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ABSTRACT

Multiple-instance learning (MIL) was initially proposed to identify key instances
within a set (bag) of instances when only one bag-level label is provided. Current
deep MIL models mostly solve multi-instance problem in feature space. Nev-
ertheless, with the increasing complexity of data, we found this paradigm faces
significant risks in representation learning stage, which could lead to algorithm
degradation in deep MIL models. We speculate that the degradation issue stems
from the persistent drift of instances in feature space during learning. In this
paper, we propose a novel Probability-Space MIL network (PSMIL) as a coun-
termeasure. In PSMIL, a self-training alignment strategy is introduced in prob-
ability space to cope with the drift problem in feature space, and the alignment
target objective is proven mathematically optimal. Furthermore, we reveal that
the widely-used attention-based pooling mechanism in current deep MIL models
is easily affected by the perturbation in feature space and further introduce an al-
ternative called probability-space attention pooling. It effectively captures the key
instance in each bag from feature space to probability space, and further eliminates
the impact of selection drift in the pooling stage. To summarize, PSMIL seeks to
solve a MIL problem in probability space rather than feature space. Experimental
results illustrate that PSMIL could potentially achieve performance close to su-
pervised learning level in complex tasks (gap within 5%), with the incremental
alignment in propability space bring more than 19% accuracy improvements for
current existing mainstream models in simulated CIFAR datasets. For existing
publicly available MIL benchmarks/datasets, attention in probability space also
achieves competitive performance to the state-of-the-art deep MIL models. Codes
are available at https://github.com/LMBDA-design/PSAMIL.

1 INTRODUCTION

Multiple-Instance Learning (MIL) (Dietterich et al., 1997; Maron & Lozano-Pérez, 1997) was intro-
duced to identify the key instances within a set of instances when only a bag-level label (indicating
whether there is any key instance in the set) is available. Originated in the machine learning era, MIL
was initially studied as a pure classification algorithm, thus it heavily relies on simple initial inputs.
MIL has found wide applications in coarse label learning for images, videos, and texts. With the
rise of the deep learning, the deep MIL models are typically formulated as representation learning,
followed by classification. However, existing works in MIL have primarily focused on relatively
simple data inputs such as raw properties of molecular, text statistical representations (Andrews
et al., 2002; Zhou et al., 2009). Even in recent complex applications such as cancer analysis based
on Whole Slide Images (WSI) (Bejnordi et al., 2017) and video-based anomaly detection (Sultani
et al., 2018), it is still necessary to simplify the instance representations as much as possible before
taking them as inputs for the MIL model. To satisfy the conventional requirements of MIL, such
complex data instances need to be pre-processed in a certain way (for example, pre-extracting the
instances by a heavyweight pre-trained model) to ensure the initial separability as the model input,
to guarantee low classification difficulties. Under such condition, the representation learning stage
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could then be simplified to a few (or no) fully-connected layers to achieve satisfactory performance,
and in this way deep MIL models could be able to focus on classification stage.

In contrast to the simplistic practice commonly adopted in current MIL, many deep-learning based
classification tasks pose significant challenges due to the inherent complexity of the data. It is un-
likely that a simplified representation extraction process can effectively handle all complex cases.
Rather than taking simplified inputs, representation learning of complex data often requires se-
rious consideration in many weakly-supervised tasks (Rolnick et al., 2017; Zhang et al., 2016).

Figure 1: A mainstream MIL model (ABMIL) with
complex inputs. For a 100-class classification task,
the performance variation over 20 epochs on the
CIFAR-100 dataset from ABMIL is reported. The
MIL model is trained in multi-instance mode with a
complex feature extractor (ResNet) being trained si-
multaneously.

However, introducing a sophisticated feature ex-
tractor for complex data instances in an end-to-
end MIL model is not a straightforward process:
the increased complexity of the feature extrac-
tor brings greater capability, but more instances
or more accurate label guidance are meanwhile
required to ensure the quality of representation
learning. While in cases where data is limited or
the label guidance is insufficient, such feature ex-
tractors are prone to under-fitting, thus failing to
learn useful representations. In the absence of in-
stance labels to guide the representation learning
for instances, the complex data/feature extractor
may easily lead the MIL model to learn irregular
or non-discriminative representations, eventually
resulting in degradation for the MIL model (an il-
lustration shown in Figure 1). To address this key
problem, we argue that the learning process of ev-
ery instance in a bag deserves more attention.

In this paper, we first point out a rather common
issue in current deep MIL models, which is the
difficulty in conducting general representation learning on data. As the complexity of data increases,
MIL models tend to learn drifted instance representations, ultimately leading to model degradation.
To address this, we design and constrain the MIL algorithm in probability space, and propose the
Probability-Space MIL network (PSMIL). PSMIL comprises two key strategies implemented in
probability space, including probability-space attention pooling and a probability-space alignment
objective. To demonstrate the potential degradation issues that current MIL models may face in
feature space, we introduce comprehensive simlulated datasets to evaluate the ability of MIL mod-
els in learning instance representations. On complex tasks, experiments show that the designed
probability-space alignment objective effectively constrains instance representations to a more sta-
ble space during the representation learning stage, meanwhile bringing non-trivial performance im-
provements and stability across current MIL methods. In addition, we analyze the mechanism of the
widely used attention-pooling method and demonstrate that it is also easily affected by the contin-
uous drift of instance features. Then, the probability-space attention pooling is proposed to further
eliminate the impact of drift problem in the pooling stage of MIL paradigm. With these two new
strategies in probability space, the model can circumvent the drift issues that traditional MIL models
may face in feature space, achieving performance close to that of fully supervised models on more
complex tasks (gap within 5%). We also validated our model on various existing MIL datasets with
SOTA-level performance.

