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I. RELATED WORK

In this section, the history of automatic detection of cardio-
vascular diseases (CVD) based on electrocardiograms (ECG),
which was outlined within the introduction of the main paper,
is supplemented by more details and a comprehensive list of
examples. First, an overview of traditional machine learning
techniques is presented in Subsection I-A, followed by a sum-
mary of existing deep learning techniques in Subsection I-B.
Finally, advanced deep learning mechanisms that have been
deployed for CVD detection are reviewed in Subsection I-C.

A. Traditional Machine Learning Techniques

Traditional machine learning for ECG analysis involves
multiple steps. Initially, the raw ECG signal is pre-processed
to eliminate noise, baseline wandering, and other artifacts,
optionally also segmenting heartbeats. Then, feature extraction
is performed, considering various signal properties like the
the signal’s higher order statistics or its morphology in the
time/frequency domain. Techniques like independent compo-
nent analysis, autoregressive modeling, Hermite basis func-
tions, and especially, different variants of wavelet transforms
(e.g., DWT, CWT, or XWT) are commonly used. Dimension-
ality reduction methods, such as PCA or LDA, and feature
ranking procedures may follow feature extraction. Finally,
for CVD detection, a range of supervised and unsupervised
methods is available, including SVMs, Bayesian classifiers,
random forests, k-nearest neighbor (KNN) classifiers, and
multi-layer perceptrons with varying architectures. Unsuper-
vised approaches, such as heuristic-search-based clustering
and two-dimensional Gaussian spectral clustering, have also
been explored.

B. Deep Learning Methods

Deep learning (DL) has revolutionized ECG analysis, elimi-
nating the need for extensive preprocessing and manual feature
extraction. Recent methods often perform end-to-end process-
ing, combining feature extraction and classification [18]–[20],
with some using raw ECG data directly [21] or with minimal
modifications like padding [22]. An overview of existing
methods is provided in Table II.

Convolutional Neural Networks (CNNs) have been exten-
sively explored for ECG classification at both the heartbeat
level and in methods operating on ECG sequences. While
CNNs excel at extracting discriminative features from spatially
and locally related data, they often neglect the temporal
properties of ECG signals [23]. In contrast, Recurrent Neural
Networks (RNNs), such as LSTMs and GRUs, are designed

TABLE I: Overview of traditional machine learning techniques
for automated CVD detection, including feature extraction
techniques

Feature
Extraction

• Independent component analysis [1]
• Autoregressive modeling [2]
• Hermite basis functions [3]
• Variants of wavelet transforms (e.g., DWT [4],

CWT [5], XWT [6], or FAWT [7])

Dimensionality
Reduction

• Principal component analysis(PCA) [4]
• Linear discriminant analysis (LDA) [8]
• Locality perserving projection (LPP) [9])

Feature
Revision

• Feature ranking [7], [9], [10]
• Feature normalization [11]

Classification

• SVM [4], [7]
• Bayesian classifier [12]
• Random Forest (RF) [13]
• k-nearest neighbor (KNN) classifier [10], [14]
• Multi-layer perceptrons (MLP) [4], [15]
• Unsupervised methods

(e.g., heuristic-search-based clustering [16], or
two-dimensional Gaussian spectral clustering [17])

for handling sequential data of varying lengths but lack spatial
information [23]. Capturing the intricate temporal dynamics
inherent in ECGs, they have been applied for both the classi-
fication on heartbeat-level and on the sequence-level as well.
Hybrid architectures, leveraging the strengths of both CNNs
and RNNs, have also proven successful in CVD detection.
While some researchers stack both network types in arbitrary
order, others apply them in parallel. Furthermore, there are
methods that first train an autoencoder (AE) with unsupervised
learning and later use its compressed representation for sub-
sequent classification, including convolutional AEs, LSTM-
based AEs, and stacked denoising AEs.

TABLE II: Overview of previous deep learning techniques for
CVD detection

Convolutional Neural
Network (CNN)

• Heartbeat level [24], [25]
• Sequence level [20], [26]

Recurrent Neural
Network (RNN)

• Heartbeat level [27], [28]
• Sequence level [29]

Hybrid
(CNN + RNN)*

• Stacked - CNN first [18], [21], [30], [31]
• Stacked - RNN first [32]
• In parallel [33]

Autoencoder (AE)* • Convolutional (possibly denoising) AE [34], [35]
• LSTM-based AE [36]
• Stacked, denoising AEs [37]

