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This supplement file contains the appendixes of the paper "Structure-Preserving Embedding of Multi-
layer Networks". In Appendix A, we summarize the projected gradient descent algorithm developed
in Section 2 of the paper. Appendix B contains the detailed cross-validation procedure in selecting
the tuning parameter \,,. Additional simulation studies are provided in Appendix C. In Appendix D,
we provide an eigenvalue plot of the WAT dataset discussed in Section 4.2 of the paper. All technical
proofs and necessary lemmas are included in Appendix E.

A Summary of the projected gradient descent algorithm

For easy of presentation, we denote the projection result from Step 1 to Step 3 discussed in Section

2.3 as Po_ x0, (&, B). The developed projected gradient descent algorithm can be summarized in
Algorithm 1.

Algorithm 1: Projected gradient descent (PGD)

Input :Adjacency tensor A, sparsity factor s, number of communities K, embedding
dimension R, constraint parameter &, tuning parameter A, learning rate 7, number of
iterations 7.

Output : Estimators of o and 3, estimated vertex community memberships and community
centers.

Initialize (), 3(°) and hence obtain Z(©), C(®) by (1 + §)-approximation K -means algorithm.

Set t=0.

while t < T do
alt+l) — o) — nVQEA(a(t),ﬁ(t);/}), B+ = 31 — VgL (a®, 31 A);
(1), 80D = Py _ v, (&0, glth);
Apply (1 + §)-approximation K -means algorithm to a(**1) to obtain Z(*+1) and C*+1),
co |L2 (D g0 Ay £y (a® 3(;A _
if [Ex( o e s ' <1076 then
| break.
end
t=t+l.
end

B Selecting )\,

In this appendix, we provide the detailed tuning procedure for selecting \,,. Specifically, let A =
{An1s -, Ang} be the set of Q candidates of \,,, py be the fraction of training data, and « be the
number of repetitions. For each repetition ¢, we first sample the training data from the adjacency
tensor A such that a; ;, , will be sampled independently with probability pg, for any ¢ < j. Denote
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A be the index set of the training data. For each candidate \,,, € A, we apply Algorithm 1 to solve
for (a®0-1, 3%07) € Q4 X Qg that minimizes

1
Al

where |A| is the cardinality of A. We then evaluate the negative log-likelihood over the held-out set

1
K0, E r0,9 .
! - |A° L(Gz] m,‘h,g,m,),
(i,7,m)€EAc°

Z L(0; jm» @i jom) + Angd (av), (1

(i,3,m)€A

where A“ is the complement of A and 6797 =7 x; (a]”")" x5 (a”")" x3 (85;09)" . Finally,
we select )\, from A such that it minimizes the averaged held-out loss over k repetitions; that is,

An = Ang- with

= arg min — {09,
¢ qu[Q Z

We remark that when solving . one needs to replace 7 by T = B, to obtain the corresponding
gradients associated with the training data in the PGD algorithm. Hereln B € {0,1}*"xM jg the
binary indicator tensor associated with A such that B; ; ,,, = 1 if and only if (i, 5, m) € A. Similarly,
when estimating s,, inside the Cross- Validation process by equation (7) labeled in the paper, one need

to replace the coefficient - by Mp and A by A x B, where B is a symmetrization version of B

such that Bi,j,m = Bjﬂ"m = B,‘J;,m for: < j,me [M]

C Additional simulation studies

As network gets sparser or community sizes gets more unbalanced, it becomes more difficult to
differentiate vertices community memberships based on the observed multi-layer network. In this
Appendix, we provide additional simulation studies of two scenarios. In Scenario I, we study the
performances of TLSM and its competitors on networks with various sparsity, while in Scenario
II, we study the performances of TLSM and its competitors on networks with various levels of
unbalanced structures.

Scenario I: The multi-layer network generating process is the same as that descried in the paper,
except that we vary (n,s,) € {200,400} x {0.025¢ : i € [8]} and fix (M, K) = (5,4). The
averaged Hamming errors with 95% confidence intervals over 50 replications of all methods are
plotted in Figure [T}
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Figure 1: The averaged Hamming errors with 95% confidence intervals over 50 replications against
various values of s,, in Scenario I with n = 200 (Left) and 400 (Right).

