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This supplement file contains the appendixes of the paper "Structure-Preserving Embedding of Multi-1

layer Networks". In Appendix A, we summarize the projected gradient descent algorithm developed2

in Section 2 of the paper. Appendix B contains the detailed cross-validation procedure in selecting3

the tuning parameter λn. Additional simulation studies are provided in Appendix C. In Appendix D,4

we provide an eigenvalue plot of the WAT dataset discussed in Section 4.2 of the paper. All technical5

proofs and necessary lemmas are included in Appendix E.6

A Summary of the projected gradient descent algorithm7

For easy of presentation, we denote the projection result from Step 1 to Step 3 discussed in Section8

2.3 as PΩα×Ωβ
(α̃, β̃). The developed projected gradient descent algorithm can be summarized in9

Algorithm 1.10

Algorithm 1: Projected gradient descent (PGD)
Input :Adjacency tensor A, sparsity factor sn, number of communities K, embedding

dimension R, constraint parameter ξ, tuning parameter λn, learning rate η, number of
iterations T .

Output :Estimators of α and β, estimated vertex community memberships and community
centers.

1 Initialize α(0), β(0) and hence obtain Z(0), C(0) by (1 + δ)-approximation K-means algorithm.
Set t=0.

2 while t < T do
3 α̃(t+1) = α(t) − η∇αLλ(α(t),β(t);A), β̃(t+1) = β(t) − η∇βLλ(α(t),β(t);A);
4

(
α(t+1),β(t+1)

)
= PΩα×Ωβ

(α̃(t+1), β̃(t+1));
5 Apply (1 + δ)-approximation K-means algorithm to α(t+1) to obtain Z(t+1) and C(t+1).

6 if |Lλ(α
(t+1),β(t+1);A)−Lλ(α

(t),β(t);A)|
Lλ(α(t),β(t);A)

< 10−6 then
7 break.
8 end
9 t = t+1.

10 end

B Selecting λn11

In this appendix, we provide the detailed tuning procedure for selecting λn. Specifically, let Λ =12

{λn1, ..., λnQ} be the set of Q candidates of λn, p0 be the fraction of training data, and κ be the13

number of repetitions. For each repetition κ0, we first sample the training data from the adjacency14

tensor A such that ai,j,m will be sampled independently with probability p0, for any i ≤ j. Denote15
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∆ be the index set of the training data. For each candidate λnq ∈ Λ, we apply Algorithm 1 to solve16

for (ακ0,q,βκ0,q) ∈ Ωα × Ωβ that minimizes17

1

|∆|
∑

(i,j,m)∈∆

L(θi,j,m, ai,j,m) + λnqJ(α), (1)

where |∆| is the cardinality of ∆. We then evaluate the negative log-likelihood over the held-out set

lκ0,q =
1

|∆c|
∑

(i,j,m)∈∆c

L(θκ0,q
i,j,m, ai,j,m),

where ∆c is the complement of ∆ and θκ0,q
i,j,m = I ×1 (α

κ0,q
i,. )T ×2 (α

κ0,q
j,. )T ×3 (β

κ0,q
m,. )

T . Finally,
we select λn from Λ such that it minimizes the averaged held-out loss over κ repetitions; that is,
λn = λnq∗ with

q∗ = arg min
q∈[Q]

1

κ

κ∑
κ0=1

lκ0,q.

We remark that when solving (1), one needs to replace T by T ∗ B, to obtain the corresponding18

gradients associated with the training data in the PGD algorithm. Herein, B ∈ {0, 1}n×n×M is the19

binary indicator tensor associated with ∆ such that Bi,j,m = 1 if and only if (i, j,m) ∈ ∆. Similarly,20

when estimating sn inside the cross-validation process by equation (7) labeled in the paper, one need21

to replace the coefficient 1
nM by 1

nMp0
and A by A ∗ B̃, where B̃ is a symmetrization version of B22

such that B̃i,j,m = B̃j,i,m = Bi,j,m, for i ≤ j, m ∈ [M ].23

C Additional simulation studies24

As network gets sparser or community sizes gets more unbalanced, it becomes more difficult to25

differentiate vertices community memberships based on the observed multi-layer network. In this26

Appendix, we provide additional simulation studies of two scenarios. In Scenario I, we study the27

performances of TLSM and its competitors on networks with various sparsity, while in Scenario28

II, we study the performances of TLSM and its competitors on networks with various levels of29

unbalanced structures.30

Scenario I: The multi-layer network generating process is the same as that descried in the paper,31

except that we vary (n, sn) ∈ {200, 400} × {0.025i : i ∈ [8]} and fix (M,K) = (5, 4). The32

averaged Hamming errors with 95% confidence intervals over 50 replications of all methods are33

plotted in Figure 1.34

,

Figure 1: The averaged Hamming errors with 95% confidence intervals over 50 replications against
various values of sn in Scenario I with n = 200 (Left) and 400 (Right).
Scenario II: The multi-layer network generating process is the same as that descried in the paper,35

except that we generate ψ ∼ Multi(1,π) and vary n ∈ {200, 400} while fixing (M,K) = (5, 4),36
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where π = (π1, π2, π3, π4) = (0.25+p, 0.25+p, 0.25−p, 0.25−p) with p ∈ {1/24, 1/12, 1/8, 1/6}.37

The averaged Hamming errors with 95% confidence intervals over 50 replications of all methods are38

plotted in Figure 2.39

Figure 2: The averaged Hamming error with 95% confidence interval over 50 replications against
various values of p in Scenario II with n = 200 (Left) and 400(Right).

