
A NetHack Learning Environment459

Both NetHack and the NetHack Learning Environment (NLE) feature a complex and rich ob-460

servation space. The full observation space of NLE consists of many distinct (but redundant)461

components: glyphs, chars, colors, specials, blstats, message, inv_glyphs, inv_strs, inv_oclasses,462

screen_descriptions, tty_chars, tty_colors, and tty_cursor.463

The HiHack dataset, as well as all RL experiments in NLE conducted in this paper, consist of and464

rely solely upon the tty⇤ view of the game.465

B Details on AutoAscend466

Figure 7: Full control flow structure of AutoAscend, separated across explicit strategy and sub-
strategy routines. There are 13 possible “strategy” or hierarchical labels in HiHack, 11 representing
the explicit strategies employed by the bot (in magenta) and two additional labels to handle extra-
hierarchical behavior (in light-grey).

We include a comprehensive visualization of the full internal structure of AutoAscend in Figure 7.467

As indicated in the summary visualization of high-level AutoAscend strategies provided in Figure 2468

of the main paper, the bot features 11 explicit, hard-coded strategy routines. These interface with469

other low-level sub-strategy routines, some which are re-used by multiple strategies or even multiple470

sub-strategies. One example of such a subroutine is the “arrange items” sub-strategy, which is called471

both by the “follow guard” strategy as well as by the “check altar” sub-strategy, which is itself a472

subroutine of the “explore” sub-strategy. When factorized across strategies and sub-strategies, the473

full structure of AutoAscend is a directed acyclic graph (DAG) with a maximal depth of 5 from the474

“root,” i.e. the AutoAscend global controller “node” indicated in dark gray above, which is re-directs475

global behavioral flow across strategies via a predicate-matching scheme.476

The HiHack dataset includes a hierarchical strategy label for each timestep of AutoAscend interac-477

tion. As a result, alongside the 11 explicit strategies of the bot, there are two additional labels present478

in the dataset, which account for extra-hierarchical behavior in ttyrec game records yielded by479

the augmented ttyrec writer employed for HiHack generation and loading. These are visualized480

in light gray in Figure 7. The first of these corresponds to the hard-coded initialization routine481

employed by AutoAscend, effectively serving as a twelfth (albeit implicit) strategy, while the second482

covers ttyrec timestep records with missing strategy values. Missing strategy values may reflect483

ttyrec writer errors, or advancement of the underlying NetHack state by NLE rather than by agent,484

which occurs e.g., during NLE’s timeout-based termination of games [33]. Empirically, “write-error”485

strategy labels occur with very low-frequency in HiHack, representing less than ⇡ 0.05% of all data.486

14



Figure 8: Distributional comparisons of basic AutoAscend game statistics in NLD-AA vs HiHack.
Median and mean values (as reported in Table 1) are indicated respectively by vertical dashed-blue
and solid-pink lines in each figure. Top: Log-score vs game counts in NLD-AA and HiHack. Bottom:
Log-turns vs game counts in NLD-AA and HiHack.

C Details on HiHack487

Generation All games in the HiHack dataset were recorded by running an augmented version488

of AutoAscend in NLE v 0.9.0. This augmented version of the AutoAscend source features the489

introduction of only a dozen extra lines of code that enable step-wise logging of the strategy trace490

behind each action executed by the bot. This strategy trace is recorded directly to game ttyrecs491

at each timestep via the addition of an extra channel to the C-based ttyrec-writer in the NetHack492

source code. Each game was generated via a unique NLE environment seed.493

Game Statistics The comparison of the full log-score and log-turns distributions across NLD-AA494

and HiHack made in Figure 8 further supports the claim of high correspondence between the datasets495

made in Section 3.3. Figure 9 shows the distribution of strategies across a sample consisting of ⇡ 108496

unique game transitions from HiHack. We observe coverage of all but the least frequent explicit497

strategy executed by AutoAscend: the “solve sokoban” routine, employed a means to gain yet more498

experience exclusively in highly advanced game states.499

Figure 9: A visualization of the distribution of strategies across a sample of 4,300 HiHack games,
containing a total of ⇡ 108 transitions.