* No distinction is made between hearbeat- and sequence level



C. Advanced Deep Learning Concepts

Within the last decade and especially, within the last
five years, many architectures incorporating advanced deep
learning concepts, such as residual networks or attention
mechanisms, have been proposed. As indicated in the (non-
exhaustive) summary of Table III, advanced methods for 12-
lead CVD detection, mostly from the last five years, include
CNNs with dilated and deformable convolutions, residual
neural networks, attention mechanisms, and transformer-based
architectures. Residual networks (ResNets) exhibit numer-
ous variants, such as the integration of handcrafted (ex-
pert) features or their combination with RNNs or transfer
learning. ResNets with attention modules, such as squeeze-
and-excitation (SE) blocks or convolutional block attention
(CBAM) modules, and methods that merge (SE)ResNets with
transformer variants have also been successfully applied.
Lastly, approaches that process different ECG leads separately
or in groups by dedicated feature extraction components per
lead (group) within different network branches have made
notable contributions.

TABLE III: Overview of advanced DL for CVD detection

Advanced Convs. • Dilated convolution [38]–[40]
• Deformable convolution [41]

Residual Networks

• Simple ResNets [42]–[44]
• ResNet + hand-crafted expert features [45]
• ResNet + RNNs [46]
• ResNet + transfer learning [47]
• ResNet + Attention blocks

(e.g., SE blocks [48]–[50],
or CBAM modules [51]–[53])

RNNs with
Attention

• LSTM [54]–[56]
• GRU [22], [57]

Transformer-based • Transformer encoder [58]–[60]
• Transformer as a whole [61]

Others • (SE)ResNets + Transformer variants [62], [63]
• Separate lead processing by dedicated

network components (e.g., single lead
processing [57], [64], [65], or grouped
lead processing [66])

II. METHODOLOGY

This section begins with the problem formulation in Sec-
tion II-A. Then the challenge-best model of Chen et al. [22]
is explained in Section II-B, including a visualization of the
employed attention mechanism. Finally, Section II-C provides
more details about our MACRO architecture.

A. Problem Formulation

The detection of cardiac irregularities within ECG signals
can be framed as a time-series classification task. In a 12-lead
multi-label classification context, the model operates on ECG
recordings of variable lengths, denoted as xi ∈ RL×12, where
L represents the length of a given recording xi (in our work
L = 15, 000). The aim of the model is to predict one or more
classes from a pool of C potential classes for each individual
recording, concurrently. Hence, the objective function of the

model seeks to minimize the binary cross entropy loss LBCE

between the actual ground truth labels associated with a given
recording xi and the labels predicted by the model for the
same record, which is defined as follows:

LBCE(Ŷi, Yi) = −
C∑

j=1

yj log(ŷj) + (1− yj)log(1− ŷj) (1)

where Yi = (y1, ..., yC) with yi ∈ {0, 1} represents the ground
truth label annotations for sample xi and Ŷi = (ŷ1, ..., ŷC)
with 0 ≤ ŷi ≤ 1 denotes the vector containing the class
probabilities predicted for xi by the multi-label classifier.

B. Challenge-Best Model of Chen et al. [22]

1) Baseline Architecture: The baseline model of Chen et
al. [22] comprises distinct neural network elements, grouped
into a CNN component, an RNN module, an attention mech-
anism, a normalization layer, and a final fully connected unit.
Fig. 1 illustrates the overall architecture, with the CNN seg-
ment consisting of five nearly identical CNN blocks. Operating
on raw 12-lead ECG values, the number of incoming and
outgoing channels stays the same for all five CNN blocks and
amounts to twelve. Each block employs two 1D convolutional
layers with a kernel size of three and stride one, followed by
a downsampling layer to reduce complexity and over-fitting.
Notably, in the first four CNN blocks, the downsampling is
realized as convolution with stride two and kernel size 24,
while in the last block, a 48-sized kernel is used.

The outputs of the last CNN block, per time step consisting
of twelve features, are processed by a bidirectional gated
recurrent unit (BiGRU) with one layer and twelve units, which
generates a 24-dimensional vector per time step by concate-
nating its forward and backward outputs. The subsequent
attention layer determines importance weights for the BiGRU’s
hidden states at different time steps, yielding a weighted sum
across all input features as a 24-dimensional output.

Batch normalization precedes the final dense layer that maps
its inputs to a nine-dimensional output vector of classification
probabilities. LeakyReLU with a negative slope of 0.3 is
employed as the activation function, except for the dense layer,
which uses a Sigmoid activation. Dropout randomly omits
20% of connections between CNN blocks and between other
independent layers to enhance robustness.

