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A VICTIM MODEL DETAILS
The details of victim large vision-language models are illustrated
in Table 1. Various LVLMs employ LLMs with large number of pa-
rameters, including LLaMA [9], MPT [8], OPT [11], and Vicuna [1].
To reduce randomness, we consistently employ greedy search to
generate answers for clean images or adversarial images.

Table 1: The image encoders and base LLMs of victimmodels.

Victim Model Image Encoder Base LLM

LLaVA OpenAI CLIP ViT-L LLaMA-2-13b
Otter OpenAI CLIP ViT-L MPT-7b
LLaMA-Adapter-V2 OpenAI CLIP ViT-L LLaMA-7b
OpenFlamingo OpenAI CLIP ViT-L MPT-7b

MiniGPT-4 EVA CLIP ViT-G Vicuna-7b
BLIP-2 EVA CLIP ViT-G OPT-2.7b
InstructBLIP EVA CLIP ViT-G Vicuna-7b

mPLUG-Owl-2 ViT-L (non-pretrained) LLaMA-2-7b

B ADDITIONAL EXPERIMENTAL RESULTS
B.1 VT-Attack Results against Different LVLMs
We provide additional qualitative results of VT-Attack against dif-
ferent LVLMs. Table 3, Table 4 and Table 5 present the results of
attacking LLaVA [5], MiniGPT-4 [12] and mPLUG-Owl2 [10]. It
can be observed that our proposed VT-Attack leads to outputs that
are less relevant to the original answers compared to the baseline
methods. This further illustrates the greater disruption caused by
VT-Attack on information in visual tokens.

B.2 Results of Same Adversarial Image
Attacking Various LVLMs

Figure 1 and Figure 2 present the additional comparison of the
answers generated by different LVLMs when taking the same clean
image and adversarial image as inputs. It can be observed that the
same adversarial image leads to different outputs from different
models. This indicates that the adversarial images whose encoded
visual tokens are disrupted may not exhibit strong semantics; oth-
erwise, different models should generate similar outputs.

B.3 Breakdown of LLaVA to Non-Visual
Question Answering

In experiments we have observed that when adversarial images gen-
erated by VT-Attack are input to LLaVA [5], the question-answering
capability of LLaVA not only exhibit failure to image-based queries,
but also break in addressing non-visual prompts. Even when the

questions posed are unrelated to the images such as "What is
artificial intelligence?", the model fails to provide reason-
able responses. An example is depicted in Table 6. One possible
reason is that the intermediate module of LLaVA is only a linear
layer with a significantly smaller number of parameters. Therefore,
LLaVA is more sensitive to corrupted visual tokens compared to
other LVLMs, even when queried with non-visual questions.

C ATTACK PERFORMANCE OVER
ITERATIONS

The influence of attack iterations on attack performance (CLIP
score) is illustrated in Figure 3, taking LLaVA [5] as an example.
Increasing the number of attack iterations generally enhances the
attack effectiveness. However, the improvement becomes less sig-
nificant when the number of iterations exceeds 800.

D PROMPTS FOR DIFFERENT TASKS
To investigate the generality of adversarial examples across differ-
ent prompts, we employ three question-answering tasks. Below are
prompts used for image captioning task.

1. Describe this image briefly in one sentence.
2. Give a brief description of the image.
3. Can you provide a brief description of this image?
4. Offer a brief caption for this image.
5. Give a short overview of this image.
6. Provide a short summary of this picture.
7. Describe this picture in a few words.
8. Summarize this image briefly.
9. Please provide a short title for this image.
10. Briefly explain what is shown in this image.

The prompts for general VQA are illustrated below.

1. Is there a mobile phone in this image?
2. Is there any text or writing visible in the image?
3. Can you see any shoes in this image?
4. How many pens are visible in this picture?
5. Any signs of human activity in the image?
6. Where was this image taken?
7. Can you see animals in this image?
8. Can you identify any vehicles?
9. Are there any objects related to food?
10. Do you notice any body of water?

The prompts for detailed VQA are shown as below.
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1. Can you provide a detailed description of this image?
2. Can you describe the overall composition of the image?
3. What are the specific details depicted in this picture?
4. Explain the background elements in the picture.
5. Offer a comprehensive representation of this picture.
6. Give a detailed account of this image.
7. Offer a detailed analysis about the content of this image.
8. Can you describe the objects or scenery in the picture?
9. Elaborate on the elements captured in this photograph.
10. Provide a thorough description of this image.

