
NetHack is Hard to Hack

Anonymous Author(s)
Affiliation
Address
email

Abstract

Neural policy learning methods have achieved remarkable results in various control1

problems, ranging from Atari games to simulated locomotion. However, these2

methods struggle in long-horizon tasks, especially in open-ended environments with3

multi-modal observations, such as the popular dungeon-crawler game, NetHack.4

Intriguingly, the NeurIPS 2021 NetHack Challenge revealed that symbolic agents5

outperformed neural approaches by over four times in median game score. In6

this paper, we delve into the reasons behind this performance gap and present7

an extensive study on neural policy learning for NetHack. To conduct this study,8

we analyze the winning symbolic agent, extending its codebase to track internal9

strategy selection in order to generate one of the largest available demonstration10

datasets. Utilizing this dataset, we examine (i) the advantages of an action hierarchy;11

(ii) enhancements in neural architecture; and (iii) the integration of reinforcement12

learning with imitation learning. Our investigations produce a state-of-the-art neural13

agent that surpasses previous fully neural policies by 127% in offline settings and14

25% in online settings on median game score. However, we also demonstrate that15

mere scaling is insufficient to bridge the performance gap with the best symbolic16

models or even the top human players.17

1 Introduction18

Reinforcement Learning (RL) combined with deep neural policies has achieved impressive results in19

control problems, such as short-horizon simulated locomotion tasks [54, 7]. However, these methods20

struggle in long-horizon problem domains, such as NetHack [33], a highly challenging grid-world21

game. NetHack poses difficulties due to its vast state and action space, multi-modal observation space22

(including vision and language), procedurally-generated randomness, diverse strategies, and deferred23

rewards. These challenges are evident in the recent NetHack Challenge [23], where agents based on24

hand-crafted symbolic rules outperform purely neural approaches (see Figure 1), despite the latter25

having access to high-quality human demonstration data [24] and utilizing large-scale models.26

We propose three reasons for the poor performance of large-scale neural policies compared to symbolic27

strategies. First, symbolic strategies implement hierarchical control schemes, which are generally28

absent in neural policies used for NetHack. Second, symbolic models use hand-crafted parsers for29

multi-modal observations, suggesting that larger networks could enhance representations extracted30

from complex observations. Third, symbolic strategies incorporate error correction mechanisms,31

which could be crucial for improving neural policies if integrated with RL-based error correction.32

In this work, we conduct a comprehensive study of NetHack and examine various learning mecha-33

nisms to enhance the performance of neural models. We bypass traditional RL obstacles, such as34

sparse rewards or exploration challenges, by focusing on imitation learning. However, we find that35

existing datasets lack crucial information, such as hierarchical labels and symbolic planning traces.36

To address this, we augment the codebase of AutoAscend, the top-performing symbolic agent in37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Figure 1: Left: The per-step observation for NetHack agents consists of an ego-centric pixel image
(blue) and two text fields containing in-game messages (green) and statistics (pink). Right: Selected
results from the NeurIPS 2021 NetHack Challenge (NHC) [23] showing game score on a log-scale.
Neural baseline models (grey) trained with behavioral cloning (BC) on human data perform poorly,
but are somewhat improved when fine-tuned with RL. We find that the introduction of hierarchy
and changes in model architecture yield significant improvements (light/dark blue), resulting in
state-of-the-art performance for a neural model. However all neural approaches are significantly
worse than AutoAscend, a hand-crafted symbolic policy. Our paper explores this performance gap.

the 2021 NetHack Challenge, and extract hierarchical labels tracking the agent’s internal strategy38

selection in order to construct a large-scale dataset containing 109 actions.39

Using this dataset, we train a range of deep neural policies and investigate: (a) the advantages of40

hierarchy; (b) model architecture and capacity; and (c) fine-tuning with reinforcement learning. Our41

main findings are as follows:42

• Hierarchical behavioral cloning (HBC) significantly outperforms BC and baseline methods,43

provided that the model has adequate capacity.44

• Large Transformer models exhibit considerable improvements over baselines and other45

architectures, such as LSTMs. However, the power-law’s shallow slope indicates that scaling46

alone will not suffice to solve the game.47

• Online fine-tuning with RL further enhances performance, with hierarchy proving beneficial48

for exploration.49

• The combined effects of hierarchy, scale, and RL lead to state-of-the-art performance,50

narrowing the gap with AutoAscend but not eliminating it.51

Additionally, we open-source our code, models, and the HiHack repository, which includes (i) our52

109 dataset of hierarchical labels obtained from AutoAscend and (ii) the augmented AutoAscend53

and NLE code employed for hierarchical data generation, encouraging further development.54

2 Related Work55

Our work builds upon previous studies in the NetHack environment, imitation learning, hierarchical56

learning, and the use of transformers as policies. In this section, we briefly discuss the most relevant57

works.58

NetHack Following the introduction of the NetHack Learning Environment (NLE) [33], the59

NetHack Challenge (NHC) competition [23] enabled comparisons between a range of different60

agents. The best performing open-source symbolic and neural agents were AutoAscend and61

Chaotic-Dwarven-GPT-5 (CDGPT5), respectively, and we base our investigations on them, as62

well as on the NetHack Learning Dataset [24] dataset.63

Several notable works make use of the NetHack environment: Zhong et al. [60] show how a dynamics64

model can be learned from the Nethack text messages and leveraged to improve performance. On65

account of their utility, we also encode the in-game message but instead use a model-free policy to66

2



pick actions. Bruce et al. [9] show how a monotonic progress function in NetHack can be learned67

from human play data and then combined with RL reward to solve long-range tasks in the game. This68

represents a complementary way of employing NetHack demonstration data without direct action69

imitation.70

Imitation Learning Pomerleau [46] demonstrated the potential of driving an autonomous vehicle71

using offline data and a neural network, which has since become an ongoing research topic for72

scalable behavior learning [3, 6, 49]. These approaches can be categorized into two main classes:73

Offline RL [21, 31, 32, 57, 35, 20], which focuses on learning from mixed-quality datasets with74

reward labels; and Imitation Learning [41, 43, 44, 26], which emphasizes learning behavior from75

expert datasets without reward labels. Our work primarily belongs to the latter category as it employs76

a behavior cloning model. Behavior cloning, a form of imitation learning, aims to model the expert’s77

actions given the observation and is frequently used in real-world applications [59, 61, 59, 47, 18, 58].78

Since behavior cloning algorithms typically address a fully supervised learning problem, they are79

often faster and simpler than reinforcement learning or offline RL algorithms while still yielding80

competitive results [20, 22]. A novel aspect of our work is the use of hierarchy in conjunction with81

behavioral cloning, i.e. supervision at multiple levels of abstraction, a topic which has received82

relatively little attention. Recent efforts to combine large language models with embodied agents83

use the former to issue a high-level text "action" to the low-level motor policy. Approaches such as84

Abramson et al. [1] have shown the effectiveness of hierarchical BC for complex tasks in a simulated85

playroom settings.86

Hierarchical Policy Learning Hierarchical Reinforcement Learning (HRL) based techniques [5, 4]87

have sought to address complex and long-horizon tasks via temporal abstraction across hierarchies,88

as demonstrated by Levy et al. [36] and Nachum et al. [39][40]. Similarly, numerous studies have89

concentrated on showing that primitives [17, 53, 52] can be beneficial for control. These concepts90

have been combined in works such as Stochastic Neural Networks by Florensa et al. [19], where91

skills are acquired during pretraining to tackle diverse complex tasks. Likewise, Andreas et al. [2]92

learn modular sub-policies for solving temporally extended tasks. However, most prior work focus93

on learning both levels of the hierarchy which makes training complex and correspondingly the94

resulting approaches have had limited success on more challenging tasks and environments. Le et al.95

[34] explores the interaction between hierarchical learning and imitation and find benefits albeit in96

goal-conditioned settings. In contrast, our work uses a fixed hierarchy, chosen by the domain-expert97

designer of AutoAscend, which simplifies our study of overall learning mechanisms for NetHack.98

Transformers for RL The remarkable success of transformer models [56] in natural language99

processing [15, 8] and computer vision [16] has spurred significant interest in employing them for100

learning behavior and control. In this context, [11, 28] apply transformers to Reinforcement Learning101

and Offline Reinforcement Learning, respectively, while [12, 14, 37] utilize them for imitation102

learning. Both [14, 37] primarily use transformers to summarize historical visual context, whereas103

