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Abstract

The evaluation of participant contribution in federated learning (FL) has re-
cently gained significant attention due to its applicability in various domains,
such as incentive mechanisms, robustness enhancement, and client selection.
Previous approaches have predominantly relied on the widely adopted Shapley
value for participant evaluation. However, the computation of the Shapley value
is expensive, despite using techniques like gradient-based model reconstruction
and truncating unnecessary evaluations. Therefore, we present an efficient ap-
proach called Single-round Participants Amalgamation for Contribution Evalu-
ation (SPACE). SPACE incorporates two novel components, namely Federated
Knowledge Amalgamation and Prototype-based Model Evaluation to reduce the
evaluation effort by eliminating the dependence on the size of the validation set
and enabling participant evaluation within a single communication round. Ex-
perimental results demonstrate that SPACE outperforms state-of-the-art methods
in terms of both running time and Pearson’s Correlation Coefficient (PCC). Fur-
thermore, extensive experiments conducted on applications, client reweighting,
and client selection highlight the effectiveness of SPACE. The code is available at
https://github.com/culiver/SPACE.

1 Introduction

With the rapid growth of mobile services, the combination of rich user interactions and robust sen-
sors means they are able to access an unprecedented amount of data. While conventional machine
learning approaches require centralizing the training data in a single machine or a data center,
which may limit the scalability of machine learning applications, Federated Learning (FL) [36]
has been proposed to leave the training data distributed on the client side and then aggregate lo-
cally computed updates, e.g., the gradient of the neural network, to a central coordinating server,
without accessing the raw data. A line of subsequent efforts has significantly improved the effi-
ciency [1, 15, 30, 62, 70, 73], and robustness [17, 38, 63] of FL. Moreover, such distributed training
paradigm has been adapted to client personalization [8, 27, 40, 41], and heterogeneous model archi-
tecture [10, 75], making it even more practical.

Recently, there has been increasing interest in evaluating the participant’s contribution to FL for a
fair incentive mechanism [12, 29, 33, 45, 46, 55, 65, 69, 71, 72] based on the participant contribution
in attracting data owners. Additionally, deciding the participant weights [54, 57] during the training
process based on their contributions can accelerate the convergence of the training process but also
enhance the model’s robustness by alleviating the negative effect from the confused or even incorrect
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data. Moreover, if the communication budget is limited, participant contributions can be utilized as
a reference to select important participants [7, 11, 13, 53, 56, 73], reducing communication costs
while maintaining the model’s performance.

One straightforward method to evaluate participant contribution is to assess their individual per-
formance independently. For instance, the accuracy of the local model has been employed as a
measure [39], as well as the consistency between the local and global models, indicating their sim-
ilarity to the consensus of the coalition [45, 72]. However, these approaches do not fully consider
the impact of client cooperation. To consider cooperation, some studies have adopted the influence
function [21] from centralized data evaluation to assess participant contribution [57, 64]. However,
calculating the influence function involves clients sending their locally computed Hessian matrices
to the server, leading to unacceptable client computation and communication costs. On the other
hand, researchers have explored using the Shapley value [42] in cooperative game theory to measure
participant contributions. While the exact computation of the Shapley value requires enumerating
all possible client combinations, Song et al. [48] approximate the target model with gradient updates
to avoid model retraining. To further speed up the computation, Wei et al. [59] and Liu et al. [32]
propose truncation techniques, eliminating unnecessary model reconstruction and evaluation.

Despite the aforementioned efforts, the approximation cost of the Shapley value can still be pro-
hibitively high for the following two reasons. i) Multi-Round Training: FL algorithms, such as
FedAvg, involve multiple communication rounds wherein models are transmitted between the server
and clients, and local training takes place on the client side before achieving model convergence.
Previous studies [32, 48, 57–59] compute participant contributions for each communication round
and aggregate them to obtain the overall participant contribution. Consequently, the communica-
tion and computation efforts escalate with an increase in the number of communication rounds. ii)
Dataset-Dependent Evaluation: As demonstrated in [32], the evaluation of models constitutes the
primary computational time component required for calculating the Shapley value. Even with the
adoption of permutation sampling approximation, the complexity of evaluating per-round contribu-
tions depends on the size of the validation dataset on the server. As the validation set continually
grows, the evaluation process becomes computationally unacceptable.

In this paper, we propose Single-round Participants Amalgamation for Contribution Evaluation
(SPACE) to efficiently calculate the participant contribution in FL. Specifically, we analyze the data
distribution between the server and the client dataset. If the server and client distributions are similar,
the client dataset proves helpful in correctly classifying the data in the validation set of the server.
While previous works [37, 51, 52, 68] have shown that prototypes, i.e., the embedding vectors repre-
senting each class, can be employed as a privacy-preserving approach to compare data distribution,
we propose Prototype-based Model Evaluation, which evaluates the model performance by mea-
suring the similarities between the local and server prototypes. Therefore, the distribution of the
validation set can be constructed and thus eliminates the dependency of evaluation complexity on
the size of the validation set.

To derive meaningful prototype embeddings, we propose a novel approach called Federated Knowl-
edge Amalgamation, wherein client models can be viewed as multiple distributed teacher models,
and their knowledge can be distilled to educate the server model simultaneously. Thus, federated
knowledge amalgamation enables us to distill knowledge from all local models in just one communi-
cation round to reduce the time for prototype construction. The educated model is distributed to each
participant, who then constructs prototypes based on their local data. We then evaluate the model
performance by measuring the similarities between server and client prototypes. Besides, unlike
previous works that adopt the model performance as the utility function, we modify the utility func-
tion by incorporating a logistic function. This adjustment aims to reflect users’ satisfaction better,
thereby enhancing the rationality of the utility function in real-world scenarios. Extensive results
demonstrate the advantage of SPACE in multiple applications, including contribution evaluation,
client re-weighting, and client selection.