2) Attention Mechanism: For determining the importance
weight of a given hidden state hBiRNN

t , the concatenated
vector is first transformed to a hidden representation ut ∈ R24

by a one-layer MLP, with W ∈ R24×24 and b ∈ R24 denoting
learnable parameters and tanh serving as activation:

ut = tanh
(
WhBiRNN

t + b
)

(2)

Afterwards, the importance of the respective hidden state is
calculated as the similarity between ut and a query vector
q ∈ R24, where the dot-product is used as attention scoring
function. The query vector q is randomly initialized and
jointly learned during the training procedure and hence, it
can technically be realized as a one-layer MLP with a weight
matrix of shape 24× 1 and no bias.
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Fig. 1: Model architecture used in the ensemble approach of Chen at al [22]. Our reimplementation of this approach serves as
a baseline in this work.

Fig. 2: Application of the attention framework to the hidden states of a BiRNN with 12 units. This attention mechanism is
used in our reimplementation of the approach of Chen et al. [22].

Thereupon, the computed, scalar attention score is further
processed by a Softmax function to retrieve a normalized
importance weight αt for time step t:

αt = Softmax
(
qTut

)
=

exp(qTut)∑T
j=1 exp(q

Tuj)
(3)

At the end, the output of the attention layer is computed as
weighted sum over the T time steps as follows, yielding a
final vector fatt ∈ R24:

fatt =

T∑
t=1

αth
BiRNN
t (4)

An illustration of this mechanism can be found in Fig. 2.



C. MACRO: Design Choices and Multi-Head Attention

1) Design Rationale Behind the CNN Module: This subsec-
tion provides more details on our design rationale regarding
the CNN module. Based on preliminary experiments, we have
found that the following mechanisms are beneficial to the
final classification performance compared to the original CNN
submodule of Chen et al. [22]:

1) Skip Connections: We introduce skip connections
within all network blocks to facilitate the direct flow
of gradients throughout the neural network. We orga-
nize these skip connections following the pre-activation
design paradigm, inspired by a seminal study by He et
al. [67]. He et al. conducted a comprehensive analysis
of residual blocks shortly after introducing skip connec-
tions and ResNets in their pioneering work [68]. They
explored various configurations of skip connections and
argued that establishing a ”clean” pathway for direct
information propagation, not only within a residual
unit but across the entire network, is advantageous for
optimization and generalization. Notably, in the pre-
activation design, the shortcut path omits normaliza-
tion and activation functions to closely approximate an
identity mapping by immediately capturing the resulting
signal from the addition operation and transmitting it to
the subsequent residual block, even prior to normaliza-
tion. Consequently, information passed through the skip
connection propagates almost directly between different
units, except for the channel and spatial alignment
operation.

2) Up-Front Block: Because of the pre-activation design,
a block is added to the beginning of MACRO before the
five convolutional blocks, ensuring that the ECG signal,
which is only down-sampled and length-restricted but
otherwise unprocessed, does not directly enter the initial
CNN block. Without this block, the raw signal would be
transferred from one unit to another through the shortcut
paths, bypassing any form of normalization or scaling.

3) Amount of Channels: A dynamic approach is taken
with regards to the number of channels across the
five blocks. The count of feature maps is progressively
increased from block to block within the first half of the
CNN module and subsequently decreased. This design is
based on the idea that the CNN initially extracts an ex-
panding set of features from the input, aiming to enrich
the contained information. Subsequently, the knowledge
acquired is condensed to facilitate management by the
subsequent BiGRU.

4) Batch Normalization: To enhance the training effec-
tiveness, including convergence speed and generalization
capacity of the model, we introduce normalization layers
following each convolutional layer. In line with the pre-
vailing literature, we adopt Batch Normalization (BN)
as the chosen normalization technique, although we also
conducted experiments with other forms of normaliza-
tion layers, such as instance and layer normalization.

2) Details Regarding Our Employed Multi-head Attention
Module: For enhanced comprehension, Fig. 3 and Fig. 4
provide visual representations of our multi-head attention
(MHA) module. Notably, we adapt the MHA framework that
was introduced by Vaswani et al. in their seminal work about
the Transformer architecture [69] to our specific use case.
Differing from the self-attention used in Transformers [69], the
query q is initialized as a random vector and jointly learned.
Moreover, we apply a tanh activation function after each
head’s linear key transformation through W

(K)
i to maintain

the non-linearity within key derivation, similar to the attention
mechanism in our baseline (cf. Fig. 2).

As in the main paper, Fig. 4 illustrates the internal me-
chanics of the scaled dot-product attention with Entmax15
activation in combination with multiple heads. Apart from the
projection part, for which each head uses its own set of trans-
formation matrices, the computations applied to determine the
scaled dot-production are the same for each head, which is
indicated by the layered shapes within the green box.



Fig. 3: Application of the MHA mechanism to the hidden states of a BiRNN with 12 units.
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Fig. 4: Visualization of the scaled dot-product attention with α−Entmax and multiple heads from a zoomed-in perspective.



