task tokens in order to be able to achieve good per-
formance averaging over all task domains. We conduct
additional experiments for this hypothesis and present the
results in Table 16 which will be discussed directly follow-
ing.

In order to see if above said model could be quickly adapted
such that its performance is more amenable to varying
modalities for task description, we conduct a finetuning ex-
periment of the model where either task description modality
will be present for a certain percentage pτ of the time and
masked out the rest of the time. In particular, for this experi-
ment we set pτV = 0.99 and pτL = 0.9 where τV are masked
out less often to compensate for the fact that visual task
descriptions are only present for two domains while the fine-
tuning is carried over all tasks, but with adjusted sampling
weights compared to Table 6: from λ = (8,2,2,1,1,2) to
λ = (6,2,2,6,6,2). We also use a fixed learning rate of
3e-6. The task conditioning evaluation results of this fine-
tuned model (after 200K steps) are shown in the FT rows
of Table 15. We observe that the success rate of the model
increases by a large margin when only visual task descrip-

22



Offline Actor-Critic Reinforcement Learning Scales to Large Models

Table 15. Adapting a pre-trained PAC model (size M) to a new task-conditioning setup during finetuning phase setting pτV = 0.99, pτL =

0.9. The average success rates across 100 trials per task and their corresponding Wilson score intervals for αW = 0.05 are reported.
Model Domain #(T ) Vision+Lang Vision Lang No Goal

PT@3M RC: Tower 7 59.7 [49.6, 69.3] 0.1 [0.0, 3.9] 58.1 [48.1, 67.7] 0.0 [0.0, 3.6]

RC: Pyramid 30 53.3 [43.2, 63.1] 11.4 [10.3, 12.6] 53.1 [43.1, 62.9] 11.0 [9.9, 12.2]

FT@200K RC: Tower 7 62.0 [51.8, 71.5] 44.7 [35.4, 54.3] 60.1 [50.1, 69.6] 8.7 [7.1, 15.2]

RC: Pyramid 30 53.1 [43.1, 62.9] 47.7 [37.7, 57.8] 53.5 [43.5, 63.3] 8.2 [4.3, 14.9]

Table 16. Pre-training a PAC model (size S) with varying goal conditions. Evaluation after 500k training steps. The average success rates
across 100 trials per task and their corresponding Wilson score intervals for αW = 0.05 are reported.

Model Domain #(T ) Vision+Lang Vision Lang No Goal
pτV = 1.0
pτL = 1.0

RC: Tower 7 55.6 [43.4, 66.3] 5.57 [4.0, 7.5] 57.0 [47.0, 66.6] 5.1 [3.6, 7.1]

RC: Pyramid 30 53.1 [43.0, 62.9] 0.933 [0.7, 5.1] 51.9 [41.9, 61.7] 0.9 [0.9, 5.0]

pτV = 0.9
pτL = 0.9

RC: Tower 7 52.6 [42.6, 62.4] 54.6 [44.6, 64.3] 51.4 [41.5, 61.3] 6.3 [2.5, 12.9]

RC: Pyramid 30 48.2 [38.3, 58.2] 46.8 [36.9, 56.8] 49.8 [39.9, 59.8] 13.1 [7.4, 21.2]

tion is present compared to the pretrained model, while the
model is able to keep (or slightly improves) its performance
for the conditions where it already perform well after pre-
training: Vision+Lang and Lang. This is promising as it
shows the flexbility of the proposed model that it is quickly
adaptable to be reactive to task specification conditions not
encountered during training.

With Table 15 showing viable approaches to adapt pretrained
models to varying task conditionings, as just mentioned,
we conduct an extra experiment to test the hypothesis that
attributes the imbalanced performance of the pretrained
model under τV only versus τL only to these two modalities
being improportionally present in the pretraining data. The
experiment that tests this hypothesis is where we train a
PACmodel (size S) from scratch, but on RoboCat Tower and
RoboCat Pyramid only such that both visual and language
task descriptions are available for every datapoint. We then
evaluate this model after 500k pretraining steps and present
the results in the pτV = 1.0,pτL = 1.0 rows of Table 16.
However, we find that with balanced presence of τV and τL,
the model is still much more reactive to τL (reaching success
rate of 57.0% and 51.9%) than τV (5.6% and 0.9%). This
refutes the hypothesis and we suspect that the performance
imbalance might be caused by the fact that the language
task descriptions is simply more discriminative than a goal
image.

