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A VICTIM MODEL DETAILS

The details of victim large vision-language models are illustrated
in Table 1. Various LVLMs employ LLMs with large number of pa-
rameters, including LLaMA [9], MPT [8], OPT [11], and Vicuna [1].
To reduce randomness, we consistently employ greedy search to
generate answers for clean images or adversarial images.

Table 1: The image encoders and base LLMs of victim models.

Victim Model Image Encoder Base LLM
LLaVA OpenAI CLIP ViT-L LLaMA-2-13b
Otter OpenAI CLIP ViT-L MPT-7b
LLaMA-Adapter-V2 OpenAlI CLIP ViT-L LLaMA-7b
OpenFlamingo OpenAlI CLIP ViT-L MPT-7b
MiniGPT-4 EVA CLIP ViT-G Vicuna-7b
BLIP-2 EVA CLIP ViT-G OPT-2.7b
InstructBLIP EVA CLIP ViT-G Vicuna-7b
mPLUG-Owl-2 ViT-L (non-pretrained) ~LLaMA-2-7b

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 VT-Attack Results against Different LVLMs

We provide additional qualitative results of VT-Attack against dif-
ferent LVLMs. Table 3, Table 4 and Table 5 present the results of
attacking LLaVA [5], MiniGPT-4 [12] and mPLUG-OwI2 [10]. It
can be observed that our proposed VT-Attack leads to outputs that
are less relevant to the original answers compared to the baseline
methods. This further illustrates the greater disruption caused by
VT-Attack on information in visual tokens.

B.2 Results of Same Adversarial Image
Attacking Various LVLMs

Figure 1 and Figure 2 present the additional comparison of the
answers generated by different LVLMs when taking the same clean
image and adversarial image as inputs. It can be observed that the
same adversarial image leads to different outputs from different
models. This indicates that the adversarial images whose encoded
visual tokens are disrupted may not exhibit strong semantics; oth-
erwise, different models should generate similar outputs.

B.3 Breakdown of LLaVA to Non-Visual
Question Answering

In experiments we have observed that when adversarial images gen-

erated by VT-Attack are input to LLaVA [5], the question-answering

capability of LLaVA not only exhibit failure to image-based queries,
but also break in addressing non-visual prompts. Even when the

questions posed are unrelated to the images such as "What is
artificial intelligence?", the model fails to provide reason-
able responses. An example is depicted in Table 6. One possible
reason is that the intermediate module of LLaVA is only a linear
layer with a significantly smaller number of parameters. Therefore,
LLaVA is more sensitive to corrupted visual tokens compared to
other LVLMs, even when queried with non-visual questions.

C ATTACK PERFORMANCE OVER
ITERATIONS

The influence of attack iterations on attack performance (CLIP
score) is illustrated in Figure 3, taking LLaVA [5] as an example.
Increasing the number of attack iterations generally enhances the
attack effectiveness. However, the improvement becomes less sig-
nificant when the number of iterations exceeds 800.

D PROMPTS FOR DIFFERENT TASKS

To investigate the generality of adversarial examples across differ-
ent prompts, we employ three question-answering tasks. Below are
prompts used for image captioning task.

1. Describe this image briefly in one sentence.

2. Give a brief description of the image.

3. Can you provide a brief description of this image?
4. Offer a brief caption for this image.

5. Give a short overview of this image.

6. Provide a short summary of this picture.

7. Describe this picture in a few words.

8. Summarize this image briefly.

9. Please provide a short title for this image.

10. Briefly explain what is shown in this image.

The prompts for general VQA are illustrated below.

. Is there a mobile phone in this image?

. Is there any text or writing visible in the image?
. Can you see any shoes in this image?

. How many pens are visible in this picture?

. Any signs of human activity in the image?

. Where was this image taken?

. Can you see animals in this image?

. Can you identify any vehicles?

. Are there any objects related to food?

10. Do you notice any body of water?
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The prompts for detailed VQA are shown as below.
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. Can you provide a detailed description of this image?

. Can you describe the overall composition of the image?
. What are the specific details depicted in this picture?

. Explain the background elements in the picture.

Offer a comprehensive representation of this picture.