2 RELATED WORK

Multiple-instance learning was initially defined as solving binary classification problems given fixed
instance features and bag-level labels, evaluated at the bag-level accuracy during the test. In deep
learning era, the mainstream MIL models typically consist of a feature extractor, an instance pool-
ing component, and a classifier concatenated together. The deep MIL model first extracts instance
features through the feature extractor, aggregates features into a bag-level feature via the pooling
component, and then feeds them into the classifier for classification.
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Figure 2: Overview of our Probability-space Multiple-Instance Learning Network (PSMIL).

Research on pooling/classification strategies in deep MIL model is very progressive. Initially, deep
MIL models take instances or instance features as input, simply selecting the instance with the high-
est score (thought as key instance) as the bag-level feature (max pooling). Recently, Attention-based
MIL (ABMIL) (Ilse et al., 2018) has been one of the prominent works where the attention module is
introduced into deep models as pooling component in the MIL paradigm. These methods have been
validated on simple benchmarks such as MNIST images (LeCun et al., 1998) and other manually
crafted features (Andrews et al., 2002). In real applications, such as WSI diagnosis/video-based
anomaly detection, models generally require well-extracted separable features for input. Besides,
there are efforts to extend MIL to multi-class classification problems. Regressor-guided MIL (Du
et al., 2024) decomposes k-class problems into k binary classification branches, providing solutions
on the UNBC pain classification dataset.

Existing works in MIL are usually based on the primitive separability of initial inputs. When the
initial inputs are easily ensured separable, the MIL algorithm can mainly focus on pooling com-
ponents/instance analysis or loss function design. For example, the MNIST dataset, composed of
simple gray images, easily ensures separability after the simple feature extraction. The UNBC fa-
cial expression pain dataset also shows small intra-class variations where expressions with the same
pain-intensity level exhibit remarkable similarity (Lucey et al., 2012). In VAD problem, features pre-
extracted by the I3D network as input exhibit better initial separability than C3D, and as a result,
more than 5% performance improvement under the same conditions compared to the C3D features
was achieved (Kamoona et al., 2023). Similar to the VAD, recent MIL models used in WSI diag-
nosis also adopt pre-extracted convolutional features as input, including the latest work (Fourkioti
et al., 2023).

The premise of high-quality input in the MIL paradigm is reasonable but also oversimplified to some
extent. Introducing heavyweight feature extractors required by complex data rather than ensuring
high quality separable inputs can easily lead to dilemmas when training both the feature extractor
and pooling strategy in two stages. As shown in Figure 1, Attention-based MIL (ABMIL) uses
ResNet18 as the feature extractor for multiple-instance learning on CIFAR-100 image bags. Dur-
ing the inference stage, when evaluating the accuracy using single CIFAR image, the classification
accuracy at random-guessing level indicates that the model did not learn actual class-relevant in-
stance representation. With the significant model capability brought by a complex feature extractor,
the model potentially extracts features in the way that we do not expect. This is what we call the
problem of feature drift.

3 MATERIAL AND METHODS

3.1 PRELIMINARIES: DEEP MIL MODELS REPRESENTED BY ATTENTION-BASED MIL

MIL problem is formulated generally: Given a bag composed of n instances, denoted as X =
[x1, x2, . . . , xn], X ∈ Rn×D and a bag label Y ∈ {0, 1} which indicates whether an instance with
non-zero label (key instance) exists in the bag, we need to learn a model g : X → Y . The perfor-
mance of the mapping g is typically demonstrated through bag-level binary classification accuracy
and instance localization results, where localization reflects the ability to learn and capture key in-
stances from a bag, forming the inference basis for a MIL model. MIL considers individual instances

3



Published as a conference paper at ICLR 2025

to be independent, without any sequential or other correlated relationships. Recently, the concept of
MIL has been extended to multi-class problems, and Y is denoted as 0 to k − 1 in k-class scenario.

Due to the effectiveness of the attention mechanism, Attention-based MIL (ABMIL) has been widely
applied and further developed. ABMIL and its family are the current mainstream deep MIL models.
Deep models in this family often simplify the representation learning stage as much as possible and
use attention-like pooling strategy to select key instances to form an overall bag-level feature, which
is then passed to a classifier. Here we denote the feature matrix obtained by the feature extractor
Enc as H ∈ Rn×d, where each row of H corresponds to the feature of each instance. The pooling
strategy then aggregates the feature matrix H into a bag-level feature Hbag ∈ Rd to be sent into the
linear classifier to get the bag-level prediction −−→pbag . The parameters of the final linear classification
layer of the MIL model are (C ∈ Rk×d for weights,

−→
b ∈ Rk for biases). When the raw data is

relatively simple, it can often be directly used as model input X . When the raw data is complex,
ABMIL typically requires pre-extracted separable features as input X to reduce the difficulty of
representation learning. Through this strategy, ABMIL can perform a form of limited representation
learning using several (or no) simplified layers. When setting the feature extractor to 0 layers,
H = Enc(X) = X . The overall forward process of ABMIL can be stated as follows:

Hbag = attention pooling(Enc(X)); −−→pbag = softmax(CHbag +
−→
b )

Recently, there are some advances in attenion-based MIL. Dual-Stream MIL (DSMIL) (Li et al.,
2021) adjusts attention-based pooling by introducing an additional max pooling branch. Double-tier
feature distillation MIL (DTFDMIL) (Zhang et al., 2022) applies attention-based pooling twice se-
quentially by dividing the raw bag into several pseudo-bags. Disambiguated attention-Embedding
MIL (DEMIL) (Tang et al., 2024) introduces a value mapping operation to transform H into a hidden
space V and applies attention-based pooling in hidden feature space to address multi-classification
problems. Additionally, there are works that directly use transformer block as the pooling compo-
nent (TransMIL) (Shao et al., 2021). However, these models all learn with relatively simple feature
extractors internally, and thus they are still restricted by the complexity of the data inputs. For gen-
eral representation learning, there should not be restriction on oversimplifying the feature extractor
or data input. We observed that once the restriction is not strictly satisfied, ABMILs tends to degrade
to be random guessing. Specifically, the involved major issues are as follows.