15



Table 3: Training hyperparameter configurations across all BC and APPO + BC experiments.
Hyperparameters are listed in alphabetical order. We employ (‡) to indicate hyperparameters only
relevant for the corresponding hierarchical policy variants. The presence of the symbol ‘-’ in lieu
of a parameter value reflects the parameter’s irrelevance for offline, BC experiments. All bolded
hyperparameters were tuned. After tuning was complete, precisely the same sets of hyperparameters
were employed to train models across individual policy classes belonging to the (LSTM)- and
(Transformer + LSTM)-based model families explored in this paper, across all BC and APPO + BC
experiments. Note that the abbreviation ‘CE’ denotes the cross-entropy loss function.

BC APPO + BC

Hyperparameter LSTM Transformer + LSTM LSTM Transformer + LSTM

actor batch size - - 512 256
adam beta1 0.9 0.9 0.9 0.9
adam beta2 0.999 0.999 0.999 0.999
adam eps 1.00E-07 1.00E-07 1.00E-07 1.00E-07

adam learning rate 0.0001 0.0002 0.0001 0.0001
appo clip baseline 1 1 1 1
appo clip policy 0.1 0.1 0.1 0.1

baseline cost 1 1 1 1
crop dim 18 18 18 18

discount factor - - 0.999 0.999
entropy cost - - 0.001 0.001

env max episode steps - - 100000 100000
env name - - challenge challenge

fn penalty step - - constant constant
grad norm clipping 4 1 4 1

inference unroll length - - 1 1
loss function CE CE CE CE

normalize advantages - - 3 3
normalize reward - - 7 7
num actor batches - - 2 2

num actor cpus - - 10 10
penalty step - - 0 0
penalty time - - 0 0

pixel size 6 6 6 6
reward clip - - 10 10
reward scale - - 1 1

RL loss coeff - - 1 0.001
strategy loss coeff (‡) 1 1 1 1
supervised loss coeff 1 1 0.001 1
ttyrec batch size 512 512 256 256
ttyrec cores 12 12 12 12

ttyrec envpool size 4 6 4 3
ttyrec unroll length 32 64 32 64

use prev action 3 3 3 3
virtual batch size 512 1024 512 512

D Training Details500

Hyperparameters All relevant training hyperparameter values, across model families as well as501

BC vs APPO + BC experiment variants, are displayed in Table 3.502

To kick-start all experiments, we employed the training hyperparameter values reported in Hambro503

et al. [24]. For several hyperparameters, however, additional tuning was conducted. These hyperpa-504

rameters are indicated in bold in Table 3. Tuning across these hyperparameters was performed once505

for the “default” representative policy class from each of the LSTM and Transformer + LSTM model506

families for all but the Model Scaling experiments1. After tuning was complete, hyperparameter507

1Prior to the start of these experiments, additional tuning of the “adam learning rate” and “ttyrec batch
size” hyperparameters was conducted for the Transformer + LSTM (large) policy class. However, across the
set of values tested, the same values were found to be optimal for this model configuration as for the default

16



configurations were fixed across all succeeding offline and combined offline + online experiments.508

Specifications of hyperparameter values swept over during tuning are provided in Table 4.509

All models were trained with the Adam optimizer [30] and a fixed learning rate. We experimented510

with the introduction of a learning rate schedule for Transformer + LSTM models, but we found no511

additional improvements in policy prediction error or evaluation performance at the conclusion of512

training to be yielded by such a schedule.513

Random Seeds For each of the hierarchical behavioral cloning, model parameter scaling, data514

scaling, and combined imitation and reinforcement learning experiments described in Sections 4, 5,515

and 6 of this paper, a total of 6 random seeds were run across all relevant policy classes. Randomized516

quantities included: policy parameter values at initialization, data loading and batching order, HiHack517

dataset subsampling (in data scaling experiments only), and initial environment seeding (in APPO +518