[12] focuses on their long-term extrapolation capabilities. More recent work have explored the use104

of multi-modal transformers [27] to fit large amounts of demonstration data [48, 51, 55]. To enable105

transformers to take in larger token sizes, recurrent transformer models have been proposed [13, 10].106

Our work draws inspiration from these use cases, employing a transformer to consolidate historical107

context and harness its generative abilities.108

3 Data Generation: Creating the HiHack Dataset109

3.1 Extending the NetHack Learning Environment110

The NetHack Learning Environment (NLE) is a gym environment wrapping the NetHack game. Like111

the game itself, the action and state spaces of NLE are complex, consisting of 121 distinct actions112

and ten distinct observation components. The full observation space of NLE is far richer and more113

informed than the view afforded to human players of NetHack, who observe only the more ambiguous114

“text-based” components of NLE observations, denoted as tty_chars, tty_colors, and tty_cursor. This115

text-based view corresponds also to the default format in which both NetHack and NLE gameplay is116

recorded, loaded, and streamed via the C-based ttyrec library native to the NetHack game.117

3



The popular NetHack Learning Dataset (NLD) offers two large-scale corpuses of NetHack game-118

play data, NLD-AA, consisting of action-labeled demonstrations from AutoAscend, and NLD-NAO,119

consisting of unlabeled human player data [24]. NLD adopts the convention of recording only120

tty∗ components of NLE observations as a basis for learning, hence benefiting from the significant121

speedups in data operations offered via integration with the ttyrec library. We adhere to this122

convention with the hierarchical HiHack dataset introduced in this paper. Thus, in order to generate123

our dataset, we extend the ttyrec library to store hierarchical strategy or goal labels alongside action124

labels. We further integrate this extension of ttyrec with NLE, modifying the gym environment125

to accept an additional hierarchical label at each step of interaction. This input hierarchical label126

does not affect the underlying state of the environment, and is instead employed strictly to enable the127

recording of hierarchically-informed NetHack game-play to the ttyrec data format.128

3.2 AutoAscend: A Hierarchical Symbolic Agent129

An inspection of the fully open-source code base underlying the AutoAscend, publicly released in the130

proceedings of the NeurIPS 2021 NetHack Challenge competitions, reveals the internal structure of131

the bot to be composed of a directed acyclic graph of explicitly defined strategies, which are switched132

between by the bot’s underlying global controller in an imperative manner via sets of strategy-133

specific predicates, as visualised in Figure 2. Among these strategies are hand-engineered routines134

for accomplishing a broad range of goals crucial to effective survival in the game and successful135

descent through the NetHack dungeons. These include routines for fighting off arbitrary monsters,136

selecting food that is safe to eat from an agent’s inventory, and efficiently exploring the dungeon while137

gathering and identifying valuable items, among many others. The various strategies are supported in138

turn by shared sub-strategies for accomplishing simpler “sub-goals” (see supplemental material for139

the full graph).140

We exploit this explicit hierarchical structure in the generation of HiHack, extending the AutoAscend141

codebase to enable per-step logging of the strategy responsible for yielding each action executed142

by the bot throughout environment interaction, as supported by our modifications to the C-based143

ttyrec writer library and NLE.144

Figure 2: A diagrammatic visualization of the internal structure of AutoAscend. The bot is composed
of eleven goal-directed, high-level strategies. The “global controller” underlying AutoAscend
employs a complex predicate-based control flow scheme to determine which strategy to query for an
action on a per-timestep basis [23].

3.3 The HiHack Dataset145

Our goal in generating the HiHack Dataset (HiHack) is to create a hierarchically-informed analogue146

of the large-scale AutoAscend demonstration corpus of NLD, NLD-AA. Thus, as previously alluded147

to, HiHack is composed of demonstrations recorded in an extended version of the ttyrec format,148

consisting of sequences of tty∗ observations of the game state accompanied by AutoAscend action149

and strategy labels. HiHack contains a total of 3 billion recorded game transitions, reflecting more150

than a hundred thousand AutoAscend games. Each game corresponds to a unique, procedurally-151

generated “seed” of the NetHack environment, with AutoAscend playing as one of thirteen possible152

character “starting roles” across a unique layout of dungeons.153

4



We verify that the high-level game statistics of HiHack match those of NLD-AA in Table 1. Indeed,154

we find a high degree of correspondence across mean and median episode score, total number of155

transitions, and total number of game turns. We attribute the very slightly diminished mean scores,156

game transitions, and turns associated with HiHack to a difference in the underlying versions of NLE157

employed in the generation of HiHack and NLD-AA, with the former generated via the NLE v0.9.0.158

Table 1: A comparison of dataset statistics between NLD-AA [23] and our generated HiHack, produced
by running AutoAscend in NLE v0.9.0.

NLD-AA HiHack

Total Episodes 109,545 109,907
Total Transitions 3,481,605,009 3,244,729,367
Mean Episode Score 10,105 8,166
Median Episode Score 5,422 5,147
Median Episode Game Transitions 28,181 27,496
Median Episode Game Turns 20,414 19,991
Hierarchical Labels ✗ ✓

4 Hierarchical Behavioral Cloning159

Our first set of experiments leverage the hierarchical strategy labels recorded in HiHack for offline160

learning with neural policies, via Hierarchical Behavior Cloning (HBC).161

Method Mimicking the imperative hierarchical structure of AutoAscend, we introduce a bilevel162

hierarchical decoding module over a popular NetHack neural policy architecture, namely the163

ChaoticDwarvenGPT5 (CDGPT5) model. This model achieved 3rd place in the neural competi-164

tion of the NeurIPS 2021 NetHack Challenge when trained from scratch with RL, making it the165

top-performing open-source neural model for NetHack [23].166

The CDGPT5 model consists of three separate encoders: a 2-D convolutional encoder for pixel-167

rendered visual observations of the dungeon ot, a multilayer perceptron (MLP) encoder for the168

environment message mt, and a 1-D convolutional encoder for the bottom-line agent statistics bt.169

These three observation portions are extracted from the tty∗ NLE observations of HiHack. The core170

module of the network is an LSTM, which is employed to produce a recurrent encoding of an agent’s171

full in-game trajectory across what may be hundreds of thousands of keypresses, both in training and172

at test-time. The core module also receives a one-hot encoding of the action at−1 executed at the173

previous time-step as input.174

Our hierarchically-extended version of this LSTM-based policy is shown in Figure 3(left). We replace175

the linear decoder used to decode the LSTM hidden state into a corresponding action label in the176

CDGPT5 model with a hierarchical decoder consisting of (i) a single “high level” MLP, responsible177

for predicting the strategy label gt, given the environment observation tuple {mt, ot, bt}, and (ii) a178

set of “low level ” MLPs, one for each of the discrete strategies in the AutoAscend hierarchy (see179

Figure 2), with a SoftMax output over discrete actions. The strategy prediction gt selects which of180

these low-level MLPs to use.181

We employ a simple cross-entropy loss to train both the baseline non-hierarchical LSTM CDGPT5182

policy, as well as our Hierarchical LSTM policy, aggregating gradients across the bilevel decoders of183

the latter via the Gumbel-Softmax reparameterization trick.184

Training and evaluation details We train all policies on a single GPU for 48 hours with the full185

3.2B HiHack dataset. As with all offline experiments in the paper, a total of 6 seeds are used to186

randomize dataloading and the neural policy parameter initialization. We employ mean and median187

NLE score on withheld instances of NLE (n = 1024) as our central metrics for evaluating and188

comparing model performance at the conclusion of training, following the convention introduced in189

the NetHack Challenge competition [23]. Reported performance is aggregated over random seeds.190

Further details of architectures as well as training and evaluation procedures can be found in the191

supplemental material.192

5



Figure 3: Left: Hierarchical LSTM-based policy model for behavioral cloning, where gt is the
high-level strategy prediction (purple) that is used to select over the k low-level policies (yellow).
Figure 1 shows the input observations. Right: Mean score for baseline LSTM model [23] (grey), our
hierarchical model (blue) at the conclusion of training. The addition of hierarchy labels provides a
significant performance gain, not matched by a model capacity-matched version of the baseline (dark
grey). All mean NLE scores are computed over large-scale evaluations run over 6 model seeds.