It is evident that TLSM consistently outperforms the other competitors in both scenarios. In Scenario40

I, as sn becomes larger, the averaged hamming errors of all methods decrease as expected, and TLSM41

and LSE perform the best even for relatively small sn. In Scenario II, the averaged hamming errors42

of all methods increase gradually when the networks get more and more unbalanced, whereas TLSM43

appears to be more robust against the unbalancedness.44

D Eigenvalue plot of the WAT dataset45

In this appendix, we provide a leading singular value plot of the mode-1 matricization of the WAT46

dataset as in Figure 3. Note that the mode-1 matricization of a tensor is to unfold it into a matrix47

by stacking its mode-1 fibers as the columns of its matricization. It is clear from Figure 3 that the48

7th leading singular value of the mode-1 matricization of the WAT dataset is an elbow point, which49

suggests there are 6 potential communities among the vertices. We hence set K = 6 in our analysis50

at Section 4.2. Such an eigen-gap investigation approach has been popularly employed to determine51

the number of communities for a network data in literature [1, 4] when it is unknown.52
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Figure 3: The first 20 leading singular values of the mode-1 matricization of the WAT dataset.

E Technical proofs53

All Technical proofs and necessary lemmas are included in this appendix.54
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To begin with, we define the followings. For a Bernoulli random variable Y with expectation55

p = sn(1 + exp(−θ))−1 and probability mass function p(y; θ), the discrete Hellinger distance56

between p(y; θ) and p(y; θ∗) is defined as57

d(θ, θ∗) =
[(
p1/2 − (p∗)1/2

)2
+
(
(1− p)1/2 − (1− p∗)1/2

)2]1/2
,

and the deviation of Θ from Θ∗ can be assessed by the averaged squared Hellinger distance,58

D2(Θ,Θ∗) =
1

φ(n,M)

M∑
m=1

∑
i≤j

d2(θi,j,m, θ
∗
i,j,m).

In the proof of the main result, we will use the follow inequality several times.59

Lemma 1. Let I be the order three R-dimensional identity matrix. For any matrix A ∈ Rn×R,
B ∈ Rn×R and C ∈ RM×R, we have

||I ×1 A×2 B ×3 C||F ≤ min{
√
M ||C||vec(∞), ||C||F }||A||F ||B||F ,

where ||C||vec(∞) is the l∞-norm of the vectorization of C.60

Proof of Lemma 1. The general Hölder inequality yields that the absolute value of the (i1, i2, i3)-th
entry of I ×1 A×2 B ×3 C is upper bounded as∣∣(I ×1 A×2 B ×3 C)i1,i2,i3

∣∣ = ∣∣I ×1 A
T
i1,. ×2 B

T
i2,. ×3 C

T
i3,.

∣∣ ≤ ||Ai1,.||||Bi2,.||||Ci3,.||∞.
Consequently,61

||I ×1 A×2 B ×3 C||2F =
∑
i1,i2,i3

∣∣(I ×1 A×2 B ×3 C)i1,i2,i3
∣∣2 (2)

≤M ||C||2vec(∞)

∑
i1,i2

||Ai1,.||2||Bi2,.||2 =M ||C||2vec(∞)||A||2F ||B||2F .

Besides, the Cauchy-Schwarz inequality implies that the absolute value of the (i1, i2, i3)-th entry of62

I ×1 A×2 B ×3 C is upper bounded as63 ∣∣(I ×1 A×2 B ×3 C)i1,i2,i3
∣∣ = ∣∣∑

j

Ai1,jBi2,jCi3,j

∣∣ ≤ ||Ai1,. ∗Bi2,.||||Ci3,.||,

where Ai1,. ∗Bi2,. is the Hadamard product between Ai1,. and Bi2,.. Note that

||Ai1,. ∗Bi2,.|| =
√∑

j

A2
i1,j

B2
i2,j

≤
√
||Ai1,.||2||Bi2,.||2 = ||Ai1,.||||Bi2,.||,

which leads to ∣∣(I ×1 A×2 B ×3 C)i1,i2,i3
∣∣ ≤ ||Ai1,.||||Bi2,.||||Ci3,.||.

It then follows that64

||I ×1 A×2 B ×3 C||2F ≤
∑
i1,i2,i3

||Ai1,.||2||Bi2,.||2||Ci3,.||2 = ||A||2F ||B||2F ||C||2F . (3)

Finally, the desired result immediately follows form (2) and (3).65

Proof of Proposition 1. Denote S = {Θ ∈ Ω|KL(Θ∗||Θ) ≥ 4ϵn}. Let66

I : = P
(
sup
S

(
Lλ(Θ∗;A)− Lλ(Θ;A)

)
≥ −ϵn

)
= P

(
sup
S

1

φ(n,M)

M∑
m=1

∑
i≤j

(
L(θ∗i,j,m; ai,j,m)− L(θi,j,m; ai,j,m)

)
+ λn

(
J(Θ∗)− J(Θ)

)
≥ −ϵn

)
.

