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ABSTRACT

Foundation models like CLIP are trained on hundreds of millions of samples and
effortlessly generalize to new tasks and inputs. Out of the box, CLIP shows stellar
zero-shot and few-shot capabilities on a wide range of out-of-distribution (OOD)
benchmarks, which prior works attribute mainly to today’s large and comprehen-
sive training dataset (like LAION). However, it is questionable how meaningful
CLIP’s high zero-shot performance is as it seems likely that web-scale datasets
like LAION simply contain many samples that are similar to common OOD bench-
marks originally designed for ImageNet. To test this hypothesis, we retrain CLIP
on pruned LAION splits that replicate ImageNet’s train-test similarity with respect
to common OOD benchmarks. While we observe a performance drop on some
benchmarks, surprisingly, CLIP’s overall performance remains high. This shows
that high train-test similarity is insufficient to explain CLIP’s performance, and
other properties of the training data must drive CLIP to learn good representations.
Additionally, by pruning data points that are dissimilar to the OOD benchmarks,
we uncover a 100M split of LAION (¼ of its original size) on which CLIP can be
trained to match its original performance.

1 INTRODUCTION

Large models like GPT-4 (OpenAI, 2023; Schulman et al., 2022), CLIP (Radford et al., 2021),
or LLaMa (Touvron et al., 2023) are changing the technological and academic landscape with
their unprecedented performance and breadth of viable applications. A core characteristic of these
Foundation Models (Bommasani et al., 2021) is that they are trained on hundreds of millions or even
billions of data points scraped from the internet. For example, OpenCLIP (Schuhmann et al., 2022),
the open-source version of CLIP (Radford et al., 2021), is trained on LAION-400M, a web-scale
dataset with a wide variety of image-text pairs (Schuhmann et al., 2021). CLIP forms the backbone of
generative models like DALL-E2 (Ramesh et al., 2022) and is known for its remarkable zero-shot and
few-shot performance on a wide range of tasks, specifically on out-of-distribution (OOD) benchmarks
like ImageNet-Sketch (Wang et al., 2019), ImageNet-R (Hendrycks et al., 2020), etc.

Prior work has shown that CLIP’s stellar performance stems mainly from its data distribution (Fang
et al., 2022; Radford et al., 2021). Nevertheless, it remains unclear which specific properties of the
training distribution, such as its scale, diversity, density, or relation to the test set, drive performance.
OOD benchmarks like ImageNet-Sketch and ImageNet-R were initially designed in reference to
ImageNet-1k (Deng et al., 2009), which had served as the primary dataset driving progress in machine
vision for several years before the emergence of web-scale datasets. ImageNet-Sketch, ImageNet-R,
and others are considered OOD because they share the same content (i.e., classes) as ImageNet-1k
but are dissimilar in terms of style, pose, scale, background, or viewpoint. There is no guarantee that
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these datasets are also dissimilar to LAION-400M. We provide evidence in Fig. 1 where we choose
samples from ImageNet-Sketch and ImageNet-R and examine their nearest perceptual neighbors in
LAION-400M and ImageNet-Train. We find highly similar neighbors and even exact duplicates in
LAION-400M while neighbors in ImageNet-Train are relatively dissimilar. In other words, models
trained on LAION-400M may perform well on conventional OOD benchmarks simply due to being
trained on semantically and stylistically similar data points. Naturally, the question arises:

Does CLIP’s accuracy on OOD benchmarks mainly stem from highly similar images in its train set?

By highly similar images, we mean images that are stylistically and semantically more similar to
the test sets than any image in ImageNet-1k is. To answer this question, we make the following
contributions:

• In Sec. 4.1, we begin by introducing perceptual similarity (Ilharco et al., 2021), which has previously
been shown to capture stylistic and semantic similarity between images (Fu et al., 2023; Gadre
et al., 2023; Zhang et al., 2021). We show in Sec. 4.2 that the similarity of nearest neighbors under
this metric generally impacts CLIP’s performance. Specifically, we (i) observe a high correlation
between zero-shot accuracy and nearest-neighbor similarity of test samples and (ii) demonstrate
that similarity-based pruning of the training set greatly affects CLIP’s performance.

• Based on these insights, we compare the distribution of nearest-neighbor similarities of different
training sets in Sec. 4.3 and find that they differ substantially. We hypothesize that CLIP’s high
performance might be largely explained by the training samples that cause this difference, which
we term highly similar images.

• Sec. 4.4 formalizes the notion of highly similar images based on the similarity gap of two training
distributions. Under this formalization, highly similar images of LAION-400M lie within the
similarity gap of ImageNet-Train to a given test set, i.e., are more similar to test samples than
any image in ImageNet-Train is. We go on to show how pruning can align the similarity gap of
both distributions, such that test sets are as dissimilar to pruned LAION-400M-splits as they are to
ImageNet-Train.

• As our central result in Sec. 5, we surprisingly find that training CLIP on the curated subsets
only marginally decreases performance on the corresponding OOD benchmarks (Tab. 1). We
conclude that high train-test similarity cannot fully explain CLIP’s remarkable performance, and
other properties of LAION-400M must play a role.

• To facilitate future research into the impact of training on the performance of vision-language
foundation models, we curate a 100M subset of LAION-400M (¼ of its original size) on which
CLIP maintains its full OOD benchmark performance (Sec. 4.2 & B.4).

2 RELATED WORK

Measuring OOD generalization To assess expected model performance in the wild, researchers
use different test sets that are considered OOD with respect to the training distribution. The terms
OOD generalization, (distributional) robustness, or just generalization are used interchangeably by
the community. This work mainly focuses on standard datasets that share classes with ImageNet.
They include: image renditions (ImageNet-R; Hendrycks et al., 2020), unusual camera views and
object positions (ObjectNet; Barbu et al., 2019), images selected to be difficult for ImageNet-trained
ResNet-50s (ImageNet-A; Hendrycks et al., 2021) and sketches of ImageNet classes (ImageNet-
Sketch; Wang et al., 2019). We also consider two datasets commonly considered in-distribution,
namely ImageNet-Val (Deng et al., 2009), and ImageNet-V2 (Recht et al., 2019).

ID vs. OOD generalization While researchers treat the test sets listed above as OOD with respect
to the training distribution when they study robustness, this core assumption is rarely scrutinized.
Large-scale language-image models such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021),
or BASIC (Pham et al., 2021) claim exceptional OOD generalization and zero-shot capabilities.
Fang et al. (2022) probe which aspects of the models—like language supervision, cost function, or
training distribution—are related to a model’s effective OOD robustness and find that differences in
the distribution play a key role. Further, Nguyen et al. (2022) find that combining data from multiple
sources for training interpolates the model’s effective robustness on an OOD test set between the
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performance of the model trained on either data source. Here, we aim to extend the findings of Fang
et al. (2022) and Nguyen et al. (2022) by evaluating whether high similarity between training and test
set is the main driver of CLIP’s claimed performance, or whether CLIP is truly better at generalizing
across larger distribution shifts.

Figure 1: Similarity of common benchmarks to LAION-400M and ImageNet-Train. We show
nearest neighbors of ImageNet-Sketch, ImageNet-R and ImageNet-Val samples in LAION-400M and
ImageNet-Train ordered by decreasing perceptual similarity. We omit duplicates within these nearest
neighbors. Perceptual similarity is cosine similarity computed in CLIP’s image embedding space (see
Sec. 4) and can be thought of as measuring the perceptual closeness of images in terms of content
and style. LAION-400M clearly contains more similar images to samples from ImageNet-Sketch and
ImageNet-R, in contrast ImageNet-Train is more similar to ImageNet-Val. More details in App. G.
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Figure 2: Relation between perceptual similarity and visual closeness of nearest neighbors. Query
images are sampled from ImageNet-Sketch (top row) and are connected to their nearest neighbor
in LAION-400M (bottom row). As in Fig. 1, perceptual similarity is simply the cosine similarity
measured in CLIP ViT-B/16+’s image embedding space.