The contributions of this paper are summarized as follows:

• We propose SPACE, an efficient and effective approach for client contribution evaluation in an
FL setting, which significantly reduces the required communication and computational cost and
exhibits outstanding performance in terms of Pearson’s correlation coefficient (PCC).

• We introduce Prototype-based Model Evaluation, which effectively removes the computation de-
pendency on the size of the validation set. To efficiently establish a robust embedding space for
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building prototypes, we introduce Federated Knowledge Amalgamation that enables the aggrega-
tion of embedding space information from local models in an FL setting, all within a single round
of communication.

• Extensive experiments have been conducted to show that SPACE outperforms previous state-of-
the-art methods in terms of both running time and PCC. SPACE consistently exhibits exceptional
performance in applications including client reweighting and selection.

2 Related Works

Contribution evaluation in FL. Client contribution evaluation in federated learning (FL) has
gained significant attention for its potential applications, including attack detection [14, 31], de-
bugging [25, 26], incentive mechanisms [33, 45, 46, 48, 55, 65, 72], and convergence accelera-
tion [54, 57]. This concept draws inspiration from centralized data evaluation tasks [16, 19]. Recent
works have proposed methods tailored for FL. Pandey et al. [39] consider the relative accuracy of
the local model as individual contribution. Zhang et al. [72] calculate the cosine similarity between
local gradients and a unit vector pointing towards the optimal model as contributions. Shi et al. [45]
measure contribution based on the cosine similarity between local and global gradients. However,
these methods do not fully capture the impact of cooperation. To address this limitation, the Shap-
ley value is widely adopted for evaluating client contribution in FL due to its desirable properties,
including efficiency, symmetry, linearity, and null player property. However, directly computing the
Shapley value incurs exponential computational costs involving model retraining and inference. To
alleviate this burden, Song et al. [48] reconstruct the target model using gradient updates to avoid
model retraining. Wang et al. [58] enhance the evaluation using permutation sampling and a group
testing approach. Additionally, Wei et al. [59] and Liu et al. [32] incorporate truncation techniques
to reduce computation costs. Despite these efforts, approximating the Shapley value still requires
significant computation.

Knowledge Amalgamation. Knowledge amalgamation (KA), a variant of knowledge distilla-
tion [18], involves a setup with one student model and multiple teacher models. KA has been widely
adopted in prior works [5, 20, 34, 43, 44, 61, 66, 67] due to its desirable properties. Shen et al. [43]
introduced KA, where compact feature representations are learned from teachers and used to update
the student model. Shen et al. [44] proposed a strategy that extracts task-specific knowledge from
diverse teachers to create component networks, which are then combined to construct the student
network. Luo et al. [34] introduced a common feature learning scheme in heterogeneous network
settings, transforming the features of all teachers into a shared space. Xie et al. [61] proposed a
related approach applying KA to transfer prior knowledge from multiple pre-trained models. How-
ever, their focus is on knowledge transfer from given pre-trained models, while our approach is the
first to employ KA within a conventional FL framework. In our setting, client models can be viewed
as distributed teacher models, and their knowledge can be distilled to educate the server model.

3 Preliminary

Since federated learning aims to construct a unified, global machine-learning model to collect data
information located on numerous remote devices (client), the objective is to develop this model
while ensuring that the data generated by each device is processed and stored locally, with only
intermediate updates being sent to a central server at regular intervals. The primary objective is
usually to minimize the objective function as follows. Let N denote a set consisting of n clients,

θ∗ = argmin
θ

n∑
i

piLi(θ), (1)

where pi ≥ 0 and
∑

i pi = 1. Li is the objective function for the i-th client. Generally, each client
may utilize the same objective function, such as the empirical risk, which can be defined as follows.

Li =
∑

(xi,j ,yi,j)∈Di

l(θ, xi,j , yi,j), (2)

where Di is the dataset in i-th client. pi specifies the relative impact of each device, such as the
uniform weighting 1

n or depending on the number of samples in each dataset |Di|∑n
i |Di| .
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Figure 1: Overall architecture of SPACE. Initially, the clients train their respective local models
using their local datasets. Subsequently, the locally optimized models are frozen and serve as teacher
models to educate the student model on the server by Federated Knowledge Amalgamation. Then,
the educated model θ∗ is distributed to all clients, who then utilize it to construct their corresponding
prototypes Pi. These prototypes are then uploaded to the server. The server employs the Prototype-
based Model Evaluation approach to assess the model’s performance and determine the contribution
c of each participant.

Despite early efforts to enhance the efficacy of federated learning, many data owners hesitate when
it comes to partaking in data federation owing to apprehensions surrounding the possibility of in-
equitable remuneration. Furthermore, in federated learning, privacy concerns preclude the server
from directly accessing unprocessed data stored on client devices. Consequently, there is a press-
ing need for a privacy-preserving federated contribution evaluation method that ensures equitable
distribution of rewards.

Specifically, the evaluation of participant contributions can be abstracted into cooperative game
scenarios. Given a cooperative game (N , V ), where N denotes the set of n participants and V (·) is
a utility function defined as V : 2n → R, which assigns a value to a coalition S ∈ N , the objective
of payoff allocation is to determine a payoff allocation vector, denoted by c = (c1, ..., cn), where ci
represents the payoff for the i-th participant in N .