We now decompose S as follows. Let Su = {Θ ∈ Ω|2u+1ϵn ≤ KL(Θ∗||Θ) < 2u+2ϵn}, for67

u = 1, 2, ... . It immediately follows that S =
⋃+∞
u=1 Su, and then68

I ≤
+∞∑
u=1

P
(
sup
Su

1

φ(n,M)

M∑
m=1

∑
i≤j

(
L(θ∗i,j,m; ai,j,m)− L(θi,j,m; ai,j,m)

)
+ λn

(
J(Θ∗)− J(Θ)

)
≥ −ϵn

)

:=

+∞∑
u=1

Iu.
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Define an empirical process νn,M (Θ,A) = 1
φ(n,M)

∑M
m=1

∑
i≤j

(
L(θ∗i,j,m; ai,j,m) −69

L(θi,j,m; ai,j,m) − E
(
L(θ∗i,j,m; ai,j,m) − L(θi,j,m; ai,j,m)

))
, for some independent but not iden-70

tical data. It then follows that71

Iu ≤ P

(
sup
Su

νn,M (Θ,A) ≥ inf
Su

(
KL(Θ∗||Θ) + λn

(
J(Θ)− J(Θ∗)

))
− ϵn

)
.

Since infSu

(
KL(Θ∗||Θ) + λn

(
J(Θ)− J(Θ∗)

))
− ϵn ≥ 2u+1ϵn − ϵn − ϵn ≥ 2uϵn and Lemma

2 shows that E supSu
νn,M (Θ,A) ≤ 2u−1ϵn when n is large enough, we have

Iu ≤ P
(
sup
Su

νn,M (Θ,A) ≥ 2uϵn
)
≤ P

(
sup
Su

νn,M (Θ,A) ≥ E sup
Su

νn,M (Θ,A) + 2u−1ϵn

)
.

Let Y be a Bernoulli random variable with expectation p = sn
(
1 + exp(−θ)

)−1
, we have72

E
(
L(θ;Y )− L(θ∗;Y )

)
= −2p∗ log

(
(
p

p∗
)1/2

)
− 2(1− p∗) log

(
(
1− p

1− p∗
)1/2

)
≥ −2p∗

( p1/2

(p∗)1/2
− 1
)
− 2(1− p∗)

( (1− p)1/2

(1− p∗)1/2
− 1
)

=
(
p1/2 − (p∗)1/2

)2
+
(
(1− p)1/2 − (1− p∗)1/2

)2
,

where p∗ = sn
(
1 + exp(−θ∗)

)−1
. It immediately follows that D2(Θ,Θ∗) ≤ KL(Θ∗||Θ). More-73

over, by Lagrange’s mean value theorem, we further have74

E
(
L(θ;Y )− L(θ∗;Y )

)2
=4p∗

(
log(p1/2)− log

(
(p∗)1/2

))2
+ 4(1− p∗)

(
log
(
(1− p)1/2

)
− log

(
(1− p∗)1/2

))2
=4p∗η−1

1

(
(p∗)1/2 − p1/2

)2
+ 4(1− p∗)(1− η2)

−1
(
(1− p∗)1/2 − (1− p)1/2

)2
,

where η1 and η2 are some real numbers between p and p∗. Since (1 − ξ)sn ≤ p, p∗ ≤ ξsn, we75

have p∗η−1
1 ≤ ξ

1−ξ and (1 − p∗)(1 − η2)
−1 ≤ 1−(1−ξ)sn

1−ξsn ≤ ξ
1−ξ , which leads to E

(
L(θ;Y ) −76

L(θ∗;Y )
)2 ≤ 4ξ

1−ξd
2(θ, θ∗). On the set Su, we have KL(Θ∗||Θ) < 2u+2ϵn. Therefore, the77

variance of νn,M (Θ,A) can be bounded as78

V ar
(
νn,M (Θ,A)

)
≤ 4

φ2(n,M)

M∑
m=1

∑
i≤j

E
(
L(θi,j,m; ai,j,m)− L(θ∗i,j,m; ai,j,m)

)2
≤ 4ξ

(1− ξ)φ(n,M)
D2(Θ,Θ∗) ≤ 4ξ

(1− ξ)φ(n,M)
KL(Θ∗||Θ) <

ξ2u+4ϵn
(1− ξ)φ(n,M)

.

Also note that |L(θ;Y )− L(θ∗;Y )| can be upper bounded as79

∣∣L(θ;Y )−L(θ∗;Y )
∣∣ ≤ max{

∣∣ log 1 + exp(−θ)
1 + exp(−θ∗)

∣∣, ∣∣ log 1− sn
(
1 + exp(−θ)

)−1

1− sn
(
1 + exp(−θ∗)

)−1

∣∣} ≤ log 2+
ξ

1− ξ
,

where the last inequality comes from the fact that |θ| ≤ ξ
1−ξ . It follows that80

1

2(log 2 + ξ
1−ξ )

(
L(θ∗i,j,m; ai,j,m)−L(θi,j,m; ai,j,m)−E

(
L(θ∗i,j,m; ai,j,m)−L(θi,j,m; ai,j,m)