Scenario II: The multi-layer network generating process is the same as that descried in the paper,
except that we generate 1) ~ Multi(1, 7r) and vary n € {200,400} while fixing (M, K) = (5,4),



37 where ™ = (my, 2, 73, m4) = (0.25+p, 0.25+p, 0.25—p, 0.25—p) withp € {1/24,1/12,1/8,1/6}.
38 The averaged Hamming errors with 95% confidence intervals over 50 replications of all methods are
3o plotted in Figure[2]
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Figure 2: The averaged Hamming error with 95% confidence interval over 50 replications against
various values of p in Scenario II with n = 200 (Left) and 400(Right).

40 Itis evident that TLSM consistently outperforms the other competitors in both scenarios. In Scenario
41 1, as s,, becomes larger, the averaged hamming errors of all methods decrease as expected, and TLSM
42 and LSE perform the best even for relatively small s,,. In Scenario II, the averaged hamming errors
43 of all methods increase gradually when the networks get more and more unbalanced, whereas TLSM
44 appears to be more robust against the unbalancedness.

s D Eigenvalue plot of the WAT dataset

46 In this appendix, we provide a leading singular value plot of the mode-1 matricization of the WAT
47 dataset as in Figure [3] Note that the mode-1 matricization of a tensor is to unfold it into a matrix
a8 by stacking its mode-1 fibers as the columns of its matricization. It is clear from Figure [3|that the
49 7th leading singular value of the mode-1 matricization of the WAT dataset is an elbow point, which
50 suggests there are 6 potential communities among the vertices. We hence set ' = 6 in our analysis
51 at Section 4.2. Such an eigen-gap investigation approach has been popularly employed to determine
52 the number of communities for a network data in literature [|1, 4] when it is unknown.

2504

150 4

Lk S
aiiaal Rl BT RO A A

2.5 5.0 7.5 10.0 125 150 17.5 20.0

Figure 3: The first 20 leading singular values of the mode-1 matricization of the WAT dataset.

ss E  Technical proofs

54 All Technical proofs and necessary lemmas are included in this appendix.
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To begin with, we define the followings. For a Bernoulli random variable Y with expectation
p = s,(1 + exp(—60))~! and probability mass function p(y; @), the discrete Hellinger distance
between p(y; 0) and p(y; 0*) is defined as

d(0,0) = [(p1/2 _ (p*)1/2)2 I ((1 _p)1/2 (1 —p*)1/2)

and the deviation of ® from ©* can be assessed by the averaged squared Hellinger distance,

DQ(G,G*): ZZcF i 05 jm)-

m=11i<j

9

2} 1/2

In the proof of the main result, we will use the follow inequality several times.

Lemma 1. Let T be the order three R-dimensional identity matrix. For any matrix A € R"* 1,
B e R"™E gnd C € RM*E ywe have

IZ x1 A %2 B x3 C||p < min{VM||Cllsec(sc): [|Cl|r}|All ]| B|
where ||C||yec(s0) is the loo-norm of the vectorization of C.
Proof of Lemma The general Holder inequality yields that the absolute value of the (i1, iz, i3)-th
entry of Z x1 A X9 B x3 C' is upper bounded as
[(Z x1 A xa B x3Ciyiais| = |T x1 A x2 B, %3 Cf, | <[|Ai ||| Biz,.|ll|Ci.. |-
Consequently,

2
I|Z x1 A xo B x3C||% = Z (T x1 A x2 B x3C)iy s 2
11,%2,13
< MI|C| e (00 Z 1A, 12| Bi,, |I? = M||C|[2c (00 [|AI 7| BI |-

’Ll ,ig
Besides, the Cauchy-Schwarz inequality implies that the absolute value of the (i1, iz, i3)-th entry of
Z x1 A X9 B x3 C is upper bounded as

(T x1 A x3 B x3C)i,ipis| =D A, ;jBi, iCiy ;| <||Ai, * Bi, ||[|Ci..
J
where A;,  * B;, is the Hadamard product between A;,  and B;, . Note that

HAlh *BLQ || - ZAzl,j i2,] \/HAlla

which leads to

l

P11 By, (12 = || A, Il Bis, I,

‘(I X1 A X2 B X3 C)i1,i2,i3| < ||A11||||B227|

I1Cis.. 1]
It then follows that
1T x1 AxaBxsCll7 < Y |4 |1PI|Bi,..|lICs,
11,%2,13
Finally, the desired result immediately follows form (2) and (3). O
Proof of Proposition 1. Denote S = {© € Q|KL(©*||®) > 4e, }. Let

1:= P(sup (£2(07:A) —~ £4(0;.4)) > —.)