Results We find that the introduction of hierarchy results in a significant improvement to the193

test-time performance of LSTM policies trained with behavioral cloning, yielding a 40% gain over194

the baseline in mean NLE score as shown in Figure 3(right), and 50% improvement in median score195

across seeds as shown in Table 2. Additionally, to verify that this improvement in performance is196

indeed due to hierarchy and not simply a result of the increased parameter count of the hierarchical197

LSTM policy, we run ablation experiments with a modified, large-decoder version of the baseline198

(non-hierarchical) policy architecture. The results, shown in Figure 3(right), show that increasing the199

size of the LSTM decoder, without the introduction of a hierarchy, does not result in any performance200

improvements over the baseline.201

5 Architecture and Data Scaling202

Despite the benefits of introducing hierarchical labels, the performance remains significantly behind203

the symbolic policy used to generate the HiHack demonstrations in the first place, AutoAscend.204

This finding prompts us to explore scaling – perhaps increasing the data and/or model capacity data205

may close this performance gap.206

Method To test this new hypothesis, we conduct a two-pronged investigation: (i) to explore model207

capacity, we develop a novel base policy architecture for NetHack that introduces a Transfomer208

module into the previous CDGPT5-based architecture; and (ii) for data scaling, we run a second set209

of “scaling-law” [29] experiments that use subsets of the HiHack dataset to quantify the relationship210

between dataset size and the test-time performance of BC policies.211

Our novel base policy architecture is visualized in Figure 4 (left). This features two copies of the212

observation encoders employed in CDGPT5. One set is kept frozen and employed strictly to yield a213

recurrent encoding of the complete NetHack trajectory up to the current observation step t via a pre-214

trained frozen LSTM, while the second is kept “unlocked” and is employed to provide embeddings of215

NetHack observations directly to a causal Transformer, which receives a shorter, fixed context length216

during training.217

Training and evaluation details The training and evaluation procedures employed in here echo218

those of section 4. In our data-scaling experiments, the subset of sampled HiHack games employed219

in offline training is also randomized over model seeds. The causal Transformer component of our220

Transformer-LSTM models is trained with the same fixed, context-length window, c = 64. The size221

6



Figure 4: Left: Transformer-based architecture (non-hierarchical version). The LSTM encoder (grey)
is used to provide a long temporal context ht to the Transformer. Right: The Transformer model
outperforms LSTM-based models with & without hierarchy (see Section 4 and [23] respectively).

of this content length window was selected via a set of hyperparameter tuning experiments, delineated222

in Appendix D.223

Results The architecture experiments in Figure 4(right) show that both the non-hierarchical and224

hierarchical variants of our combined transformer-LSTM policy architecture yield gains eclipsing225

those granted solely by the introduction of hierarchy in the offline learning setting. Probing further,226

in Figure 5(left), we compare the performance of two variants of our Transformer-LSTM model, one227

with 3 layers (50.8M parameters) and another with 6 layers (98.9M parameters). The larger model228

can be seen to perform worse than the smaller one due to over-fitting. This suggests that scaling of229

model capacity alone will not be sufficient to close the neural-symbolic gap.230

In Figure 5(right), we now explore the effect of training set size on mean NLE test score. We perform231

BC training for the LSTM baseline [23] and our largest 6 layer Transformer-LSTM model (98.9M232

params) for 101 up to 105 games, subsampled from the HiHack dataset. For both architectures,233

we observe a sub log-linear dependence on training set size, asymptoting at a mean score of234

approximately 1000. Thus, brute force scaling of the dataset alone cannot viably close the gap to235

symbolic methods (score of 8500).236

Though our architecture and data scaling experiments are compute-time constrained, we find the237

test-time performance of all tested models to saturate on the given computational budget. Full training238

curves are included in the supplementary materials.239

6 Combining Imitation with Reinforcement Learning240

Given that hierarchy and scaling are insufficient to bridge the performance gap with AutoAscend,241

we now explore the impact of an online learning using reinforcement learning.242

Method In this set of experiments, we build on results from the “Dungeons and Data: A Large-Scale243

NetHack Dataset” paper [24], which showed that behavioral cloning coupled with reinforcement244

learning is superior to RL training from scratch. As in Hambro et al. [24], we employ the asynchronous245

moolib distributed-RL library to train our models with a combination of BC and asynchronous246

proximal policy optimization (APPO) [38, 45, 50]. At each time-step of training, the overall loss is247

a weighted combination of BC and RL losses, i.e. the cross-entropy loss of a batch of demonstrations248

from HiHack plus an RL loss over a batch of rollouts of the current policy in NLE. For hierarchical249

models, we only use RL to update the low-level strategies; that is the strategy selection policy is250

trained with BC alone and not updated with RL.251

Training and evaluation details Our high-level training procedure here mirrors that of our hier-252

archical behavioral cloning experiments: we evaluate model performance under the constraint of253

7



Figure 5: Left: Model capacity versus mean score for our Transformer-LSTM model. The larger
model performs worse. Right: Dataset scaling experiments showing diminishing returns as the
number of training games reaches 105. Collectively these two plots show that scaling of data and
model size is not sufficient, in of themselves, to close the performance gap to symbolic models.

Table 2: [V4] Evaluating the impact of hierarchical labels and architectural improvement on the
performance of policies trained both with behavioral cloning, as well as with combined behavioral
cloning and asynchronchronous proximal policy optimization. All policies were trained for 48 hours
on a single GPU. Metrics annotated with (†) were computed only for the top-performing neural policy
seed (out of 6) across each model class.

Score Dlvl (†) Turns (†)

Hierarchy Mean Median Mean Mean Median

BC LSTM [23] ✗ 658 ± 41 403 1.11 ± 0.01 5351 ± 76 4111
BC LSTM ✓ 931 ± 42 614 1.09 ± 0.01 6983 ± 84 5981
BC Transformer-LSTM ✗ 1318 ± 38 914 1.36 ± 0.01 6088 ± 75 5121
BC Transformer-LSTM ✓ 1151 ± 43 731 1.26 ± 0.01 7568 ± 99 6242

APPO + BC LSTM [23] ✗ 1204 ± 138 779 1.07 ± 0.01 8712 ± 112 7376
APPO + BC LSTM ✓ 1551 ± 73 972 1.09 ± 0.01 11435 ± 134 9849
APPO + BC Transformer-LSTM ✗ 1326 ± 28 887 1.25 ± 0.01 7924 ± 99 6788
APPO + BC Transformer-LSTM ✓ 1346 ± 16 894 1.32 ± 0.01 7874 ± 101 6769

Symbolic AutoAscend ✓ 8556 ± 187 4918 3.10 ± 0.04 19586 ± 171 19710

computation time, training all policies for exactly 48 hours on a single A100 GPU, using 6 different254

seeds to randomize data loading and environment seeding only. All policies belonging to the same255

model class are initialized from a single checkpoint pre-trained with BC alone via the procedure256

delineated in section 4. The pre-trained checkpoints used for initialization are selected on the basis of257

test-time performance, with the median checkpoint employed in each set of experiments.258

Results Table 2 summarizes the performance of all our models and a number of observations259

can be made: (a) RL fine-tuning offers clear and significant performance boost to all models, with260

gains in the test-time mean NLE score associated with all model classes; (b) the best performing261

approach is APPO + BC using the hierarchical LSTM model. The mean score of 1551 represents a262

new state-of-the-art for neural policies on NLE, beating the previous best result by 48% in mean NLE263

score and 25% in median NLE score; (c) the Transformer-LSTM models, being slower to train than264

LSTM models, perform worse due to the fixed training time budget imposed; (d) other metrics, such265

as dungeon level reached and the lifetime of the agent (in game turns) show a broadly similar pattern266

to the mean score metric (used in NHC [23]) and (e) for BC, hierarchy seems to hurt performance for267

the larger Transformer-RL models but this gap is closed once APPO fine-tuning is used.268

In NetHack, the player can choose from 13 distinct roles (barbarian, monk, wizard, etc.), each of269

which require distinctive play-styles. In NLE, starting roles are randomized, by default. Figure 6270

shows a score distribution breakdown across role for different neural policy classes, trained with271

8



Figure 6: Aggregate NLE score breakdown versus player role. Our model refinements (hierarchy,
Transformer, RL fine-tuning) show gains over the LSTM-based CDGPT5 baseline [23] across all roles.
As in Table 2, we employ (†) to confer that these score distributions were computed only for the
top-performing neural policy seed (out of 6) across each model class.