Feature Drift in representation learning. Considering to solve a weakly-supervised classification
problem, ABMILs needs to obtain discriminative features relevant to the classification task through
the feature extractor. Given a commonly-used feature extractor with greater capability, when insuf-
ficient guidance is provided it is highly likely to learn features irrelevant to classification. As shown
in Figure 1, we set the feature extractor part of ABMIL to the relatively complex ResNet18, which
directly takes bags composed of raw CIFAR-100 images as inputs for training. During test, we use
the classification accuracy of single image to evaluate instance quality directly. Here ResNet18 (He
et al., 2016) was pre-trained on ImageNet (Deng et al., 2009), so the model demonstrated perfor-
mance above random guess level in the early training epochs. However, as training progressed,
the model eventually converged to a completely random guessing algorithm. Additionally, ABMIL
maintains a high information entropy for the predicted probability distribution of each instance, in-
dicating the low discriminability and confidence of instance features all over the training process.
This suggests that the model has always been learning unintended drifted features. The drifted
low-quality features could further impact the pooling strategy during training.

Selection Drift in pooling stage. The goal of the instance pooling stage in ABMILs is to aggregate
a representative bag-level feature, thereby eliminating the influence of non-key instances within the
bag. ABMIL utilizes attention-based pooling to select key instances and aggregate them into an
overall bag-level feature. A general form of attention-based pooling is as follows:

Hbag =

n∑
i=1

−→aiHi, where −→ai =
exp(H⊤

i
−→w )∑n

j=1 exp(H
⊤
j
−→w )

; (1)

The pooling stage transforms H into a weight vector consistent with the bag length n using weights-
transformation parameter −→w ∈ Rd, and aggregates the feature matrix H into a bag-level feature
Hbag based on the weights −→a ∈ Rt.

Proposition 1. Attention-based pooling updates the parameter −→w based on whether the real-
time inferred class of instance is consistent with the bag-level ground truth.
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−∇−→wL = HTJTHCT (−→y −−−→pbag) (layer-wise differentiation)

=
∑n

i=1

−→
ϕ

T
(−→zi −−−→zbag) ·Hi (decomposition & recombination)

s.t.
∑k

j=1

−→
ϕj = 0;

−→
ϕY > 0;

−→
ϕY < 0;

−→
ϕ ∈ Rk

(2)

In a k-class ABMIL model, the update formula is shown above, where L represents the negative log-
likelihood loss, Y denotes its ground-truth bag label (scalar), Y denotes any other label in [0, k− 1]
except for Y , −→y is the bag ground-truth one-hot label, −→y ∈ Rk, −−→pbag expresses the model output
prediction, −−→pbag ∈ Rk, J expresses the Jacobian matrix with shape Rn×n, and −→z , −−→zbag ∈ Rk are the
logits produced by the model’s linear classification layer of the instance feature Hi and the bag-level
feature Hbag , respectively.

In the detailed derivation presented in Appendix A.4, we have already verified the properties of
−→
ϕ .

Next, we first define −→u = −→zi −−−→zbag . Imagine for an instance xi, the corresponding logits output −→zi
is higher than the overall bag level −−→zbag at position Y and lower at position Y . Therefore, compared
to the overall bag output −−→zbag , the logits output of instance −→zi after the softmax function is closer to
the one-hot ground truth vector −→y . This is what the model considers as a key instance in this bag.
We say that when the instance xi has such a high level of consistency with the ground truth, the
vector −→u satisfies the following constraints. In this sense, the fact and the following constraint are
equivalent:

−→uY > 0; −→uY < 0; −→u ∈ Rk. (3)

We define con(i) =
−→
ϕ

T−→u , and then we have

−∇−→wL =
∑n

i=1
con(i) ·Hi. (4)

In the final form above, the sign of the consistency parameter con(i) directly indicates the update
direction of −→w . It is easy to verify that when −→u satisfies the above constraints, implying that the
instance has a high level of consistency with ground truth (key instance), the consistency parameter
con(i) is positive definite. In this case, the weights-transformation parameter −→w is updated in the
positive direction of

−→
Hi, which will further lead to an increase in the corresponding weight of the key

instance xi. Conversely, the opposite outcome occurs. Thus far, we could summarize the attention
mechanism as a complete statement in Proposition 1 above.

As a selection process, the intention of attention-based pooling is to gradually assign higher/lower
weights to key/non-key instances during the learning process. Based on the analysis above, the
attention-based mechanism involves examining the real-time probabilistic inference results of in-
stances and updating weights −→w in a direction decided by the instances’ consistency level with the
bag-level ground truth. The transformation parameter −→w is finally updated based on the instance
features H . Considering when simple data inputs, where the given H is either fixed or varies reg-
ularly, the attention mechanism can continuously update regular instance features to the parameter−→w based on consistency, leading to increased/decreased weights of corresponding key/non-key in-
stances. However, when complex data and the feature extractor with great capability are introduced,
the continuous drastic variation of H can significantly impact the learning of weight parameters −→w .
For key instances with inferences more consistent with the ground truth, features are often irregular
and constantly changing. Thus, an update from key instance to −→w does not mean an increase in
the weight of any key instance. The drift of features further leads to selection drift in this case.