BC experiments only).519

Training Infrastructure and Compute The RPC-based moolib library for distributed, asyn-520

chronous machine learning was employed across all experiments [38]. All data loading and batching521

was parallelized. Our model training code builds heavily upon the code open-sourced by Hambro522

et al. [24].523

Experiments were run on compute nodes on a private high-performance computing (HPC) cluster524

equipped either with a NVIDIA RTX-8000 or NVIDIA A100 GPU, as well as 16 CPU cores. All525

policies were trained for a total of 48 hours. We detected no substantial differences in training frames-526

per-second (FPS) rates for both offline and online experiments across compute nodes in “speed-run”527

tests, provided nodes were under no external load. When running experiments, we did detect some528

variance in total optimization steps completed under the 48-hour constrained computational budget529

across seeds belonging to single policy classes, which we attribute to variance in external HPC cluster530

load during these runs.531

Table 4: Training hyperparameter tuning sweeps. We specify the hyperparameter values tested dur-
ing tuning sweeps conducted for the “default” representatives of each model class. Full specifications
of final hyperparameter values employed in experiments are included in Table 3.

Sweep Range

adam learning rate {0.0001, 0.0002, 0.0005, 0.01}
discount factor {0.9, 0.99, 0.999, 0.9999}

grad norm clipping {0.1, 1, 4}
RL loss coeff {0.001, 0.01, 1}

strategy loss coeff {0.001, 0.01, 1, 10}
supervised loss coeff {0.001, 0.01, 1}
ttyrec envpool size {3, 4, 6}
ttyrec unroll length {16, 32, 64, 128}
virtual batch size {128, 256, 512, 1024}

E Model Architectures532

A description of all model components and policy architectures is given in Tables 5 and 6, separated533

across (LSTM)- and (Transformer + LSTM)- model families. The PyTorch library was used for to534

specify all models, loss functions, and optimizers [42].535

Additional Transformer Specifications All Transformer modules tested in this paper consist purely536

of “Transformer-Encoder” layers. Each layer is configured with 16 attention heads per attention537

mechanism, and layer normalization applied prior to all attention and feed-forward operations. A538

dropout of 0.1 is used during training [56]. Unlike the rest of the modules we employ, which use539

Exponential Linear Unit (ELU) activation functions as per the original CDGPT model architecture540

[23], our Transformer modules employ Gaussian Error Linear Unit (GeLU) activations [25].541

Transformer + LSTM policy; hence, only a single set of hyperparameter values for the model family is reported
here.

17



Table 5: (LSTM)-based policy architectural details. The final three columns indicate the presence (or
absence) of each component across the relevant policy classes, whether trained with BC or APPO +
BC.

Policy Class

Class Type Module(s)
Hidden

Dim Layers Activ. Copies LSTM
LSTM +
XXL dec

Hier
LSTM

Enc Message MLP 128 2 ELU - 3 3 3
Enc Blstats Conv-1D, MLP 128 4 ELU - 3 3 3
Enc Pixel Obs Conv-2D, MLP 512 5 ELU - 3 3 3
Enc Action Hist one-hot 128 - – 3 3 3

Core - LSTM 512 1 - - 3 3 3

Dec Default MLP 512 1 - - 3 7 7
Dec XXL MLP 1024 2 ELU - 7 3 7
Dec Hier Strat MLP 128 1 - - 7 7 3
Dec Hier Action MLP 256 2 ELU 13 7 7 3

Table 6: (Transformer + LSTM)-based policy architectural details. As in Table 5, the final three
columns indicate the presence (or absence) of each component across the relevant policy classes,
whether trained with BC or APPO + BC.