E SENSITIVITY TO PIXEL NOISE DEFENSE
Adding tiny Gaussian noise to adversarial images is a simple way of
model defense. To investigate the sensitivity of adversarial examples
to it, we conduct experiments for BLIP-2 [4] as an example, and the
results are shown in Table 2. Adversarial images are not sensitive to
pixel noise if the size is relatively small. When the noise size exceeds
5/255, the attack performance starts to decline. However, overall,
Gaussian noise within the same magnitude (8/255) as adversarial
perturbations does not significantly affect the attack performance.

Table 2: The impact of adding Gaussian noise to adversarial
images on attack performance (CLIP Score ↓) compared to
clean images.

Noise Size Clean Adversarial

0/255 30.44 20.32
1/255 30.41 20.41
2/255 30.47 20.37
3/255 30.19 20.36
4/255 30.38 20.48
5/255 30.55 20.77
6/255 30.21 21.12
7/255 30.37 21.90
8/255 30.29 22.67
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Table 3: Additional cases of attack results against LLaVA [5] in different methods.

Image Method LVLM-Output Image Method LVLM-Output

No Attack a group of monkeys on a tree No Attack a row of police cars parked on a city street

E2E [7] a tree filled with many birds E2E [7] two green police cars driving down a street

CLIP-Based [2] a black bear holding an object CLIP-Based [2] a clock on a building, a truck, and a person

VT-Attack a person holding a cup VT-Attack a white building with a clock

No Attack a white dog sitting on the grass No Attack a plaque on a brick wall

E2E [7] a large dog walking through the snow E2E [7] a close-up of a gravestone with a name on it

CLIP-Based [2] a dog with a collar and a tag CLIP-Based [2] a building with a sign on it

VT-Attack the a question, the the, the, the VT-Attack a a, a, a, a a, a a, a a a in the

No Attack a young boy standing next to a fire truck No Attack a hummingbird perched on a thin branch

E2E [7] an elderly woman walking down the street E2E [7] a bird standing on a bamboo stick

CLIP-Based [2] two women posing for a picture in a park CLIP-Based [2] a bird with a long beak on a wooden pole

VT-Attack a man is holding a red cell phone VT-Attack the question, the question, the, the question

No Attack a pile of yarn sitting on a table No Attack a small brown and white dog lying on the grass

E2E [7] a crochet hook and a ball of yarn E2E [7] a large brown dog playing with toy horses

CLIP-Based [2] a pair of old, worn-out leather boots CLIP-Based [2] a large brown bear with paws

VT-Attack a yellow cloth bag with a yellow cloth VT-Attack a person is seen holding a piece of wood

No Attack a bottle of Fanta and a can of Coca-Cola No Attack a pair of Nike sneakers sitting in a box

E2E [7] a bottle of green sauce or dressing E2E [7] a woman holding a large pile of shoes

CLIP-Based [2] a person holding a box of tissues CLIP-Based [2] a pair of shoes with a shredded shoe lace

VT-Attack a person is sitting at a table VT-Attack the the, the, the, the, the, the, the

Table 4: Additional cases of attack results against MiniGPT-4 [12] in different methods.

Image Method LVLM-Output Image Method LVLM-Output

No Attack a man and a woman in a sailboat No Attack a carriage being pulled by horses

E2E [7] two people are sitting on a sailboat E2E [7] a carriage is being pulled by a man

CLIP-Based [2] a group of people on a boat in the river CLIP-Based [2] a man in a suit carrying a baby in a stroller

VT-Attack a dog sitting on a bench VT-Attack a small dog pulling a toy cart

No Attack a large ship with waves crashing No Attack a group of men playing basketball

E2E [7] a large cruise ship sailing on the ocean E2E [7] two men in basketball uniforms

CLIP-Based [2] a book cover with a picture of a boat CLIP-Based [2] a group of people playing basketball game

VT-Attack a close-up view of a compass with a needle VT-Attack a man standing in front of a vintage jukebox

No Attack a set of two padlocks with keys No Attack a white box with two green lights on top

E2E [7] a lock on a wooden table E2E [7] a pile of old electronics

CLIP-Based [2] a set of four metal bells CLIP-Based [2] a plastic box with a clear plastic

VT-Attack a vintage jukebox with many records VT-Attack 2003 Toyota Matrix in 3D red

No Attack a bird with a long, curved beak No Attack a man holding a bicycle on his head