BC and APPO+BC. In general, we observe that fine-tuning with RL improves the error-correction272

capability of models of all classes over their purely offline counterparts.273

7 Conclusion and Discussion274

In this work, we have developed a new technique for training NetHack agents that improves upon prior275

state-of-the-art neural models by 25%. We achieve this by first creating a new dataset called HiHack276

by accessing the best symbolic agent for NetHack. This dataset, combined with new architectures,277

allows us to build the strongest neural agent for NetHack currently available, to the best of our278

knowledge. More importantly, we analyze several directions to improve performance, including the279

importance of hierarchy, the role of large transformer models, and the boosts that RL could provide.280

Our findings are multifaceted and provide valuable insights for future progress in training neural281

agents in open-ended environments and potentially bridging the gap to symbolic methods.282

• Hierarchy improves underfitting models. Prior LSTM based models severely underfit on283

NetHack. Adding hierarchical goal-directed strategy labels improves such models.284

• Hierarchy hurts overfitting models. Transformer based models are able to overfit, even on our285

large HiHack dataset. Consequently, hierarchy hurts this class of models at test-time, with286

any gains resultant from the separation of demonstration data across separate goal-directed287

modes of behavior eclipsed by bilevel error accumulation.288

• Reinforcement learning provides larger improvements on underfitting models. We ob-289

tain only minor improvements with using RL on our overfit Transformer models. How-290

ever, the underfit LSTM models enjoy significant gains with RL, ultimately outperforming291

Transformer-based models.292

• Scale alone is not enough. Our studies on increasing both model and dataset size (Figure 5)293

show sub-log-linear scaling laws. The shallow slope of the data “scaling laws” we observe294

indicates that successful imitation learning for NetHack will require more than just scaling295

up demonstrations.296

Possible avenues for future exploration include: (a) methods for increasing the Transformer context297

length to give the agent a longer memory to aid exploration; (b) addressing the multi-modal nature298

of the demonstration data (i.e. quite different trajectories can lead to the same reward), which is a299

potential confounder for BC methods. Some forms of distributional BC (e.g. GAIL [26], BeT [51])300

could help alleviate this issue.301

9



References302

[1] J. Abramson, A. Ahuja, A. Brussee, F. Carnevale, M. Cassin, S. Clark, A. Dudzik, P. Georgiev,303

A. Guy, T. Harley, F. Hill, A. Hung, Z. Kenton, J. Landon, T. P. Lillicrap, K. W. Mathewson,304

A. Muldal, A. Santoro, N. Savinov, V. Varma, G. Wayne, N. Wong, C. Yan, and R. Zhu. Imitating305

interactive intelligence. arXiv, abs/2012.05672, 2020. 3306

[2] J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy307

sketches, 2016. 3308

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from309

demonstration. Robotics and autonomous systems, 57(5):469–483, 2009. 3310

[4] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Thirty-First AAAI311

Conference on Artificial Intelligence, 2017. 3312

[5] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete313

event dynamic systems, 13(1-2):41–77, 2003. 3314

[6] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Survey: Robot programming by demonstra-315

tion. Handbook of robotics, 59(BOOK_CHAP), 2008. 3316

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, S. Sidor, I. Sutskever, and317

R. S. Zemel. Openai gym. arXiv preprint arXiv:1606.01540, 2016. 1318

[8] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,319

P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv preprint320

arXiv:2005.14165, 2020. 3321

[9] D. Bruce, E. Hambro, M. Azar, and M. G. Bellemare. Learning about progress from experts. In322

International Conference on Learning Representations, 2023. 3323

[10] A. Bulatov, Y. Kuratov, and M. Burtsev. Recurrent memory transformer. Advances in Neural324

Information Processing Systems, 35:11079–11091, 2022. 3325

[11] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and326

I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. CoRR,327

abs/2106.01345, 2021. URL https://arxiv.org/abs/2106.01345. 3328

[12] H. M. Clever, A. Handa, H. Mazhar, K. Parker, O. Shapira, Q. Wan, Y. Narang, I. Akinola,329

M. Cakmak, and D. Fox. Assistive tele-op: Leveraging transformers to collect robotic task330

demonstrations. arXiv preprint arXiv:2112.05129, 2021. 3331

[13] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl:332

Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860,333

2019. 3334

[14] S. Dasari and A. Gupta. Transformers for one-shot visual imitation. arXiv preprint335

arXiv:2011.05970, 2020. 3336

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional337

transformers for language understanding. arXiv preprint arXiv:1810.04805, pages 4171–4186,338

2018. doi: 10.18653/v1/N19-1423. 3339

[16] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,340

M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for341

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 3342

[17] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills343

without a reward function. CoRR, abs/1802.06070, 2018. URL http://arxiv.org/abs/344

1802.06070. 3345

[18] P. Florence, L. Manuelli, and R. Tedrake. Self-supervised correspondence in visuomotor policy346

learning. IEEE Robotics and Automation Letters, 5(2):492–499, 2019. 3347

10

https://arxiv.org/abs/2106.01345
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070


[19] C. Florensa, Y. Duan, and P. Abbeel. Stochastic neural networks for hierarchical reinforcement348

learning, 2017. 3349

[20] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven350

reinforcement learning. arXiv preprint arXiv:2004.07219, 2020. 3351

[21] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic352

methods. In International Conference on Machine Learning, volume 80 of Proceedings of353

Machine Learning Research, pages 1587–1596. PMLR, PMLR, 2018. 3354

[22] C. Gulcehre, Z. Wang, A. Novikov, T. Le Paine, S. Gomez Colmenarejo, K. Zolna, R. Agarwal,355

J. Merel, D. Mankowitz, C. Paduraru, et al. Rl unplugged: Benchmarks for offline reinforcement356

learning. arXiv e-prints, pages arXiv–2006, 2020. 3357

[23] E. Hambro, S. Mohanty, D. Babaev, M. Byeon, D. Chakraborty, E. Grefenstette, M. Jiang, D. Jo,358

A. Kanervisto, J. Kim, et al. Insights from the neurips 2021 nethack challenge. In Advances in359

Neural Information Processing Systems, 2021. 1, 2, 4, 5, 6, 7, 8, 9, 17, 19360

[24] E. Hambro, S. Mohanty, D. Babaev, M. Byeon, D. Chakraborty, E. Grefenstette, M. Jiang, D. Jo,361

A. Kanervisto, J. Kim, et al. Dungeons and data: A large-scale nethack dataset. In Advances in362

Neural Information Processing Systems, 2022. 1, 2, 4, 7, 16, 17363

[25] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint364

arXiv:1606.08415, 2016. 17365

[26] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in neural information366

processing systems, volume 29, pages 4565–4573, 2016. 3, 9367

[27] A. Jaegle, F. Gimeno, A. Brock, O. Vinyals, A. Zisserman, and J. Carreira. Perceiver: General368

perception with iterative attention. In International conference on machine learning, pages369

4651–4664. PMLR, 2021. 3370

[28] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling371

problem. Advances in neural information processing systems, 34, 2021. 3372

[29] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,373

J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv, abs/2001.08361, 2020.374

6375

[30] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint376

arXiv:1412.6980, 2014. 17377

[31] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine. Stabilizing off-policy q-learning via378

bootstrapping error reduction. Advances in Neural Information Processing Systems, 32, 2019. 3379

[32] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement380

learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020. 3381

[33] H. Kuttler, N. Nardelli, T. Lavril, M. Selvatici, V. Sivakumar, M. G. Bellemare, R. Munos,382

A. Graves, and M. G. Bellemare. The nethack learning environment. In Advances in Neural383

Information Processing Systems, 2020. 1, 2, 14, 18384

[34] H. Le, N. Jiang, A. Agarwal, M. Dudík, Y. Yue, and H. Daumé III. Hierarchical imitation and385

reinforcement learning. In International conference on machine learning, pages 2917–2926.386

PMLR, 2018. 3387

[35] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,388

and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020. 3389

[36] A. Levy, G. Konidaris, R. Platt, and K. Saenko. Learning multi-level hierarchies with hindsight,390

2017. 3391

[37] Z. Mandi, F. Liu, K. Lee, and P. Abbeel. Towards more generalizable one-shot visual imitation392

learning. arXiv preprint arXiv:2110.13423, 2021. 3393

11



[38] V. Mella, E. Hambro, D. Rothermel, and H. Küttler. moolib: A Platform for Distributed RL.394