3 EXPERIMENTAL DETAILS

This section contains technical specifics of image-to-image similarity computation, training details,
deduplication, and LAION-200M. Readers can skip this section and return to it when they seek details
on the aforementioned. For computing image-to-image similarity, measuring duplicates, and pruning
data points, we use CLIP ViT-B/16+’s image embedding space. For all our pruning experiments,
we train CLIP ViT-B/32 (Dosovitskiy et al., 2020) for 32 epochs with a batch size of 33,600 on one
node with eight A100 GPUs (training takes several days, depending on the dataset size). We use the
implementation provided by Ilharco et al. (2021) and stick to their settings for learning rate, weight
decay, etc. Our downloaded version of LAION-400M contains only 377M images overall due to
missing or broken links, compared to the original 400M used in OpenCLIP (Ilharco et al., 2021).

LAION-200M Abbas et al. (2023) show that pruning exact duplicates, near duplicates, and se-
mantically very similar samples within LAION-400M (not yet taking any test sets into account) can
reduce dataset size by up to 50% without performance degradation. We re-implement their method
to generate our baseline LAION split containing 199M samples, which we refer to as LAION-200M.
This step is important to make training multiple instances of CLIP feasible, and we observe that the
incurred drop in performance is negligible (compare Tab. 1).

4 THE SIMILARITY HYPOTHESIS

This section first illustrates how perceptual similarity can be quantified (Sec. 4.1). Based on this metric,
we demonstrate that CLIP’s performance on a test set is strongly related to the nearest-neighbor
similarity between LAION-400M and a test set (Sec. 4.2). Further, we show that nearest-neighbor
similarities differ between LAION-400M and ImageNet-Train, which leads to the hypothesis that this
difference explains CLIP’s high classification accuracy on ImageNet-based test sets (Sec. 4.3). Finally,
we phrase this hypothesis in terms of highly similar images, which leaves us with an interventional
method to test this hypothesis (Sec. 4.4).

4.1 QUANTIFYING PERCEPTUAL SIMILARITY

Abbas et al. (2023) demonstrated that nearest neighbors in the image embedding space of CLIP
share semantic and stylistic characteristics. We illustrate this in Fig. 2, where we plot samples
from ImageNet-Sketch and their nearest neighbors in LAION-400M for different similarity values.
Visually, the similarity scores correlate well with the closeness of the image pairs. This is corroborated
by other works that demonstrate high perceptual alignment between CLIP’s embedding similarity and
human perception (Fu et al., 2023), or using it to sample ImageNet-like images from a large dataset
(Gadre et al., 2023), or building a similarity-based classifier (Zhang et al., 2021).

We follow these works and quantify perceptual similarity as the cosine similarity in CLIP ViT-B/16+’s
image embedding space. App. E ablates the choice of the model used to compute this metric. We
denote the similarity of two samples xi, xj ∈ Rn as

s(xi, xj) : Rn × Rn → [−1, 1]. (1)
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Figure 3: Nearest-neighbor similarity is predictive of performance. Left: LAION-400M-trained
CLIP’s top-1 classification accuracy on test samples is highly correlated to their nearest-neighbor
similarity stest,i. Results are averaged over 0.05 similarity intervals. Center and right: Similarity-
based pruning greatly impacts CLIP’s top-1 classification accuracy. We train a baseline model on
LAION-200M (see Sec. 3) and additional models on LAION-200M-splits created by random pruning,
near-pruning (in order of decreasing similarity), and far-pruning (in order of increasing similarity).
Compared to training on ‘rand-pruned’ splits (solid blue curve), training on ‘near-pruned’ splits (solid
red curve) drastically decreases classification accuracy. Training on ‘far-pruned’ splits (dashed blue
curve) impacts accuracy comparatively little.

We now consider the relation between a training dataset D and a test set T . Using the similarity
metric s, we can find the nearest neighbor in the test set for each training sample. This allows us to
assign each training sample xi ∈ D the nearest-neighbor similarity

strain,i(D, T ) = max
t∈T

s(t, xi). (2)

In the same way, we can assign each test sample ti ∈ T the nearest-neighbor similarity

stest,i(D, T ) = max
x∈D

s(ti, x). (3)

4.2 NEAREST-NEIGHBOR SIMILARITY DRIVES PERFORMANCE

We can now examine the relationship between nearest-neighbor similarity and CLIP’s zero-shot
classification performance.

Fig. 3 (left) illustrates that the nearest-neighbor similarity stest,i of test samples in ImageNet-Sketch,
ImageNet-R, and ImageNet-Val to LAION-200M is a good predictor of CLIP’s top-1 accuracy on
these samples. We observe a clear correlation between nearest-neighbor similarity and accuracy
across datasets. For ImageNet-Sketch, for example, sketches without similar counterparts in LAION-
400M (similarity 0.38) are classified with 35% accuracy, while sketches duplicated in LAION-400M
(similarity close to 1) reach up to 69% accuracy. We show additional correlation plots for ImageNet-
based test sets in App. B and for other test sets in App. D.

We can observe the impact of nearest-neighbor similarity on classification performance more directly
by pruning samples from LAION-200M based on their nearest-neighbor similarity strain,i to a given
test set, retraining CLIP, and evaluating its zero-shot classification performance on that test set. We
compare three different pruning strategies: ‘near-pruning’ prunes in decreasing order of similarity
(pruning samples with high nearest-neighbor similarity first), ‘far-pruning’ prunes in increasing order
of similarity, and ‘rand-pruning’ prunes randomly irrespective of similarity. All strategies produce
LAION-200M-splits with 50M, 100M, and 150M pruned samples.

CLIP’s zero-shot classification performance when trained on these splits is illustrated in Fig. 3 for
ImageNet-Sketch and ImageNet-Val. The ‘near-pruned’ accuracy curve drops much quicker with
decreasing dataset size than the ‘rand-pruned’ curve. This reiterates that CLIP’s classification perfor-
mance is directly related to the similarity of its training set to the test set. Additional visualizations for
other datasets (both ImageNet-based and otherwise) as well as a comparison with ImageNet-trained
models can be found in Apps. B and D. Note that since we prune large fractions of the training
set here, the pruned images are not yet very specific to the test set used to compute strain,i. As a
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Figure 4: Nearest-neighbor similarity distribution differs between LAION-400M and ImageNet-
Train. The histograms display the similarity stest,i of samples in ImageNet-Sketch (left), ImageNet-R
(center), and ImageNet-Val (right) to their nearest neighbors in LAION-400M (red) and ImageNet-
Train (blue). ImageNet-Sketch and ImageNet-R are overall more similar to LAION-400M, while
ImageNet-Train is more similar to ImageNet-Val.

result, pruning based on one ImageNet-based dataset generally decreases performance across many
ImageNet-based datasets, although not on not on other tasks (see App. B).

The observation so far is not surprising: Performance on the test set decreases in tandem with the
training distribution’s similarity to the test set. However, our results validate using similarity-based
pruning as an effective intervention that allows us to study how training samples impact performance
on a given test set. In the next sections, we will explore how to hone this method to arrive at a more
precise conclusion about the role of highly similar images.