AP =1AlEIBIEICIE 3)

= P(sup——— Z > (L0} i tiim) = DOijm; @ijam)) + An (J(O) = T(©)) = e ).

s (p’I’LM m=11i<j

We now decompose S as follows. Let S, = {© € Q2vTle, < KL(©*||®) < 24" 2¢,}, for
u=12,...1It immediately follows that S = [J> S,,, and then

I< ZP(sup . M Z Z 07 i m Qijom) — L(ei,j,m;ai,j,m)) + )\,L(J(G*) - J(@)) > —en>

Su m=11i<j
400
= qu.
u=1
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Define an empirical process v, p(0,A4) = WZ%:l Zi<j (L(Q;"j’m;ai,j,m) —

L0 jm i gom) — B(L(O] ;3 @i jm) — L0 jm: ai,jﬁm))>, for some independent but not iden-
tical data. It then follows that

I, < p(s;up vo1(©,A) > inf (KL(@*H@) + A (J(©) — J(@*))) - en>.

Since infg, (KL(G)*H@) + A (J(©) = J(© *))) — €, > 24Tle, — €, — €, > 2%, and Lemma
shows that Esupg, vp, 1 (0,.A) <297 le,, when n is large enough, we have

I, < P(sup vn,m (0, A) > 2“en) < P(sup Vv (0, A) > Esup v, (0, A) + 2“71%).
Su Su Su

Let Y be a Bernoulli random variable with expectation p = s,, (1 + exp(fe)) 71, we have

E(L(6;Y) — L(6%;Y)) = —2p* log(( DY) =201 )log((l1 p*)l/g)
p1/2 oy (L=p)t/?

> —zp*(<p*)1/2 —1)—2(1-p )(m -1)
= ("2 = () + (L —p) /2 = (1 —p")V?)?,

where p* = s, (1 + exp(—&*))_l. It immediately follows that D?(®, ®*) < K L(©*||®). More-
over, by Lagrange’s mean value theorem, we further have
E(L(6;Y) — L(6%;Y))?
2 2
—4p* (log(p'/2) ~ Tog ((1")"/2) ) +4(1 — p*)(1og (1 = p)!2) ~ log (1~ p")'/?))
* — * 2 * — * 2

=dp ()2 = p2) "+ 41 = p) (L =)A= p) 2 = (1= p)2),
where 7; and 72 are some real numbers between p and p*. Since (1 — §)s, < p,p* < &s,, we
have p*n; ! < 1‘%5 and (1 — p*)(1 — )"t < wffzs” < ﬁ, which leads to E(L(6;Y) —

L(9*;Y))2 < %dQ(Q,H*). On the set S,, we have KL(©®*||®) < 2vT2¢,. Therefore, the

variance of v, 1/ (©, A) can be bounded as

N 2
Var(va,m(©,A)) § . M z:lg:]E Oijoms @i gom) — L(O5 ;03 Gijm))
m=1i<j
4¢ 4¢ £2utde,
<—— ___D*O,0" ——  KL(O'®) < ———-—"—.
=8’ O = T=gpm a0 MO < T g0,
Also note that |L(6;Y) — L(6*;Y)| can be upper bounded as
1 —0 1—s,(14
IL(6: V)L (6" V)] < max{|log -—FORED | 11 1= 501+ exp(20)) y} log 2+—>—
1+ exp(—6*) 1 — sp(1+ exp(—0 1-¢
where the last inequality comes from the fact that |6 < 12 It follows that

1 . , " L _
2(10g2+1££)( (ez]maazym) L(ei,j,maaz,j,m) ( (ezjmaaljm) L(az,],maaz,],m))> 6[ ]-71]



st Denote 7y, 5/ (0;.A) = @(n, M)v, 1 (©;.A)/(2log2 + 1 ) By the concentration inequality in
s2  Theorem 1.1 of [2]], we have

(¢(n, M)24~ 1671/(21051;24— ))2
Iu < exXp ( ~ ©(n,M) )
2<2Esupsu P (0, 4) + supg. Var(im (O, A))) 3t s 20 ey
( (¢(n, M)24 e, /(21og 2 + = ))2
<exp| —
p(n,M) u—1 Ep(n,M) uta ) o(n, M) u—1 )
2<<1og2+1%§> * 247 6+ qag(oszrramen ¥ 2T 6 | T 35000t £y ¥ 2 en

Qu M)e,,
= exp (- A Men )
156ﬁ+2810g2

_ o(n,M)ey,
Denote ¢ = exp ( 156(7+2)810g2) We have

2%p(n, M )ey, U_L
I<§_:16Xp( 156 £§+2810g2) ZC 1-¢

u=1
83 Asaresult, 7 < (1+1)¢ <2(. O
s« Lemma 2. Let the set S,, and the empirical process vy, r1(©; A) be defined in the proof of Proposition
es 1. If % log \/> < ¢4, for some constant c; that depends on & only, then for any u = 1,2,.