3.2 PROBABILITY-SPACE ALIGNMENT: TOWARDS FEATURE DRIFT

In the representation learning stage, one major issue causing feature drift is the lack of effective
guidance for instances. Representation learning is typically guided by labels for classification tasks.
In MIL, due to the absence of guidance from instance-level labels, the models often lack confident
inference for instances, as reflected in the high entropy of instance probability inference during train-
ing shown in Figure 1. Data augmentation technique is often used in weakly supervised learning to
enhance the robustness of the model(Sheng et al., 2024)(Wu et al., 2022). To provide effective guid-
ance, we propose an objective called probability-space alignment based on pseudo-label inference,
with CE representing cross entropy function:
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Lins(X) = 1
n·|A(x)|

∑n
i=1

∑
x′∈A(xi)

CE(
∗
l(i),−→p (x′)), (5)

where
∗
p
(i)
s =

∏
x′∈A(xi)

−→ps(x
′)∑k

j=1

∏
x′∈A(xi)

−→pj(x′)
,

∗
p(i) ∈ Rk, and

∗
l(i) = onehot(

∗
p(i)).

Proposition 2. For an augmented set {x′, x′′, ...} ∈ A(x), the optimal target pseudo-label
∗
l is

the one-hot encoding of the normalized mutliplicated probabilities ∗
p within the set.

Proof: We denote the position where the elements in optimal one-hot label
∗
l equals 1 as c, and

for any non-optimal one-hot label l, the position where it equals 1 as r. Since
∗
l is obtained through

Proposition 2, the product of probabilities in the augmented set at position c is greater than at position
r. We have

Lins(X;
∗
l)−Lins(X; l) =

1

n · |A(x)|

n∑
i=1

∑
x′∈A(xi)

(CE(
∗
l(i),−→p (x′))− CE(l(i),−→p (x′))) (6)

=
1

n · |A(x)|

n∑
i=1

∑
x′∈A(xi)

(− log−→pc(x′)− (− log−→pr(x′))) (7)

=
1

n · |A(x)|

n∑
i=1

log

∏
x′∈A(xi)

−→pr(x′)∏
x′∈A(xi)

−→pc(x′)
< 0 (8)

That is to say, the target label
∗
l that we adopt in Equation 5 enables an optimal loss for Lins(X).

As shown in Equation 5, for each instance x in the bag, we generate an augmented set A(x) and

aligns the augmented instances in A(x) to the inferred label
∗
l, which is obtained from Proposition

2.

L = Lbag(X) + λT ·Lins(X), where λT =

{
λ ∗ T, T < τ

λ ∗ τ, otherwise . (9)

The overall loss function is presented in Equation 9. Here the term Lbag(X) represents the conven-
tional loss of deep MIL models, Lbag(X) = CE(−→y ,−−→pbag). The coefficient λT is controlled by the
base parameter λ and the current training epoch T , increasing gradually as the training progresses
until it reaches a threshold epoch τ . By default, the base parameter λ is set to 0.1.

3.3 PROBABILITY-SPACE ATTENTION: TOWARDS SELECTION DRIFT

Probability-space attention applies attention mechanism on the probability space of instances, which
is the largest difference compared to traditional attenion-based pooling. Specifically, we introduce
the class prototypes Q (∈ Rd×k) to achieve the transformation of the representations from the feature
space to the probability space. Through real-time estimation based on the class prototypes Q (∈
Rd×k), PSMIL turns to select instances in the probability space, achieved by the following formula:

Hbag =

n∑
i=1

−→aiHi, where −→ai =
exp(P̃⊤

i
−→w )∑n

j=1 exp(P̃
⊤
j
−→w )

; P̃ = Ψ(H,Q) (10)

Here P̃ (∈ Rn×k) expresses a probability estimation matrix, which is obtained by computing the
similarity between the instance feature matrix H and the class prototype matrix Q, where Ψ ex-
presses the function of similarity estimation. In our implementation, we set P̃i = softmax(Hi

TQ).
The estimated probability of each instance further participates in attention-based pooling, as shown
in Equation 10. In addition, the probability estimation of each instance in P̃ is processed by the
argmax function, resulting in label estimation.

Based on the estimated label for each instance, we calculate the corresponding mean value to obtain
a new class prototype matrix Qnew. Specifically, the j-th column of Qnew is obtained by averaging
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the features of the corresponding instances in H with the label estimated as the j-th class. The class
prototype Q is then updated by a momentum-based strategy at each training step (t), formulated as

Qt+1 = Normalize((1− γ) ·Qt + γ ·Qnew), (11)

where γ is the hyper-parameter defaulting to 0.001 in our experiments.

Under the same condition in Equation 2, for the weights-transformation parameter −→w ∈ Rk, the
update rule in probability-space attention would be redefined as follows

−∇−→wL =

n∑
i=1

−→
ϕ

T
(−→zi −−−→zbag) · P̃i. (12)

Compared with Equation 2, Equation 12 shows that the weights-transformation parameter is updated
by the pattern of real-time probability estimation P̃ , instead of the real-time feature matrix H . From
the perspective of the key instance xi, when the inferred result −→zi is more consistent with the ground
truth −→y than the bag level result −−→zbag , the corresponding estimated probability P̃i will also be similar
to the ground truth −→y . According to Equation 12, the transformation parameter −→w is updated in the
positive direction close to the ground truth −→y , which ensures increasing the weight of corresponding
key instance xi. As an alternative, the probability-space pooling strategy is less susceptible to drastic
changes in feature space than the previous attention-based rule.

4 EXPERIMENTS AND ANALYSES

4.1 SIMULATED EXPERIMENTS TO EVALUATE INSTANCE REPRESENTATION QUALITY

In the context of multi-class multiple-instance learning, current benchmarks only consist of a few
simple bag-level evaluation datasets (Briggs et al., 2012; Settles et al., 2007). To evaluate the model’s
ability in representation learning, we first introduce more simulated datasets for comprehensive
evaluation.

Table 1: Statistics of synthesized datasets.