The idea of cooperative games has been extensively researched [2, 3], with the Shapley value being
the most commonly used metric due to its existence and uniqueness in a cooperative game. Addi-
tionally, the Shapley value is characterized by a set of desirable axiomatic properties, including (i)
efficiency, (ii) symmetry, (iii) null player, and (iv) linearity, which make it a desirable approach for
evaluating contributions. The Shapley value is defined as follows,

ϕi(N , V ) =
∑

S∈N\{i}

|S|!(n− |S| − 1)!

n!
(V (S ∪ {i})− V (S)). (3)

S denotes the subset of participants from N . The Shapley value can be seen as the average marginal
gain that a participant joins the coalitions. To accelerate the approximation, the Monte Carlo esti-
mation method for approximating Shapley values from [16] is adopted,

ϕi = E
π∼Π

[V (Si
π ∪ {i})− V (Si

π)], (4)

where Si
π is the set of data from FL participants joining before i in the π-th permutation of the

sequence of FL participants. The calculated Shapley values are clipped to be non-negative to follow
the non-negative assumption as in [3].

4 Method

Shapley value is a widely used approach for evaluating participant contributions in federated learn-
ing due to its desirable properties. However, despite the proposal of various acceleration techniques
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such as Monte Carlo sampling, gradient-based model reconstruction, and truncation, the compu-
tation of the Shapley value remains prohibitively slow due to the following two key challenges
Multi-Round Training: multiple communication rounds are required for model convergence, and
Dataset-dependent Evaluation: the evaluation of model performance depends on the size of the
validation set on the server. Thus, we propose the Single-round Participant Amalgamation for Con-
tribution Evaluation (SPACE) approach, which analyzes participant contributions using only one
communication round. The key idea behind SPACE is to compare the distribution between the local
dataset and the validation dataset directly via prototype embeddings of the local dataset and the val-
idation dataset [37, 51, 52, 68]. To establish robust prototype embeddings, we introduce Federated
Knowledge Amalgamation to distill feature information from all locally optimized models to the
server model simultaneously, which enables the server model to learn information in a single com-
munication round. Once the prototypes are obtained, we evaluate the performance of coalition S by
comparing the similarities between the prototypes formed by clients in coalition PS and prototypes
formed by validation set PV . Using prototypes eliminates the need to iterate over all samples in the
validation set, resulting in faster performance evaluation. Figure 1 shows the architecture of SPACE.

4.1 Federated Knowledge Amalgamation

As previously mentioned, the SPACE framework utilizes prototypes to assess participant contri-
butions. Therefore, employing a semantically meaningful deep model is essential to ensure the
extraction of expressive features from data samples. One straightforward approach is to utilize the
converged model achieved through federated training, which encompasses training with all the local
data. However, the convergence of federated learning algorithms like FedAvg necessitates numerous
rounds of local-global communication and local training. Consequently, the evaluation of contribu-
tions can only be conducted after extensive training, resulting in excessively high costs and impeding
the utilization of participant contributions in applications like client selection.

In contrast to conventional knowledge distillation tasks, which typically involve a single student
model and a single teacher model, knowledge amalgamation techniques are employed to entail one
student model and multiple teacher models. Furthermore, in federated learning, the client models
can be considered teacher models that acquire knowledge from their local datasets. Consequently,
the application of knowledge amalgamation facilitates the construction of an expressive embedding
space for federated learning.

SPACE first distributes the global model θ to each client and each client implements empirical risk
minimization to obtain a locally optimized model θi. The knowledge amalgamation is then applied
to transfer the knowledge to the initial global model θ with the locally optimized models serving as
teacher models and the server validation dataset for distillation. To simultaneously distill knowledge
from all the teacher models, the features of both the student and teacher models must be projected
to common feature space for the feature alignment.

Therefore, we use feature projector modules (FPM) to project the intermediate feature of models to
the common feature space. Since the data distributions of clients are different, the projections from
the original feature space to the common feature space are also different. Therefore, each model,
including the student model and teacher models, would be assigned an individual learnable FPM for
projection. After projection, the student model then starts to learn information from teacher models
by minimizing the feature distillation loss Lfeat, which is the L1 distance between the projected
student features f̃s and the projected teacher features f̃ti . However, due to the differences in local
data distribution, the teacher models are not equally important, and the loss should be weighted
differently depending on the sample used for knowledge amalgamation. We define the weighting of
each teacher model wi by its confidence in predicting the class of data sample. Specifically, given a
data sample d with its class as j for distillation, the weighting of each teacher model is the softmax
of the j-th logit of its prediction F(θi, d), which can be written as follows:

Lfeat =
∑
i

wi|f̃s − f̃ti |, wi =
eF(θi,d)j∑
i e

F(θi,d)j
(5)

To prevent the FPM from projecting all the features to a constant vector, which is a trivial opti-
mal solution for the feature distillation loss, reconstruction loss is proposed to ensure the projected
feature contains the knowledge in the original feature space. For each teacher model, we apply an
inverse feature projector module (iFPM) to reconstruct features in the original feature space, which
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projects f̃ti to the reconstructed feature f̂ti . The reconstruction loss is defined as follows:

Lrec =
∑
i

|fti − f̂ti | (6)

where fti is the original feature of i-th client before projection. Aside from feature distillation, we
also use prediction distillation to enhance the overall amalgamation performance. For prediction
distillation, the student model only learns from the teacher that predicts the highest confidence in
the correct prediction. The prediction distillation loss LKL is defined as follow:

LKL = KL(F(θS , d),F(θbest, d)), θbest = argmax
θi

(F(θi, d)j) (7)

where KL(·) denotes the KL divergence loss. The overall amalgamation loss Lamlg becomes,
Lamlg = λfeatLfeat + λrecLrec + λKLLKL, where λ are used for balancing the loss terms. Af-
ter knowledge amalgamation, the server model θ∗ is then distributed to each client for extracting
features and building prototypes of each category.