86 we have E( supg, Vn,m (O, A)) < qu—le

87 Proof of Lemma Denote f(6; j.m;@ijm) = L(OF ;3 @igm) — L(0i jm;aijm), and hence

a M

88 vpm(©,4) = ¢ (n, M), _ 1ZZ<]( (05 j,m3 @ijm) — Bf(0ijims;aijm)). Let A" =
89 (aj ; ,,) be an independent copy of A and T = (7; j,n) be a collection of independent Rademacher
o0 random variables. By the standard symmetrlzatlon argument, we have

1
E.asup Vn,]\/[(®7 A) SD( EA A bup Z Z ,],m; ai,j,m) - f(ei,j,m; a;,j,m))

“ Su m=1i<j
2
< o(n, M)EAfbuPl Z ZTz,me i.gom' Qi j,m)| -
Su m=1i<j
ot Denote X(©;A4) = gp’“%n,M)fo:l > i<j TijomJ (0ijm; @i jm) as the conditional

o2 Rademacher process. For any @), ©®) ¢ §,,, and w € R, we have Er|.4exp (w (X(G(l); A) —
% X(®(2);A))) <exp (2w?p?(@W), ©3); A)), where

2
O, 0%: 4 = b S Y (O i 150) — FO i)

m=1i<j

94 showing that X (©;.4) is a sub-Gaussian process with respect to p when A is given. Thus, by
95 Theorem 3.11 of [3], there exists a positive constant c4, such that

M diam (.S, )
_ Cq
¥ 1/2 (TL, M)IEA,T sup | Z Z T?l,j,mf(@i,j,m% ai,j,m,)‘ < EIEA/O H1/2 (E; Su, p)d€

u

m=1i<j

where diam(S,) is the diameter of S, and H(e;S,,p) is the metric entropy. Note that
exp( 0i, 7, 171)

dL (0 j,m;i j,m
| ( dJO.L im = )l - ‘1 sn+exp( 0; i, m) (pl’ﬂ m ai,j,m)| < 1. ThllS, bOth L(ei’jym; ai,j,m) and
f (65 j.m; @i j,m) are Lipschitz continuous with Lipschitz constant 1. Thus, for any o e® cg,,
we have
20, 0®), 4 @ 2.1 g0 _gop
p (0,0 A @ — e[k
le 2 W = sl” = G ;



96 By the triangle inequality and Lemmal[T}

s, 0@ 4 < !

< g (5 o -0 ) 0

FIIT %1 a® xo (@D — a®) x5 BO||p + [|T x1 @@ xoa® x; (80 — 5(2)HF)
< (vmin{M, R}||a) — a®||p(|laM]|p + [|a®|[r) + min{2vM, |8V - 8P| p}|a®][|F)

< /2, )

< Tf/lfg,jﬂz (2, R} | —— 1ogﬁ (o )+ VRmin{2y o 18— 1),
97 This leads to

HE Surp) < P IE gy ) + (L 0ADE gy ),

H(
4n\/m1n{M R} log & - 5

¢ where B(nR) is the unit ball with respect to the lp-norm in R™?, B"(MR) is the Euclidean
so ball in RM# with radius min{2,/4%,1}, h is a truncated distance such that A(81),3(?)) =
100 min{2y/ 47, %Hﬁ(l) — BP||r}, and H(-; -, -) is the metric entropy.