Dataset color #cls #ins-tr #ins-te #dims #bag-len #bags-per-cls #key-percentage(%)
FMNIST gray 10 60,000 10,000 28*28 64 12,00 7.8
SVHN RGB 10 73,257 26,032 3*28*28 64 14,59 7.8

CIFAR-10 RGB 10 50,000 10,000 3*32*32 64 10,00 7.8
CIFAR-100 RGB 100 50,000 10,000 3*32*32 64 100 7.8

We synthesize the multi-instance bag version based on four corresponding datasets, and the statistics
are shown in Table 1. These four datasets all belong to the domain of images, with the difficulty
of representation learning increasing sequentially from Fashion-MNIST (denoted as FMNIST) to
CIFAR-100 (Xiao et al., 2017; Netzer et al., 2011; Krizhevsky et al., 2009), and we use color, #cls,
#ins-tr, #ins-te, #dims, #bag-len, #bag-per-cls, #l-r, and key-percentage to denote the color mode,
number of classes, number of training instances,number of testing instances, dimension of instance,
bag length, bag counts per class, key instance percentage in a bag in each dataset, respectively. For
more detail about synthesized datasets, see Appendix A.3 .

4.2 INSTANCE REPRESENTATION QUALITY EVALUATION

Implementation Details. All the algorithms including PSMIL are implemented on a single Nvidia
RTX 4090 GPU. Training in multi-instance mode on complex data is generally time-consuming,
with a single epoch on CIFAR-100 possibly taking over 1.5 hours. We apply the stochastic gradient
descent (SGD) optimizer with a momentum of 0.9 and a weight decay of 0.0001. The initial learning
rate is chosen from a set of {0.01, 0.001} and is decayed by steps. On first epoch we freeze the
backbone as warming up to improve stability. The value of λ is selected from a set of {0.1, 0.01},
with the threshold epoch τ being 10.

Performance And Analyses. In Table 2, the difficulty of representation learning increases grad-
ually across four datasets, where a two-layer convolutional neural network(2-CNN) is used as the
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Table 2: Accuracies of instance-level image classification reported during 20 epochs.

Methods FMNIST SVHN CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
ABMIL (Ilse et al., 2018) 80.81 70.58 Deg Deg *69.98 *46.13
DEMIL (Tang et al., 2024) 80.48 64.39 Deg Deg *69.89 *44.82

TransMIL (Shao et al., 2021) 74.14 67.37 Deg Deg *55.76 *Deg
DTFDMIL (Zhang et al., 2022) 81.27 78.04 Deg Deg *69.82 *44.92

PSMIL 77.62 84.38 88.59 70.4 *83.66 *57.31

(a) FMNIST Eval (b) SVHN Eval (c) CIFAR-10 Eval (d) CIFAR-100 Eval

Figure 3: Evaluation on four simulated datasets during 20 training epochs.

feature extractor for FMNIST while ResNet18 is applied for the remaining datasets, and the best per-
formance is in bold. “Deg” denotes that the model degraded to random guessing when the feature
extractor is involved in training.

From Table 2, it is seen that PSMIL outperforms the compared methods on three more complex
datasets (SVHN, CIFAR-10 and CIFAR-100), which indicates that PSMIL is more effective for
complex datasets than ABMILs. Meanwhile, the results also demonstrate that most existing models
effectively learn discriminative instance features on relatively simple data inputs (FMNIST, SVHN).
Particularly on the FMNIST dataset, due to the regularity of the data styles and the simplicity of
the feature extractor, applying attention mechanisms in the feature space can also lead to excellent
performance. But ABMILs totally failed for complex datasets, like CIFAR-10 and CIFAR-100. The
performance at the level of random guessing and the high entropy of instance prediction probabilities
during training (an illustration shown in Figure 1) indicate that these models are not capable of
handling a general representation learning task.

Moreover, we implement extra experiments which insteads train models in a traditional manner
using pre-extracted features for two complex datasets (CIFAR-10 and CIFAR-100). Specifically, we
fix the parameters of the pre-trained feature extractor and train the pooling and classification parts
of the model. We present the performance marked with “*” in the last two columns of Table 2. In
this compromised learning approach, ABMILs demonstrate the ability to learn from fixed features
but still exhibit over a 11% accuracy gap compared with PSMIL on CIFAR-10 and CIFAR-100.

4.3 ABLATION STUDY & VISUALIZATION ON REPRESENTATION LEARNING IN MIL

To enhance the representation learning ability for complex data, our idea is to fully transfer ABMILs
to probability space. And we propose two strategies: a pooling strategy and an alignment objective
strategy.

The detailed ablation of two separate strategies on the existing models is shown in Table 3, where
the highest accuracy of each model is reported in 20 training epochs. In Table 3, PSAtt and PSAli
respectively denote the probability-space attention pooling and the incremental probability-space
alignment objective, and RL is an abbreviation for “representation learning”, indicating whether the
feature extractor is involved in training. The crossmark (x) on the option “RL” indicates that the
model fixes the feature extractor with pre-trained weights on ImageNet, leading to no involvement
of representation learning, and the results of ABMIL and DEMIL illustrate that such traditional
approach guarantees effective performance. However, when we unfreeze the feature extractor, AB-
MILs degrade and their results (ABMIL+ and DEMIL+) are “Deg”. Noticeably, by applying the
PSAli objective, the learning ability of ABMILs is reinvigorated, and an accuracy improvement of
between 7% and 17% is obtained compared to the original models, as shown as ABMIL++ and DE-
MIL++. Finally, by transferring the pooling strategy to probability space (PSAtt), PSMIL further
enhances the quality of instance representations and obtains higher accuracies. We demonstrate the
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impact of the value of λ, which controls the power of alignment objective. According to the ablation
experiments, in the complex data cases when the model may face a significant risk of degradation,
the impact of λ is significant. An appropriate parameter λ can enhance the stability and performance
of the model, preventing the model from failure. We recommend carefully tuning the alignment pa-
rameter λ on complex datasets. Additionally, the results of a supervised learning manner (ResNet18
(Sup.)) are given in the last row, which shows that our solution PSMIL achieves close supervised
learning, with accuracy less than 5%.