))
∈ [−1, 1].
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Denote ν̃n,M (θ;A) = φ(n,M)νn,M (Θ;A)/(2 log 2 + 2ξ
1−ξ ). By the concentration inequality in81

Theorem 1.1 of [2], we have82

Iu ≤ exp

(
−

(
φ(n,M)2u−1ϵn/(2 log 2 +

2ξ
1−ξ )

)2
2
(
2E supSu

ν̃n,M (Θ,A) + supSu
V ar

(
ν̃n,M (Θ,A)

))
+ 3 φ(n,M)

2(log 2+R3/2ξ2)
∗ 2u−1ϵn

)

< exp

(
−

(
φ(n,M)2u−1ϵn/(2 log 2 +

2ξ
1−ξ )

)2
2
(

φ(n,M)

(log 2+ ξ
1−ξ )

∗ 2u−1ϵn + ξφ(n,M)
4(1−ξ)(log 2+R3/2ξ2)2

∗ 2u+4ϵn

)
+ 3 φ(n,M)

2(log 2+ ξ
1−ξ )

∗ 2u−1ϵn

)

= exp
(
− 2uφ(n,M)ϵn

156 ξ
1−ξ + 28 log 2

)
.

Denote ζ = exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
. We have

I ≤
+∞∑
u=1

exp
(
− 2uφ(n,M)ϵn

156 ξ
1−ξ + 28 log 2

)
≤

+∞∑
u=1

ζu =
ζ

1− ζ
.

As a result, I ≤ (1 + I)ζ ≤ 2ζ.83

Lemma 2. Let the set Su and the empirical process νn,M (Θ;A) be defined in the proof of Proposition84

1. If (n+M)R
φ(n,M)ϵn

log
√

1
ϵn

≤ c1, for some constant c1 that depends on ξ only, then for any u = 1, 2, ...,85

we have E
(
supSu

νn,M (Θ,A)
)
≤ 2u−1ϵn.86

Proof of Lemma 2. Denote f(θi,j,m; ai,j,m) = L(θ∗i,j,m; ai,j,m) − L(θi,j,m; ai,j,m), and hence87

νn,M (Θ,A) = φ−1(n,M)
∑M
m=1

∑
i≤j
(
f(θi,j,m; ai,j,m) − Ef(θi,j,m; ai,j,m)

)
. Let A′ =88

(a′i,j,m) be an independent copy of A and τ = (τi,j,m) be a collection of independent Rademacher89

random variables. By the standard symmetrization argument, we have90

EA sup
Su

νn,M (Θ,A) ≤ 1

φ(n,M)
EA,A′ sup

Su

M∑
m=1

∑
i≤j

(
f(θi,j,m; ai,j,m)− f(θi,j,m; a′i,j,m)

)
≤ 2

φ(n,M)
EA,τ sup

Su

|
M∑
m=1

∑
i≤j

τi,j,mf(θi,j,m; ai,j,m)|.

Denote X(Θ;A) = φ−1/2(n,M)
∑M
m=1

∑
i≤j τi,j,mf(θi,j,m; ai,j,m) as the conditional91

Rademacher process. For any Θ(1),Θ(2) ∈ Su, and ω ∈ R, we have Eτ |A exp
(
ω
(
X(Θ(1);A)−92

X(Θ(2);A)
))

≤ exp
(
1
2ω

2ρ2(Θ(1),Θ(2);A)
)
, where93

ρ2(Θ(1),Θ(2);A) =
1

φ(n,M)

M∑
m=1

∑
i≤j

(
f(θ

(1)
i,j,m; ai,j,m)− f(θ

(2)
i,j,m; ai,j,m)

)2
,

showing that X(Θ;A) is a sub-Gaussian process with respect to ρ when A is given. Thus, by94

Theorem 3.11 of [3], there exists a positive constant c4, such that95

φ−1/2(n,M)EA,τ sup
Su

|
M∑
m=1

∑
i≤j

τi,j,mf(θi,j,m; ai,j,m)| ≤ c4
2
EA

∫ diam(Su)

0

H1/2(ε;Su, ρ)dε,

where diam(Su) is the diameter of Su and H(ε;Su, ρ) is the metric entropy. Note that
|dL(θi,j,m;ai,j,m)

dθi,j,m
| = | exp(−θi,j,m)

1−sn+exp(−θi,j,m) (pi,j,m − ai,j,m)| < 1. Thus, both L(θi,j,m; ai,j,m) and

f(θi,j,m; ai,j,m) are Lipschitz continuous with Lipschitz constant 1. Thus, for any Θ(1),Θ(2) ∈ Su,
we have

ρ2(Θ(1),Θ(2);A) ≤ 1

φ(n,M)

M∑
m=1

∑
i≤j

|θ(1)i,j,m − θ
(2)
i,j,m|2 ≤ 1

φ(n,M)
||Θ(1) −Θ(2)||2F .
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By the triangle inequality and Lemma 1,96

ρ(Θ(1),Θ(2);A) ≤ 1

φ1/2(n,M)

(
||I ×1 (α

(1) −α(2))×2 α
(1) ×3 β

(1)||F

+ ||I ×1 α
(2) ×2 (α

(1) −α(2))×3 β
(1)||F + ||I ×1 α

(2) ×2 α
(2) ×3 (β

(1) − β(2)||F
)

≤
(√

min{M,R}||α(1) −α(2)||F (||α(1)||F + ||α(2)||F ) + min{2
√
M, ||β(1) − β(2)||F }||α(2)||2F

)
φ1/2(n,M)

≤
n log ξ

1−ξ

φ1/2(n,M)

(
2
√

min{M,R}|| 1√
log ξ

1−ξ

(α(1) −α(2))||F +
√
Rmin{2

√
M

R
,

1√
R
||β(1) − β(2)||F ||}

)
.