III. DATASET AND DATA HANDLING

This section provides additional information about the
CPSC benchmark dataset used for model evaluation in Sub-
section III-A. Following this, Subsection III-B presents details
about our data splits during hyperparameter tuning and 10-fold
cross-validation.

A. Details Regarding the CPSC2018 Dataset

Our architectures are evaluated using the China Physio-
logical Signal Challenge (CPSC) 2018 dataset. Before the
competition, the dataset was split into two subsets with
similar compositions. The first subset, with 6,877 records
(3,178 female, 3,699 male), was the publicly available training
data. The second subset, with 2,954 records (1,416 female,
1,538 male), was reserved for private evaluation and remains
inaccessible to researchers. Hence, only the public data is used
for training, validating, and evaluating our models.

As depicted on the left of Fig. 5, the majority of the 6,877
publicly available records have durations between six to 60
seconds. Nevertheless, there are exceptions, with 27 records
lasting longer, reaching up to 144 seconds. On the right side of
Fig. 5, the shares of the nine classes are summarized according
to their first label annotations. These classes include normal
sinus rhythm (SNR), as well as various cardiac disorders such
as atrial fibrillation (AF), first-degree atrioventricular block (I-
AVB), left bundle branch block (LBBB), right bundle branch
block (RBBB), premature atrial contraction (PAC), premature
ventricular contraction (PVC), ST-segment depression (STD),
and ST-segment elevation (STE). Considering all label annota-
tions, the shares increase for all classes except SNR, as shown
ins Table IV.

B. Details Regarding Our Data Splits During hyperparameter
Tuning and 10-Fold Cross-Validation

For preliminary experiments and hyperparameter tuning,
we used a fixed split of the 6,877 samples from the CPSC
2018 dataset. Specifically, 60% of the samples were used for
training, while 20% each were used for validation and testing.
Table VI provides the support of different classes within the
three sets. To account for the lack of cross-validation in these
early studies, we intentionally kept the training ratio relatively
small. On one hand, this helps prevent overfitting on the
training set. On the other hand, it increases the likelihood of
covering a wider range of arrhythmia manifestations during
evaluation.
For the main evaluation, we used 10-fold cross-validation with
ten randomly partitioned folds of similar compositions. Each
round involved one fold as the validation set, one as the test
set, and the remaining eight for training. This process was
repeated ten times, resulting in evaluations of the model on 10
distinct test sets with similar compositions. Table VII displays
the support of different classes in the ten folds, each taking a
turn as the unseen test set once.



Histogram of record lengths.

Type Records

Normal (SNR) 918
Atrial fibrillation (AF) 1098
First-degree atrioventricular block(I-AVB) 704
Left bundle branch block (LBBB) 207
Right bundle branch block (RBBB) 1695
Premature atrial contraction (PAC) 574
Premature ventricular contraction (PVC) 653
ST-segment depression (STD) 826
ST-segment elevated (STE) 202

Total 6877

Class shares.

Fig. 5: Details about the 6,877 records of the CPSC 2018

TABLE IV: Class shares when considering only the first vs. all annotations

Mode Classes Total
SNR AF I-AVB LBBB RBBB PAC PVC STD STE

1st label 918 1098 704 207 1695 574 653 826 202 6877
Multi-label 918 1221 722 236 1857 616 700 869 220 7359

TABLE V: Breakdown of class distribution - number of occurrences per class in total, in the multiple labeled (ML) records
and as a percentage of multiple labeled in relation to all records.

Metric SNR AF I-AVB LBBB RBBB PAC PVC STD STE

N (Total) 918 1221 722 236 1857 616 700 869 220
N (in ML records) 0 245 36 57 324 83 93 85 35
Share in % 0.00 20.07 4.99 24.15 17.4 13.47 13.29 9.78 15.91

TABLE VI: Support of different classes during preliminary experiments and hyperparameter tuning. Reported numbers are the
same for all studies.

Set Classes Total
SNR AF I-AVB LBBB RBBB PAC PVC STD STE

Train 523 741 456 131 1091 379 421 528 131 4401
Valid 203 230 125 58 386 124 136 174 41 1477
Test 192 250 141 47 380 113 143 167 48 1481

Total 918 1221 722 236 1857 616 700 869 220 7359

TABLE VII: Support of different classes within the distinct test folds of the 10-fold cross-validation. Reported numbers are
the same for all cross-validation studies.