. Give a detailed account of this image.

. Offer a detailed analysis about the content of this image.
. Can you describe the objects or scenery in the picture?
. Elaborate on the elements captured in this photograph.
10. Provide a thorough description of this image.

E SENSITIVITY TO PIXEL NOISE DEFENSE

Adding tiny Gaussian noise to adversarial images is a simple way of
model defense. To investigate the sensitivity of adversarial examples
to it, we conduct experiments for BLIP-2 [4] as an example, and the
results are shown in Table 2. Adversarial images are not sensitive to
pixel noise if the size is relatively small. When the noise size exceeds
5/255, the attack performance starts to decline. However, overall,
Gaussian noise within the same magnitude (8/255) as adversarial
perturbations does not significantly affect the attack performance.

Table 2: The impact of adding Gaussian noise to adversarial
images on attack performance (CLIP Score |) compared to

clean images.

Noise Size

Clean Adversarial

0/255
1/255
2/255
3/255
4/255
5/255
6/255
7/255
8/255

30.44 20.32

30.41 20.41
30.47 20.37
30.19 20.36

30.38 20.48
30.55 20.77

30.21 21.12
30.37 21.90
30.29 22.67
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Table 3: Additional cases of attack results against LLaVA [5] in different methods.
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Method LVLM-Output Image Method LVLM-Output
No Attack a group of monkeys on a tree No Attack a row of police cars parked on a city street
EZ2E [7] a tree filled with many birds E2E [7] two green police cars driving down a street
CLIP-Based [2]  ablack bear holding an object CLIP-Based [2]  a clock on a building, a truck, and a person
VT-Attack a person holding a cup VT-Attack a white building with a clock
No Attack a white dog sitting on the grass No Attack a plaque on a brick wall
E2E [7] a large dog walking through the snow E2E [7] a close-up of a gravestone with a name on it
CLIP-Based [2]  a dog with a collar and a tag CLIP-Based [2]  a building with a sign on it
VT-Attack the a question, the the, the, the VT-Attack aa,a,a,aa aa aaainthe
No Attack a young boy standing next to a fire truck No Attack a hummingbird perched on a thin branch
EZ2E [7] an elderly woman walking down the street E2E [7] a bird standing on a bamboo stick
CLIP-Based [2]  two women posing for a picture in a park CLIP-Based [2]  a bird with a long beak on a wooden pole
VT-Attack a man is holding a red cell phone VT-Attack the question, the question, the, the question
No Attack a pile of yarn sitting on a table No Attack a small brown and white dog lying on the grass
E2E [7] a crochet hook and a ball of yarn E2E [7] a large brown dog playing with toy horses
CLIP-Based [2]  a pair of old, worn-out leather boots CLIP-Based [2]  alarge brown bear with paws
VT-Attack a yellow cloth bag with a yellow cloth VT-Attack a person is seen holding a piece of wood
No Attack a bottle of Fanta and a can of Coca-Cola No Attack a pair of Nike sneakers sitting in a box
EZ2E [7] a bottle of green sauce or dressing E2E [7] a woman holding a large pile of shoes
CLIP-Based [2]  a person holding a box of tissues CLIP-Based [2]  a pair of shoes with a shredded shoe lace
VT-Attack a person is sitting at a table VT-Attack the the, the, the, the, the, the, the

Table 4: Additional cases of attack results against MiniGPT-4 [12] in different methods.