While the theoretical complexity of knowledge amalgamation is O(n), practical considerations arise
as the number of clients n increases, leading to an increase in the number of FPMs that require
training. This poses a challenge due to the limited memory capacity of GPUs, as training all FPMs
simultaneously may not be feasible. To address this issue, we suggest a hierarchical amalgamation
framework that alleviates the high GPU memory requirement. By allocating a GPU memory budget,
we can amalgamate groups of G teacher models instead of all n teacher models at once. Although
this modification increases the complexity of knowledge amalgamation to O(n log n), it enables the
implementation of knowledge amalgamation on any GPU device capable of simultaneously amal-
gamating at least two teacher models.

4.2 Prototype-based Model Evaluation

The concept of utilizing prototypes in classification models has its roots in the Prototypical Networks
introduced by Snell et al. [47], which were initially proposed for addressing few-shot classification
tasks. In this framework, the classification of an embedded query point is achieved by identifying
the nearest class prototype. The underlying assumption is that an embedding space exists where
data points tend to cluster around a single prototype representation for each class. By leveraging
prototypes, it becomes unnecessary to compute the distances between all samples in the query set
and the support set, as required in Sung et al. [50]. The prototypes capture the distribution of samples
in the support set, simplifying the classification process.

In our study, we adopt a similar perspective to Snell et al. [47] by considering the clients’ local
datasets as the support set. From the embedding space derived through the Federated Knowledge
Amalgamation described earlier, we construct prototypes for each client, denoted as P(j)

i , represent-
ing the prototype for class j of the i-th client. To address the challenge of evaluation complexity
dependence on the size of the validation set, we introduce a modification to the evaluation step.
Rather than iterating through all validation samples, we devise a strategy where prototypes are built
for the server’s validation set. These prototypes, denoted as P(j)

V , represent the prototypes for class j
of the validation set. Model evaluation is then performed by comparing the similarities of the proto-
types between the clients and the server. This modification effectively eliminates the computational
burden associated with iterating through all validation samples. The prototypes are built as follows:

P(j)
i =

1

|Di,j |
∑

(x,y)∈Di,j

f(θ∗, x) (8)

where Di,j implies the data that is class j in the client i-th dataset and function f(·) is used to extract
feature from data x with model weight θ∗. We set the prototype of clients as a zero vector if the
client does not possess any data of the corresponding class, such that P(j)

i = 0 if |Di,j | = 0. When
clients cooperate in coalitions, the prototypes for class j of coalition S is denoted as P(j)

S , which
can simply be achieved by the weighted sum of prototypes in the coalition.

P(j)
S =

∑
i∈S

|Di,j |∑
i∈S |Di,j |

P(j)
i (9)

We then define the performance of the coalition by the confidence of correctly classifying the given
prototypes of the validation set. The confidence is calculated by the relative value between the
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similarity of the same class and the sum of the similarities of all classes, while a softmax function
is applied to ensure the value lies within the range [0, 1]. To be more specific, the value is computed
as follows:

V ′(S) = 1

|C|
∑
j

eSim(P(j)
V ,P(j)

S )∑
k e

Sim(P(j)
V ,P(k)

S )
, (10)

where |C| represents the number of classes in the classification task. We adopt cosine similarity as
our similarity function.

4.3 Contribution Evaluation

Shapley value is applied to evaluate the participant contribution. However, adopting the model
performance V ′ as a utility function may usually lead to a violation of rationality. This violation
occurs when the marginal performance gain from additional clients decreases as the coalition size
increases, as observed in [32]. Consequently, the expected value of the marginal gain becomes
smaller than the individual value, thereby violating individual rationality [3], which states that ci ≥
u({i}), where u(·) denotes a utility function. To illustrate this issue, we provide an example below:
Example 4.1. Given two clients, each client’s local dataset allows them to achieve model accuracy
of 0.8 and 0.6, respectively. However, when collaborating in a federated learning setting, they can
attain a model performance of 0.9. The Shapley value of each participant can be determined by
using the model performance as the utility function, resulting in Shapley values of them becoming
0.55 and 0.35. Thus, their payoffs are lower with cooperation.

Despite the seemingly irrational nature of the decision, data owners in real-world scenarios demon-
strate a willingness to participate in the federation in the above example due to the higher level of
user satisfaction achieved by a model with an accuracy of 0.9. Relying solely on model performance
as the utility function fails to adequately capture the underlying user satisfaction. Based on this ob-
servation, we rectify the conventional utility function with a logistic function [9], representing the
percentage of users satisfied with the model performance.

V (S) = 1

1 + e−k(V ′(S)−T )
(11)

where k denotes the logistic growth rate, which determines the steepness of the curve and T repre-
sents the threshold, where half of the population is satisfied. The choice of T should be greater than
maxi V

′({i}) to encourage the cooperation of participants because the convexity of the left-sided
logistic function would up-weight the utility value of stronger coalitions. When k is set to infinity,
the individual rationality would be satisfied since the V ({i}) is compressed to zero and participant
contribution is lower-bounded by zero. 1

Finally, the contribution of i-th participant can be calculated by Shapley value defined in Equation 4.
The proposed rectification of the utility function with the logistic function makes the utility value
more sparse because the utility of the coalition whose performance does not surpass the threshold T
would be highly compressed. Inspired by [32], we propose a pruning technique that leverages the
sparsity to further accelerate the computation of the Shapley value. We set a pruning threshold τ ,
such that given a coalition S with V (S) ≤ τ , we prune the computation of subsets of S. 2

4.4 Complexity Analysis

Table 1 presents a comparative analysis of SPACE’s computational complexity in contrast to estab-
lished methods. The sampling-based approximation of the Shapley value, applied in TMC-Shapley,
GTG-Shapley, and SPACE, necessitates sampling complexity of n log n, as studied in [35]. It is
worth noting that SPACE achieves a notably reduced computational complexity in calculating the
Shapley value at merely O(n log n · |C|), which represents a substantial reduction compared to the
O(n log n · Rg · |DV |) required by other Shapley value-based approaches. This efficiency gain is
attributed to the use of the single-round amalgamation and the prototype-based model evaluation.
The prototype-based model evaluation eliminates the necessity for repeated iteration over the valida-
tion set. Consequently, the computation of the Shapley value is facilitated by direct comparisons of

1Further discussion is provided in the appendices.
2The overall algorithm of SPACE is shown in appendices.
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Table 1: Comparison of complexity between previous works. Rl, Rg , and Ra denote the number of
iterations for local training, global communication rounds, and knowledge amalgamation. |θ| rep-
resents the number of model parameters, |P| denotes the dimension of prototypes, and |C| indicates
the number of classes. |Di| and |DV | represent the sizes of the local dataset and the validation set.