Core set As an aside, we notice that CLIP’s performance when trained on ‘far-pruned’ LAION-
200M-splits remains stable up until a dataset size of 100M (see Fig. 3). The performance even
slightly surpasses the baseline, further indicating that dissimilar samples do not contribute to CLIP’s
performance and instead act more like noise in the training data. Motivated by this performance, we
extract a LAION-400M core set with only 100M images by ‘far-pruning’ based on not one but six
common ImageNet-based benchmarks simultaneously. CLIP trained on this core set outperforms
models trained on a de-duplicated dataset of the same size (Ilharco et al., 2021) and roughly matches
the performance of a LAION-200M-trained model (see Appx. B.4). We release this core set to ease
further exploration of the relationship between training distribution and CLIP’s zero-shot performance.

4.3 COMPARING NEAREST-NEIGHBOR SIMILARITIES BETWEEN TRAINING SETS

Given the impact of nearest-neighbor similarity on CLIP’s zero-shot performance, it is natural to ask
how LAION-400M’s nearest-neighbor similarity compares to that of other datasets. Specifically, for
ImageNet-based benchmarks like ImageNet-Sketch and ImageNet-R, we compare the distribution of
nearest-neighbor similarities stest,i to LAION-400M and ImageNet-Train. We have already seen in
Fig. 1 that compared to ImageNet-Train, LAION-400M seemed stylistically and semantically much
more similar to ImageNet-Sketch and ImageNet-R, while the effect was reversed for ImageNet-Val.
Using the notion of perceptual nearest-neighbor similarity, we can now fully capture the difference in
similarity in a principled manner. This is illustrated in Fig. 4, where we can now clearly observe that
compared to ImageNet-Train, LAION-400M is indeed overall more similar to ImageNet-Sketch and
ImageNet-R. We show additional histograms for other test sets in Apps. B and D.

Moreover, in Appx. A.2, we detail how many training samples in LAION-400M and ImageNet-Train
are near duplicates (duplicates up to small shifts or crops) of the test sets. While we found 3.1% of
ImageNet-Sketch images to have duplicates in LAION-400M, there are only 0.04% ImageNet-Sketch
duplicates in ImageNet-Train. On the other hand, ImageNet-Train contains duplicates of 2.67%
ImageNet-Val images as opposed to just 0.14% ImageNet-Val images in LAION-400M.

LAION-400M-trained CLIP has been reported to outperform ImageNet-trained methods on ImageNet-
Sketch and ImageNet-R, while underperforming on ImageNet-Val (see Tab. 1). In light of the above
observation, this could well be explained not by LAION-400M’s general scale and diversity but
specifically by its fraction of training samples whose nearest-neighbor similarity to the test set
surpasses that of any sample in ImageNet-Train. We term those samples highly similar images. The
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Figure 5: Aligning the similarity gap of two datasets. A larger, denser, more diverse dataset likely
contains samples more similar to given test points than a smaller, sparser one. To control for this,
we compute the nearest-neighbor similarity of each test point to the smaller dataset (left) and prune
points from the larger dataset that lie within this hull (center). We end up with a corrected large
dataset replicating the similarity gap of the small one (right).

following section formalizes this concept and explains how we can refine the similarity-based pruning
from Sec. 4.2 to quantify their impact on CLIP’s zero-shot classification performance.

4.4 SIMILARITY GAP AND HIGHLY SIMILAR IMAGES

Secs. 4.2 and 4.3 provide direct and indirect evidence that CLIP’s performance on common ImageNet-
based benchmarks might mainly stem from images in its training set that are highly similar to the test
sets. We now formalize this notion and describe how to systematically test our hypothesis. To this
end, we note that even for ImageNet-Train, the nearest-neighbor similarity stest,i differs across test
samples. Our goal is to prune LAION-400M so that the pruned dataset replicates the nearest-neighbor
similarities stest,i of ImageNet-Train.

Let us consider that we now have two training datasets, denoted as DS (small, like ImageNet-Train)
and DL (large, like LAION-400M), and still use a test dataset T (like ImageNet-Sketch). For the
sake of simplicity, we assume that DS is a subset of DL. We choose a similarity measure s as in
Sec. 4.2. We collect all nearest-neighbor similarities stest,i (recall Eq. 3) in the set

S(D, T ) =
{
stest,i(D, T ) | i ∈

[
1, |T |

]}
(4)

which we term similarity gap. We can think of this set as a full characterization of the training set’s
similarity to any point in the test set; compare Fig. 5.

Based on the assumption that the large dataset contains all samples from the small dataset, it follows
that si(DS) ≤ si(DL). In other words, the nearest-neighbor similarity to samples in the small
training set is always smaller than or equal to the similarity to samples in the large training set.
Consequently, on a per-sample basis, S(DL, T ) is strictly larger than S(DS , T ), i.e., the large dataset
is generally more similar to the test than the small dataset. We aim to identify a maximally large
subset D̃L ⊆ DL of the large training set, such that its similarity gap S(D̃L, T ) is equal to the
similarity gap S(DS , T ) of the small dataset (on a per-sample basis, meaning si(D̃S) = si(DS) for
all samples). To achieve this, we examine each test sample ti and remove any sample x ∈ DL for
which the similarity s(ti, x) > si(DS). We illustrate this procedure in Fig. 5.

This method allows us to surgically remove highly similar images with respect to a given test set and
reference training set. Compared to the unconstrained pruning in Sec. 4.2, this will remove far less
samples from LAION-400M, and thus allows us to isolate the impact of highly similar images.

5 CORRECTING FOR HIGHLY SIMILAR IMAGES

We now apply the framework from Sec. 4.4 to remove highly similar images from LAION-200M.
To ensure that ImageNet-Train and LAION-200M have the same similarity gap to the test sets, we
include all ImageNet-Train images in LAION-200M with the caption "a photo of a {object class}".
We refer the reader to Appx. Sec. C for a discussion on the choice of ImageNet for our experiments.
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Table 1: Corrected zero-shot performance of CLIP ViT-B/32. ‘X-pruned’ represents a pruned
dataset from LAION-200M + ImageNet such that the similarity gap to ’X’ is the same as the
similarity gap of ImageNet to ‘X’. The sizes of these subsets are subtracted from the LAION-200M +
ImageNet’s size. Here, ‘X’ is one of the six standard ImageNet test sets. ‘combined-pruned’ splits
ensure a similarity gap of LAION-200M and ImageNet-Train to all 6 test sets. CLIP’s corrected zero-
shot performance drops the most on ImageNet-Sketch and ImageNet-R with a relative performance
drop of 10.8% and 4.8% respectively. Red color indicates a drop in performance on the respective
test set, and blue represents a rise. Overall, high performance indicates that highly similar images do
not play a key role in explaining CLIP’s generalization ability.

Top-1 Accuracy
Dataset Size Val Sketch A R V2 ON
OpenAI (Radford et al., 2021) 400 000 000 63.38 42.32 31.44 69.24 55.96 44.14
L-400M (Schuhmann et al., 2021) 413 000 000 62.94 49.39 21.64 73.48 55.14 43.94
L-200M 199 824 274 62.12 48.61 21.68 72.63 54.16 44.80

L-200M + IN-Train 200 966 589 68.66 50.21 23.33 72.9 59.7 43.99

val-pruned −377 340 68.62 49.58 23.47 72.74 59.47 45.08
sketch-pruned −8 342 783 68.34 44.78 22.7 69.35 59.52 44.12
a-pruned −138 852 68.85 50.25 22.99 72.44 60.05 44.43
r-pruned −5 735 749 68.71 46.92 23.44 69.48 59.6 45.08
v2-pruned −274 325 68.79 50.45 23.19 72.58 59.84 45.33
objectnet-pruned −266 025 68.75 50.14 22.70 72.82 59.37 43.73
combined-pruned −12 352 759 68.05 44.12 22.15 67.88 58.61 44.39

As described in Sec. 4.4, we first compute the similarity gaps of the smaller dataset, i.e., ImageNet-
Train, to the samples in each of the six test sets. Pruning LAION-200M to these similarity gaps
leaves us with six different base splits as shown in Tab. 1. We also generate a ‘combined-pruned’
split that ensures an ImageNet-Train-like similarity gap to all test sets simultaneously. We can now
train CLIP from scratch on these splits to obtain a corrected zero-shot performance and compare it to
the accuracy of CLIP trained by OpenAI and OpenClip (Ilharco et al., 2021; Radford et al., 2021).