ID Classes Total
SNR AF I-AVB LBBB RBBB PAC PVC STD STE

1 99 116 73 26 187 55 74 98 20 748
2 72 120 67 34 177 73 69 97 23 732
3 102 121 87 19 184 56 65 78 18 730
4 95 119 73 20 179 57 77 84 25 729
5 93 133 60 22 178 75 69 91 22 743
6 94 126 67 26 193 64 63 89 24 746
7 100 121 71 22 190 63 62 82 20 731
8 94 125 73 23 185 61 66 84 21 732
9 87 117 79 28 195 55 78 72 22 733
10 82 123 72 16 189 57 77 94 25 735

Total 918 1221 722 236 1857 616 700 869 220 7359



IV. EVALUATION

This section provides supplementary material on our ap-
proach evaluation. It includes visual performance representa-
tions of our models across nine classes (Subsection IV-A),
feature importance from gradient boosting models (Subsec-
tion IV-B), and sigmoid activation visualizations for various
classes and models (Subsection IV-C). It also details compar-
isons with state-of-the-art methods (Subsection IV-E) and a
breakdown of our models’ trainable parameters compared to
existing approaches (Subsection IV-F).

A. Receiver Operating Characteristic (ROC) Curves

Receiver Operating Characteristic (ROC) curves provide a
clear visual representation of the performance of our models
across the nine classes. We created a separate ROC plot for
each class, including individual curves for each of the 10 folds
from cross-validation, along with the mean curve computed
across these 10 folds, for both Multi-Branch MACRO (MB-
M) and the variant with MB-M as a feature extractor and
subsequent GB classifiers based on all 117 input features
(GB-all). The area shaded around the mean curve, which
indicates plus or minus one standard deviation, provides a
measure of the models’ stability and robustness. The diagonal
dashed line, indicative of chance-level performance, offers a
baseline for comparison. These ROC plots, condensed into a
grid with nine subplots for individual classes, are shown in
Fig. 7 for MB-M and in Fig. 8 for MB-M with ensuing GB-
all classifiers. Combined with the corresponding Area Under
the Curve (AUC) scores, reported alongside, the plots provide
a nuanced view of the model’s discriminatory ability within
each class and capture the consistency of performance across
different folds.

B. Feature Importance

In addition to evaluating model performance, we visualized
the feature importance of gradient boosting (GB) models with
different feature sets averaged across 10 folds in Fig. 6.
These heatmaps offer valuable insights into the features that
contribute most significantly to the classification of cardiac
abnormalities. By analyzing the feature importance scores, one
can gain a deeper understanding of the lead-specific branches
that are indicative for different cardiac conditions.

The heatmap in Fig. 6a displays the importance of features
in GB classifiers with 13 input features, namely the predicted
probabilities from the BranchNets (BN) and Multi-Branch
MACRO (MB-M) output layer for the respective class of
interest. The most crucial feature for prediction is the MB-
M output layer. However, for certain classes, such as bundle
brunch blocks (LBBB and RBBB), specific BranchNet features
also appear to play at least a minor role. The second heatmap
in Fig. 6b shows the feature importance for GB classifiers with
input 12 features, namely the predicted probabilities from the
BranchNets only, excluding MB-M. No clear overall trend is
discernible, but certain branches appear to be considered more
frequently for certain classes than others. When using MB-
M in combination with GB-all classifiers that take the 117
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Fig. 6: Average feature importance across the 10 folds.

predicted probabilities from both the BranchNets and MB-M
as input, the resulting heatmap is similar to that of 6a, i.e., the
predicted probability output by MB-M for the current class
of interest appears to be the most important, regardless of the
specific class that the GB model is focusing on.

C. Visualization of Final Sigmoid Probabilities

To enhance the interpretability of our approach, we present a
visual representation of the final sigmoid probabilities of each
classifier for all 12 BranchNets, MB-M, and its extensions
with GB-13 and GB-all classifiers. To this end, the activations
for ECG records where the class of interest is active (label
= 1) are filtered and the mean activation values per class are
calculated. Two distinct visualization strategies are employed.
The first strategy entails plotting activations per class, thereby
facilitating a comparison of model outputs for each specific
class (cf. Fig. 9). The second strategy involves plotting acti-
vations per classifier, which allows for the visualization of the
performance of each model across classes (cf. Fig. 10).

The viszalizations indicate that for the majority of classes,
the highest activation occurs at the corresponding class index,
thereby signifying accurate recognition with low probabilities
assigned to other classes. However, the BranchNets exhibit a
tendency to confuse the minority class STE with the SNR class
(normal sinus rhythm). The best recognition for STE is still
achieved with those based on leads V3 and V4. In contrast,
the MB-M and GB variants improve recognition by a large
margin, shifting the peak towards the correct prediction and
reducing the likelihood of confusion with SNR.