101 In the case that 2/ M > \/T% we have

2n\/ﬁlog 1%

1/2 Me 1/2 M
wth(MR) h) = M§B(MR)»H'H)
Zn\Flogl’E Qn\Floglg—E
6n\F10g1 12\/§logi
< MRlog ———1=% < MRlog ——— =%
— ROg 1/2( M)E ROg € ’

102 where B(M R) is the unit ball with respect to the 5 norm in RME _In the case that 2/ M < VR, we
103 have

12(n, M)e ﬁ% 12v/21log 55
———=

o' (n, M)e . B"(MR),h) = H(-Z B(MR),[I]) < MRlog

Qn\/ﬁloglgfg7 2n\Flog1 3 2\/

104 Thus, H(e; S, p) can be bounded as

12n/min{M, R} log -* - 12v/21og —~ 12v/21og —5
1-¢ 1-¢ 1-¢
+MR]lo < (n+M)R1 .

©1/2(n, M)e o8 € < (n+M)Rlog €

H(e; Sy, p) < nRlog

105 By concavity,

diam(S,,) 12\f10g
Easupv, m(0©;A) < 1/2 A/ \/n—i—M iR 3

SU/
M R \/]EAdmm2 (Su) 12ﬂlog —
< 64\/ nr / log ——————*de
€

106 Furthermore, according to the same argument of bounding the variance of v, M(@ A), w
107 have E4p?(@W, ©2); 4) < 2(E4p? (@0, 0% A) + E»p? (0P, ©%; A)) < 2( 2“*26 +




108 To¢ 2 %,) = 15 < 2" ey, implying that IE_qdiam?( %2“*4 . Thus,

n+M Vit e 12\f 122log 15¢
IEAsup Unm (0, A) < M /
o(n,

12\f04\/ n+ M) logl 5/ 1og€d
€
12v/2log +& 12v/2log 5=/ 1%2“+4en
\/go(n,M)logW T—g/\ 1€
i-¢ €n
Qutd(p 4 M)R1 gen 12v21log 55
175 S Ju
o(n, M) log \/% \/ 1-¢ €n
2vt4(n 4+ M)Re,
< 1 =
_05\/ (P(n, M) 0g n )
100 for some positive constant c5 that depends on £ only. Finally,
M)R 1
E.A sup vpn Af((-)ﬂ A) < 4\/565 u log \/7 : 2u*16n < 2U71€n; (4)
Su o(n, M)ey €n
110 where the second inequality follows from the condition that % log 4/ 5 < ¢q with ¢ taking
111 to be m. O

112 Proof of Theorem 1. By definition of @, it follows from Proposition 1 that
P(D?(©,0%) > 4¢,) < P(KL(©*(|©) > 4¢,,)

< P( sup LA(0%) — LA(O) > *En)
{9€Q|KL(0*||©)>4en}
M)e,
< 2exp ( gn )e )
156 2= e T 28log 2
. . .- _ . p(n,M)e, *
113 That is, with probability at least 1 — 2 exp ( 7155 o8 1Og2), D? (G), 0*) < de,.

114 Next, we bound the F-norm of the different between ® and ©*. Let g(z) = log
115 Lagrange’s mean value theorem, for any ® € 2,

2 2
0;.5om— = * - V/2)) < max 7 12 ok
im0 5ml = 19215 =0 (P15, < {¢ﬁt‘§&'¢éaa—fﬁwwn(“””

It then follows that

By

Sn —a:2

Moreover, ¢ > 1/2 implies that max{\/ — \/fT(l gt = \/672(1—5)'

w(n 4] M i< (Bigm — 055,,)° < WD (©, ©*). Particularly, for the estimator ©, we

ijm
have
8p(n, M) PPN 8 5, A 32¢,
— T D0 —-D(®0") < ————
= onrsei-r” (@0 = e OO = e
116 whit probability at least 1 — 2 exp ( - w;’ﬁ’iﬁ);"g?) U
T—¢ O

117 Lemma 3. Under the conditions of Theorem 1 and Assumption B, then there exists an absolute
118 constant cs that depends on & only, such that

1 N A A «
———||ZT x1 ZC x4 ZC x — I X1 Z*C* x9 Z*C* x3 3"
n\/MH 1 2 30 1 2 38%||F

44/2 1 in{ M
(A [T
(1-9VE M

119 with probability at least 1 — 2 ex (7 %) —n~2
p &y b 1561§5+2810g2

1/2‘-



120 Proof of Lemma@ We first provide a probabilistic upper bound for J(é&). Note that

€0 A = L S S L0

m=11i<j
*
—Dijm 1
- nM ZZ @i jm ] —HOglf* )
m=1i<j pz,],m ©,J,m
1=PF jm

Denote X; j m = a; j.m log + log 1_p£ —, for i < j, m € [M]. It follows that L(©*, .A)
i,5,m

is the average of ga(n M) independent two-value random variables with |X; ;.| < cglog L,

pi.j,rn

EX; jm < c6Sn log L and EX? " .m < cesn(log %)2, where cg is a constant that depends on £ only.
By Bernstein 1nequa11ty, forany t > 0,