Method Communication Cost Client Computation Cost Server Computation Cost
Real Shapley 2n ·Rg · |θ| 2n ·Rg ·Rl · |Di| 2n · |DV |
GT-Shapley n(logn)2 ·Rg · |θ| n(logn)2 ·Rg ·Rl · |Di| n(logn)2 · |DV |
TMC-Shapley n logn ·Rg · |θ| n logn ·Rg ·Rl · |Di| n logn · |DV |
GTG-Shapley Rg · |θ| Rg ·Rl · |Di| n logn ·Rg · |DV |
DIG-FL Rg · |θ| Rg ·Rl · |Di| Rg · |DV |
SPACE(Ours) |θ|+ |P| · |C| Rl · |Di| n logn ·Ra · |DV |

distances between the weighted sum of prototypes. Moreover, by employing the knowledge amalga-
mation technique, SPACE is capable of evaluating participant contributions with a single communi-
cation round, thereby significantly alleviating the communication and computational load on clients
with limited resources by a factor of Rg . This acceleration does introduce an additional computa-
tion load for knowledge amalgamation on the server, with a complexity of O(n log n · Ra · |DV |).
However, this trade-off is generally more suitable for generic federated learning frameworks, given
that the server typically possesses superior computational resources compared to the clients.

5 Experiment

In this section, we demonstrate the effectiveness of the proposed SPACE method for evaluating
participant contributions. We compare it with previous approaches and show that SPACE achieves
superior computational efficiency without compromising performance. We also evaluate the SPACE
on two federated-learning tasks, client reweighting, and client selection.

5.1 Experimental Setup

Datasets and Non-IID Setting. Following [57], we conduct experiments on the widely adopted
image dataset MNIST [24] and CIFAR10 [22]. For a fair comparison, we adopted the experimental
settings used in the HFL framework [57] with two different scenarios: mislabeled data and non-
IID data. In the mislabeled data scenario, we deliberately introduced label corruption in a variable
proportion of the total clients. Specifically, we corrupted different percentages of clients, ranging
from 0% to 80%. Within each client, we intentionally corrupted 50% of the local training labels to
simulate the presence of mislabeled data. For the non-IID scenario, we selected a subset of clients,
ranging from 0% to 80%, and assigned them local datasets containing incomplete categories. We
set the total number of clients to 10 for the MNIST dataset and 5 for the CIFAR10 dataset.

Baselines and Implementation. We compare SPACE with four state-of-the are methods, including
i) GT-Shapley [19],ii) TMC-Shapley [16], iii) GTG-Shapley [32] and iv) DIG-FL [57]. 3 We also
compare a variant of SPACE, v) SPACE(Avg), which applies FedAvg instead of knowledge amalga-
mation for aggregation. For adjusting the utility function, we empirically set k as 100 while T as
0.95 and 0.5 for evaluation on MNIST and CIFAR10.

Evaluation Metric. The performance of all approaches is assessed from two perspectives: accuracy
and efficiency. To evaluate the accuracy, we employ Pearson’s Correlation Coefficient to measure the
correlation between the estimated and actual Shapley values. The actual Shapley values are obtained
by performing retraining for a total of 2n times. In terms of efficiency, we consider two vital metrics.
Execution time (in seconds) is measured on a single V100 GPU without parallel training to assess
the time efficiency of the approaches. Communication cost (in megabytes) is calculated according
to the formula Comm = 2 · n · Rg · |θ|, where Rg denotes the number of communication rounds,
|θ| represents the number of model parameters(MB) and constant of 2 stands for the upload and
download of the models.

3Since GT-Shapley and TMC-Shapley are centralized learning schemes, we set the retraining rounds for
TMC-Shapley to n logn, and for GT-Shapley to n(logn)2, where n is the number of participants for the
federated learning scenario.
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Table 2: Results of participant contribution evaluation.
Dataset Scenario GT TMC GTG DIG-FL SPACE(Avg) SPACE

MNIST

Non-IID 0.6877 0.9824 0.9287 0.8715 0.9713 0.9448
Mislabel 0.4230 0.9507 0.9608 0.9580 0.9529 0.9612
Time(s) 97137 84796 62473 315 294 160

Comm(MB) 11813.12 10292.48 35.2 35.2 35.2 1.76

CIFAR

Non-IID 0.6089 0.8877 0.8208 0.7546 0.9540 0.9290
Mislabel 0.5192 0.9595 0.4148 0.9598 0.9565 0.9641
Time(s) 7468 4950 835 536 315 295

Comm(MB) 307800 202920 11400 11400 11400 570

Figure 2: The effect of client reweighting on model performance.