2022. URL https://github.com/facebookresearch/moolib. 7, 17395

[39] O. Nachum, S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.396

CoRR, abs/1805.08296, 2018. URL http://arxiv.org/abs/1805.08296. 3397

[40] O. Nachum, S. Gu, H. Lee, and S. Levine. Near-optimal representation learning for hierarchical398

reinforcement learning. In 7th International Conference on Learning Representations, ICLR399

2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. 3400

[41] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters. An algorithmic401

perspective on imitation learning. arXiv preprint arXiv:1811.06711, 2018. 3402

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,403

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning404

library. Advances in neural information processing systems, 32:8026–8037, 2019. 17405

[43] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. Deepmimic: Example-guided deep406

reinforcement learning of physics-based character skills. ACM Transactions on Graphics (TOG),407

37(4):1–14, 2018. 3408

[44] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. Amp: Adversarial motion priors for409

stylized physics-based character control. ACM Transactions on Graphics (TOG), 40(4):1–20,410

2021. 3411

[45] A. Petrenko, Z. Huang, T. Kumar, G. Sukhatme, and V. Koltun. Sample factory: Egocentric 3d412

control from pixels at 100000 fps with asynchronous reinforcement learning. In International413

Conference on Machine Learning, pages 7652–7662. PMLR, 2020. 7414

[46] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural415

information processing systems, 1, 1988. 3416

[47] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, and S. Levine. Vision-based multi-task manip-417

ulation for inexpensive robots using end-to-end learning from demonstration. In 2018 IEEE418

international conference on robotics and automation (ICRA), pages 3758–3765. IEEE, 2018. 3419

[48] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,420

Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,421

2022. 3422

[49] S. Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3423

(6):233–242, 1999. 3424

[50] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization425

algorithms. arXiv preprint arXiv:1707.06347, 2017. 7426

[51] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k427

modes with one stone. Advances in neural information processing systems, 35:22955–22968,428

2022. 3, 9429

[52] T. Shankar, S. Tulsiani, L. Pinto, and A. Gupta. Discovering motor programs by recomposing430

demonstrations. In International Conference on Learning Representations, 2020. URL https:431

//openreview.net/forum?id=rkgHY0NYwr. 3432

[53] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised433

discovery of skills. CoRR, abs/1907.01657, 2019. URL http://arxiv.org/abs/1907.434

01657. 3435

[54] Y. Tassa, D. Silver, J. Schrittwieser, A. Guez, L. Sifre, G. v. d. Driessche, S. Dieleman, K. Greff,436

T. Erez, and S. Petersen. Deepmind control suite. arXiv preprint arXiv:1801.01294, 2018. 1437

[55] A. A. Team, J. Bauer, K. Baumli, S. Baveja, F. Behbahani, A. Bhoopchand, N. Bradley-Schmieg,438

M. Chang, N. Clay, A. Collister, et al. Human-timescale adaptation in an open-ended task space.439

arXiv preprint arXiv:2301.07608, 2023. 3440

12

https://github.com/facebookresearch/moolib
http://arxiv.org/abs/1805.08296
https://openreview.net/forum?id=rkgHY0NYwr
https://openreview.net/forum?id=rkgHY0NYwr
https://openreview.net/forum?id=rkgHY0NYwr
http://arxiv.org/abs/1907.01657
http://arxiv.org/abs/1907.01657
http://arxiv.org/abs/1907.01657


[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and441

I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems442

30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,443

Long Beach, CA, USA, pages 5998–6008, 2017. 3, 17444

[57] Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline reinforcement learning. arXiv445

preprint arXiv:1911.11361, 2019. 3446

[58] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,447

D. Duong, V. Sindhwani, et al. Transporter networks: Rearranging the visual world for robotic448

manipulation. In Conference on Robot Learning, 2020. 3449

[59] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep imitation450

learning for complex manipulation tasks from virtual reality teleoperation. In ICRA, pages451

5628–5635. IEEE, 2018. 3452

[60] Y. Zhong, E. Hambro, E. Grefenstette, T. Park, M. Azar, and M. G. Bellemare. Improving policy453

learning via language dynamics distillation. In Advances in Neural Information Processing454

Systems, 2022. 2455

[61] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Hadsell,456

N. de Freitas, et al. Reinforcement and imitation learning for diverse visuomotor skills. arXiv457

preprint arXiv:1802.09564, 2018. 3458

13



A NetHack Learning Environment459

Both NetHack and the NetHack Learning Environment (NLE) feature a complex and rich ob-460

servation space. The full observation space of NLE consists of many distinct (but redundant)461

components: glyphs, chars, colors, specials, blstats, message, inv_glyphs, inv_strs, inv_oclasses,462

screen_descriptions, tty_chars, tty_colors, and tty_cursor.463

The HiHack dataset, as well as all RL experiments in NLE conducted in this paper, consist of and464

rely solely upon the tty∗ view of the game.465

B Details on AutoAscend466

Figure 7: Full control flow structure of AutoAscend, separated across explicit strategy and sub-
strategy routines. There are 13 possible “strategy” or hierarchical labels in HiHack, 11 representing
the explicit strategies employed by the bot (in magenta) and two additional labels to handle extra-
hierarchical behavior (in light-grey).

We include a comprehensive visualization of the full internal structure of AutoAscend in Figure 7.467

As indicated in the summary visualization of high-level AutoAscend strategies provided in Figure 2468

of the main paper, the bot features 11 explicit, hard-coded strategy routines. These interface with469

other low-level sub-strategy routines, some which are re-used by multiple strategies or even multiple470

sub-strategies. One example of such a subroutine is the “arrange items” sub-strategy, which is called471

both by the “follow guard” strategy as well as by the “check altar” sub-strategy, which is itself a472

subroutine of the “explore” sub-strategy. When factorized across strategies and sub-strategies, the473

full structure of AutoAscend is a directed acyclic graph (DAG) with a maximal depth of 5 from the474

“root,” i.e. the AutoAscend global controller “node” indicated in dark gray above, which is re-directs475

global behavioral flow across strategies via a predicate-matching scheme.476

The HiHack dataset includes a hierarchical strategy label for each timestep of AutoAscend interac-477

tion. As a result, alongside the 11 explicit strategies of the bot, there are two additional labels present478

in the dataset, which account for extra-hierarchical behavior in ttyrec game records yielded by479

the augmented ttyrec writer employed for HiHack generation and loading. These are visualized480

in light gray in Figure 7. The first of these corresponds to the hard-coded initialization routine481

employed by AutoAscend, effectively serving as a twelfth (albeit implicit) strategy, while the second482

covers ttyrec timestep records with missing strategy values. Missing strategy values may reflect483

ttyrec writer errors, or advancement of the underlying NetHack state by NLE rather than by agent,484

which occurs e.g., during NLE’s timeout-based termination of games [33]. Empirically, “write-error”485

strategy labels occur with very low-frequency in HiHack, representing less than ≈ 0.05% of all data.486

14



Figure 8: Distributional comparisons of basic AutoAscend game statistics in NLD-AA vs HiHack.
Median and mean values (as reported in Table 1) are indicated respectively by vertical dashed-blue
and solid-pink lines in each figure. Top: Log-score vs game counts in NLD-AA and HiHack. Bottom:
Log-turns vs game counts in NLD-AA and HiHack.

C Details on HiHack487

Generation All games in the HiHack dataset were recorded by running an augmented version488

of AutoAscend in NLE v 0.9.0. This augmented version of the AutoAscend source features the489

introduction of only a dozen extra lines of code that enable step-wise logging of the strategy trace490

behind each action executed by the bot. This strategy trace is recorded directly to game ttyrecs491

at each timestep via the addition of an extra channel to the C-based ttyrec-writer in the NetHack492

source code. Each game was generated via a unique NLE environment seed.493

Game Statistics The comparison of the full log-score and log-turns distributions across NLD-AA494

and HiHack made in Figure 8 further supports the claim of high correspondence between the datasets495

made in Section 3.3. Figure 9 shows the distribution of strategies across a sample consisting of ≈ 108496

unique game transitions from HiHack. We observe coverage of all but the least frequent explicit497

strategy executed by AutoAscend: the “solve sokoban” routine, employed a means to gain yet more498

experience exclusively in highly advanced game states.499

Figure 9: A visualization of the distribution of strategies across a sample of 4,300 HiHack games,
containing a total of ≈ 108 transitions.