The first important point to note in Tab. 1 is that for ‘sketch-pruned’ and ‘r-pruned’ datasets, we
prune 8.3M and 5.7M samples, respectively. For all other datasets, we prune only around 250K-
380K samples. We saw indications of this already in Sec. 4 when we looked at the distribution of
nearest-neighbor similarities, see also Tab. 7. The number of pruned samples is also highly correlated
with the respective accuracies. For CLIP trained on the ‘r-pruned’ dataset and CLIP trained on
the ‘sketch-pruned’ dataset, we observe a 4.8% relative performance decrease on ImageNet-R and
10.8% relative performance decrease on ImageNet-Sketch compared to the baseline. There is also a
considerable performance change on ImageNet-R for ‘sketch-pruned’ and on ImageNet-Sketch for
‘r-pruned’. This is reasonable as there is some style overlap in ImageNet-Sketch and ImageNet-R. For
the other four base splits, we see less than 1% relative performance change on all six evaluation sets.
The performance of the CLIP model trained on the ‘combined-pruned’ split is lower than the baseline
on all six eval sets, with sizeable drops in ImageNet-R and ImageNet-Sketch. We also observe similar
trends when we do not add ImageNet-Train to the pruned datasets (refer to Tab. 4 in the Appx.).

6 DISCUSSION

We now return to our original question: Does CLIP’s accuracy on OOD benchmarks mainly stem from
highly similar images in its train set? To give a definitive answer, we take a closer look at the CLIP
model trained on ‘sketch-pruned’. This model’s training set is as dissimilar to ImageNet-Sketch as is
ImageNet-Train. It features an accuracy of 68.34% on ImageNet-Val. According to ImageNet-Train’s
effective robustness line (Fang et al., 2022), at this performance level, we would expect an accuracy of
roughly 14% on ImageNet-Sketch. Instead, we find an accuracy of 44.78%. In other words, training
on a much larger dataset while keeping the similarity gap constant drastically increases generalization
performance for CLIP (in this case, by a staggering 30 percentage points). This effect is even higher
for other datasets. This indicates that CLIP’s impressive performance is not so much the result of
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a high train-test similarity but that CLIP leverages its dataset scale and diversity to learn more
generalizable features.

What drives generalization? Generalization of vision-language models is a complex subject where
several factors like architectural choices, caption quality, training procedures, and data distribution
play a role. We focus on the training distribution since prior works have studied the effect of the
aforementioned factors on CLIP’s generalization performance (e.g., Santurkar et al., 2022; Mintun
et al., 2021) and identified it as a prominent factor (Fang et al., 2022). Many distribution properties
could contribute to generalization performance, but based on raw visualizations of the involved
datasets, highly similar images are clearly a factor. Our results only show that it is not the most
salient factor and a large chunk of performance remains to be explained. We leave the scrutiny of
other likely factors like data diversity and density for future work. Our work should be interpreted as
a step towards finding specific data properties that dictate generalization.

Measuring the true OOD performance Our analysis excluded training images from LAION with
a smaller similarity gap to test images compared to ImageNet Train. Another interesting analysis
would be to prune LAION images to measure its true OOD performance. To remove all images of a
certain domain, we need to be able to label each image as ‘ID’ or ‘OOD’. This essentially means that
we need access to a domain classifier (which would also need near-perfect accuracy so that no images
are overlooked). Even for the ‘sketch’ domain, where a classifier could conceivably be trained, it
is unclear exactly how the classifier should demarcate this domain: Should the domain contain all
sketches, even sketches with characteristics not present in ImageNet-Sketch? What about tattoos
or small sketches on objects in natural images? For other benchmarks, such as ImageNet-A, it is
even less clear how the test images constitute a well-separable domain of images. This vagueness in
defining a domain based on a given test set prevents us from building a fair OOD setting, which is
why we do not analyze or claim to analyze this.

Similarity metric We defer the reader to Sec. E for a discussion and ablation on the choice of
CLIP ViT-B/16+ as the similarity metric.

Highly similar images We want to clarify further the notion of highly similar images. In Secs. 4.1,
4.2, and 4.3, when we use the notion of similar images to a given image sample, we refer to images
with high perceptual similarity values with no precise constraint. In contrast, in Secs. 4.4 and 5
we impose a constraint that defines highly similar images to a sample as images that are closer to
LAION-200M than ImageNet-Train based on our perceptual similarity metric.

Does compositionality drive performance? In this work, we found that high train-test similarity is
insufficient to explain CLIP’s high generalization performance on OOD test sets. In our analysis, we
only excluded images that were highly similar to the training set to maintain the same similarity gap
with respect to ImageNet Train, e.g. sketches of dogs if the test image was a sketch of a dog. However,
sketches of other animals and objects still remained in CLIP’s training set. An open question remains
whether compositionality (Wiedemer et al., 2023) can close the gap between the object and its domain,
i.e. whether CLIP can generalize from sketches of cats and natural images of dogs to understanding
sketches of dogs.

7 CONCLUSION

CLIP has demonstrated unprecedented performance on common OOD benchmarks designed origi-
nally for ImageNet. Given that the training dataset of CLIP is so large and diverse, it is natural to
wonder whether its performance stems from the sheer similarity of many training samples to the
benchmarks. To the best of our knowledge, we are the first to systematically test if high train-test
similarity dictates CLIP’s generalization performance. In our work, we address this by pruning
away samples from the training set that are more similar to the test sets than ImageNet samples.
Models trained on the pruned dataset do not significantly lose performance and still exhibit stellar
generalization capabilities far beyond performance-matched ImageNet-trained models. This indicates
that high similarity to the test sets alone can not explain CLIP’s generalization ability. We hope
this result will prompt the community to investigate other factors that allow models to learn more
generalizable features from web-scale datasets.
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REPRODUCIBILITY STATEMENT

For all the basic details of training, pruning, similarity computation, and other analysis, we defer
the reader to Sec. 3. Details of computing the similarities and its correlation to accuracy is given
in the caption of Figs. 2, 3, and Sec. 4.1. To perform the experiment that observes the effect of
’near-pruning’ and ’far-pruning’, we defer the reader to Sec. 4.2 and the caption of Fig. 3. The core
methodology of our paper is clearly elucidated in Section 4.4. Furthermore, the details of generating
the datasets and training the models are given in the first and second paragraph of Sec. 5, and in the
caption of Tab. 1.
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A DISTRIBUTIONAL DISSIMILARITIES OF LAION-200M AND IMAGENET

A.1 NEAREST-NEIGHBOR SIMILARITY BETWEEN LAION / IMAGENET-TRAIN AND OTHER
OOD DATASETS

As an extension of our analysis in Sec. 4, we plot the nearest-neighbor similarity between ImageNet-
Train/LAION-400M and other OOD test sets, namely ImageNet-A (Hendrycks et al., 2021), Object-
Net (Barbu et al., 2019) and ImageNet-V2 (Recht et al., 2019), and display our results in Figure 6.
There are no significant differences in nearest-neighbor similarity for these test sets. Similar to our
results in Figure 3 (left), we find a strong correlation between perceptual similarity to LAION-400M
and the top-1 accuracy of our LAION-trained model.
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Figure 6: Similarity of nearest neighbors to test sets varies between LAION-400M and ImageNet-
Train and is correlated with performance. Histograms over the nearest-neighbor similarity of
test sets ImageNet-A (top left), ObjectNet (top right), and ImageNet-V2 (bottom left) to training
sets LAION-400M (red) and ImageNet-Train (blue). There are no significant differences in nearest-
neighbor similarity for these test sets. Nearest-neighbor similarity of test points to LAION-400M
samples and top-1 classification accuracy is strongly correlated (bottom right). Data points in the
correlation plot are averaged over bins (interval = 0.05) of the red histograms.