Table 3: Ablation results on two challenging datasets CIFAR-10 and CIFAR-100.

Datasets
Strategies

CIFAR-10 CIFAR-100
RL PSAli PSAtt Acc RL PSAli PSAtt Acc

ABMIL
DEMIL

X
X

69.98
69.89

X
X

46.13
44.82

ABMIL+
DEMIL+

✓
✓

Deg
Deg

✓
✓

Deg
Deg

ABMIL++ (λd)
DEMIL++ (λd)

✓
✓

✓
✓

80.81
76.65

✓
✓

✓
✓

63.72
62.13

λa : λT = 0
λb : λT = 0.01
λc : λT = 0.1
λd : λT = 0.01 ∗ T

✓
✓
✓
✓

✓
✓
✓

✓
✓
✓
✓

82.79
83.29
84.77
88.59

✓
✓
✓
✓

✓
✓
✓

✓
✓
✓
✓

64.14
64.22
66.74
70.4

ResNet18(Sup.) 92.14 71.29

(a) ABMIL(traditional) (b) ABMIL(RL) (c) ABMIL(RL+PSAli)

(d) PSMIL (e) ResNet18 (Sup.)

Figure 4: T-SNE visualization of the image representation on CIFAR-10.

In Figure 4, we further demonstrate the capability of representation learning under different condi-
tions of the ablation experiments. Figure 4(a) represents initial representation distribution provided
by pre-trained ResNet18, corresponding to the last second column in Table 2 where ABMIL takes
pre-extracted features as input without representation learning. Nonetheless, as shown in the ablation
experiment and Figure 4(b), we cannot simply involve the feature extractor in training, as the features
losing discriminative nature totally. Figure 4(c) demonstrates the enhancement of probability-space
alignment strategy in existing MIL models, where ABMIL ensures effective representation learning
for complex data through the constraint of probability-space alignment. Figure 4(d) provides the
clustering effect of our complete solution PSMIL, where we solve the MIL problem totally in prob-
ability space. Comparing Figure 4(b) with 4(d), we can see that PSMIL eliminates the feature drift
during representation learning, with the clustering effect of representations nearly reaching a fully
supervised level shown in Figure 4(e). See Appendix A.2 for more visualization results.

4.4 EVALUATION ON EXISTING BENCHMARKS AND LARGE-SCALE DATASETS

We validated that our model competitive under traditional datasets and conditions. In existing MIL
evaluation, many applications might not have on-the-shelf data augmentation methods. This in-
cludes datasets such as handcrafted simple benchmarks (Andrews et al., 2002; Dietterich et al., 1997)
and large-scale real-world CAMELYON16,TCGA Lung Cancer datasets(Bejnordi et al., 2017). For
implementation details see Appendix A.3.

9



Published as a conference paper at ICLR 2025

Table 4: Results on the small benchmark datasets( accuracy ± std-dev). All reimplemented.

Methods MUSK1 MUSK2 FOX TIGER ELEPHANT
ABMIL(2018) 0.916± 0.118 0.928± 0.109 0.952± 0.051 0.953± 0.042 0.969± 0.036

Dual-Stream MIL(2021) 0.959± 0.053 0.952± 0.066 0.939± 0.060 0.951± 0.053 0.989± 0.023
TransMIL(2021) 0.927± 0.093 0.877± 0.127 0.944± 0.050 0.963± 0.042 0.979± 0.0030
DEMIL(2024) 0.963± 0.073 0.961± 0.057 0.941± 0.047 0.965± 0.035 0.969± 0.034
RGMIL(2024) 0.968± 0.060 0.963± 0.048 0.954± 0.048 0.949± 0.047 0.965± 0.032

PSMIL 0.968± 0.053 0.966± 0.052 0.9420± 0.054 0.947± 0.047 0.985± 0.030

Table 5: Results on Large-scale Datasets. Statistics directly collected from Zhang et al.
(2022)(Fourkioti et al., 2023)

Method CAMELYON16 TCGA Lung Cancer

Multi-scale ACC(↑) AUC(↑) F1(↑) Multi-scale ACC(↑) AUC(↑)

ABMIL Single(20x) 0.845 0.854 0.780 Single(5x) 0.869 0.941
TransMIL Single(20x) 0.858 0.906 0.797 Single(5x) 0.883 0.949
DTFDMIL(AFS) Single(20x) 0.908 0.946 0.882 Single(5x) 0.891 0.951
DTFDMIL(MaxMinS) Single(20x) 0.899 0.941 0.865 Single(5x) 0.894 0.961
DSMIL Single(20x) 0.856 0.899 0.815 Single(5x) 0.888 0.939

CAMIL Single(20x) 0.910 0.953 0.872 Single(5x) 0.916 0.975
PSMIL Single(20x) 0.922 0.956 0.921 Single(5x) 0.938 0.986

Annotated DSMIL PSMIL Annotated DSMIL PSMIL

Figure 5: Patch-level Localization of two macro tumors in CAMELYON16

Note that in the traditional pipeline, the features are provided by preprocessing. Therefore, for
PSMIL, we did not apply an augmentation-based probability-space alignment strategy and only
introduced the probability-space attention pooling in all above datasets. Even though these data do
not involve complex representation learning our model still achieved SOTA-level performance on
the existing datasets as shown in Tabel 4,5. In Table 4 we adopted the untrimmed input data with
additional instance label, we also provided the trimmed version in Appendix A.3. And from Figure
5, our solution in probability space could effectively identify the tumor region among the whole slide
with significantly less noise than the feature space rule(see yellow boxes), with explicit reference
output for each instance(slide patch). For all implementation details, see Appendix A.3.