15



Table 3: Training hyperparameter configurations across all BC and APPO + BC experiments.
Hyperparameters are listed in alphabetical order. We employ (‡) to indicate hyperparameters only
relevant for the corresponding hierarchical policy variants. The presence of the symbol ‘-’ in lieu
of a parameter value reflects the parameter’s irrelevance for offline, BC experiments. All bolded
hyperparameters were tuned. After tuning was complete, precisely the same sets of hyperparameters
were employed to train models across individual policy classes belonging to the (LSTM)- and
(Transformer + LSTM)-based model families explored in this paper, across all BC and APPO + BC
experiments. Note that the abbreviation ‘CE’ denotes the cross-entropy loss function.

BC APPO + BC

Hyperparameter LSTM Transformer + LSTM LSTM Transformer + LSTM

actor batch size - - 512 256
adam beta1 0.9 0.9 0.9 0.9
adam beta2 0.999 0.999 0.999 0.999
adam eps 1.00E-07 1.00E-07 1.00E-07 1.00E-07

adam learning rate 0.0001 0.0002 0.0001 0.0001
appo clip baseline 1 1 1 1
appo clip policy 0.1 0.1 0.1 0.1

baseline cost 1 1 1 1
crop dim 18 18 18 18

discount factor - - 0.999 0.999
entropy cost - - 0.001 0.001

env max episode steps - - 100000 100000
env name - - challenge challenge

fn penalty step - - constant constant
grad norm clipping 4 1 4 1

inference unroll length - - 1 1
loss function CE CE CE CE

normalize advantages - - ✓ ✓
normalize reward - - ✗ ✗
num actor batches - - 2 2

num actor cpus - - 10 10
penalty step - - 0 0
penalty time - - 0 0

pixel size 6 6 6 6
reward clip - - 10 10
reward scale - - 1 1

RL loss coeff - - 1 0.001
strategy loss coeff (‡) 1 1 1 1
supervised loss coeff 1 1 0.001 1
ttyrec batch size 512 512 256 256
ttyrec cores 12 12 12 12

ttyrec envpool size 4 6 4 3
ttyrec unroll length 32 64 32 64

use prev action ✓ ✓ ✓ ✓
virtual batch size 512 1024 512 512

D Training Details500

Hyperparameters All relevant training hyperparameter values, across model families as well as501

BC vs APPO + BC experiment variants, are displayed in Table 3.502

To kick-start all experiments, we employed the training hyperparameter values reported in Hambro503

et al. [24]. For several hyperparameters, however, additional tuning was conducted. These hyperpa-504

rameters are indicated in bold in Table 3. Tuning across these hyperparameters was performed once505

for the “default” representative policy class from each of the LSTM and Transformer + LSTM model506

families for all but the Model Scaling experiments1. After tuning was complete, hyperparameter507

1Prior to the start of these experiments, additional tuning of the “adam learning rate” and “ttyrec batch
size” hyperparameters was conducted for the Transformer + LSTM (large) policy class. However, across the
set of values tested, the same values were found to be optimal for this model configuration as for the default

16



configurations were fixed across all succeeding offline and combined offline + online experiments.508

Specifications of hyperparameter values swept over during tuning are provided in Table 4.509

All models were trained with the Adam optimizer [30] and a fixed learning rate. We experimented510

with the introduction of a learning rate schedule for Transformer + LSTM models, but we found no511

additional improvements in policy prediction error or evaluation performance at the conclusion of512

training to be yielded by such a schedule.513

Random Seeds For each of the hierarchical behavioral cloning, model parameter scaling, data514

scaling, and combined imitation and reinforcement learning experiments described in Sections 4, 5,515

and 6 of this paper, a total of 6 random seeds were run across all relevant policy classes. Randomized516

quantities included: policy parameter values at initialization, data loading and batching order, HiHack517

dataset subsampling (in data scaling experiments only), and initial environment seeding (in APPO +518

BC experiments only).519

Training Infrastructure and Compute The RPC-based moolib library for distributed, asyn-520

chronous machine learning was employed across all experiments [38]. All data loading and batching521

was parallelized. Our model training code builds heavily upon the code open-sourced by Hambro522

et al. [24].523

Experiments were run on compute nodes on a private high-performance computing (HPC) cluster524

equipped either with a NVIDIA RTX-8000 or NVIDIA A100 GPU, as well as 16 CPU cores. All525

policies were trained for a total of 48 hours. We detected no substantial differences in training frames-526

per-second (FPS) rates for both offline and online experiments across compute nodes in “speed-run”527

tests, provided nodes were under no external load. When running experiments, we did detect some528

variance in total optimization steps completed under the 48-hour constrained computational budget529

across seeds belonging to single policy classes, which we attribute to variance in external HPC cluster530

load during these runs.531

Table 4: Training hyperparameter tuning sweeps. We specify the hyperparameter values tested dur-
ing tuning sweeps conducted for the “default” representatives of each model class. Full specifications
of final hyperparameter values employed in experiments are included in Table 3.

Sweep Range

adam learning rate {0.0001, 0.0002, 0.0005, 0.01}
discount factor {0.9, 0.99, 0.999, 0.9999}

grad norm clipping {0.1, 1, 4}
RL loss coeff {0.001, 0.01, 1}

strategy loss coeff {0.001, 0.01, 1, 10}
supervised loss coeff {0.001, 0.01, 1}
ttyrec envpool size {3, 4, 6}
ttyrec unroll length {16, 32, 64, 128}
virtual batch size {128, 256, 512, 1024}

E Model Architectures532

A description of all model components and policy architectures is given in Tables 5 and 6, separated533

across (LSTM)- and (Transformer + LSTM)- model families. The PyTorch library was used for to534

specify all models, loss functions, and optimizers [42].535

Additional Transformer Specifications All Transformer modules tested in this paper consist purely536

of “Transformer-Encoder” layers. Each layer is configured with 16 attention heads per attention537

mechanism, and layer normalization applied prior to all attention and feed-forward operations. A538

dropout of 0.1 is used during training [56]. Unlike the rest of the modules we employ, which use539

Exponential Linear Unit (ELU) activation functions as per the original CDGPT model architecture540

[23], our Transformer modules employ Gaussian Error Linear Unit (GeLU) activations [25].541

Transformer + LSTM policy; hence, only a single set of hyperparameter values for the model family is reported
here.

17



Table 5: (LSTM)-based policy architectural details. The final three columns indicate the presence (or
absence) of each component across the relevant policy classes, whether trained with BC or APPO +
BC.

Policy Class

Class Type Module(s)
Hidden

Dim Layers Activ. Copies LSTM
LSTM +
XXL dec

Hier
LSTM

Enc Message MLP 128 2 ELU - ✓ ✓ ✓
Enc Blstats Conv-1D, MLP 128 4 ELU - ✓ ✓ ✓
Enc Pixel Obs Conv-2D, MLP 512 5 ELU - ✓ ✓ ✓
Enc Action Hist one-hot 128 - – ✓ ✓ ✓

Core - LSTM 512 1 - - ✓ ✓ ✓

Dec Default MLP 512 1 - - ✓ ✗ ✗
Dec XXL MLP 1024 2 ELU - ✗ ✓ ✗
Dec Hier Strat MLP 128 1 - - ✗ ✗ ✓
Dec Hier Action MLP 256 2 ELU 13 ✗ ✗ ✓

Table 6: (Transformer + LSTM)-based policy architectural details. As in Table 5, the final three
columns indicate the presence (or absence) of each component across the relevant policy classes,
whether trained with BC or APPO + BC.