A.2 DUPLICATES

We do a duplicate analysis in Tab. 2. To estimate the number of test points with near duplicates, we
project the test set and LAION-400M to CLIP’s image embedding space and check if any point in
LAION-400M lies in the vicinity (ϵ = 0.05) of each of the query test points.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 IMPACT OF NEAR/FAR-PRUNING ON ALL DATASETS

In Sec. 4.2, by using each of the test datasets ImageNet-Val and ImageNet-Sketch and near/far-pruning
LAION-200M, we trained models and reported the performance on the test datasets, respectively.
We now plot the performance of these models on all six datasets in Figure 7. ‘Near-pruning’
(‘far-pruning’) with ImageNet-Sketch results in lower (higher) performance than ‘near-pruning’
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Table 2: Number of test points of OOD datasets for which we find near duplicates in ImageNet-
Train and LAION-400M. A data point is considered near duplicate (semantic duplicate) if the
distance in the CLIP embedding space is less than 0.05 (Abbas et al., 2023).

Duplicates
Dataset Size ImageNet-Train LAION-400M
ImageNet-Val 50000 1336 70
ImageNet-Sketch 50889 18 1553
ImageNet-R 30000 104 297
ImageNet-A 7500 10 5
ImageNet-V2 10000 10 24
ObjectNet 18574 0 0

(‘far-pruning’) with ImageNet-Val on ImageNet-R and ImageNet-Sketch. Likewise, ‘near-pruning’
(‘far-pruning’) with ImageNet-Val results in lower (higher) performance than ‘near-pruning’ (‘far-
pruning’) with ImageNet-Sketch on ImageNet-Val, ImageNet-V2, and ObjectNet. This is expected
because ImageNet-Sketch is characteristically closer to ImageNet-R, and ImageNet-Val is closer to
ImageNet-V2, ObjectNet, and ImageNet-A.
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Figure 7: The effect of ‘near-pruning’ and ‘far-pruning’ with ImageNet-Sketch or ImageNet-Val
as the query dataset on the performance of all six test sets. CLIP’s zero-shot accuracy as a function
of the number of pruned points from LAION-200M. The baseline model is trained on de-duplicated
LAION-400M, which we call LAION-200M. To generate the ‘near-pruned’ datasets, we remove the
images in the decreasing order of similarity (based on CLIP image-embedding similarity) to each of
the test sets ImageNet-Sketch and ImageNet-Val, respectively. In contrast, the ‘far-pruned’ datasets
are generated by dropping images in the increasing order of similarity values to the respective test
sets. For the ‘rand-pruned’ datasets, we prune random points.
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Figure 8: The effect of ‘near-pruning’ and ‘far-pruning’ with ImageNet-Sketch or ImageNet-Val
as the query dataset on the performance on MNIST / SVHN CLIP’s zero-shot accuracy as a
function of the number of pruned points from LAION-200M. The baseline model is trained on de-
duplicated LAION-400M, which we call LAION-200M. To generate the ‘near-pruned’ datasets, we
remove the images in the decreasing order of similarity (based on CLIP image-embedding similarity)
to each of the test sets ImageNet-Sketch and ImageNet-Val, respectively. In contrast, the ‘far-pruned’
datasets are generated by dropping images in the increasing order of similarity values to the respective
test sets. For the ‘rand-pruned’ datasets, we prune random points.

B.2 IMPACT OF NEAR/FAR PRUNING ON NON-IMAGENET-LIKE DATASETS

In Fig. 7, we observe a consistent trend across all datasets that near-pruning with respect to either
ImageNet-Sketch or ImageNet-Val decreases performance while performance is stable (at times even
increases) when doing far-pruning. These findings can be explained by two hypotheses:

1. The pruned images in the near-pruning setting are reasonably similar to ImageNet-Sketch
or ImageNet-Val, thus we see a drop in performance when we train CLIP on the pruned
datasets.

2. Near-pruning with respect to ImageNet-Sketch or ImageNet-Val results in pruning datapoints
that are of the highest quality samples from LAION which will perform well on any
downstream task, when trained upon.

To decide between these two hypotheses, we repeat the analysis on two test sets which are very
dissimilar from ImageNet: SVHN (Netzer et al., 2011) and MNIST (Deng, 2012). We show the
results in Fig. 8 and indeed observe a reversed trend compared to Fig. 7: Now, for a several cases,
near-pruning increases performance and far-pruning decreases it, respectively. Thus, the near-pruned
datapoints are not comprised of high quality samples which improve performance on all downstream
tasks, and pruning away images similar to either ImageNet-Sketch or ImageNet-Val only decreases
performance on ImageNet-like datasets.

B.3 NEAR/FAR PRUNING EXPERIMENTS ON IMAGENET-TRAIN

We generate new datasets by near/far pruning datapoints on ImageNet-Train with test datasets
ImageNet-Sketch and ImageNet-Val. The similarities are computed in the pre-trained CLIP ViT-
B/16+ embedding space. We then train ResNet18s until convergence using standard PyTorch
hyperparameter settings. We report the absolute and relative performance (to the respective baseline)
in Figure 9 and 10. We observe that near/far pruning affects CLIP performance more than ResNet18.

16



Published as a conference paper at ICLR 2024

Figure 9: Effect of pruning similar and dissimilar points to a given test set on both CLIP and
ResNet performance. The baseline model of CLIP is trained on de-duplicated LAION-400M, which
we call LAION-200M. The baseline model of ResNet18 is trained on ImageNet-Train. To generate
the ‘near-pruned’ datasets, we remove images in decreasing order of similarity to ImageNet-Sketch
or ImageNet-Val (based on CLIP image-embedding similarity). In contrast, the ‘far-pruned’ datasets
are generated by pruning images in the increasing order of similarity values to the respective test sets.
For the ‘rand-pruned’ datasets, we prune random points. Pruning similar images adversely affects
performance compared to pruning dissimilar or random images. Generally, near/far pruning affects
CLIP more than ResNet18.

B.4 CORE SET OF 100M

In Sec. 4.2, we identify a 100M core set of LAION-400M, which, when trained on, leads to a CLIP
model that nearly matches the performance of a LAION-400M trained CLIP model on the six test
datasets. Motivated by the performance increase of the ‘far-pruning’ technique in the previous results,
we now build several core sets of 100M, which, when trained on, roughly match the performance of
CLIP trained on LAION-400M. Instead of pruning from the farthest point to samples in just a single
test set in CLIP ViT-B/16+’s embedding space, we now prune from the farthest point to samples from
a collection of test sets (all six ImageNet-1k OOD test sets). We do far-pruning with all of the test
sets on both LAION-200M and LAION-400M to obtain datasets that we call ‘all-far-pruned’. For
comparison, we also add the performance of CLIP trained on far-pruned datasets with query datasets
as ImageNet-Sketch and ImageNet-Val, which we call ‘sketch-far-pruned’ and ‘val-far-pruned’,
respectively.