This leads to97

H(ε;Su, ρ) ≤ H(
φ1/2(n,M)ε

4n
√
min{M,R} log ξ

1−ξ
;B(nR), || · ||) +H(

φ1/2(n,M)ε

2n
√
R log ξ

1−ξ
;Bh(MR), h),

where B(nR) is the unit ball with respect to the l2-norm in RnR, Bh(MR) is the Euclidean98

ball in RMR with radius min{2
√

M
R , 1}, h is a truncated distance such that h(β(1),β(2)) =99

min{2
√

M
R ,

1√
R
||β(1) − β(2)||F }, and H(·; ·, ·) is the metric entropy.100

In the case that 2
√
M ≥

√
R, we have101

H(
φ1/2(n,M)ε

2n
√
R log ξ

1−ξ
;Bh(MR), h) = H(

φ1/2(n,M)ε

2n
√
R log ξ

1−ξ
;B(MR), || · ||)

≤MR log
6n

√
R log ξ

1−ξ

φ1/2(n,M)ϵ
≤MR log

12
√
2 log ξ

1−ξ

ϵ
,

where B(MR) is the unit ball with respect to the l2 norm in RMR. In the case that 2
√
M <

√
R, we102

have103

H(
φ1/2(n,M)ε

2n
√
R log ξ

1−ξ
;Bh(MR), h) = H(

φ1/2(n,M)ε

2n
√
R log ξ

1−ξ
·
√
R

2
√
M

;B(MR), ||·||) ≤MR log
12
√
2 log ξ

1−ξ

ϵ
.

Thus, H(ε;Su, ρ) can be bounded as104

H(ε;Su, ρ) ≤ nR log
12n

√
min{M,R} log ξ

1−ξ

φ1/2(n,M)ϵ
+MR log

12
√
2 log ξ

1−ξ

ϵ
≤ (n+M)R log

12
√
2 log ξ

1−ξ

ϵ
.

By concavity,105

EA sup
Su

νn,M (Θ;A) ≤ c4
φ1/2(n,M)

EA

∫ diam(Su)

0

√
(n+M)R log

12
√
2 log ξ

1−ξ

ϵ
dε

≤ c4

√
(n+M)R

φ(n,M)

∫ √
EAdiam2(Su)

0

√
log

12
√
2 log ξ

1−ξ

ϵ
dε.

Furthermore, according to the same argument of bounding the variance of νn,M (Θ,A), we106

have EAρ
2(Θ(1),Θ(2);A) ≤ 2

(
EAρ

2(Θ(1),Θ∗;A) + EAρ
2(Θ(2),Θ∗;A)

)
≤ 2( ξ

1−ξ2
u+2ϵn +107
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ξ
1−ξ2

u+2ϵn) =
ξ

1−ξ2
u+4ϵn, implying that EAdiam2(Su) ≤ ξ

1−ξ2
u+4ϵn. Thus,108

EA sup
Su

νn,M (Θ,A) ≤ c4

√
(n+M)R

φ(n,M)

∫ √
ξ

1−ξ 2
(u+4)ϵn

0

√
log

12
√
2 log ξ

1−ξ

ϵ
dε

≤
12
√
2c4
√

(n+M)R log ξ
1−ξ√

φ(n,M) log
12

√
2 log ξ

1−ξ√
ξ

1−ξ 2
u+4ϵn

∫ +∞

12
√
2 log ξ

1−ξ /
√

ξ
1−ξ 2

u+4ϵn

log ε

ε2
dε

=c4

√√√√√√ 2u+4(n+M)R ξ
1−ξ ϵn

φ(n,M) log
12

√
2 log ξ

1−ξ√
ξ

1−ξ 2
u+4ϵn

(
1 + log

12
√
2 log ξ

1−ξ√
ξ

1−ξ2
u+4ϵn

)

≤c5

√
2u+4(n+M)Rϵn

φ(n,M)
log

√
1

ϵn
,

for some positive constant c5 that depends on ξ only. Finally,109

EA sup
Su

νn,M (Θ,A) ≤ 4
√
2c5

√
(n+M)R

φ(n,M)ϵn
log

√
1

ϵn
· 2u−1ϵn ≤ 2u−1ϵn, (4)

where the second inequality follows from the condition that (n+M)R
φ(n,M)ϵn

log
√

1
ϵn

≤ c1 with c1 taking110

to be 1
32c25

.111

Proof of Theorem 1. By definition of Θ̂, it follows from Proposition 1 that112

P (D2(Θ̂,Θ∗) ≥ 4ϵn) ≤ P
(
KL(Θ∗||Θ̂) ≥ 4ϵn

)
≤ P

(
sup

{Θ∈Ω|KL(Θ∗||Θ)≥4ϵn}
Lλ(Θ∗)− Lλ(Θ) ≥ −ϵn

)
≤ 2 exp

(
− φ(n,M)ϵn

156 ξ
1−ξ + 28 log 2

)
.