Setting the modality present rate to pτV = 0.9,pτL = 0.9,
we train another model from scratch with otherwise the
same setup of above and present the evaluation results in
the corresponding rows in Table 16. The results show that
with varying goal conditionings being present in the pre-
training phase, the resulting model can perform well on all
conditioning variations as expected.

E. Scaling Details
E.1. Return Profile Fitting

We fit the average return of a models as a logistic function
of the number of training steps:

R(n) =
a

1 + exp(−k ∗ (n − n0))
+ b. (18)

We evaluate six checkpoints of each training run evenly
spaced across the 3M updates. Each evaluation runs 100 tri-
als per task and computes the average episode return across
102 simulation tasks. The parameters a, k, n0, b of Equa-
tion (18) are then fitted to the evaluation data points to obtain
a return profile for each model.

E.2. FLOP Counting

Model Scale FWD BWD BATCH UPDATE
XXS (32M) 7.826E+09 1.573E+10 1.206E+13
XS (73M) 1.360E+10 2.733E+10 2.096E+13
S (164M) 2.341E+10 4.705E+10 3.607E+13
M (391M) 4.380E+10 8.804E+10 6.750E+13
L (988M) 1.040E+11 2.090E+11 1.602E+14

Table 17. FLOPs costs for forward pass, backward pass and batch
update for all scales of our PAC model family. All FLOPs are
computed for a batch size B = 512 and a target update frequency
fθ′ = 100.

When counting the FLOPs of the PAC architecture for the
scaling analysis, we follow the FLOP counting scheme
established by Hoffmann et al. (2022) since the bulk of
our model’s computation sits in cross-attention and self-
attention blocks. FLOPs of cross-attention blocks are
counted similarly as in self-attention blocks with the only
difference of the length of the input and output sequence be-
ing different which yields seq len in × seq len out
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Figure 7. The different parts of the PAC architecture for which FLOPs are counted. The FLOPs for the different encoders are counted
as ENC {P,V,L,A}, respectively. All FLOPs used to aggregate the encoded input tokens eI into the Perceiver’s latent zi during the
input cross-attention are counted as XATTN IN. The FLOPs used for processing the latents via M self-attention blocks are counted as
SATTN PROC. The FLOPs used to decode the policy π and the action-value function Q from zM via cross-attention and subsequent
projections are counted as XATTN PI and XATTN Q respectively.

× FLOPS ATTN instead of seq len in × seq len in
× FLOPS ATTN like in a normal self-attention block.

After tokenization of proprioception, vision, language and
action (cf. Appendix C.3) we obtain TP , TV , TA and TL

tokens respectively. Their encoders are simple projections
and we count the FLOPs used for the embeddings as:

• ENC P = MAF × TP ×DI

• ENC V = MAF × TV ×DI + FLOPS RESNET

• ENC L = MAF × TL ×NT ×DI

• ENC A = MAF × TA ×DI

Similar to Hoffmann et al. (2022) we use a multiply-
accumulate-factor (MAF) of 2 to describe the multiply ac-
cumulate cost. The FLOPs needed to transform the raw
input images into tokens using a ResNet are captured by
FLOPS RESNET. We count each 2D convolution operation
in the ResNet as num kernels×(w1∗w2)×(o1, o2)×MAF
where w{1,2} and o{1,2} are the kernel and output dimen-
sions respectively.

The total number of FLOPs used for one forward pass of
PAC are:

FLOPS FWD = ENC P + ENC V + ENC L + ENC A

+ XATTN IN

+M × SATTN PROC

+ XATTN PI + XATTN Q

When estimating the FLOPs for the backward pass, we
slightly deviate from Kaplan et al. (2020) and also factor
in the target network updates (cf Section 3.2) which occur
every fθ′ updates (in all of our experiments we keep fθ′ =
100). Therefore, we count the FLOPs for PAC’s backward
pass as:

FLOPS BWD = (2 +
1

fθ′
) ∗ FLOPS BWD

Lastly, the FLOPs for an update with batch size B are
counted as:

FLOPS UPDATE = B ∗ (FLOPS BWD + FLOPS BWD)

We list the FLOPs costs for the core operations of our
PAC model series in Table 17.