We report the results in Tab. 3 and observe that models trained on all of the splits are within 3%
average accuracy range of CLIP trained on LAION-400M. The model with the highest average
accuracy is trained on ‘all-far-pruned (L-200M)’, which is a dataset generated by pruning far or
dissimilar images in LAION-200M with all 6 test datasets as query datasets. This model also
performs better than a model trained on a dataset of the same size generated by the pruning technique
SemDeDup (Abbas et al., 2023). SemDeDup aims to prune semantically similar data with minor loss
in test performance. We do not suggest this coreset as an alternative to other pruning or deduplication
methods that are largely agnostic to the downstream test datasets. Instead, we here created a coreset
that is specifically designed to perform well on six OOD test sets to facilitate further research into
what aspects drive generalization.

B.5 MAIN EXPERIMENTS WITHOUT ADDING IMAGENET-TRAIN

We repeat the experiments in Sec. 5 without adding ImageNet-Train to LAION-200M and report
results in Tab. 4. We observe the same trends as in Tab. 1.

17



Published as a conference paper at ICLR 2024

Figure 10: Effect of pruning similar and dissimilar points to a given test set on both CLIP
and ResNet’s performance relative to the baseline. The baseline model of CLIP is trained on
de-duplicated LAION-400M, which we call LAION-200M. The baseline model of ResNet18 is
trained on ImageNet-Train. To generate the ‘near-pruned’ datasets, we remove images in decreasing
order of similarity to ImageNet-Sketch or ImageNet-Val (based on CLIP image-embedding similarity).
In contrast, the ‘far-pruned’ datasets are generated by pruning images in the increasing order of
similarity values to the respective test sets. For the ‘rand-pruned’ datasets, we prune random points.
Pruning similar images adversely affects performance compared to pruning dissimilar or random
images. The relative performance drop curves indicate that near/far pruning affects CLIP more than
ResNet18.

Table 3: Performance of ‘far-pruned’ CLIP (ViT-B/32) on the six test sets. We do ‘far-pruning’
on LAION-400M with all 6 test sets as query sets and obtain the dataset ‘all-far-pruned (L-400M).’
Similarly, we do ‘far-pruning’ on LAION-400M with all with all 6 test sets as query sets, ImageNet-
Sketch, and ImageNet-Val to get the datasets ‘all-far-pruned (L-200M)’, ‘sketch-far-pruned (L-
200M)’, and ‘val-far-pruned (L-200M)’ respectively. These models are compared to off the shelf
CLIP model (Ilharco et al., 2021), model trained on LAION-200M, and a model trained on SemDeDup
(Abbas et al., 2023) dataset of size 100M.

Top-1 Accuracy
Dataset Size Val Sketch A R V2 ON Avg.
L-400M 400M 62.94 49.39 21.64 73.48 55.14 43.94 51.09
L-200M 199.8M 62.12 48.61 21.68 72.63 54.16 44.80 50.67

all-far-pruned (L-400M) 100M 61.90 48.11 19.43 70.14 53.11 39.30 48.67
all-far-pruned (L-200M) 100M 62.80 49.23 21.6 72.3 54.72 43.64 50.71
val-far-pruned (L-200M) 100M 62.79 47.53 21.65 70.40 54.35 43.70 50.07
sketch-far-pruned (L-200M) 100M 62.27 50.21 20.77 72.67 53.77 42.95 50.44

SemDeDup 100M 52.19 41.70 16.71 67.05 44.96 39.59 43.7

C ON THE CHOICE OF IMAGENET

We choose zero-shot classification on ImageNet and its distribution shifts as the main object of study
four our work. Our analysis is agnostic to these choices and one could potentially use other datasets
like iWILDCam 2021 (Beery et al., 2021), FMoW (Christie et al., 2018), MS-COCO (Lin et al., 2015)
and Flickr30k (Yonglong Tian et al., 2021) and on tasks like image retrieval. One reason why we
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Table 4: Corrected zero-shot performance of CLIP ViT-B/32. ‘X-pruned’ represents a pruned
dataset from LAION-200M such that the similarity gap to ‘X’ is roughly the same as the similarity
gap of ImageNet to ‘X’. The sizes of these subsets are subtracted from the LAION-200M’s size.
Here, ‘X’ is one of the six standard ImageNet test sets. ‘combined-pruned’ splits ensure a similarity
gap of LAION-200M and ImageNet-Train to all 6 test sets. CLIP’s corrected zero-shot performance
drops the most on ImageNet-Sketch and ImageNet-R with a relative performance drop of 11.08%
and 5.99% respectively. Red color indicates a drop in performance on the respective test set. Overall,
high performance indicates that highly similar images do not play a key role in explaining CLIP’s
generalization ability.

Top-1 Accuracy
Model Dataset Size Val Sketch A R V2 ObjectNet
ViT-B/32 OpenAI 400 000 000 63.38 42.32 31.44 69.24 55.96 44.14
ViT-B/32 L-400M 413 000 000 62.94 49.39 21.64 73.48 55.14 43.94

ViT-B/32 L-200M 199 824 274 62.12 48.61 21.68 72.63 54.16 44.80

ViT-B/32 val-pruned −377 340 62.12 48.38 21.45 72.2 54.76 42.79
ViT-B/32 sketch-pruned −8 342 783 61.55 43.22 22.28 69.6 53.53 42.77
ViT-B/32 a-pruned −138 852 62.49 48.49 21.63 72.15 54.38 43.25
ViT-B/32 r-pruned −5 735 749 61.73 45.66 21.67 68.28 54.1 42.90
ViT-B/32 v2-pruned −274 325 62.48 48.62 22.13 72.3 53.83 43.38
ViT-B/32 objectnet-pruned −266 025 62.30 49.03 22.64 72.90 54.21 42.80
ViT-B/32 combined-pruned −12 352 759 61.5 41.97 21.72 67.25 53.65 42.23

ResNet-101 ImageNet-1k 1 200 000 77.21 27.58 4.47 39.81 65.56 36.63

do not investigate this in our paper for the reason that several ImageNet distribution shifts are more
human aligned than for the aforementioned datasets. For instance, there’s a perceptual demarcation
between a sketch of a dog (ImageNet-Sketch) and a natural image of a dog (ImageNet-Train). In
contrast, it is unclear what the distribution shift of Flickr-30k is from MS-COCO. Additionally,
retrieval tasks are more complex and highly sensitive to captions, demanding an analysis that factors
in both images and texts. Another reason to choose zero-shot classification and ImageNet is that
CLIP demonstrated unprecedented performance on ImageNet-based distribution shifts (Radford et al.,
2021). Moreover, we find iWILDCam and FMoW datasets problematic since CLIP’s (ViT-B/32)
zero-shot performance on them is rather low (7.45% and 12.96%) (Ilharco et al., 2021). We therefore
chose ImageNet and its distribution shifts for our study and leave analysis on other datasets for future
work.

D SIMILARITY ANALYSIS ON CELEBA AND WATERBIRDS

Secs. 4 and 5 only considered test sets with a clear distribution shift with respect to ImageNet-Train.
However, the general method outlined in Sec. 4.4 is dataset-agnostic. To illustrate this point, we
here consider test sets that exhibit distribution shifts with respect to other datasets. Specifically, we
consider CelebA (Liu et al., 2015) and Waterbirds Sagawa et al. (2019).

CelebA This dataset contains 202 599 celebrity images with 40 annotated attributes (Liu et al.,
2015). Gannamaneni et al. (2023) showed that CLIP could zero-shot predict many attributes with
high accuracy (between 53% and 97% top-1 accuracy). We can split the data along each attribute
to obtain training and test sets with a specific distribution shift. In Fig. 11, we repeat the similarity
analysis from Sec. 4.3 for CelebA splits along the ‘eyeglasses’ and ‘hat’ attributes. The distribution
of nearest-neighbor similarities to the test set CelebA-w/-eyeglasses (CelebA-w/-hat) differs between
LAION-400M and CelebA-w/o-eyeglasses (CelebA-w/o-hat). We again observe a strong correlation
between the similarity of a test sample to LAION-400M and CLIP’s zero-shot accuracy in predicting
the ‘gender’ attribute.