That is, with probability at least 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
, D2(Θ̂,Θ∗) ≤ 4ϵn.113

Next, we bound the F -norm of the different between Θ̂ and Θ∗. Let g(x) = log x2

sn−x2 . By114

Lagrange’s mean value theorem, for any Θ ∈ Ω,115

|θi,j,m−θ∗i,j,m| = |g(p1/2i,j,m)−g
(
(p∗i,j,m)1/2

)
| ≤ max{ 2√

(1− ξ)snξ
,

2√
ξsn(1− ξ)

}|p1/2ijm−(p∗ijm)1/2|.

Moreover, ξ > 1/2 implies that max{ 2√
(1−ξ)snξ

, 2√
ξsn(1−ξ)

} = 2√
ξsn(1−ξ)

. It then follows that

1
φ(n,M)

∑M
m=1

∑
i≤j(θijm − θ∗ijm)2 ≤ 4

snξ(1−ξ)2D
2(Θ,Θ∗). Particularly, for the estimator Θ̂, we

have
1

n2M
∥Θ̂−Θ∗∥2F ≤ 8φ(n,M)

n2Msnξ(1− ξ)2
D2(Θ̂;Θ∗) ≤ 8

snξ(1− ξ)2
D2(Θ̂;Θ∗) ≤ 32ϵn

snξ(1− ξ)2
,

whit probability at least 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
.116

Lemma 3. Under the conditions of Theorem 1 and Assumption B, then there exists an absolute117

constant c3 that depends on ξ only, such that118

1

n
√
M

||I ×1 ẐĈ ×2 ẐĈ ×3 β̂ − I ×1 Z
∗C∗ ×2 Z

∗C∗ ×3 β
∗||F

≤
( 4

√
2

(1− ξ)
√
ξ
+ c3

√
(1 + δ)min{M,R}

M

)√
ϵns

−1
n ,

with probability at least 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
− n−2.119
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Proof of Lemma 3. We first provide a probabilistic upper bound for J(α̂). Note that120

L(Θ∗,A) =
1

φ(n,M)

M∑
m=1

∑
i≤j

L(θ∗i,j,m; ai,j,m)

=
1

φ(n,M)

M∑
m=1

∑
i≤j

(
ai,j,m log

1− p∗i,j,m
pi,j,m

+ log
1

1− p∗i,j,m

)
.

Denote Xi,j,m = ai,j,m log
1−p∗i,j,m
p∗i,j,m

+ log 1
1−p∗i,j,m

, for i ≤ j, m ∈ [M ]. It follows that L(Θ∗,A)

is the average of φ(n,M) independent two-value random variables with |Xi,j,m| ≤ c6 log
1
sn

,
EXi,j,m ≤ c6sn log

1
sn

and EX2
i,j,m ≤ c6sn(log

1
sn
)2, where c6 is a constant that depends on ξ only.

By Bernstein inequality, for any t > 0,

P
( 1

φ(n,M)

M∑
m=1

∑
i≤j

(Xi,j,m−EXi,j,m) > t
)
≤ exp

{
−

1
2φ

2(n,M)t2

c5φ(n,M)sn(log
1
sn
)2 + c5φ(n,M)t log 1

sn
/3

}
.

Taking t =
√
6c6φ

−1/2(n,M)s
1/2
n (log 1

sn
)(log n)1/2, with probability at least 1− n−2, we have

λnJ(α̂) < Lλ(Θ̂;A) ≤ Lλ(Θ∗;A)+ϵn ≤ 1

φ(n,M)

M∑
m=1

∑
i≤j

EXi,j,m+t+ϵn ≤ c6sn log
1

sn
+t+ϵn.

Clearly t = o(sn log
1
sn
) and ϵn = o(sn log

1
sn
). Thus, the assumption λnϵns−2

n (log s−1
n )−1 ≥ c2121

immediately implies that J(α̂) ≤ (c7−1)2

4 ϵns
−1
n , for some constant c7 > 1, with probability at least122

1− n−2.123

We now turn to bound the difference between I×1ẐĈ×2ẐĈ×3 β̂ and I×1Z
∗C∗×2Z

∗C∗×3β
∗.124

Applying the triangle inequality and Lemma 1 yields that125

1

n
√
M

∥∥I ×1 α̂×2 α̂×3 β̂ − I ×1 ẐĈ ×2 ẐĈ ×3 β̂
∥∥
F

≤ 1

n
√
M

||α̂− ẐĈ||F (||α̂||F + ||ẐĈ||F )min{
√
M,

√
R}

≤ 2

√
log ξ

1−ξ

M

√
(1 + δ)J(α̂)min{

√
M,

√
R}

≤ (c7 − 1)

√
min{M,R}

M

√
(1 + δ)ϵns

−1
n log

ξ

1− ξ
,

(5)

with probability at least 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
− n−2. Similarly,126

1

n
√
M

∥∥I ×1 α
∗ ×2 α

∗ ×3 β
∗ − I ×1 Z

∗C∗ ×2 Z
∗C∗ ×3 β

∗∥∥
F

(6)