E.3. Model Loss as Performance Indicator

We plot the training loss against the FLOPs for both model
sets in Figure 8 when training on the scaling data mix (cf. Ta-
ble 9). The training losses suggest that the BC+Q model
should outperform PAC because its final loss is about 0.1
points lower. In order to assert whether the training loss
can be a reliable indicator of model performance in our
experiments, we compare the final model checkpoints of
BC+Q and PAC (both of size L) on 73 tasks from our train-
ing dataset in simulation and report the results in Figure 8.
However, this performance-based comparison does not sup-
port the assumption that a lower training loss is indicative of
higher task performance. On the contrary, PAC significantly
outperforms BC on the simulated stacking task despite its
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Training Loss: BC+Q vs PAC
BC+Q
PAC
988M
391M
164M
73M
32M

Domain #(T ) BC+Q PAC
Gato: Control 32 89.2 [84.3, 94.1] 93.2 [89.6, 96.9]

RC: Tower 7 62.9 [59.1, 66.2] 63.1 [59.5, 66.6]

RC: Pyramid 30 50.5 [48.7, 52.3] 55.6 [53.8, 57.4]

RC: Insertion 3 82.0 [76.9, 85.6] 83.7 [79.1, 87.4]

CHEF: sim 1 12.0 [7.0, 19.8] 40.0 [30.9, 49.8]

Figure 8. Top: Training loss comparison of the PAC model fam-
ilies for α = 1.0 (BC+Q) and α = 0.75 (PAC). Bottom: Success
rates in different simulation tasks of the final checkpoints after
3M updates for the respective L-size models. Each model was
evaluated in 100 trials on each of the #(T ) in each domain. For
the Control domain, the percentage of achieved expert average
reward and the standard-error-based 95% confidence intervals are
reported. For all other domains, the average success rates and their
corresponding Wilson score intervals for αW = 0.05 are reported.

higher training loss. Hence, we cannot use the model di-
rectly for selecting interpolants to fit the scaling laws with
and need use the proxy of return profiles (cf. Appendix E.1).

Our finding is consistent with previous works (Hilton et al.,
2023) as we find that loss is not necessarily a reliable in-
dicator of model performance in RL settings. This can be
due to a variety of reasons, e.g. there can be degenerate
solutions when the policy overfits to the data and is unable
to generalize to new states or when the Q-function collapses.
Additionally, when a TD-style loss is used, losses are gener-
ally not comparable and we refer to (Fujimoto et al., 2022)
for a more elaborate discussion on this issue.

E.4. PAC+V Scaling Analysis

We also conduct a scaling analysis for the V-function variant
of our architecture: PAC+V (cf. Appendix A.3) following
the protocol defined in Section 4.1. We plot the scaling laws
for PAC+V in Figure 12 comparing it to the scaling laws for
the BC+Q baseline as well. We also compare the Iso-Return
contours between the two models in Figure 9.

The conclusions of the PAC+V scaling laws are consistent
with the ones drawn for the Q-function variant of PAC in
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Figure 9. Iso-Return comparison of BC+Q vs PAC+V. The return
profiles (top) contrast the expected average return between the
BC baseline and the RL objective across all model scales. The
Iso-Return contours (bottom) depict how the reward landscape
over the parameter-FLOPs landscape shifts between using the BC
objective (dashed contours) and the RL objectives (solid contours).
For PAC+V the reward landscape is shifted towards the top left
compared to the BC baseline indicating that it leads to higher
average return plateaus for the same FLOP budgets.

Section 4.1. The suggested model size for 2.45T tokens is
with 852M parameters slightly smaller than PAC’s with
954M parameters, but the parameters should be scaled
slightly more aggressively as compute increases indicated by
a(PAC+V) > a(PAC): 0.970 > 0.920. However, the data
scaling is in line with both PAC as well as the BC+Q base-
line: b(PAC+V) ≈ 0.266.

E.5. Scaling-based Performance Analysis of PAC on
Control Suite

In this section we provide additional details about the pro-
gression of PAC ’s task performance with model scale based
on our experiments in Section 4.1. When expanding the task
performances on Control Suite during the scaling experi-
ments, the results fall in one of three categories: A) tasks
with significant model scaling benefits; B) tasks which are
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Figure 10. PAC’s performance across different Control Suite tasks where significant model scaling benefits are observed. We report
average task performance over 100 trials for each task and model scale.
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Figure 11. Average performance delta of PAC over the BC+Q baseline across all model scales reported for all Control Suite tasks which
benefit significantly from model scaling.

already perfectly solved at the smallest model scale; and C)
tasks which attain a score much smaller than 90 with the
smallest model and do not improve with model scale.