Policy Class

Class Type Module(s)
Hidden

Dim Layers Activ. Copies
Trnsfrmr
+ LSTM

Trnsfrmr
+ LSTM
(large)

Hier
Trnsfrmr
+ LSTM

Enc Message MLP 128 2 ELU - 3 3 3
Enc Blstats Conv-1D, MLP 128 4 ELU - 3 3 3
Enc Pixel Obs Conv-2D, MLP 512 5 ELU - 3 3 3
Enc Action Hist one-hot 128 - - - 3 3 3
Enc Recurrent LSTM (frozen) 512 1 - - 3 3 3

Core Default Trnsfrmr 1408 3 GeLU - 3 7 3
Core Large Trnsfrmr 1408 6 GeLU - 7 3 7

Dec Default MLP 512 1 - - 3 3 7
Dec Hier Strat MLP 512 1 - - 7 7 3
Dec Hier Action MLP 512 2 ELU 13 7 7 3

Context Length Models belonging to all policy classes from the (LSTM)-family are trained by542

sequentially “unrolling” batched-predictions. The length of this “unrolled” sequence is held fixed543

throughout training, and is specified by the value of the “ttyrec unroll length” hyperparameter in544

Table 3.545

A fixed context length is also used to train the core Transformer modules of models belonging to546

classes from the (Transformer + LSTM)-family, similarly specified via the “ttyrec unroll length”547

hyperparameter. We found causally masking context in Transformer attention mechanisms to be548

greatly beneficial towards improving the generalization capability of models. The pre-trained frozen549

LSTM “recurrent encoder” module of these networks provides a very simple means of dramatically550

extending the effective context length of these models to cover full NetHack games, which may span551

hundreds of thousands of keypresses, without substantially slowing model training.552

Hierarchical Policy Variants As alluded to in Tables 5 and 6, as well as in Section 4 of the main553

paper, all hierarchical policy variants are equipped with two sets of decoders: one high-level strategy554

decoder trained to predict the thirteen possible strategy labels in HiHack; as well as thirteen low-level555

action decoders, trained to predict actions corresponding to a single HiHack strategy across the 121-556

dimensional NLE action space [33]. Our hierarchical policies thus mimic the hierarchical structure557

of Autoascend, with an action decoder corresponding to each of the eleven, explicit strategies558

executed by the symbolic bot as well as two additional action decoders corresponding to the bot’s559

“initialization” routine (an implicit twelfth strategy) and “write-errors,” representing missing strategy560

18



labels2, respectively, as introduced in Figure 7. A full, diagrammatic illustration of the Hierarchical561

LSTM policy architecture is provided in Figure 3.562

In all Hierarchical Behavioral Cloning (HBC) experiments, a BC loss was computed for the strategy563

decoder via ground-truth, batched HiHack strategy labels, while a separate BC loss was computed564

over a single action decoder over batched HiHack action labels, with this action decoder “selected”565

in an end-to-end fashion by the strategy decoder. The action decoder “selection” procedure was566

executed across batches by sampling predicted strategy indices from the strategy decoder with567

Gumbel-Softmax re-parameterization, thus preserving gradient flow across the bi-level hierarchical568

structure of policies during training. An illustration of the full Hierarchical LSTM policy architecture569

is provided in Figure 3.570

The strategy-specific BC loss component was re-weighted (via the “strategy loss coefficent” hyperpa-571

rameter, introduced in Table 3) and recombined with low-level action decoder losses to produce a572

single, overall HBC loss.573

We resolved the presence of ttyrec transitions with missing strategy values, represented via the574

“write-error” hierarchical label in HiHack, by extending the action-space of the hierarchical strategy575

decoder to 13 and adding an additional hierarchical action decoder copy corresponding to this class576

of labels. It is possible that the performance of hierarchical policy variants can be further improved577

by instead filtering out all transitions with this property. We leave this evaluation for future work.578

Figure 10: Left: The distribution of starting roles across the large-scale “in-depth evaluation.” As
described above, this evaluation was run for the top-performing neural policy seeds (out of 6) across
model class. We observe a near-uniform distribution of possible NLE roles across random seeds.
Right: Autoascend NLE Score distribution vs. starting role in the “in-depth evaluation.” This figure
is a companion to the visualizations of neural policy NLE scores across role in Figure 6. As in
Figure 8, we indicate absolute median and mean values of AutoAscend NLE score in the “in-depth
evaluation” with dashed-blue and solid-pink lines.