Waterbirds We generate two sets of splits of this dataset. We first split by background (land or
water) and obtain a distribution shift from Waterbirds-land with 7051 images (6220 landbirds, 831
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Figure 11: nearest-neighbor similarity distribution and correlation to zero-shot accuracy for
CelebA. Left: The histogram shows the similarity of samples in CelebA-w/-eyeglasses to their
nearest neighbors in LAION-400M (red) and CelebA-w/o-eyeglasses (blue). Right: The strong
correlation between perceptual similarity of test points to nearest neighbors in LAION-400M samples
and CLIP’s top-1 classification accuracy on Male/Female classification indicates that differences in
similarity can be expected to impact the performance of LAION-trained models. Data points in the
correlation plot are averaged over bins (interval = 0.05) of the red histograms in the left plot.

waterbirds) to Waterbirds-water with 4737 images (2905 landbirds, 1832 waterbirds). We then split
into the core group and the worst group. The core group consists of 8052 images of landbirds on
land or waterbirds on water. The worst group consists of 3736 images of landbirds on water or
waterbirds on land. In Fig. 12, we repeat the similarity analysis from Sec. 4.3 for Waterbirds splits
along the land/water and core/worst-group distribution shifts. The distribution of nearest-neighbor
similarities to the test set Waterbirds-water (Waterbirds-worst group) differs between LAION-400M
and Waterbirds-land (Waterbirds-core group), and we again observe a strong correlation between
the similarity of a test sample to LAION-400M and CLIP’s zero-shot accuracy in predicting the
landbird/waterbird class.
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Figure 12: nearest-neighbor similarity distribution and correlation to zero-shot accuracy for
Waterbirds. Left: The histogram shows the similarity of samples in Waterbirds-water to their nearest
neighbors in LAION-400M (red) and Waterbirds-land (blue). Right: The strong correlation between
perceptual similarity of test points to nearest neighbors in LAION-400M samples and CLIP’s top-1
classification accuracy on landbird/waterbird classification indicates that differences in similarity can
be expected to impact the performance of LAION-trained models. Data points in the correlation plot
are averaged over bins (interval = 0.05) of the red histograms in the left plot.

E COMPARING EMBEDDING METRICS

To our knowledge, perceptual similarity as measured in CLIP ViT-B/16+’s image embedding space is
a leading metric to capture the semantic and stylistic similarity between images. While we found
this metric to align well with our intuitive notion of similarity and believe it to have captured the
vast majority of highly similar images (see also Appx. G.2 where we visualize the pruned datasets),
we cannot guarantee that all highly similar images were removed. While we believe, based on prior
work (Fu et al., 2023; Abbas et al., 2023; Gadre et al., 2023; Zhang et al., 2021) and our analysis,
that CLIP’s embedding space sufficiently captures relevant features, in this section, we ablate the
influence of the embeddings used to compute the perceptual similarity. Specifically, we compare
CLIP ViT-B/16+ embeddings used throughout the main paper to the embeddings of ViT-L-14 trained
on LAION-400M, a much larger model.

We compute the nearest-neighbor similarities of ImageNet-Train to the test sets using either embed-
dings and compute their correlation. We summarize the results in table 5 and find that the correlation
is strong across test sets. Figure 13 also shows histograms of nearest-neighbor similarities using either
embedding, revealing that the similarity distributions are very similar. Given these two comparisons,
and considering that CLIP ViT-B/16+ embeddings are faster and cheaper to compute and have been
shown to capture perceptual image similarities reasonably well by previous work (Abbas et al., 2023),
we use them throughout our work.
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Table 5: Choice of embeddings has little impact on nearest-neighbor similarities. We compute
nearest-neighbor similarities between ImageNet-Train the six tests on embeddings produced by
CLIP ViT-B/16+ and ViT-L-14 and find a strong correlation across the bench.

Dataset ρS

ImageNet-Val 0.93
ImageNet-Sketch 0.87
ImageNet-R 0.90
ImageNet-A 0.86
ImageNet-V2 0.93
ObjectNet 0.80

Figure 13: Choice of embeddings has little impact on nearest-neighbor similarity distribution.
We compute nearest-neighbor similarities between ImageNet-Train the six tests on embeddings
produced by CLIP ViT-B/16+ and ViT-L-14 and find their distributions visually very similar across
the bench.

F DISTRIBUTION OF SIMILARITIES OF LAION-200M AND IMAGENET-TRAIN
AFTER PRUNING

We analyzed nearest-neighbor similarity distribution of the test sets to LAION-200M and ImageNet-
Train (see Figs. 4 and 6). But what about the nearest-neighbor similarity distributions of LAION-
200M and ImageNet-Train to the test sets, especially after pruning? We now answer this question to
understand better where the training points are situated with respect to the pruning boundary.

For each data point in the pruned dataset, we compute the maximum similarity to the respective test
set and divide it by the test point’s similarity gap (i.e., nearest-neighbor similarity of the test point to
LAION-200M before pruning). We call this quantity normalized similarity. Note that the normalized
similarity values for samples in the pruned datasets are strictly smaller than 1.0 because samples with
values greater than 1.0 are the ones that lie in the similarity gap and are pruned away.

Plotting the density of normalized similarities in Fig. 14 reveals that LAION-pruned has a much
wider distribution with a smaller mode. Since normalized similarity closer to 1.0 indicates that the
point lies closer to the similarity gap, a larger proportion of ImageNet-Train samples are close to the
similarity gap compared to the proportion observed in LAION-200M.
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We also compare the total number of points that are close to the similarity gap (normalized similarity
> 0.9) in Tab. 6. Due to LAION’s scale, each pruned LAION split contains 5-20 times more data
points close to the similarity gap than ImageNet-Train. We expect that this large and diverse set of
samples close to the boundary greatly dictates CLIP’s performance.

Figure 14: Density of normalized similarity for LAION-pruned and ImageNet-Train. We observe
a wider density function for LAION-pruned with a smaller mode. This indicates that ImageNet-Train
samples are generally more concentrated around the similarity gap.

Table 6: Total number of samples in LAION-pruned splits and ImageNet that lie near the
boundary of the similarity gap for each test set. Closeness is defined by a normalized similarity >
0.9. While LAION-pruned samples are less concentrated around the gap (see Fig. 14), LAION-pruned
still has 5 to 20 times more samples close to the boundary than ImageNet-Train.

Dataset LAION-200M ImageNet-Train
ImageNet-Sketch 8 859 133 131 087
ImageNet-Val 2 344 086 531 982
ImageNet-A 1 118 150 138 975
ImageNet-R 7 376 362 121 160
ImageNet-V2 1 919 398 326 517
ObjectNet 1 558 301 52 277

G NEAREST NEIGHBOR VISUALIZATIONS

To generate nearest neighbors, we compute the nearest images of LAION in CLIP’s (CLIP ViT-B/16+)
image embedding space for each test image. After removing duplicates and near-duplicates within
LAION, we visualize the top six images.

G.1 LAION-400M VS IMAGENET-TRAIN

Just like in Fig. 1, we plot the nearest neighbors in LAION-400M and ImageNet-Train of random
query images for each of the six datasets in Figs. 15, 16, 17, 18, 19, and 20.
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LAION-400M

ImageNet-Train

Decreasing similarity
ImageNet - Sketch

LAION-400M

ImageNet-Train

LAION-400M

ImageNet-Train

LAION-400M

ImageNet-Train

LAION-400M

ImageNet-Train

Figure 15: Nearest neighbors of randomly sampled ImageNet-Sketch queries in LAION-400M and
ImageNet-Train ordered by decreasing perceptual similarity. We omit duplicates within the nearest
neighbors. Perceptual similarity is computed in CLIP’s image embedding space and can be considered
to measure the “perceptual closeness” of images in terms of content and style.