Tasks in category B) are: ball in cup catch,
cartpole {balance,swingup},
finger spin, finger turn {easy,hard},
fish {swim,upright}, pendulum swingup,
point mass easy, quadruped {run,walk},
reacher easy and walker {run,stand,walk}.
All of these tasks already achieve scores ≥ 95 with
PAC-32M. Tasks in category C) are swimmer {6,15}
which plateau at scores around 60 with PAC-32M and
do not improve further with model scale. However, 14
out of 32 tasks fall in category A) and show signifi-
cant performance improvements with model scale. We
report the performance progression of PAC on these
tasks in Figure 10. Among these tasks, cheetah run,
hopper stand, dog {stand,walk,trot} and
humanoid {stand,walk} stand out in particular as
model scaling pushes them from scores as low 33 to over 95

into the ‘task mastery range’ without any additional data.

We also compare PAC’s performance in the 14 ‘scaling tasks’
to the BC+Q baseline across all model scales in Figure 11.
We find that the improvements attributable to PAC ’s of-
fline RL objective are most pronounced in the hopper and
humanoid tasks. There are tasks where the BC+Q baseline
has an initial advantage, e.g. cheetah run, dog walk
or cartpole three poles. However, as PAC is scaled
up, it always overcomes this initial disadvantage and outper-
forms BC+Q consistently. This corroborates the key finding
of the scaling analysis: the offline RL objective initially
needs higher parameter counts compared to BC+Q (cf. Fig-
ure 3 right panel and Figure 12 top right panel), but ulti-
mately scales better with more compute than BC+Q leading
to higher performance plateaus (cf. Figure 4 bottom panel).
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Figure 12. Scaling laws based on the return profile envelopes for BC+Q (top) and PAC+V (bottom). We select 100 logarithmically spaced
points between 5E+18 and 5E+20 FLOPs on the envelope of the return profiles (left) and use them to fit the scaling laws (middle, right).
For both the token and parameter scaling plots, we indicate the scaling trend with a dashed red line. The dashed green line represents the
optimal number of parameters and compute budget needed to fit the data in one epoch of training. The dashed teal line represents the
optimal data and parameter trade-off for a FLOP budget of 1E+21.

F. Additional Experiments
F.1. Large-scale Training of PAC+V

As mentioned in Section 4.2, we also conduct a large-scale
training on the full pre-training corpus (cf. Table 11) follow-
ing the same protocol as for the other models. We report the
additional results obtained with PAC+V in Table 18.

The results for the V-function variant of PAC are in line with
the ones obtained using the Q-function variant with two
notable exceptions. First, in the case of RC:Insertion which
consists exclusively of human teleoperated data, PAC+V pro-
vides another significant improvement over PAC to≈ 89%
success rate. This suggests that PAC+V could have an edge
in cases where many successful task demonstrations exist
which are however beset by minor inefficiencies, e.g. mo-
tion jitter or pauses caused by human teleoperation. The
results suggest that the one-step improvement over the data-
generating policy afforded by PAC+V could be enough to
prevent imitating many inefficiencies present in the training
data. Second, in the case of CHEF:sim, PAC+V lags behind
its Q-function-based counterpart PAC. This suggests that in
cases where the data is mostly sub-optimal, a value function
alone might not be sufficient to filter transitions effectively
enough to improve the policy.

F.2. RL Fine-tuning and Self-improvement

In Section 4.3 we evaluated PAC on a robotic stacking
benchmark, and performed iterative fine-tuning to improve
performance in this domain. Here, we provide additional
details for those results.

The RGB Stacking benchmark (Lee et al., 2021) defines
five distinct sets of test objects, each highlighting a different
challenge of object manipulation. For brevity, we only
reported mean success rates above. In Table 19, we provide
success rates for each object separately. The continuous
self-improvement of PAC is particularly visible on ”Set 2”,
which requires precise force-based control to flip objects
onto their side. However, the same holds for the other
object sets, which improve across fine-tuning rounds until
converging at > 90% success rate.

Data collection was carried out only for the CHEF:real
domain, so it is worth examining whether such focused self-
improvement causes the PAC model’s performance on other
tasks to degrade. As Table 20 shows, performance on the
simulated tasks is unaffected, even after three rounds of
fine-tuning.