5.2 Quantitative Results

Participant contribution. Table 2 presents the outcomes of participant contribution evaluation. The
proposed SPACE approach demonstrates outstanding efficiency and achieves the highest Pearson
correlation coefficient (PCC) in scenarios involving mislabeled data. In terms of PCC, SPACE per-
forms similarly to SPACE(Avg), but with superior efficiency resulting from the single-round knowl-
edge amalgamation. The communication and computational costs associated with GT-Shapley and
TMC-Shapley are excessively high due to the requirement for model retraining. However, TMC-
Shapley shows improved efficiency by attaining high PCC results with fewer sampled permutations.
GTG-Shapley adopts a reconstruction technique to expedite the computation process, which ef-
fectively reduces the required communication cost, yet the testing time in GTG-Shapley remains
considerably long. The resource-saving version of DIG-FL achieves comparable computational ef-
ficiency to SPACE. Nevertheless, it has a tendency to overestimate the contribution of clients with
incomplete categories and exhibits inferior PCC results in non-IID scenarios.

Client Reweighting. In non-IID scenarios or when some clients have erroneous data, aggregating
local models based on data ratio may lead to suboptimal performance. Leveraging participant con-
tribution as a weighting factor can enhance the robustness of federated learning [57]. We propose
two reweighting mechanisms, namely static and dynamic, with the former employing participant
contribution calculated using the knowledge amalgamated model and the latter recalculating par-
ticipant contribution for each communication round using the current model. Figure 2 shows the
reweighting results. Despite the dynamic approach introducing additional computational overhead,
it yields improved performance. The static and dynamic approaches achieve accuracy improvements
of 2.53% and 2.69%, respectively, under the non-IID scenario, and 3.21% and 3.52%, respectively,
under the mislabel scenario, for the CIFAR10 dataset. The DIG-FL approach measures client con-
tribution in federated learning by the similarities between the gradients of the local datasets and the
gradients of the validation set. However, this approach disregards clients in communication rounds
where the two gradients diverge, leading to significant variances in the federated training process.

Client Selection. Client selection is a critical issue when dealing with a large number of clients.
Li et al. [28] proposed a client sampling approach based on the multinomial distribution (MD) that
ensures zero bias but has significant variances. To tackle this issue, Fraboni et al. [13] suggested
clustered sampling (CS), which has been theoretically shown to reduce variance. They proposed
two CS algorithms: Algorithm 1 clusters clients based on data ratio, and Algorithm 2 incorporates
the similarities between local and global models. Algorithm 2 outperforms both MD and Algorithm
1. However, Algorithm 2’s time complexity is O(Rg · (n2|θ| + X)), where |θ| is the number of
model parameters and O(X) is the complexity of the clustering algorithm. This computational cost
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Figure 3: The effect of client selection on model performance.

results from updating a similarity matrix and re-clustering at each communication round. We pro-
pose a method that combines SPACE with CS. We utilize the prototypes obtained from SPACE to
construct the similarity matrix, eliminating the need for repeated updates. Additionally, we enhance
the weighting by incorporating the estimated contribution, resulting in a new weighting scheme for
client pi given by (1 − β)pi + βci, where β is a hyper-parameter that balances the two terms. As
in [13], the CIFAR10 dataset is distributed among 100 clients using a Dirichlet distribution with
α ∈ {10, 0.001}, where smaller α implies larger heterogeneity. We set β = 0 and β = 0.5 when
α = 10 and α = 0.001, respectively. Figure 3 presents the results of client selection. Our approach,
which combines prototypes and participant contribution, outperforms prior methods, indicating the
superiority of our proposed method. This improvement can be attributed to the fact that prototypes
enhance the accuracy of the clustering process. Furthermore, as discussed in Section 5.2, the in-
corporation of participant contribution has proven to be useful in enhancing the performance of
federated learning, especially in non-IID settings.

6 Conclusion

We propose Single-round Participant Amalgamation for Contribution Evaluation (SPACE), an effi-
cient approach for evaluating participant contribution in federated learning. The novelty of SPACE
lies in two key components: Federated Knowledge Amalgamation and Prototype-based Model Eval-
uation. By leveraging a single communication round, Federated Knowledge Amalgamation con-
structs a robust embedding space, while Prototype-based Model Evaluation reduces the complexity
associated with the validation set size. Our experimental results demonstrate that SPACE outper-
forms existing methods in contribution evaluation and shows versatility in client reweighting and
selection. However, efficient client selection for amalgamation and the impact of the validation set
quality are areas that require further exploration in future research.

Broader Impact

In our study, we highlight the importance of participant contribution through three applications: in-
centive mechanisms, client reweighting, and client selection. Furthermore, the potential applications
extend to client debugging and attack detection. Since the computational complexity associated with
participant contribution hampers its widespread implementation, we propose a novel FL framework,
SPACE, to alleviate this issue and pave the way for broader adoption of participant contribution.
An efficient algorithm for evaluating participants provides decision-makers with valuable insights
before initiating extensive federated learning processes, which can be both computationally and
temporally intensive. Furthermore, rapid evaluation offers enhanced flexibility when dealing with
dynamic cooperative entities, facilitating quick adaptation to new collaborations—a capability that
previous methods lack. Our proposed approach, SPACE, significantly contributes to these applica-
tions. However, our framework relies on the assumption of having a proper and reliable validation set
with accurately labeled data. This prerequisite can be particularly challenging to fulfill in real-world
settings and thus limits the application to specific scenarios characterized by significant commercial
incentives [33, 65]. Exploring methods to decrease dependence on the validation set while maintain-
ing functionality, even when erroneous data impact many clients, presents an intriguing direction for
future exploration. We defer this critical aspect to be addressed in future research efforts.
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(a) Impact of different T (b) Impact of different k

Figure 4: The impact of modification using the logistic function with different parameters.

A Additional Experimental Results

A.1 Sensitivity test of utility function

To begin with, we conduct a sensitivity analysis on the utility function by varying two hyperparam-
eters: k and T . The hyperparameter k determines the logistic growth rate, thereby impacting the
steepness of the curve, while T represents the threshold at which half of the population is consid-
ered satisfied. This adjustment is aimed at capturing user satisfaction, which serves as a practical
incentive for participants to actively participate in federated learning (FL) collaborations.