Upon analysis of the results, it can be observed that, with
the exception of STE, each BranchNet demonstrates an ability
to accurately identify the corresponding cardiac disorder, even
when utilizing a single lead as the input. However, for certain
classes, such as LBBB or STD, occasional activations for other
classes, such as RBBB or SNR, can also occur, albeit with
reduced confidence. Moreover, the combination of all Branch-
Nets in the shape of MB-M and the addition of GB classifiers
has the effect of stabilizing the predictions, increasing confi-
dence in the correct class while reducing it for others. While
this improvement is particularly evident for the STE minority
class, which aligns with the observed boost in performance
metrics for STE, this general trend across classes indicates that
merging predictions across multiple classifiers is beneficial for
achieving more robust outcomes. However, it is important to
note that this interpretation should be considered with caution,
as a small number of records are multi-labeled. In such cases,
co-activations for other classes might be appropriate, rather
than indicative of misclassification.

D. Comparison of Classification Performance for Single- and
Multi-Labeled Records

While the CPSC 2018 dataset is primarily single-labeled,
476 records have more than one associated class. Table VIII
divides the 6,877 records into single- and multi-labeled, show-
ing separate performance metrics for both groups. Especially
for MB-M, classification performance decreases from single-
labeled (SL) to multi-labeled (ML) settings for all metrics
except the precision, highlighting the increased complexity
of multi-label classification. In contrast, the gradient boosting
(GB) classifiers tend to handle the multi-label scenario more
effectively than MB-M, reducing the difference in performance
across all metrics. Although the AUC scores for the ML subset
fall short of those for its SL counterpart, the results for both
GB variants show that there are hardly any differences in
the macro F1 and accuracy scores. In some cases, the values
achieved for SL are even exceeded for the ML category. Over-
all, the gradient boosting models (GB-all and GB-13) show
improved performance in the multi-labeled context compared
to MB-M, especially in terms of recall and F1 score. This
suggests that the binary ensemble of GB classifiers might be
better suited for handling the ML records of CPSC 2018.

TABLE VIII: Comparison of the (macro-averaged) classifica-
tion performance between single- and multi-labeled records.

Model Type Prec. Rec. F1 AUC Acc

MB-M SL 0.8304 0.8353 0.8318 0.9762 0.9704
MB-M ML 0.8676 0.5945 0.6811 0.8534 0.9477

+GB-13 SL 0.8401 0.8354 0.8374 0.9661 0.9713
+GB-13 ML 0.8841 0.7808 0.8282 0.8727 0.9809

+GB-all SL 0.8361 0.8379 0.8368 0.9651 0.9714
+GB-all ML 0.8889 0.8127 0.8483 0.8671 0.9879

E. Comparison to Existing SOTA Techniques
1) Selection Process: As stated in the main article, we

excluded several studies from our comparison despite their

analysis using CPSC 2018, as they were not comparable to
our approach. Evaluation setups that differ from ours and were
therefore excluded include the use of a fixed data split without
k-fold cross-validation (CV) [60], [70]–[72], using a fixed test
split combined with a (repeated) CV only for the training and
validation sets [73]–[75], or using CV but reporting metrics
of the best fold instead of averaging over all folds [40].

Although, in our tables, we report the results as they are
given in the respective publications, for MLBF-Net [57] we
made intensive efforts to reproduce the results ourselves due
to its similarity to MB-M. However, despite our best efforts,
we had great difficulty reproducing the results of the original
publication. Since attempts to contact the authors were un-
successful, and since other authors have also reported certain
reproducibility problems in the meantime [76], we excluded
MLBF-Net from our comparison, despite its 10-fold CV.

2) Details: Although we only included approaches in our
SOTA comparison that have applied 5- or 10-fold CV scheme
similar to ours, the majority of existing methods only reports
average metric scores. In contrast, standard deviations across
different folds are discussed in the least publications, despite
providing valuable insights. In order to take this into account,
Table IX takes up all approaches from the main paper that also
report standard deviations and compares them with the results
of our Multi-Branch MACRO (MB-M) with and without
subsequent gradient boosting (GB) classifiers.

F. Amount of Parameters

Our paper emphasizes transparency by providing compre-
hensive details on model architectures and parameter counts.
The number of trainable parameters for our models is broken
down in detail in Tables XI and XII for MACRO and Multi-
Branch MACRO (MB-M), respectively. Table X compares
the parameter counts of our models with those reported in
other papers from our SOTA comparison (cf. Table 2 in the
main paper), where possible. Publications that do not provide
code or information on parameter counts [58], [62], [63]
are excluded. The achieved macro F1 (m-F1) scores on the
CPSC2018 dataset are included in the table as well, providing
a comprehensive insight into the relationship between model
complexity and performance across methods. If the original
publication provides the number of parameters, we use this
value in the table. For publications that have published Py-
Torch source code, we determined the number of parameters
ourselves using the ’summary’ method of the Python package
’torchinfo’1. This method was also used to count the param-
eters of MACRO and MB-M, ensuring consistent results. For
source code using Keras, we employed the ’summary’ method
of Keras’ models2. As shown in Table X, our models stand
out by a thoughtful balance between model complexity and
computational efficiency on the one hand, and classification
performance on the other.