5 CONCLUSION

Multiple-instance Learning (MIL) originated in the machine learning era as pure classification, and
they typically follow the restriction of fixed or simplified inputs. In current deep MIL models, the
representation learning stage is often ignored. In this paper, we provide comprehensive experiments
to verify that current deep MIL models tend to learn drifted features in complex tasks, and thus they
are still restricted by the complexity of input data. As a countermeasure, we propose a novel network
called Probability-Space MIL network (PSMIL). Theoretical analysis and experiments show that we
can eliminate drift issues in the feature space by aligning and pooling the instances in the probability
space, thereby enhancing the representation learning capability of MIL models for complex tasks.
Experiments on public large-scale datasets have also demonstrated the effectiveness of addressing
multi-instance problems in the probability space.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

The codes have been uploaded to Github, and we also presented the important model weights/logs
we trained for validation.
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A.2 T-SNE VISUALIZATION OF THE IMAGE REPRESENTATION IN ALL BENCHMARKS

(a) ABMIL(traditional) (b) ABMIL (RL+PSAli) (c) PSMIL (d) ResNet18 (Sup.)

Figure 6: FMNIST representation-clustering visualization results.

(a) ABMIL(traditional) (b) ABMIL (RL+PSAli) (c) PSMIL (d) ResNet18 (Sup.)

Figure 7: SVHN representation-clustering visualization results.

(a) ABMIL(traditional) (b) ABMIL (RL+PSAli) (c) PSMIL (d) ResNet18 (Sup.)

Figure 8: CIFAR-10 representation-clustering visualization results.

(a) ABMIL(traditional) (b) ABMIL (RL+PSAli) (c) PSMIL (d) ResNet18 (Sup.)

Figure 9: CIFAR-100 representation-clustering visualization results.

As demonstrated below, transitioning the MIL solution entirely into the probability space presented
more positive impact on rather complex data.

A.3 DATASETS AND IMPLEMENTATION DETAILS

Detailed properties of 5 benchmark datasets used in Table 4:

DATASET MUSK1 MUSK2 Elephant Fox Tiger
dimension 167 167 231 231 231
# of bags 92 102 200 200 200

# of positive bags 47 39 100 100 100
# of instances 476 6598 1391 1320 1220
max bag size 40 1044 13 13 13
min bag size 2 1 2 2 1

In Table 4,the algorithms are all deep MIL models, which we re-implemented and ran using the same
evaluation codes, with replication results reported. In the implementation process, we introduced
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two fully connected layers (with ReLU activation function) for all deep MIL models to fine-tune the
original inputs.

We borrowed the publicly available evaluation code of RGMIL on Github to re-implement all the
methods listed in Table 4 . To be clear, this evaluation code uses untrimmed raw input data, where
each instance has an additional feature dimension that includes the instance label. A more common
implementation of the evaluation may trim off the instance label from the features. As a result, all
methods perform relatively better to different degree in Table 4 than implemented in the trimmed
inputs. Generally, considering that the mining of these instance label features is still meaningful,
the performance comparison we presented here is similar to the trimmed input version, and this
implementation version is also supplemented in our Github repo. Metrics see Table below.

Table 6: Performance comparison provided by Kazeminia et al. (2023) under trimmed input version.

Method MUSK1 MUSK2 FOX TIGER ELEPHANT

ABMIL 0.892±0.040 0.858±0.048 0.615±0.043 0.839±0.022 0.868±0.022
Gated-ABMIL 0.900±0.050 0.863±0.042 0.603±0.029 0.845±0.018 0.857±0.027
DPMIL 0.907±0.036 0.926±0.043 0.655±0.052 0.897±0.028 0.894±0.030
DSMIL 0.932±0.023 0.930±0.020 0.729±0.018 0.869±0.008 0.925±0.007
BDRMIL 0.926±0.079 0.905±0.092 0.629±0.110 0.869±0.066 0.908±0.054
RGMIL 0.940±0.070 0.920±0.106 0.714±0.107 0.842±0.088 0.915±0.042

TR-RGMIL 0.946±0.078 0.970±0.042 0.747±0.054 0.961±0.040 0.941±0.054
PSMIL 0.962±0.065 0.964±0.057 0.734±0.136 0.884±0.061 0.918±0.052

In the new synthesized datasets, training set instances are reorganized into the form of multi-instance
bags for training. Instances with class label 0 serve as background instances, randomly sampled
within each multi-instance bag as non-key instances. Each multi-instance bag has a fixed length of
64, with 5 being key instances, accounting for 7.8%. The number of categories of bags generated
are the same as the number of classes in each original dataset. For example, in CIFAR-100, a bag
labeled 78 contains 5 image instances labeled as 78 (maple-tree images), with the remaining 59
non-key instances sampled from instances with label 0. Key instances are not subject to resampling
randomly, meaning the same non-zero image will not appear in different bags. During testing,
we directly evaluate instance representation quality based on the classification accuracy of single
instance images from the original CIFAR test set. To avoid overfitting, we set the bags to be relatively
many, with the minimum number of bags per class being 100.

CAMELYON16 is a significant publicly available Whole Slide Image (WSI) dataset for lymph node
classification and metastasis detection. It includes 270 training and 129 test slides from two medical
centers, all meticulously annotated by pathologists. The TCGA Lung Cancer dataset comprises two
non-small cell lung cancer subtypes, LUAD and LUSC, with 1053 slides, including 512 LUSC and
541 LUAD. 10 low-quality LUAD slides are discarded. Unlike CAMELYON16, it lacks patch level
annotations and independent test set.

In our experiment, we followed a standard evaluation scheme ”5-fold-cv-standalone-test” by DSMIL
with as shown in the logs in supplementary detail and codes on Github. Specifically, for the above
two medical tasks, in each fold, the best model and corresponding threshold are saved. After the 5-
fold cross-validation, 5 best models are obtained which are used to perform inference on the unseen
test set. A final prediction for a test sample is the majority vote of the 5 models.