While we started the iterative improvement in Section 4.3
by pre-training α-PAC, the BC/RL trade-off parameter α
also allows flexibility as to what data to start from. For
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Table 18. Policy success rates across #(T ) tasks in each domain for 100 evaluations per task. The average success rate in the training
data is reported as pD . For Gato: Control, the percentage of achieved expert average reward and the standard-error-based 95% CIs
are reported (where available). For all other task families, the average success rates and their corresponding Wilson score intervals for
αW = 0.05 are reported. Best results (within CI of the best mean) in each row are bold. [† cited from Reed et al. (2022); ★ cited from Bousmalis et al.

(2023)]

Domain #(T ) pD Gato† / RC★ FilteredBC BC+Q PAC PAC+V
Gato:Control 32 N/A 63.6† 75.8 [62.5, 78.6] 84.6 [79.6, 89.7] 87.7 [83.8, 91.6] 90.2 [86.3, 94.1]

RC:Tower 7 75 61.0★ [57.3, 64.5] 64.0 [60.4, 67.5] 71.3 [67.8, 74.5] 69.3 [65.8, 72.6] 67.3 [63.7, 70.7]

RC:Pyramid 30 75 64.5★ [62.8, 66.2] 64.0 [62.3, 65.7] 62.4 [60.7, 64.1] 63.5 [61.7, 65.1] 65.3 [63.5, 66.9]

RC:Insertion 3 97 71.3★ [66.0, 76.2] 81.0 [75.8, 84.7] 79.7 [74.8, 83.8] 80.3 [75.5, 84.4] 89.0 [85.0, 92.1]

CHEF:sim 1 28 N/A 17.0 [10.9, 25.5] 11.0 [6.3, 18.6] 55.0 [45.2, 64.4] 42.0 [32.8, 51.8]

Table 19. Per-group success rates and confidence intervals for real-robot stacking tasks across self-improvement iterations (#(T ) = 5).
The policies are evaluated in 400 trials per set. The average success rates and their corresponding Wilson score intervals for αW = 0.05
are reported.

Iteration Set 1 Set 2 Set 3 Set 4 Set 5 All Sets
Pretraining 51.5 [46.6, 56.4] 53.5 [48.6, 58.3] 65.5 [60.7, 70.0] 84.7 [80.8, 87.9] 94.0 [91.2, 95.9] 69.8 [67.8, 71.8]

RLFT #1 83.0 [79.0, 86.4] 66.8 [62.0, 71.2] 87.5 [83.9, 90.4] 90.8 [87.6, 93.3] 95.5 [93.0, 97.1] 84.7 [83.1, 86.2]

RLFT #2 88.0 [84.4, 90.8] 76.2 [71.8, 80.1] 92.5 [89.5, 94.7] 95.8 [93.4, 97.4] 96.8 [94.6, 98.1] 89.8 [88.4, 91.1]

RLFT #3 91.8 [88.7, 94.1] 91.5 [88.4, 93.9] 90.8 [87.6, 93.3] 95.0 [92.4, 96.7] 97.0 [94.8, 98.3] 93.2 [92.0, 94.2]

Table 20. Comparison of performance across all domains after
pre-training (α-PAC), after three rounds of self-improvement on
the CHEF:real domain (RLFT #3).

Domain #(T ) α-PAC RLFT #3
Gato: Control 32 92.1 91.3

[88.4, 95.9] [89.6, 96.9]

RC: Tower 7 69.6 70.0
[65.9, 72.7] [66.5, 73.3]

RC: Pyramid 30 64.9 65.1
[63.1, 66.6] [63.3, 66.8]

RC: Insertion 3 89.3 80.3
[85.0, 92.1] [75.5, 84.4]

CHEF: sim 1 52.0 59.0
[42.3, 61.5] [49.2, 68.1]

CHEF: real 5 69.8 93.2
[67.8,71.8] [92.0,94.2]

comparison, we also deploy BC+Q on the robot – a model
which is pre-trained using only the BC part of the objective
to optimize its policy (α = 1), but which has already learned
a Q-function on the pre-training data (β > 0). The initial
performance of this model on the real robot is unsurprisingly
low with only 3.6% success rate. When we continue the
training on the same pre-training data (including all sim and
real tasks) for another 200k updates, but lower α to 0 to fully
leverage the Q-function for policy improvement, we observe
a significant jump to 38.2% success rate when re-deploying
on the robot. While this performance is still significantly
lower than the 69.8% success of the α-PAC model after
initial pre-training, it is high enough to feasibly be used as

an alternate starting point for the self-improvement loop.
This can be useful in scenarios where no non-expert data is
available initially to perform α-PAC from the start.
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