1PyTorch package ’torchinfo’: https://github.com/TylerYep/torchinfo
2Keras method ’summary’: https://keras.io/api/models/model/#summary-method
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Fig. 7: Visualization of the ROC curves of our Multi-Branch MACRO model without gradient boosting (GB) classifiers across
the 10 folds.
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Fig. 8: Visualization of the ROC curves of our Multi-Branch MACRO model with subsequent GB-all classifiers across the 10
folds.
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Fig. 9: Visualization of the final sigmoid activations of the different BranchNets, MB-M, and MB-M combined with GB-13
or GB-all, grouped by class.
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Fig. 10: Visualization of the final sigmoid activations of the different BranchNets, MB-M, and MB-M combined with GB-13
or GB-all, grouped by classifier.



TABLE IX: Model comparison regarding the class-wise and macro-averaged F1 (m-F1) scores achieved by our approach and
existing SOTA methods (mean±sd).

Type ResCNN +
BiLSTM [46]

Conv.
SENet [48]

MsgFormer
[58]

Multi-branch MACRO

w/o GB GB (13 ft.) GB (all)

SNR 0.755 ± 0.049 0.79 ± 0.03 0.840 ± 0.05 0.828±0.016 0.830±0.019 0.831±0.026
AF 0.846 ± 0.024 0.92 ± 0.02 0.923 ± 0.017 0.937±0.014 0.941±0.013 0.946±0.011
I-AVB 0.87 ± 0.021 0.87 ± 0.04 0.838 ± 0.042 0.886±0.036 0.892±0.036 0.888±0.036
LBBB 0.869 ± 0.028 0.87 ± 0.04 0.849 ± 0.021 0.866±0.057 0.896±0.051 0.903±0.064
RBBB 0.78 ± 0.028 0.93 ± 0.01 0.935 ± 0.005 0.929±0.008 0.938±0.010 0.939±0.008
PAC 0.751 ± 0.03 0.78 ± 0.05 0.731 ± 0.069 0.792±0.040 0.791±0.047 0.814±0.038
PVC 0.829 ± 0.019 0.86 ± 0.03 0.856 ± 0.046 0.860±0.021 0.878±0.020 0.880±0.019
STD 0.791 ± 0.01 0.81 ± 0.03 0.856 ± 0.014 0.790±0.034 0.832±0.034 0.834±0.026
STE 0.704 ± 0.049 0.59 ± 0.10 0.598 ± 0.052 0.557±0.062 0.643±0.090 0.630±0.051

m-F1 0.799 ± 0.014 0.825 ± 0.01 0.847 ± 0.013 0.827±0.014 0.849±0.012 0.852±0.012

TABLE X: Comparison of the number of trainable parameters of MACRO and Multi-Branch MACRO with those employed
in existing methods.

Ref Year Model Parameters m-F1 Details

Total Rounded

[46] ’19 ResCNN, BiLSTM 1,163,913 1.16M 3 0.799
[65] ’23 LightX3ECG 5,343,732 5.34M 2 0.800 Params. w/o pruning
[44] ’21 CNN + Thld. Opt. 16,610,185 16.61M 2 0.813 ResNet34 (def.): 16.61M

ResNet18: 8.75M
[56] ’23 STRL + ASTA 4 2,419,542 2.42M 1 0.818
[48] ’21 Conv. SENet - ≈3.5M 1 0.825
[64] ’24 LFG-Net - 1.02M 1 0.842 1.02M only for prediction5

MACRO 191,913 0.19M 0.809
MB-M 1,713,081 1.71M 0.827
MB-M + GB-all 1,713,081 1.71M 0.852 No add. param. due to GB
1 Numbers as reported in the orig. publication
2 Numbers determined with ’summary’ method of the ’torchinfo’ package
3 Numbers determined with ’summary’ method of Keras’ models
4 Spatio-Temporal Representation Learning + Attentive Spatio-Temporal Aggregation
5 Training requires another model of 12 parallel networks, where each network

structure contains CNN, BiGRU, attention, and fully-connected layers



TABLE XI: Specification of the trainable weight parameters of MACRO when trained with 12-lead ECG inputs and not acting
as BranchNet, including the majority of selected hyperparameters.