Figure 4 depicts the calculated actual Shapley values for the MNIST dataset in the presence of
mislabeled data, considering the existence of 8 corrupted clients. Various combinations of the hy-
perparameters k and T are explored in this analysis. Specifically, Figure 4a focuses on investigating
the impact of different values of T from the set 1.0, 0.9669, 0.95. The selection of 1.0 as the thresh-
old follows a greedy approach, while 0.9669 represents the performance achieved when considering
all participants. Furthermore, 0.95 corresponds to an empirically derived threshold based on a com-
prehensive dataset understanding.

The findings reveal that selecting a greedy selection for T leads to the disparity between clients with
high and low contributions, due to the convex nature of the left-sided logistic function. Conversely,
empirically setting an appropriate value for T reduces the marginal gain for coalitions that surpasses
the threshold, owing to the concave property of the right-sided logistic function. Consequently, this
approach minimizes the discrepancy between clients with high and low contributions.

Figure 4b examines the influence of different values of k. A larger value of k indicates a steeper
logistic function, thereby strongly favoring coalitions that surpass the threshold T and consequently
widening the gap between clients with high and low contributions. However, as k approaches in-
finity, the logistic function transforms into a ReLU function, disregarding all coalitions that fail to
surpass the threshold T and assigning equal value to those that do. Consequently, in this scenario,
the relative performance, as depicted by the difference between client 0 and client 1 in Figure 4b,
would be disregarded due to a hard threshold.

The selection of hyperparameters k and T should be determined by the desired characteristics of the
applications to enhance the influence of coalitions with superior performance or to ensure individual
rationality. Thus, we maintain them as carefully selected hyperparameters, allowing for flexibility
and customization based on specific application requirements.

A.2 Ablation Study for smaller G

The federated knowledge amalgamation process utilizes FPMs comprising only two convolution
layers, each of which introduces minimal additional GPU memory usage. As a result, in the reported
experiments, we are able to simultaneously distill the knowledge from all client models on a single
V100 GPU. However, as the number of clients n increases, the limited memory capacity of the GPU
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Table 3: Federated knowledge amalgamation with different G.
MNIST CIFAR10

G Non-IID Mislabel runtime Non-IID Mislabel runtime
n 0.9448 0.9612 160 0.9290 0.9641 295
2 0.9427 0.9726 633 0.9333 0.9645 299

Table 4: Results of participant contribution evaluation on Tiny-ImageNet dataset.
Dataset Scenario GT TMC GTG DIG-FL SPACE(Avg) SPACE

Tiny-ImageNet

Non-IID 0.9082 0.9610 0.7425 0.8944 0.9175 0.9092
Mislabel 0.7833 0.9233 0.7998 0.8405 0.9293 0.9256
Time(s) 84994 69212 98855 266 252 453

Comm(MB) 2639200 2097600 8000 8000 8000 400

may pose a challenge. To address this issue, we propose a hierarchical amalgamation framework
that mitigates the high GPU memory requirement.

To evaluate the effectiveness of hierarchical amalgamation, we conducted experiments by amalga-
mating groups of G = 2 teacher models instead of all n teacher models in a hierarchical manner.
The results, shown in Table 3, demonstrate that knowledge transfer from the local datasets can still
be achieved through hierarchical amalgamation, yielding performance comparable to amalgamating
all clients simultaneously. Although hierarchical amalgamation alleviates the high GPU memory
requirement, it introduces a computational complexity increase in the knowledge amalgamation
process from O(n) to O(n log n), as evident from Table 3.

A.3 Comparison of estimated Shapley Value

Figure 5 illustrates the scatter plots depicting the estimated Shapley values compared to the actual
Shapley values. Regarding the centralized method, TMC-Shapley outperforms GT-Shapley, indi-
cating that Monte Carlo sampling is more efficient for approximating the Shapley value than group
testing. To accelerate the approximation process, GTG-Shapley employs gradient-based model re-
construction. While it performs well on the MNIST dataset, its performance deteriorates on the
CIFAR10 dataset due to the increased complexity of both the model and the dataset. The results
indicate that DIG-FL tends to overestimate clients’ contributions with incomplete class data, lead-
ing to suboptimal performance in non-IID scenarios. Conversely, the proposed SPACE approach
exhibits strong performance across all scenarios.

A.4 Results on Tiny-ImageNet

To assess the efficacy of the proposed SPACE framework on more complicated datasets, an addi-
tional experiment was conducted, incorporating a portion of the Tiny-ImageNet dataset [23]. This
subset encompasses 50 categories and involves 10 clients. The results are provided in Table 4. The
SPACE method demonstrates satisfying performance in terms of Pearson’s Correlation Coefficient
(PCC). It’s noteworthy that achieving feature alignment in a complex dataset like Tiny-ImageNet is
more challenging. Consequently, the knowledge amalgamation process requires an extended number
of epochs to converge, particularly in scenarios where the data distribution across clients is non-IID,
and clients possess data from disjoint classes. On the other hand, the SPACE(Avg) approach, which
employs FedAvg for obtaining the embedding space, may offer superior time efficiency in cases
with a limited number of communication rounds. Nonetheless, the advantages in communication
efficiency stemming from single-round amalgamation continue to position SPACE as the preferred
choice when mitigating communication costs is a key consideration.

A.5 Scenario without labeled validation set

Given the inherent challenges associated with acquiring a sufficiently well-labeled validation dataset,
there arises an important question regarding the adaptability of the proposed approach in cases where
label information is unavailable. To investigate this, we conducted supplementary experiments em-
ploying unlabeled data for knowledge amalgamation. In this context, we drew inspiration from the
work of [44] and modified the loss function to incorporate weights based on entropy purity rather
than the confidence associated with accurate result predictions. Specifically, clients with lower en-
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Figure 5: Estimated Shapley and the actual Shapley value of all approaches under all scenarios.