≤ 2

√
min{M,R}

M

√
J(α∗) log

ξ

1− ξ
= o
(√min{M,R}

M

√
ϵns

−1
n log

ξ

1− ξ

)
,

where the equality follows from λnJ(α
∗) ≤ ϵn and Assumption B. Finally, by (5), (6) and Theorem127

1, we have128

1

n
√
M

||I ×1 ẐĈ ×2 ẐĈ ×3 β̂ − I ×1 Z
∗C∗ ×2 Z

∗C∗ ×3 β
∗||F

≤ 1

n
√
M

||I ×1 ẐĈ ×2 ẐĈ ×3 β̂ − Θ̂||F +
1

n
√
M

||Θ̂−Θ∗||F

+
1

n
√
M

||Θ∗ − I ×1 Z
∗C∗ ×2 Z

∗C∗ ×3 β
∗||F

≤
( 4

√
2

(1− ξ)
√
ξ
+ c7

√
min{M,R}

M

√
(1 + δ) log

ξ

1− ξ

)√
ϵns

−1
n .
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The desired result follows by taking c3 = c7

√
log ξ

1−ξ .129

130

Lemma 4. Let B̂ = I×1Ĉ×2Ĉ×3β̂ be the estimation counterpart of B∗. Denote M∗ = B∗×2Z
∗

and M̂ = B̂×2 Ẑ. Under the conditions of Lemma 3 and Assumption A and C, then with probability
at least 1 − 2 exp

(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
− n−2, the following event F holds. F : for any k ∈ [K],

there exists an unique k′ ∈ [K], such that

1√
nM

∥∥M̂k′,.,. −M∗
k,.,.

∥∥
F
= o(γn

√
nminK

n
).

Proof of Lemma 4. Denote F0 be the event that there exists k ∈ [K] such that 1√
nM

∥∥M̂k′,.,. −131

M∗
k,.,.

∥∥
F
≥ γn

√
nminK
n , for any k′ ∈ [K] and sufficiently large n and M . It follows that132

1

n
√
M

∥∥B̂ ×1 Ẑ ×2 Ẑ −B∗ ×1 Z
∗ ×2 Z

∗∥∥
F
≥ 1

n
√
M

( ∑
i∈N∗

k

∥∥(M̂×1 Ẑ)i,.,. −M∗
k,.,.

∥∥2
F

)1/2
≥ γn

√
nminK

n

√
nk
n

≥ γnnmin

√
K

n
.

However, it follows from Lemma 3 and the Assumption C that133

P (F0) ≤ P
( 1

n
√
M

∥∥B̂ ×1 Ẑ ×2 Ẑ −B∗ ×1 Z
∗ ×Z∗∥∥

F
≥ γnnmin

√
K

n

)
≤ 2 exp

(
− φ(n,M)ϵn

156 ξ
1−ξ + 28 log 2

)
+ n−2.

Therefore, with probability at least 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
− n−2, F c0 , the complement of134

F0 holds; that is; the existence holds with high probability.135

We now prove the uniqueness under F c0 . Assume there exist k1 ̸= k2 ∈ [K] such that
1√
nM

∥∥M̂ki,.,. − M∗
k,.,.

∥∥
F

= o(γn

√
nminK
n ), for i ∈ [2]. By existence, there exists a ∈ [K]

and b1 ̸= b2 ∈ [K] such that 1√
nM

∥∥M̂a,.,. −M∗
bj ,.,.

∥∥
F
= o(γn

√
nminK
n ), for j ∈ [2]. The triangle

inequality implies that

1√
nM

∥M∗
b1,.,.−M∗

b2,.,.

∥∥
F
≤ 1√

nM

(∥∥M̂a,.,.−M∗
b1,.,.

∥∥
F
+
∥∥M̂a,.,.−M∗

b2,.,.

∥∥
F

)
= o(γn

√
nminK

n
).

On the other hand, Assumption A implies that

1√
nM

∥M∗
b1,.,. −M∗

b2,.,.

∥∥
F
≥
√
nmin

nM

∥∥B∗
b1,.,. −B∗

b2,.,.

∥∥
F
≥
√
nminK

n
γn,

which is a contradiction. Hence, F c0 also implies uniqueness, showing that F holds with probability136

at least 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
− n−2.137

Proof of Theorem 2. Based on Lemma 4, with probability at least 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
−138

n−2, there exists a permutation π∗ ∈ SK such that for each k ∈ [K], 1√
nM

∥M̂π∗(k),.,.−M∗
k,.,.∥F =139

o(γn

√
nminK
n ). It then suffices to show that with probability at least 1−2 exp

(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
−140

n−2, it holds true that min
π∈SK

1
n

n∑
i=1

1{ψ∗
i ̸= π(ψ̂i)} ≤ c2ξnϵn

nminKγ2
nsn

. Let N̂k = {i : ψ̂i = k}, for141

k ∈ [K]. Note that142

min
π∈SK

n∑
i=1

1{ψ∗
i ̸= π(ψ̂i)} = min

π∈SK

K∑
k=1

|N∗
k \ N̂π−1(k)| = min

π∈SK

K∑
k=1

|N∗
k \ N̂π(k)|,

10



where the last equality follows from the fact that π−1 is also a permutation in SK . It then suffices to143

show that with probability at least 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ+28 log 2

