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1 Supplemental Materials

1.1 Github
All of the code to replicate the results present in this paper are freely available online, hosted via
github, https://github.com/compmem/DeepSITH.

1.2 SITH and relating f to f̃
As stated in the main text, the SITH representation can be understood as the conjunction of what
happened when. SITH temporally compresses an input signal, f(t), into a memory representation
f̃(t, ∗

τ) such that the more recent past is represented with higher temporal resolution than the more
distant past.

In other words, if the input f(t) is composed of discrete events (as in the top panel of Figure 1), the
memory representation of a particular event stored in f̃ becomes more “fuzzy” as the time elapses.
After enough time has elapsed, the events that were presented close in time will gradually blend
together, as illustrated in the bottom panel of Figure 1. The top panel shows the one dimensional
input signal consisting of a long, then short, then long pulse, with the activity of f̃ shown at three
different points in time in the panels below. The f̃(t = t1,

∗
τ) shows a pattern of activation indicating

that a long input has just occurred. By examining both the f̃(t = t2,
∗
τ) and f̃(t = t3,

∗
τ), we see

that pattern of activation has shifts “backward” and becomes more compressed (i.e., fewer nodes
represent more time), while still representing a memory of the input signal f(t) along

∗
τ . It should

also be noted that at f̃(t = t3,
∗
τ) it is difficult to distinguish the first two pulses, as the temporal

compression in f̃ smooths them to the extent that the appear as a single pulse.

1.3 Picking SITH layer parameters
A SITH layer forms the conjunction of what and where information by transforming features, n,
tracked in continuous time, t, into features tracked in compressed time,

∗
τ , at every moment in time.

This allows each SITH layer access to the entire compressed history at every time step without having
to learn how long to maintain information from the past. The filters Φ used in this transform are
calculated using four parameters, the number of filters N , the range of the centers of the filters from
τmin to τmax, and the sharpness of the filter impulse responses, k. A fifth parameter, dt, is the rate at
which the input is “presented” to the network, which we set this value to 1 in all our experiments
to indicate the input signal is being presented at the rate of 1 Hz. We also fixed τmin to 1.0 in our
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Figure 1: SITH layer compresses history leading up to the present Top A signal featuring a long, then
short, then long pulse, separated by moments of no activation is the input to a SITH layer. Bottom At
three different moments in time, t1, t2, t3, the output of the SITH layer, f̃ , is plotted. The dotted line
represents the 0 point of compressed time (

∗
τ = 0) with the past plotted to the left, from a more recent

to a more distant past. At t1, only the first long pulse is present in f̃ , while at t3 the last long pulse is
clearly distinguishable as well as the smoothed representation of the first long pulse and short pulse
together.

experiments, matching the dt. Where N , τmin, τmax tend to be defined by the task at hand, k can be
chosen based on a heuristic using those values to pick an optimal overlap of the filters.

Increasing k decreases the amount of overlap between the impulse responses of the filters. If k is
too large for a given N and τmax, an event from the input signal might disappear from f̃ only to
reappear again at a later

∗
τ$. So k should not be so large that it gives rise to temporal blindspots. We

calculate temporal loss as the standard deviation of the sum of the Φk filters at each
∗
τ from τmin to

τmax, designated as stdall.

Whereas k should not be too large, k can not be too small, either. As k becomes smaller, the Φk filters
expand. This causes SITH to blur the past more and more, inefficiently covering compressed time
with filters and losing temporal specificity. We quantify this inefficiency as the standard deviation of
the sum of every other Φk filter at each

∗
τ , which we designate stdalt. Unlike stdall, stdalt should be

a larger value because smaller values indicate more overlap between alternating filters.

The process of finding optimal k is illustrated in Figure 2. We minimize the stdall/stdalt ratio by
altering the parameter k given fixed values of N , τmin, and τmax. We let k vary between 4 and 120.
Plots on the left hand side in Figure 2 show an example of Φk filters, stdall, and stdalt. The plot on
the right hand side in Figure 2t displays the minimization curves for different values of τmax and
τmin = 1. The optimal value of k increases as a function of N , the number of filters. All four curves
have roughly the same shape, but they are scaled based on τmax.

1.4 Other model hyperparameters
In order to compare DeepSITH network to the other networks examined in this work (LSTM, LMU,
and coRNN), we tried to equate the number of trainable weights. Where possible, we also took
network parameters from the works in which they were presented. For instance, the coRNN network
was examined with the adding problem in Rusch and Mishra (2020). We used the parameters
presented in that work for the experiment with the adding problem used here. For the LMU and
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Figure 2: The optimal k changes as a function of N and τmax Left Bottom: A set of N = 10 Φk=34
filters with τmin = 1 and τmax = 50. Middle: The sum of every filter at every dt step. Top: The
sum of every other filter at every dt step. Calculating the standard deviation of both of these curves
from τmin to τmax, represented as a red dashed line, will return stdalt and stdall. Right The values
of k that minimize the ratio of stdall to stdalt at multiple τmax values as a function of the number of
filters N . Picking a k for a given N and τmax should result in optimal coverage of compressed time
as described in the text.

Table 1: Parameter values used for LSTM networks.

EXPERIMENT LAYERS # HIDDEN BATCH SIZE TOT. WTS

ADDING PROBLEM 4 25 32 67K

MACKEY-GLASS 4 25 32 18K

HATEFUL-8 3 38 32 30K

LSTM networks, we set parameters based on Voelker, Kajic, and Eliasmith (2019) for the tasks that
were examined there. For tasks not examined in Voelker, Kajic, and Eliasmith (2019) or Rusch and
Mishra (2020), we estimated the parameters values to use based on other, similar tasks presented in
those works.

All of the parameter values that were used to generate the results presented in this work are separated
by network type. Tabel 1 displays the parameters of the LSTM network, Table 2 displays the
parameters for the LMU network, and Table 3 displays the parameters for the coRNN network.

Table 2: Parameter values used for LMU networks.

EXPERIMENT # LAYERS # HIDDEN BATCHSIZE ORDER θ TOT. WTS.

ADDING PROBLEM 1 10 25 1000 5000 11K

MACKEY-GLASS 4 49 32 4 4 18K

HATEFUL-8 NOISE LEN=24 1 75 32 4 41 33K
NOISE LEN=28 1 75 32 4 45 33K
NOISE LEN=36 1 75 32 4 53 33K
NOISE LEN=52 1 75 32 4 69 33K
NOISE LEN=84 1 75 32 4 101 33K
NOISE LEN=148 1 75 32 4 165 33K
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Table 3: Parameter values used for coRNN networks.

EXPERIMENT # HIDDEN BATCH SIZE DT γ ε TOT. WTS.

ADDING PROBLEM T=100 128 50 6.00E-02 66 15 33K
T=500 128 50 6.00E-02 66 15 33K
T=2000 128 50 3.00E-02 80 12 33K
T=5000 128 50 1.60E-02 94.5 9.5 33K

MACKEY-GLASS 128 32 1.60E-02 94.5 9.5 33K

HATEFUL-8 125 32 7.60E-02 0.4 8 32K
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