Method LVLM-Output Image Method LVLM-Output
No Attack aman and a woman in a sailboat No Attack a carriage being pulled by horses
E2E [7] two people are sitting on a sailboat E2E [7] a carriage is being pulled by a man
CLIP-Based [2]  a group of people on a boat in the river CLIP-Based [2]  aman in a suit carrying a baby in a stroller
VT-Attack a dog sitting on a bench VT-Attack a small dog pulling a toy cart
No Attack a large ship with waves crashing No Attack a group of men playing basketball
EZ2E [7] a large cruise ship sailing on the ocean E2E [7] two men in basketball uniforms
CLIP-Based [2]  a book cover with a picture of a boat CLIP-Based [2]  a group of people playing basketball game
VT-Attack a close-up view of a compass with a needle VT-Attack a man standing in front of a vintage jukebox
No Attack a set of two padlocks with keys No Attack a white box with two green lights on top
EZ2E [7] a lock on a wooden table E2E [7] a pile of old electronics
CLIP-Based [2]  a set of four metal bells CLIP-Based [2]  a plastic box with a clear plastic
VT-Attack a vintage jukebox with many records VT-Attack 2003 Toyota Matrix in 3D red
No Attack a bird with a long, curved beak No Attack a man holding a bicycle on his head
EZ2E [7] two birds standing on a dirt road E2E [7] a young boy holding a bicycle at sunset
CLIP-Based [2]  a group of birds sitting on the ground CLIP-Based [2]  a person carrying a bicycle on their back
VT-Attack a vintage music box with a colorful design VT-Attack a person riding a bicycle on a path
No Attack a hot pot of food on a stove No Attack a brown bear standing on a rocky cliff
EZ2E [7] a large pot filled with food E2E [7] a brown bear carrying a stuffed animal
CLIP-Based [2]  a bowl of mixed seafood CLIP-Based [2]  a close-up view of a large clamshell on a beach
VT-Attack a plate of crawfish etouffee VT-Attack a dog with a carrot in its mouth
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Table 5: Additional cases of attack results against mPLUG-Owl-2 [10] in different methods.

Method LVLM-Output Image Method LVLM-Output

No Attack  a man with dreadlocks plays a trumpet No Attack  a bird sitting on a branch in the sky
EZ2E [7] a girl is playing a trumpet E2E [7] a man holding a baby bird in his hand

VT-Attack  a doll is shown in two different pictures VT-Attack  a group of people standing together

No Attack  a bridge over a river with trees No Attack  a brown dog panting on a sidewalk
E2E [7] aerial view of san francisco bridge E2E [7] an ostrich wearing a hat

VT-Attack  a close up of a pair of pants VT-Attack a picture of a bridge with a blue sky

No Attack a white and gray dog standing on grass No Attack  a sewer cover with a metal design on it
E2E [7] a baby is sitting on top of a lion E2E [7] a castle is shown on a tire

VT-Attack  a group of people are standing in a room VT-Attack  two microphones are set up in a studio

No Attack  a large building with a curved roof No Attack  a bridge over a river with a train on it
E2E [7] a cruise ship in the ocean E2E [7] a man driving a car under a bridge

VT-Attack  a pair of shoes with the number 43 on them VT-Attack  a group of 777 nail polish bottles

No Attack  a tank with people on top of it No Attack a baby wearing a green knitted hat
E2E [7] a dog driving a tank with a missile E2E [7] a man with a bubble on his face

VT-Attack  a photo of a person in a black dress B VT-Attack  a close-up of a gold and black watch

Table 6: Breakdown of LLaVA to non-visual prompts when queried with adversarial image in VT-Attack.

Adversarial image

Non-visual Prompt

LLaVA-Output

What is artificial intelligence?

in the a, a in the a, a in the ain the a in

What is the capital of France?

a person is holding a red glass ball

How do you bake a cake?

w10 the a,,,,, in the a, a in the a in

Why do leaves change color in the fall?

the question, the question, the question
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Figure 1: Additional comparison of the responses generated by various LVLMs when queried with clean images and adversarial
images in VT-Attack against OpenAI CLIP [6].

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580



ACM MM, 2024, Melbourne, Australia

Clean image EVA CLIP adv

|

]
1
1
1
1
1
1
I
1
1
1
r
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
r
1
1
1
1
1
1
1
I
1
1
1

EVA CLIP adv

Clean image

|

Anonymous Authors

MiniGPT-4

InstructBLIP

| Y R

EVA CLIP adv

y

|

|

B

[ |
]
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1

r--
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
.

B (]
i a baseball player in uniform with a glove
e e e e e 1
1 1
| MiniGPT-4 | a baseball player in a uniform \
Fommmm--- R ke |
i InstructBLIP i a baseball player, likely a catcher i
1 1
leccccc e L 4

Figure 2: Additional comparison of the responses generated by various LVLMs when queried with clean images and adversarial

images in VT-Attack against EVA CLIP [3].
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