Policy Class

Class Type Module(s)
Hidden

Dim Layers Activ. Copies
Trnsfrmr
+ LSTM

Trnsfrmr
+ LSTM
(large)

Hier
Trnsfrmr
+ LSTM

Enc Message MLP 128 2 ELU - ✓ ✓ ✓
Enc Blstats Conv-1D, MLP 128 4 ELU - ✓ ✓ ✓
Enc Pixel Obs Conv-2D, MLP 512 5 ELU - ✓ ✓ ✓
Enc Action Hist one-hot 128 - - - ✓ ✓ ✓
Enc Recurrent LSTM (frozen) 512 1 - - ✓ ✓ ✓

Core Default Trnsfrmr 1408 3 GeLU - ✓ ✗ ✓
Core Large Trnsfrmr 1408 6 GeLU - ✗ ✓ ✗

Dec Default MLP 512 1 - - ✓ ✓ ✗
Dec Hier Strat MLP 512 1 - - ✗ ✗ ✓
Dec Hier Action MLP 512 2 ELU 13 ✗ ✗ ✓

Context Length Models belonging to all policy classes from the (LSTM)-family are trained by542

sequentially “unrolling” batched-predictions. The length of this “unrolled” sequence is held fixed543

throughout training, and is specified by the value of the “ttyrec unroll length” hyperparameter in544

Table 3.545

A fixed context length is also used to train the core Transformer modules of models belonging to546

classes from the (Transformer + LSTM)-family, similarly specified via the “ttyrec unroll length”547

hyperparameter. We found causally masking context in Transformer attention mechanisms to be548

greatly beneficial towards improving the generalization capability of models. The pre-trained frozen549

LSTM “recurrent encoder” module of these networks provides a very simple means of dramatically550

extending the effective context length of these models to cover full NetHack games, which may span551

hundreds of thousands of keypresses, without substantially slowing model training.552

Hierarchical Policy Variants As alluded to in Tables 5 and 6, as well as in Section 4 of the main553

paper, all hierarchical policy variants are equipped with two sets of decoders: one high-level strategy554

decoder trained to predict the thirteen possible strategy labels in HiHack; as well as thirteen low-level555

action decoders, trained to predict actions corresponding to a single HiHack strategy across the 121-556

dimensional NLE action space [33]. Our hierarchical policies thus mimic the hierarchical structure557

of Autoascend, with an action decoder corresponding to each of the eleven, explicit strategies558

executed by the symbolic bot as well as two additional action decoders corresponding to the bot’s559

“initialization” routine (an implicit twelfth strategy) and “write-errors,” representing missing strategy560

18



labels2, respectively, as introduced in Figure 7. A full, diagrammatic illustration of the Hierarchical561

LSTM policy architecture is provided in Figure 3.562

In all Hierarchical Behavioral Cloning (HBC) experiments, a BC loss was computed for the strategy563

decoder via ground-truth, batched HiHack strategy labels, while a separate BC loss was computed564

over a single action decoder over batched HiHack action labels, with this action decoder “selected”565

in an end-to-end fashion by the strategy decoder. The action decoder “selection” procedure was566

executed across batches by sampling predicted strategy indices from the strategy decoder with567

Gumbel-Softmax re-parameterization, thus preserving gradient flow across the bi-level hierarchical568

structure of policies during training. An illustration of the full Hierarchical LSTM policy architecture569

is provided in Figure 3.570

The strategy-specific BC loss component was re-weighted (via the “strategy loss coefficent” hyperpa-571

rameter, introduced in Table 3) and recombined with low-level action decoder losses to produce a572

single, overall HBC loss.573

We resolved the presence of ttyrec transitions with missing strategy values, represented via the574

“write-error” hierarchical label in HiHack, by extending the action-space of the hierarchical strategy575

decoder to 13 and adding an additional hierarchical action decoder copy corresponding to this class576

of labels. It is possible that the performance of hierarchical policy variants can be further improved577

by instead filtering out all transitions with this property. We leave this evaluation for future work.578

Figure 10: Left: The distribution of starting roles across the large-scale “in-depth evaluation.” As
described above, this evaluation was run for the top-performing neural policy seeds (out of 6) across
model class. We observe a near-uniform distribution of possible NLE roles across random seeds.
Right: Autoascend NLE Score distribution vs. starting role in the “in-depth evaluation.” This figure
is a companion to the visualizations of neural policy NLE scores across role in Figure 6. As in
Figure 8, we indicate absolute median and mean values of AutoAscend NLE score in the “in-depth
evaluation” with dashed-blue and solid-pink lines.

F Evaluation Details579

For all policy classes belonging to the (LSTM)-model family, we observe monotonic improvements in580

the performance of models on withheld instances of NLE as a function of training samples; as a result,581

we employ the final training checkpoint of these policies when running evaluations across policy582

seeds. In contrast, due to overfitting, the generalization capabilities of (Transformer + LSTM)-family583

policies do not monotonically improve as a function of training samples. Thus, evaluations are584

conducted only for the “best” checkpoints corresponding to each policy seed, as evaluated on the585

basis of the rolling NLE score proxy metric. An in-depth description of this metric, as well as586

experiment training curves supporting the claims of over- and underfitting across model classes, can587

be found in Appendix G.588

Two classes of evaluations are conducted in this paper for such checkpoints: a “standard evaluation”589

of policy NLE score across randomly sampled and withheld instances of environment, and an “in-590

depth evaluation,” recording all metrics of game-play and employing precisely the same set of seeded591

environment instances to evaluate all policies.592

The former policy evaluation procedure mirrors the one conducted during the NeurIPS 2021 NetHack593

Challenge Competition [23]. This is the procedure we employ to compute the mean and median594

NLE scores associated with policy seeds for all experiments in this paper as well as to compute the595

estimates of AutoAscend mean and median NLE score in Table 2, producing our core results.596

2Please refer to our discussion in Appendix B for more details.

19



The latter policy evaluation procedure yields a suite of more fine-grained metrics for informed and597

“human-like” game-play in NetHack, such as maximal dungeon level reached and the total life-time598

of the agent. We run this evaluation procedure for each of the best-performing3 seeds from each599

neural policy class, as well as for AutoAscend. Metrics computed with this procedure are denoted600

via the (†) symbol throughout the paper.601

Standard Evaluation Policies are evaluated on a randomly seeded batch of 1024 (withheld) NLE602

games. Only the final NLE scores at the end of game-play are recorded.603

In-Depth Evaluation Policies are evaluated across precisely the same seeded batch of 3402604

(withheld) NLE games, i.e. all agents play precisely the same set of starting roles across the same605

NLE dungeon configurations, none of which are covered in HiHack. All games are recorded to the606

ttyrec data format, and can be streamed post-facto.607

A visualization of the distribution of starting roles covered in this evaluation, as well as the corre-608

sponding AutoAscend score distributions (factorized by role across game instances), are shown in609

Figure 10.610

Figure 11: Model parameter scaling experiment training curves. In each plot, solid lines reflect
point-wise averages across 6 random seeds, while shaded regions reflect point-wise min-to-max value
ranges across seeds. Left: Rolling NLE evaluation score vs total BC training samples, for “default”
and 2x deeper Transformer + LSTM policies. Right: BC loss vs total BC training samples.

G Training Curves611

We provide training curves reflecting all conducted experiments. In Figures 11 and 12, we display612

both rolling NLE scores as well as BC loss curves as a function of training samples, across all model613

and data scaling experiments presented in Section 5. In Figure 13, we display aggregate rolling NLE614

scores as a function of training samples for all remaining BC and APPO + BC experiments, separated615

according to model family.616

Rolling NLE Score The rolling NLE score metric introduced and displayed in the figures discussed617

here reflects an evaluation of policy performance on withheld NLE instances conducted continually618

during model training in a “rolling” fashion via a fixed number of workers. As such, this metric619

is biased towards shorter-length games, with the value of smoothed rolling score as a function of620

training sample confounded by the policy-specific relationship between NLE score and total game621

turns. Rolling NLE score is thus not interchangeable with the large-batch “standard evaluations”622

employed elsewhere in this paper and presented in-depth in Appendix F. However, unlike BC loss, it623

serves as an efficient and useful (if noisy) proxy measure of policy generalization over the course of624

training.625

Model Parameter Scaling Training Curves As shown in Figure 11, the generalization capability626

of Transformer + LSTM policies (approximated via rolling NLE score) peaks soon after the start627

of training, decaying and flattening out as training proceeds despite continued improvement in BC628

3As indicated by overall mean NLE score in the “standard evaluation” procedure.