Table 5: Results of SPACE with and without labels.
MNIST CIFAR10 Tiny-ImageNet

Label Non-IID Mislabel Non-IID Mislabel Non-IID Mislabel
✓ 0.9448 0.9612 0.9290 0.9641 0.9092 0.9256

0.8772 0.9611 0.8653 0.9641 0.9091 0.9231

tropy values were assigned greater weight in the loss function. The experimental results are shown in
Table 5. While some marginal reductions in performance are evident, particularly in scenarios char-
acterized by Non-IID data distributions, it is important to note that these performance decreases are
primarily attributed to the absence of label information. Nevertheless, the results clearly demonstrate
the viability of leveraging unlabeled data as a practical alternative for knowledge amalgamation, of-
fering a feasible solution in cases where the acquisition of labeled data is challenging.

B Pseudocode

The algorithmic representation of the proposed SPACE approach is presented in Algorithm 1. Ini-
tially, the server distributes the initial model θ to all participating clients. Each client then performs
empirical risk minimization to obtain a locally optimized model θi and transmits it to the server.
Using the locally optimized models as teacher models, the federated knowledge amalgamation tech-
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Algorithm 1 SPACE

Require: Initial FL model θ, client set N , local datasets {D1, ...,Dn}, validation dataset DV , fea-
ture encoder f(·) and utility function V (·)

1: # Knowledge Amalgamation
2: for i = 1,. . . ,n do
3: θi = LocalUpdate(θ, Di)
4: θ∗ = KA(θ, {θ1, . . . , θn}, DV )
5: # Build server prototypes and clients’ prototypes
6: for j = 1,. . . ,|C| do
7: P(j)

V = 1
|DV,j |

∑
x f(θ

∗, x),∀x ∈ DV,j

8: for i = 1,. . . ,n do
9: for j = 1,. . . ,|C| do

10: P(j)
i = 1

|Di,j |
∑

x f(θ
∗, x),∀x ∈ Di,j

11: # Evaluate contribution with Prototype-based Model Evaluation
12: r = 0
13: {c1, ..., cn} = 0
14: while Convergence criteria not met do
15: r = r + 1
16: πr ∼ Π
17: v0 = V (N )
18: for k = 1,. . . ,n-1 do
19: if vk−1 > τ then
20: S = {πr[k + 1], . . . , πr[n]}
21: for j = 1,. . . ,|C| do
22: P(j)

S =
∑

i∈S
|Di,j |∑

i∈S |Di,j |P
(j)
i

23: vk = V (S)
24: else
25: vk = 0
26: cπr[k] =

r−1
r cπr[k] +

1
r (vk−1 − vk)

27: return {ci, . . . , cn}

nique is employed to distill knowledge into the server model, resulting in an enhanced server model
denoted as θ∗. Subsequently, prototypes are constructed using θ∗ for both the validation set and local
datasets. Following prototype construction, SPACE proceeds to calculate participant contributions
using the Shapley value, leveraging the prototype-based model evaluation. To ensure convergence,
SPACE samples multiple permutations of participants. As the modified utility function may com-
press the utility values of small coalitions, SPACE performs pruning operations at the sequence
level. If the utility value V (S) of a coalition S falls below the pruning threshold, subsets of S are
pruned as their marginal gains become negligible.

C Potential Malicious Attack

Malicious attack by data poisoning. The manipulation of data labels, a frequently employed ma-
licious strategy by clients engaged in data poisoning attacks, is denoted as ”label-flipping” in ref-
erence [6]. In our work, we adopted the term ”mislabeled” to refer to unintentional and intentional
mislabeling instances. In this case, malicious clients attempt to disrupt the training process by
submitting gradients derived from mislabeled data. Explicitly, as depicted in Table 2, the results
highlight the effectiveness of SPACE in pinpointing those malevolent clients harboring inaccurately
labeled data. With the server’s privately owned validation set, our framework efficiently identifies
such malicious clients, even if they form the majority in the federated process. In addition, the ex-
perimental results in Figure 2 demonstrate the robustness of our framework in the federated training.
It is worth noting that the SPACE proposed employs contributions as weighting factors, thereby re-
ducing the negative impact of malicious participants, i.e., the malicious clients usually contribute
less due to their distributions differing from that of the server.
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Maliciously inflating contribution. Clients may aim to inflate their contributions maliciously to
obtain more significant rewards. If the prototypes from the validation set become exposed, clients
might exploit this knowledge to boost their contributions in an ad-hoc manner. In such a case,
the SPACE utilizes prototype-based model evaluations, where all clients have access solely to the
feature extraction layers of the amalgamated model while excluding access to the fully-connected
layers, i.e., the final score. This strategic approach facilitates the creation of prototypes without com-
promising the confidentiality of the distribution that underlies the validation set. Note that another
potential threat is clients employing the zeroth-order optimization technique [4] to derive prototypes
with disproportionately high contributions. In this case, we can simply detect this attack by limiting
the client’s access to the server in that the SPACE does not require each client to recalculate their
contributions frequently.

In addition to the aforementioned attacks directly associated with contribution evaluation, federated
learning is known for its vulnerability to a spectrum of attacks [6], including but not limited to re-
construction attacks [74]. It is noted that to counter these threats, researchers have proposed defense
mechanisms, such as gradient pruning [74], data representation perturbation [49], and differential
privacy (DP) [60]. These works are essential. However, they are, in essence, orthogonal to the
main theme of this paper, which focuses on contribution evaluation. Nevertheless, these privacy-
preserving strategies can be integrated with our method, working collaboratively to enhance data
privacy protection.
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