A.4 DERIVATION OF PROPOSITION 1.

We provide the derivation of the Proposition 1, which explains how real-time instance predictions
and bag predictions impact the optimization process of −→w .

Forward propagation Process: For a single bag with n instances, −→y denotes its one-hot encoded
label, Y denotes its ground-truth bag label(scalar), Y denotes any other label in [0, k− 1] except for
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Y , using the notations from the primary text:
−→a = softmax(H−→w );

Hbag = HT−→a ;

−−→zbag = CHbag +
−→
b ; (similar notation for instance i:−→zi = CHi +

−→
b )

−−→pbag = softmax(−−→zbag) (similar notation for instance i:−→pi = softmax(−→zi ))
L = −−→y T log softmax(−−→zbag) (Negative Log-Likelihood Loss)

(13)

we have the following simplification process:

L = −−→y T log softmax(−−→zbag)

= −−→y T log
exp(−−→zbag)

1T exp(−−→zbag)
= −−→y T [log(exp(−−→zbag))− 1 log(1T exp(−−→zbag))]
= −−→y T−−→zbag + log(1T exp(−−→zbag))

(14)

Where 1 denotes a vector of ones, log represents the natural logarithm, softmax(−→r ) = exp(−→r )
1T exp(−→r )

,
and exp(−→r ) denotes the element-wise exponentiation. According to the the differentiation rules of
matrix operations, element-wise functions ⊙, and other related methodologies. We have:

dL = −−→y T d−−→zbag +
1T (exp(−−→zbag)⊙ d(−−→zbag))

1T exp(−−→zbag)

= −−→y T d−−→zbag +
exp(−−→zbag)T d(−−→zbag)

1T exp(−−→zbag)
= −−→y T d−−→zbag + softmax(−−→zbag)T d−−→zbag
= (softmax(−−→zbag)T −−→y T )d−−→zbag
= (−−→pbag −−→y )T d−−→zbag.

(15)

In the aforementioned derivation process, a number of simplifying techniques are employed, e.g.,
the differential of constant is zero. Then based on the differentiation rules we have,

dL = (−−→pbag −−→y )T d(CHbag +
−→
b )

= (−−→pbag −−→y )T d(CHbag)

= (−−→pbag −−→y )TCd(Hbag)

= (−−→pbag −−→y )TCd(HT−→a )

= (−−→pbag −−→y )TCHT d−→a
= (−−→pbag −−→y )TCHT d(softmax(H−→w ))

= (−−→pbag −−→y )TCHTJd(H−→w )

= (−−→pbag −−→y )TCHTJHd−→w

(16)

Where J ∈ Rn×n is the Jacobian matrix of −→a with respect to H−→w , and it follows the following
computation rules:

Ji,j =

{
ai(1− aj) if i = j

−ajai if i ̸= j.
(17)

Considering the relationship between derivatives and differentials df = ∂f
∂−→x

T
d−→x , where f repre-

sents a scalar function, and −→x is a column vector. we have,
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∇−→wL = [(−−→pbag −−→y )TCHTJH]T

= HTJTHCT (−−→pbag −−→y ).
(18)

As a consequence of the previous results, we have,

−∇−→wL = HTJTHCT (−→y −−−→pbag). (19)

We express JTHCT (−→y −−−→pbag) as
−→
β ∈ Rn. Thus, we have,

−∇−→wL = HT−→β

=

n∑
i=1

βi ·Hi

=

n∑
i=1

[JTHCT (−→y −−−→pbag)]i ·Hi.

(20)

It is clearly that HCT (−→y −−−→pbag) ∈ Rt, then we have,

−∇−→wL =

t∑
i=1

(JT )iHCT (−→y −−−→pbag) ·Hi. (21)

To further simplify the above negative gradient formula, we first expand (JT )i based formula (14),

(JT )i = [J1i, J2i, ..., Jii, ..., Jni]

= [−aia1,−aia2, ..., ai(1− ai), ...,−aian]

= −ai[a1, a2, ..., ai − 1, ..., an]

= −ai[a1, a2, ..., ai, ..., an] + [0, 0, ..., ai, ..., 0]

= −ai
−→a T + [0, 0, ..., ai, ..., 0]. (The only non-zero element at index i is ai)

(22)

Considering that the computational formulas for instance logits −→zi and bag-level logits −−→zbag , we
have,
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−∇−→wL =

n∑
i=1

[(JT )iHCT ](−→y −−−→pbag) ·Hi

=

n∑
i=1

[(−ai
−→a T + [0, 0, ..., ai, ..., 0])HCT ](−→y −−−→pbag) ·Hi

=

n∑
i=1

[−ai
−→a THCT + [0, 0, ..., ai, ..., 0]HCT ](−→y −−−→pbag) ·Hi

=

n∑
i=1

[−ai
−→a THCT + aiHiC

T ](−→y −−−→pbag) ·Hi

=

n∑
i=1

[−ai(
−−→zbag −

−→
b )T + ai(

−→zi −
−→
b )T ](−→y −−−→pbag) ·Hi

=

n∑
i=1

ai[(
−→
b −−−→zbag)T + (−→zi −

−→
b )T ](−→y −−−→pbag) ·Hi

=

n∑
i=1

ai(
−→zi T −−−→zbagT )(−→y −−−→pbag) ·Hi

=

n∑
i=1

ai(
−→y −−−→pbag)(

−→zi T −−−→zbagT ) ·Hi

=

n∑
i=1

−→
ϕ T (−→zi −−−→zbag) ·Hi, where

−→
ϕ = ai(

−→y −−−→pbag)

(23)

Considering that −→y is a one-hot encoded hard label and −→p is a distribution, we can easily verify that
−→
ϕ satisfies the constraint:

∑k
j=1

−→
ϕj = 0;

−→
ϕY > 0;

−→
ϕY < 0;

−→
ϕ ∈ Rk .
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