1, 2 9
0% (n, M)t
’n,M ZZ i,5,m ™ ’L],m)>t)§exp{7 21 }

m=1i<j C5<P(H,M)sn(log87)2 + csp(n, M)tlog %/3
Taking t = v/Bege~1/2(n, M)s¥?(log L )(log n)!/2, with probability at least 1 — n~2, we have

~ 1
And (@) < LA(©;A) < L(0%; A)+e, < Z ZEX” mtt+en < cgsy, log ——&—t—I—en

p(n, M) = —
121 Clearly t = o(sy, log =) and €, = o(s,, log —) Thus, the assumption A€, s, %(log s, 1)~ > ¢,

122 immediately implies that J (&) < (6711) €n
—2

s, 1, for some constant ¢; > 1, with probability at least
123 1—mn

124 We now turn to bound the difference between Z x 1 ZC x5 ZC' ><3ﬁ andZ x1 Z*C* x5 Z*C* x33*.
125 Applying the triangle inequality and Lemmal(I] yields that

1 ~ A . A N
T x| & Xq & X —TI x1 ZC x9 ZC x-
an 18 X2 & %33 1 2 30

1 ~ A “
< & —ZC||p(||a||r + ||1ZC)|p) min{vVM,VR
n\/MH |F(||&]|F + 1| ZC||F) min{ }

og £
1‘571—5 (1+6)J (&) min{vM, VR}

< (c7—1>\/m5ww\/<1+a)ensnllogl567

o(n,M)en
15657 +28 log 2

&)

126 with probability at least 1 — 2 exp ( — ) —n~2. Similarly,

|Z x1a* x3a* x38° —I x1 Z*C* x5 Z*C* (6)

1
VM

min{M R} mln{M R}

J(a*)log —— 1 €nSn log

127 where the equality follows from )\, J(a*) < €, and Assumption B. Finally, by (3), (@) and Theorem
128 1, we have

1 N N «
— || T x1 ZC x9 ZC X3 B —T x1 Z*C* x9 Z*C* x3 3*
n\/MH 1 2 38 1 2 38%||r

1 A . a .~
< I x17ZC x9ZC x33—0O
*n\/MH 1 2 308 llF+

© - 0|r
\ﬁH I

1
+ ——I|®@* —IT x1 Z"C* x9 Z*C* x5 3*
n\/M” 1 2 3 8%|F

V2 min{ M, / /-1
§(<145\/E+67W (1+5)10g15§) €nSn




129 The desired result follows by taking c3 = c¢74/log 1%5

130 O
Lemmad. Let B = T x1C x2C x 33 be the estimation counterpart of B*. Denote M* = B* x5 Z*
and M = B X9 Z. Under the conditions of Lemmaand Assumption A and C, then with probability
at least 1 — 2 exp ( - M) — n~2, the following event F holds. F: for any k € [K],

155+2810g2
there exists an unique k' € [K], such that
1 — Nmin K
My - M = 0(Yny ) ——).
\/m“ k.. k,.,.HF O(’}/ n )
131 Proof of LemmaEl Denote F{ be the event that there exists k& € [K| such that \/ﬁ ||.//\;lk, _
12 Mj ||F > Y/ %, for any k&’ € [K] and sufficiently large n and M. It follows that
1 = 1/2
———|IBx1Zx,Z —B* x1Z" xy Z* M>< )i, —M
R R (P LR T P

Nmin [Nk YnMmin V K
ZY\— | — 2 ————.
n n n

133 However, it follows from LemmaE] and the Assumption C that

1 n — 5 * * * ’Ynnmin\/K
P(Fy) < (mﬁHBmZmZ—B x12*xZ FZT)
M)e,
§2exp<— p(n, M)e >+n_2.

15675 + 28log 2

p(n,M)en
156 157 +28 log 2

135 F{ holds; that is; the existence holds with high probability.

134 Therefore, with probability at least 1 — 2 exp ( — —n~2 F§5, the complement of

We now prove the uniqueness under F§. Assume there exist k; # k2 € [K]| such that
\/ﬁ |./\/;lkL - MZHF = 0(yny/2=2E) for i € [2]. By existence, there exists a € [K]

and by # by € [K] such that \/WHMG - MZJHF = 0(7py/ 2i2E) for j € [2]. The triangle
inequality implies that

).