)
− n−2, 1

n

∑K
k=1 |N∗

k \ N̂π∗(k)| ≤144

c2ξnϵn
nminKγ2

nsn
for the particular permutation π∗. Let F denote the same event in Lemma 4. In fact, by145

Lemma 3, we have146

P
( 1
n

K∑
k=1

|N∗
k \ N̂π∗(k)| ≤

c2ξnϵn

nminKγ2nsn
|F
)
= P

(nminKγ
2
n

n2

K∑
k=1

|N∗
k \ N̂π∗(k)| =

c2ξϵn

sn
|F
)

≥ P
(nminKγ

2
n

n2

K∑
k=1

|N∗
k \ N̂π∗(k)| ≤

1

n2M

∥∥B̂ ×1 Ẑ ×2 Ẑ −B∗ ×1 Z
∗ ×2 Z

∗∥∥2
F
|F
)
+

P
( 1

n2M

∥∥B̂ ×1 Ẑ ×2 Ẑ −B∗ ×1 Z
∗ ×2 Z

∗∥∥2
F
≤
c2ξϵn

sn
|F
)
− 1

= P
(nminKγ

2
n

n2

K∑
k=1

|N∗
k \ N̂π∗(k)| ≤

1

n2M

∥∥B̂ ×1 Ẑ ×2 Ẑ −B∗ ×1 Z
∗ ×2 Z

∗∥∥2
F
|F
)
,

where the last equality comes from the fact that the event F is based on the resultant inequality of147

Lemma 3. Furthermore, note that148

1

n2M

∥∥B̂ ×1 Ẑ ×2 Ẑ −B∗ ×1 Z
∗ ×2 Z

∗∥∥2
F
≥ 1

n2M

K∑
k=1

∑
i∈N∗

k\N̂π∗(k)

∥∥(M̂×1 Ẑ)i,.,. −M∗
k,.,.

∥∥2
F

≥ 1

n2M

K∑
k=1

∑
i∈N∗

k\N̂π∗(k)

(∥∥M∗
(π∗)−1(ψ̂i),.,.

−M∗
k,.,.

∥∥2
F

2
− ∥M̂ψ̂i,.,.

−M∗
(π∗)−1(ψ̂i),.,.

∥2F

)

≥
K∑
k=1

|N∗
k \ N̂π∗(k)|
n2M

min
i∈N∗

k\N̂π∗(k)

(
1

2

∥∥M∗
(π∗)−1(ψ̂i),.,.

−M∗
k,.,.

∥∥2
F
−
∥∥M̂ψ̂i,.,.

−M∗
(π∗)−1(ψ̂i),.,.

∥∥2
F

)

≥
K∑
k=1

|N∗
k \ N̂π∗(k)|
n2M

(1
2
nminMKγ2n − max

i∈N∗
k\N̂π∗(k)

∥∥M̂ψ̂i,.,.
−M∗

(π∗)−1(ψ̂i),.,.

∥∥2
F

)
.

Here we use the fact that min
i∈N∗

k\N̂π∗(k)

1
nM

∥∥M∗
(π∗)−1(ψ̂i),.,.

−M∗
k,.,.

∥∥2
F
≥ nminK

n γ2n according to149

Assumption A. Consequently,150

P
( 1
n

K∑
k=1

|N∗
k \ N̂π∗(k)| ≤

c2ξnϵn

nminKγ2nsn
|F
)

≥ P
(nminKγ

2
n

n2

K∑
k=1

|N∗
k \ N̂π∗(k)| ≤

K∑
k=1

|N∗
k \ N̂π∗(k)|
n2M

(1
2
nminMKγ2n − max

i∈N∗
k\N̂π∗(k)

∥∥M̂ψ̂i,.,.
−M∗

(π∗)−1(ψ̂i),.,.

∥∥2
F

)
|F
)

≥ P
( K⋂
k=1

({nminKγ
2
n

n2
≤ nminKγ

2
n

2n2
− max
i∈N∗

k\N̂π∗(k)

1

n2M

∥∥M̂ψ̂i,.,.
−M∗

(π∗)−1(ψ̂i),.,.

∥∥2
F

}⋂
F
))

≥ P
( K⋂
k=1

({
max

i∈N∗
k\N̂π∗(k)

1

nM

∥∥M̂ψ̂i,.,.
−M∗

(π∗)−1(ψ̂i),.,.

∥∥2
F
= o(

nminKγ
2
n

n
)
}⋂

F
))

= 1,
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where the last equality is suggested by Lemma 4. Finally, by the definition of conditional probability,151

P
( 1
n

K∑
k=1

|N∗
k \ N̂π∗(k)| ≤

c2ξnϵn

nminKγ2nsn

)
= P

( 1
n

K∑
k=1

|N∗
k \ N̂π∗(k)| ≤

c2ξnϵn

nminKγ2nsn
|F
)
· P (F )

≥ 1− 2 exp
(
− φ(n,M)ϵn

156 ξ
1−ξ + 28 log 2

)
− n−2,

and thus the desired consistency result follows immediately.152
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