E2E [7] two birds standing on a dirt road E2E [7] a young boy holding a bicycle at sunset

CLIP-Based [2] a group of birds sitting on the ground CLIP-Based [2] a person carrying a bicycle on their back

VT-Attack a vintage music box with a colorful design VT-Attack a person riding a bicycle on a path

No Attack a hot pot of food on a stove No Attack a brown bear standing on a rocky cliff

E2E [7] a large pot filled with food E2E [7] a brown bear carrying a stuffed animal

CLIP-Based [2] a bowl of mixed seafood CLIP-Based [2] a close-up view of a large clamshell on a beach

VT-Attack a plate of crawfish etouffee VT-Attack a dog with a carrot in its mouth



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 5: Additional cases of attack results against mPLUG-Owl-2 [10] in different methods.

Image Method LVLM-Output Image Method LVLM-Output

No Attack a man with dreadlocks plays a trumpet No Attack a bird sitting on a branch in the sky

E2E [7] a girl is playing a trumpet E2E [7] a man holding a baby bird in his hand

VT-Attack a doll is shown in two different pictures VT-Attack a group of people standing together

No Attack a bridge over a river with trees No Attack a brown dog panting on a sidewalk

E2E [7] aerial view of san francisco bridge E2E [7] an ostrich wearing a hat

VT-Attack a close up of a pair of pants VT-Attack a picture of a bridge with a blue sky

No Attack a white and gray dog standing on grass No Attack a sewer cover with a metal design on it

E2E [7] a baby is sitting on top of a lion E2E [7] a castle is shown on a tire

VT-Attack a group of people are standing in a room VT-Attack two microphones are set up in a studio

No Attack a large building with a curved roof No Attack a bridge over a river with a train on it

E2E [7] a cruise ship in the ocean E2E [7] a man driving a car under a bridge

VT-Attack a pair of shoes with the number 43 on them VT-Attack a group of 777 nail polish bottles

No Attack a tank with people on top of it No Attack a baby wearing a green knitted hat

E2E [7] a dog driving a tank with a missile E2E [7] a man with a bubble on his face

VT-Attack a photo of a person in a black dress VT-Attack a close-up of a gold and black watch

Table 6: Breakdown of LLaVA to non-visual prompts when queried with adversarial image in VT-Attack.

Adversarial image Non-visual Prompt LLaVA-Output

What is artificial intelligence? in the a, a in the a, a in the a in the a in

What is the capital of France? a person is holding a red glass ball

How do you bake a cake? „„„, in the a„„, in the a, a in the a in

Why do leaves change color in the fall? the question, the question, the question
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LLaVA