1 « * 1 - * Y * nminK
m‘|Mb1,-,~_sz,.,.“F < \/W(HMGM-_Mbl,‘,.HF"’HMa,.,._MbZ,.,.HF) = 0o(Yn n
On the other hand, Assumption A implies that
1 * Nmin * nminK
\/niMHMlnm sz, HF HBbl e Bbzm-HF = n Tns
136 which is a contradiction. Hence, Fj§ also 1mp11es uniqueness, showing that F' holds with probability
. B p(n,M)e, =2
137 atleast 1 2exp( 71;”8]%2) n=<. O
138 Proof of Theorem 2. Based on Lemma 4} with probability at least 1 — 2 exp ( - M) -
=% +28log 2
139 n 2, there exists a permutation 7* € S such that foreach k € [K], \/#7”./\/%*(;C M lr =
140 0(yn 4/ 2=f0) Tt then suffices to show that with probability at least 1 —2 exp ( “0(5"71\4)5) —
T—F +28log 2
n A~ ~
141 , it holds true that mln Z 1{F # m(hy)} < % Let N, = {i : ¢, = k}, for

142k € [K]. Note that

Trfgisn 1{¢ # (7/12 b= mm Z|Nk \N —1my | = mm Z|Nk \Nﬂ'(k)‘

i=1

10



143

144 show that with probability at least 1 — 2 exp (

145 7% oo
Nmin K72

146 LemmaE we have

K

where the last equality follows from the fact that 7~

!is also a permutation in Sk It then suffices to

p(n,M)en —3 1 *
m) LS INE\ Ny ] <

for the particular permutation 7*. Let F' denote the same event in Lemma In fact, by

1N v A Cnen R SN ey o G
P(n;|Nk\Nﬂ*(k)|< K7n5n|F)_P( 2 ;\Nk\Nw*(k)l— . |F)
nminKVrzL X * Y > > * * % |2
EP(TZ|Nk\NW Z x2Z — B x1Z" x2 Z*|| | F)+
k=1
P(7’L2MHB><1ZX2Z B* X1Z XQZ*H )—1

minK”% * $
k=1

147

148 Lemma[3] Furthermore, note that

1 o 5 4
W—MHBlexzsz*le*sz*H?

1 K
> 2

ZXQZ—B*Xlz*XQ

);

where the last equality comes from the fact that the event F' is based on the resultant inequality of

H(-K\’t x12);,.,. —M;,

kol
k=1 e N} \Nx (1

2
bl

D>

k=1ie N\ Nox (1)

>
~nzM

HM(ﬂ'* (i)
2

- HM M* 1(111 Yyore ||F>

o M N \Ney (r)2 ), For Il P Vires- (7)1 (i), 1P
K
[N\ Noee 1| —~ . )
> W(zmnmw% LR =M )
H the fact that i LM M > ik 2 dine t
149 Here we use the fact tha ieN,’?\%\%%) nMH ()= ( i), kaF > Zmin= 2 according to
150 Assumption A. Consequently,
K 2
LS Ve \ g <
P(E ; INi\ Ny | < nmiangsn|F)
minKEL X * o
=z P(%Z [Ng \ Naw iy | <
k=1
|N \Nﬂ'*(k‘ — .
Z (2 mn MEY, = max My, =M ) )

nmvan < Nmin Ky

max

2l

| \/

Y 2n?
K

> (ﬂ max —H
k1 GENI Ny T

11

{ENI\Nn (i) n?M

(7\'*)*1(’([)1'),.,.”}7

PEN\Noex (1)

1

M1, ||F}ﬂF>
) 2
2= oMl (Fy) =1,

M~



151

152

153

154
155

156
157

158

160

161
162
163

where the last equality is suggested by Lemma[d] Finally, by the definition of conditional probability,

PSS N Foeg] < — 00 ) p(L S N R < — ) p(r
(H];| * \ ﬂ*(k)| ; nminK’Y%Sn) - (ﬁ ;‘ : \ ﬂ-*(k)l a ”frrlinK7%37L| ) . ( )
M)er
21—2exp<— wén, )e )—n_27
1561—75 + 28log 2
and thus the desired consistency result follows immediately. O
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