G.2 AFTER PRUNING

Tab. 7 reports the percentage of images in each of the six datasets that have higher similarity to
LAION-200M/LAION-400M than ImageNet-Train. For each of the six test sets, we randomly
sample query images that are more similar to LAION-200M than ImageNet-Train and plot the nearest
neighbors in ImageNet-Train, LAION-200M, and LAION-200M after pruning by the respective test
in Figures 21, 22, 23, 24, 25, and 26.
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ImageNet-Train
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ImageNet-Train
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ImageNet-Train
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ImageNet-Train

LAION-400M

ImageNet-Train

Figure 16: Nearest neighbors of randomly sampled ImageNet-Val queries in LAION-400M and
ImageNet-Train ordered by decreasing perceptual similarity. We omit duplicates within the nearest
neighbors. Perceptual similarity is computed in CLIP’s image embedding space and can be considered
to measure the “perceptual closeness” of images in terms of content and style.

Table 7: Percentage (%) of points in the test datasets for which the nearest neighbor is in
LAION-400M/LAION-200M rather than ImageNet-Train.

Dataset Size LAION-400M LAION-200M
ImageNet-Val 50 000 16.80 14.88
ImageNet-Sketch 50 889 97.94 97.45
ImageNet-R 30 000 87.88 86.74
ImageNet-A 7500 47.39 45.53
ImageNet-V2 10 000 38.95 35.48
ObjectNet 18 574 63.24 61.62
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LAION-400M

ImageNet-Train

Decreasing similarity
ImageNet - A

LAION-400M

ImageNet-Train
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ImageNet-Train

LAION-400M

ImageNet-Train

LAION-400M

ImageNet-Train

Figure 17: Nearest neighbors of randomly sampled ImageNet-A queries in LAION-400M and
ImageNet-Train ordered by decreasing perceptual similarity. We omit duplicates within the nearest
neighbors. Perceptual similarity is computed in CLIP’s image embedding space and can be considered
to measure the “perceptual closeness” of images in terms of content and style.
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ImageNet-Train
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ImageNet-Train
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LAION-400M

ImageNet-Train

Figure 18: Nearest neighbors of randomly sampled ImageNet-R queries in LAION-400M and
ImageNet-Train ordered by decreasing perceptual similarity. We omit duplicates within the nearest
neighbors. Perceptual similarity is computed in CLIP’s image embedding space and can be considered
to measure the “perceptual closeness” of images in terms of content and style.
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ImageNet-Train

LAION-400M

ImageNet-Train

Figure 19: Nearest neighbors of randomly sampled ObjectNet queries in LAION-400M and ImageNet-
Train ordered by decreasing perceptual similarity. We omit duplicates within the nearest neighbors.
Perceptual similarity is computed in CLIP’s image embedding space and can be considered to measure
the “perceptual closeness” of images in terms of content and style.
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Figure 20: Nearest neighbors of randomly sampled ImageNet-V2 queries in LAION-400M and
ImageNet-Train ordered by decreasing perceptual similarity. We omit duplicates within the nearest
neighbors. Perceptual similarity is computed in CLIP’s image embedding space and can be considered
to measure the “perceptual closeness” of images in terms of content and style.
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Figure 21: Nearest neighbors of ImageNet-Sketch images in LAION-200M, ImageNet-Train, and
‘sketch-pruned’ (LAION-200M pruned) ordered by decreasing perceptual similarity. The query (base)
images are randomly sampled from the set of images that are more similar to LAION-200M than
ImageNet-Train to see the effect of pruning (see Tab. 7). We omit duplicates within the nearest
neighbors. Perceptual similarity is computed in CLIP’s image embedding space and can be considered
to measure the “perceptual closeness” of images in terms of content and style. LAION-200M clearly
contains more similar images to samples in the test set compared to ImageNet-Train or ‘sketch-
pruned’.
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Decreasing similarityImageNet - Val

LAION-200M

ImageNet-Train

LAION-200M pruned
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LAION-200M pruned

LAION-200M
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LAION-200M
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LAION-200M pruned

Figure 22: Nearest neighbors of ImageNet-Val images in LAION-200M, ImageNet-Train, and
‘val-pruned’ (LAION-200M pruned) ordered by decreasing perceptual similarity. The query (base)
images are randomly sampled from the set of images that are more similar to LAION-200M than
ImageNet-Train to see the effect of pruning (see Tab. 7). We omit duplicates within the nearest
neighbors. Perceptual similarity is computed in CLIP’s image embedding space and can be considered
to measure the “perceptual closeness” of images in terms of content and style. LAION-200M clearly
contains more similar images to samples in the test set compared to ‘val-pruned’; ImageNet-Train
images are in-distribution to ImageNet-Val and, therefore, contain similar samples.
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Figure 23: Nearest neighbors of ImageNet-A images in LAION-200M, ImageNet-Train, and ‘a-
pruned’ (LAION-200M pruned) ordered by decreasing perceptual similarity. The query (base)
images are randomly sampled from the set of images that are more similar to LAION-200M than
ImageNet-Train to see the effect of pruning (see Tab. 7). We omit duplicates within the nearest
neighbors. Perceptual similarity is computed in CLIP’s image embedding space and can be considered
to measure the “perceptual closeness” of images in terms of content and style. LAION-200M clearly
contains more similar images to samples in the test set compared to ‘val-pruned’; ImageNet-Train
images are in-distribution to ImageNet-Val and, therefore, contain similar samples.
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Figure 24: Nearest neighbors of ImageNet-R images in LAION-200M, ImageNet-Train, and ‘r-
pruned’ (LAION-200M pruned) ordered by decreasing perceptual similarity. The query (base)
images are randomly sampled from the set of images that are more similar to LAION-200M than
ImageNet-Train to see the effect of pruning (see Tab. 7). We omit duplicates within the nearest
neighbors. Perceptual similarity is computed in CLIP’s image embedding space and can be considered
to measure the “perceptual closeness” of images in terms of content and style. LAION-200M clearly
contains more similar images to samples in the test set compared to ‘val-pruned’; ImageNet-Train
images are in-distribution to ImageNet-Val and, therefore, contain similar samples.
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Figure 25: Nearest neighbors of ObjectNet images in LAION-200M, ImageNet-Train, and ‘v2-pruned’
(LAION-200M pruned) ordered by decreasing perceptual similarity. The query (base) images are
randomly sampled from the set of images that are more similar to LAION-200M than ImageNet-Train
to see the effect of pruning (see Tab. 7). We omit duplicates within the nearest neighbors. Perceptual
similarity is computed in CLIP’s image embedding space and can be considered to measure the
“perceptual closeness” of images in terms of content and style. LAION-200M clearly contains more
similar images to samples in the test set compared to ‘val-pruned’; ImageNet-Train images are
in-distribution to ImageNet-Val and, therefore, contain similar samples.
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Figure 26: Nearest neighbors of ImageNet-V2 images in LAION-200M, ImageNet-Train, and
‘objectnet-pruned’ (LAION-200M pruned) ordered by decreasing perceptual similarity. The query
(base) images are randomly sampled from the set of images that are more similar to LAION-200M
than ImageNet-Train to see the effect of pruning (see Tab. 7). We omit duplicates within the nearest
neighbors. Perceptual similarity is computed in CLIP’s image embedding space and can be considered
to measure the “perceptual closeness” of images in terms of content and style. LAION-200M clearly
contains more similar images to samples in the test set compared to ‘val-pruned’; ImageNet-Train
images are in-distribution to ImageNet-Val and, therefore, contain similar samples.
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