Otter

LLaMA
Adapter-v2

a photo of a room with a person

two men are sitting on a couch

OpenAI CLIP adv ,,, in the a,,,, in the a

Open
Flamingo a man is holding a book

LLaVA

Otter

LLaMA
Adapter-v2

a man plays the French horn on stage

a man is playing a trumpet

Clean image a man playing a trumpet on stage

Open
Flamingo a saxophonist plays a solo

LLaVA

Otter

LLaMA
Adapter-v2

a photo of a room with a window

a woman is watching TV

OpenAI CLIP adv a in a a in a a in a a in a a in a

Open
Flamingo a man is sitting on a bench

LLaVA

Otter

LLaMA
Adapter-v2

an iron with a blue handle

a white iron with a wooden handle

Clean image a white ironing board with a blue cover

Open
Flamingo a white iron with a blue handle

LLaVA

Otter

LLaMA
Adapter-v2

the person is standing behind a screen

a black image of a newspaper

OpenAI CLIP adv the, the, the, the, the, the, the, the

Open
Flamingo a man is standing in a doorway

LLaVA

Otter

LLaMA
Adapter-v2

a shopping cart with a large flag

a shopping cart with an American flag

Clean image a shopping cart with an American flag

Open
Flamingo a shopping cart in a parking garage

LLaVA

Otter

LLaMA
Adapter-v2

a cat hanging off of a vehicle

a blue truck with an advertisement

OpenAI CLIP adv a cat sitting on a truck's windshield

Open
Flamingo a close up of a bottle of beer

LLaVA

Otter

LLaMA
Adapter-v2

a school bus is parked in a lot

a school bus driving down a wet road

Clean image a yellow school bus on a wet street

Open
Flamingo a yellow school bus

LLaVA

Otter

LLaMA
Adapter-v2

a man is standing near umbrellas

several jellyfish floating in the water

OpenAI CLIP adv a person holding a bunch of white balls

Open
Flamingo a man in a black shirt and black pants

LLaVA

Otter

LLaMA
Adapter-v2

a bunch of mushrooms are growing

a group of mushrooms growing together

Clean image a group of mushrooms in a forest

Open
Flamingo a group of mushrooms in the forest

LLaVA

Otter

LLaMA
Adapter-v2

a blurry image of a building

a group of people standing in pool

OpenAI CLIP adv a person in a room with a large screen

Open
Flamingo an interior of Palais Garnier opera house

LLaVA

Otter

LLaMA
Adapter-v2

an escalator in a mall with people on it

a large, open, and well-lit shopping mall

Clean image a large, open, and ornate shopping mall

Open
Flamingo the escalator at the Venetian Hotel

LLaVA

Otter

LLaMA
Adapter-v2

a dark room with a light shining on it

a man is holding a cell phone

OpenAI CLIP adv a glass bowl

Open
Flamingo a close up of a woman's face

LLaVA

Otter

LLaMA
Adapter-v2

a close up view of a sound mixer

a large DJ turntable with a Pioneer logo

Clean image a DJ turntable with a black color

Open
Flamingo the Pioneer CDJ-2000 Nexus

Figure 1: Additional comparison of the responses generated by various LVLMs when queried with clean images and adversarial
images in VT-Attack against OpenAI CLIP [6].
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696

BLIP-2

MiniGPT-4

InstructBLIP

a red hoodie with a word "georgia" on it

a red hoodie with the word "Georgia"

Clean image

a red hoodie with a logo in the middle BLIP-2

MiniGPT-4

InstructBLIP

a person holding a cell phone

a vintage image of a gas pump

EVA CLIP adv

a photo of a room with a plant

BLIP-2

MiniGPT-4

InstructBLIP

a green and brown leafy pattern

a blue and yellow pillow on a bed

Clean image

a blue and white pillow BLIP-2

MiniGPT-4

InstructBLIP

a close-up of a coffee cup

a black car is parked on a street

EVA CLIP adv

a map of Hawaii with a flower on it

BLIP-2

MiniGPT-4

InstructBLIP

a street sign with a stop sign

a street sign with the name "McLean"

Clean image

a stop sign and two street signs on a pole BLIP-2

MiniGPT-4

InstructBLIP

a woman is holding a glass of wine

a man is playing a trumpet

EVA CLIP adv

a plant with a person sitting next to it

BLIP-2

MiniGPT-4

InstructBLIP

a large pile of colorful pencils

a close-up view of a pile of pencils

Clean image

a pile of plastic pens BLIP-2

MiniGPT-4

InstructBLIP

a red and black object with a frame

a blue and purple bicycle

EVA CLIP adv

a close-up of a red machine tool

BLIP-2

MiniGPT-4

InstructBLIP

a tall brick building with a clock tower

a large, old building with a clock tower

Clean image

the courthouse in the town BLIP-2

MiniGPT-4

InstructBLIP

a glass bottle in the image

a man is walking down a street

EVA CLIP adv

a man in a suit and tie

BLIP-2

MiniGPT-4

InstructBLIP

a penguin standing on a beach

a penguin standing on a sandy beach

Clean image

the king penguin is standing by himself BLIP-2

MiniGPT-4

InstructBLIP

a close up of a sign

a man is playing a trumpet

EVA CLIP adv

a blue swimming pool

BLIP-2

MiniGPT-4

InstructBLIP

a large wooden dining table with chairs

a dining table with a set of chairs

Clean image

a dining table and chairs BLIP-2

MiniGPT-4

InstructBLIP

a dog and a cat are playing with a bird

a man is watching TV

EVA CLIP adv

a black and white photo of a room

BLIP-2

MiniGPT-4

InstructBLIP

a baseball player in a uniform

a baseball player, likely a catcher

Clean image

a baseball player in uniform with a glove BLIP-2

MiniGPT-4

InstructBLIP

a close-up of a man's face

a man and a woman are sitting together

EVA CLIP adv

the people are facing the camera

Figure 2: Additional comparison of the responses generated by various LVLMs when queried with clean images and adversarial
images in VT-Attack against EVA CLIP [3].
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Figure 3: The relationship between attack performance and iterations (taking LLaVA [5] as an example).
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