Layer set Layers #Kernels/units K/H Parameters

Up-front block Conv 12 16 12× 12× 16 + 12 = 2, 316
BatchNorm - - 12× 2 = 24

ResBlock 1
Conv 24 3 12× 24× 3 + 24 = 888


∑

= 16, 920

BatchNorm - - 24× 2 = 48
Conv 24 3 24× 24× 3 + 24 = 1, 752
BatchNorm - - 24× 2 = 48
Conv 24 24 24× 24× 24 + 24 = 13, 848
ConvAlign 24 1 12× 24 = 288 (no bias)
BatchNorm - - 24× 2 = 48

ResBlock 2
Conv 48 3 24× 48× 3 + 48 = 3, 504


∑

= 67, 248

BatchNorm - - 48× 2 = 96
Conv 48 3 48× 48× 3 + 48 = 6, 960
BatchNorm - - 48× 2 = 96
Conv 48 24 48× 48× 24 + 48 = 55, 344
ConvAlign 48 1 24× 48 = 1, 152 (no bias)
BatchNorm - - 48× 2 = 96

ResBlock 3
Conv 48 3 48× 48× 3 + 48 = 6, 960


∑

= 71, 856

BatchNorm - - 48× 2 = 96
Conv 48 3 48× 48× 3 + 48 = 6, 960
BatchNorm - - 48× 2 = 96
Conv 48 24 48× 48× 24 + 48 = 55, 344
ConvAlign 48 1 48× 48 = 2, 304 (no bias)
BatchNorm - - 48× 2 = 96

ResBlock 4
Conv 24 3 48× 24× 3 + 24 = 3, 480


∑

= 20, 376

BatchNorm - - 24× 2 = 48
Conv 24 3 24× 24× 3 + 24 = 1, 752
BatchNorm - - 24× 2 = 48
Conv 24 24 24× 24× 24 + 24 = 13, 848
ConvAlign 24 1 48× 24 = 1, 152 (no bias)
BatchNorm - - 24× 2 = 48

ResBlock 5
Conv 12 3 24× 12× 3 + 12 = 876


∑

= 8, 604

BatchNorm - - 12× 2 = 24
Conv 12 3 12× 12× 3 + 12 = 444
BatchNorm - - 12× 2 = 24
Conv 12 48 12× 12× 48 + 12 = 6, 924
ConvAlign 12 1 24× 12 = 288 (no bias)
BatchNorm - - 12× 2 = 24

BiGRU 12 2× 3× (122 + 12× 12 + 2× 12) = 1, 872

MH attention
Learnable query vector 24


∑

= 2, 424
Dense (key transformations) 6 24× 24 + 24 = 600

Dense (query transformations) 6 24× 24 + 24 = 600
Dense (value transformations) 6 24× 24 + 24 = 600

Dense (head fusion) - 24× 24 + 24 = 600

BatchNorm - - - 24× 2 = 48
}∑

= 273Dense - - - 24× 9 + 9 = 225

Total 191,913

Number of parameters computed as follows, where # denotes the amount:
Conv: #inputChannels · #kernels · kernelSize+ #kernels (bias)
BatchNorm: #inputChannels · 2
BiGRU: #directions · #gates · ((#cells)2 + inputSize · #cells + 2 · #cells), cf. PyTorch doc.
Dense: inputSize · outputSize + outputSize (bias)
MH Transformations: like dense layer, where in this work outputSize = 2 · #cellsBiGRU



TABLE XII: Specification of the trainable weight parameters of Multi-Branch MACRO, including an overview of the majority
of selected hyperparameters.

Block Layer (set) Num. of Kernels K Parameters

BranchNet

Up-front block Conv 1 16 17
}∑

= 19



× 12

BatchNorm - - 2

ResBlock1

Conv 12 3 48

∑

= 4, 044

BatchNorm - - 24
Conv 12 3 444

BatchNorm - - 24
Conv 12 24 3,468

ConvAlign 12 1 12
BatchNorm - - 24

ResBlock2 cf 1st block of MACRO (in ch: 12, out ch: 24) 16,920 
∑

= 117, 717

ResBlock3 cf. 2nd block of MACRO (in ch: 24, out ch: 48) 67,248

ResBlock4 cf. 4th block of MACRO (in ch: 48, out ch: 24) 20,376

ResBlock5 cf. 5th block of MACRO (in ch: 24, out ch: 12) 8,604

BiGRU cf. MACRO (12 cells) 1,872

MHA cf. MACRO, but 24 heads 2,424

Classification cf. MACRO 273

Conv Red

Conv 200 3 173,000

∑

= 249, 024
BatchNorm - - 400
Conv 112 3 67,312
BatchNorm - - 224
Conv 24 3 8,088

MHA cf. MACRO (6 heads) 2,424

BatchNorm cf. MACRO 48
Dense cf. MACRO 225

Total 1,713,081
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