20



Figure 12: Dataset scaling experiment training curves. All experiments for a given dataset
size were trained on a dataset sub-sampled without replacement from HiHack. The sub-sampling
procedure was seeded. Training hyperparameters and model architectures were identical across all
runs belonging to a single policy class. As in Figure 12, solid lines reflect point-wise averages across
6 random seeds, while shaded regions reflect point-wise min-to-max value ranges across seeds in all
plots. Top: Rolling NLE evaluation score vs total BC training samples, across dataset sizes for the
“LSTM” and “Transformer + LSTM” policy classes. Bottom: BC loss vs total BC training samples,
across dataset sizes for the “LSTM” and “Transformer + LSTM” policy classes.

loss. This observation supports the claim made in Section 7 that Transformer-based models overfit to629

HiHack.630

Despite the aforementioned noisy nature of rolling NLE score, the “Policy Performance vs. Training631

Samples” curves on the left of Figure 11 allude to our large-scale “standard evaluation” finding from632

Section 5; namely, that policy performance does not increase when model parameter count is scaled633

up, even after training hyperparameters are tuned. Similarly, the “Loss vs. Training Samples” curves634

on the right of this figure indicate nearly identical training errors across both models as a function of635

BC training samples.636

Dataset Scaling Training Curves In Figure 12, we note that for datasets consisting of, or exceeding,637

1,000 AutoAscend games, LSTM policies do not appear to overfit over the course of our BC638

experiments, with rolling NLE score consistently monotonically increasing as a function of BC639

training samples for all such policies. However, a positive relationship between dataset size and640

maximal rolling NLE score over training persists, indicating that the addition of more data does641

lead to measurable (if sub log-linear) improvements in policy generalization. An inspection of642

LSTM policy loss curves reveals a similar story. Losses across policy seeds trained on 10 and 100643

AutoAscend games drop swiftly to values near zero, supporting this overfitting hypothesis.644

The Transformer + LSTM policy loss curves in Figure 12 similarly reveal harsh overfitting for policies645

trained with 10 and 100 games. Interestingly, the generalization capability of these policies, again646

indicated by rolling NLE score over training, is vastly superior to that of their LSTM counterparts.647

Indeed, we observe that a Transformer + LSTM policy trained on just 100 games vastly outperforms648

a pure LSTM policy trained on 10x as many games. We attribute this gap to the frozen nature of the649

pre-trained LSTM component of the Transformer + LSTM policies employed as a “recurrent” encoder650

in these policies, and hypothesize that it is the static quality of the recurrent representation output651

21



by this encoder which bolsters the generalization capability of the resultant models in exceptionally652

low-data regimes.653

Figure 13: Aggregate rolling NLE evaluation score curves for the central BC and APPO + BC
experiments discussed in this paper. Model parameter and dataset scaling training curves are
omitted here on account of being visualized in Figures 11 and 12, respectively. For APPO + BC
experiments, batch accumulation was employed to ensure that the ratio of RL to BC samples “seen”
during training was 1:1. This property is indicated via the secondary x-axes of APPO + BC figures
here, which show RL sample quantities. Top: Rolling NLE evaluation score vs total BC training
samples in pure BC experiments, across non-hierarchical and hierarchical (LSTM) and (Transformer
+ LSTM)-based policy classes. Bottom: Rolling NLE evaluation score vs total BC training samples
in APPO + BC experiments, across non-hierarchical and hierarchical (LSTM) and (Transformer +
LSTM)-based policy classes.

Aggregate BC and APPO + BC Training Curves The “Aggregate Policy Performance vs Training654

Samples” curves of Figure 13 align with the general model family training trends previously observed655

in the scaling experiments. Notably, we find once again that (LSTM)-based policies’ rolling NLE656

scores improve monotonically with training samples whether training is conducted with BC or APPO657

+ BC, while this is not the case for (Transformer + LSTM)-based models. Indeed, the generalization658

properties’ of policies belonging to this model family improve at the start of training before worsening659

as training proceeds across BC experiments. We interpret continued demonstration of these trends as660

further support for the claims of (LSTM)-underfitting and (Transformer + LSTM)-overfitting made in661

Section 7 of the main body of the paper as well as in Appendix F.662

Moreover, we note that the introduction of an RL loss induces a particularly large amount of volatility663

in the rolling NLE score associated with (Transformer + LSTM)-based models, disrupting the664

monotonically decreasing relationship between rolling NLE score and training samples previously665

observed for these policies following 2 · 108 training samples in the pure BC experiments. This666

observation suggests that the performance of these policies is likely bottlenecked by an insufficient667

throughput of “on-policy” or interactive data, as compared to their LSTM counterparts, which train668

on 2x as many samples in our compute-time constrained experimental setting.669

22



Figure 14: Max dungeon level reached vs. total turns across “in-depth evaluation” games, visual-
ized via 2-D contour density plots. Contour densities are indicated by the color-bars accompanying
each subplot. Mean quantity values (computed dimension-wise for all policies) across the “in-depth
evaluation” batch are indicated by white ‘✗’ symbols in each subplot. The symbolic bot’s vastly
superior ability to play longer and descend much further into the dungeon creates a separation in
scale between it and its neural counterparts; as a result, for clarity, we indicate the max dungeon
level vs turns subspace displayed in the neural policy contours with a bolded black rectangle in our
visualization of AutoAscend’s behavior. Top Left: Best-performing BC neural policy seeds. Bottom
Left: Best-performing APPO + BC neural policy seeds. Right: AutoAscend.

H Distributional Visualizations of Evaluation Results670

Max Dungeon Level Reached vs. Total Turns In Figure 14, we supplement the absolute mean671

and median max-dungeon level and agent life-time (in game turns) statistics introduced in Table 2672

with 2-D distributional visualizations of both the raw values of these metrics as well as their mutual673

inter-relationship, evaluated via n = 3402 seeded NLE games run individually for all policy class674

representatives in our “in-depth evaluation.”675

The AutoAscend 2-D contour plot on the right of this figure demonstrates an interesting emergent676

property of the bot’s behavior: the high-level “descent” behavior of AutoAscend appears to fall along677

one of two modes across games. In the first of these modes, the bot spends a very large amount of678

turns on dungeon level 1, and avoids descending further into the dungeon before the end of the game.679

In the second mode, the bot begins to rapidly descend fairly deep into the dungeon, reaching as far as680

level 11. The overall relationship between AutoAscend’s total in-game life-time and max-dungeon681

level reached appears to be roughly quadratic.682

In contrast, none of the neural policy class representatives tested here comes close to achieving683

AutoAscend’s secondary behavior mode. A large majority of games for all neural policy classes684

appear to end on the first level of the dungeon, with policies very rarely surviving as long on this685

23



level as AutoAscend in games belonging to its corresponding behavior mode. This suggests that686

neural policies may be failing to master the very low-level behaviors of the bot, even when these687

behaviors are factorized across AutoAscend strategies, as in the case of hierarchical policy variants.688

Nevertheless, the qualitative performance of hierarchical policies clearly improves upon that of689

non-hierarchical models, with the Hierarchical Transformer + LSTM policy trained with BC both690

surviving longer of dungeon level 1 and descending with higher frequency than other BC-trained691

policy representatives. Furthermore, this qualitative behavior appears to be strengthened when692

interaction is added into the mix, with the mode centered on “dungeon level 2” increasing in density693

for the APPO + BC variant of the Hierarchical Transformer + LSTM representative policy.694

Taken together, these sets of observations lead us to hypothesize that the quality of neural policies695

trained with imitation learning on extremely complex, long-horizon tasks like NetHack may be further696

improved with increases in the scale of hierarchically-informed behavioral factorization, beyond the697

scale of factorization explored in this paper. We consider this to be a very exciting direction for future698

work.699

Figure 15: Log-score distribution across “in-depth evaluation” games. As in Figures 8 and 10,
we indicate absolute median and mean values of policies’ NLE scores in the “in-depth evaluation”
with dashed-blue and solid-pink lines. The introduction of an RL loss reduces the “mass” associated
with the left-tail of log-score and increases the “mass” associated with the right-tail across all neural
policy classes, inducing right-ward shifts in median and mean scores, though difficult to perceive in
this figure on account of the log-scale of the x-axis. We refer the reader to Table 2 in the main paper
for aggregate absolute numerical values of NLE score. Top Left: Best-performing BC neural policy
seeds. Bottom Left: Best-performing APPO + BC neural policy seeds. Right: AutoAscend.

24



Log-Score Distributions We conclude this supplementary analysis with a visualization of log-score700

distributions across neural policy classes in Figure 15, computed over the “in-depth evaluation” seeded701

games. The trends displayed in this figure align with those described and demonstrated previously.702

Improvements in model architecture as well as the introduction of hierarchy and interactive learning703

lead to a re-distribution of “mass” between left and right tails of distribution, with the overall counts704

of “low score” games decreasing and “high score” games increasing when these improvements are705

applied. The gap to AutoAscend is significantly reduced, but not bridged.706

25