F Evaluation Details579

For all policy classes belonging to the (LSTM)-model family, we observe monotonic improvements in580

the performance of models on withheld instances of NLE as a function of training samples; as a result,581

we employ the final training checkpoint of these policies when running evaluations across policy582

seeds. In contrast, due to overfitting, the generalization capabilities of (Transformer + LSTM)-family583

policies do not monotonically improve as a function of training samples. Thus, evaluations are584

conducted only for the “best” checkpoints corresponding to each policy seed, as evaluated on the585

basis of the rolling NLE score proxy metric. An in-depth description of this metric, as well as586

experiment training curves supporting the claims of over- and underfitting across model classes, can587

be found in Appendix G.588

Two classes of evaluations are conducted in this paper for such checkpoints: a “standard evaluation”589

of policy NLE score across randomly sampled and withheld instances of environment, and an “in-590

depth evaluation,” recording all metrics of game-play and employing precisely the same set of seeded591

environment instances to evaluate all policies.592

The former policy evaluation procedure mirrors the one conducted during the NeurIPS 2021 NetHack593

Challenge Competition [23]. This is the procedure we employ to compute the mean and median594

NLE scores associated with policy seeds for all experiments in this paper as well as to compute the595

estimates of AutoAscend mean and median NLE score in Table 2, producing our core results.596

2Please refer to our discussion in Appendix B for more details.

19



The latter policy evaluation procedure yields a suite of more fine-grained metrics for informed and597

“human-like” game-play in NetHack, such as maximal dungeon level reached and the total life-time598

of the agent. We run this evaluation procedure for each of the best-performing3 seeds from each599

neural policy class, as well as for AutoAscend. Metrics computed with this procedure are denoted600

via the (†) symbol throughout the paper.601

Standard Evaluation Policies are evaluated on a randomly seeded batch of 1024 (withheld) NLE602

games. Only the final NLE scores at the end of game-play are recorded.603

In-Depth Evaluation Policies are evaluated across precisely the same seeded batch of 3402604

(withheld) NLE games, i.e. all agents play precisely the same set of starting roles across the same605

NLE dungeon configurations, none of which are covered in HiHack. All games are recorded to the606

ttyrec data format, and can be streamed post-facto.607

A visualization of the distribution of starting roles covered in this evaluation, as well as the corre-608

sponding AutoAscend score distributions (factorized by role across game instances), are shown in609

Figure 10.610

Figure 11: Model parameter scaling experiment training curves. In each plot, solid lines reflect
point-wise averages across 6 random seeds, while shaded regions reflect point-wise min-to-max value
ranges across seeds. Left: Rolling NLE evaluation score vs total BC training samples, for “default”
and 2x deeper Transformer + LSTM policies. Right: BC loss vs total BC training samples.

G Training Curves611

We provide training curves reflecting all conducted experiments. In Figures 11 and 12, we display612

both rolling NLE scores as well as BC loss curves as a function of training samples, across all model613

and data scaling experiments presented in Section 5. In Figure 13, we display aggregate rolling NLE614

scores as a function of training samples for all remaining BC and APPO + BC experiments, separated615

according to model family.616

Rolling NLE Score The rolling NLE score metric introduced and displayed in the figures discussed617

here reflects an evaluation of policy performance on withheld NLE instances conducted continually618

during model training in a “rolling” fashion via a fixed number of workers. As such, this metric619

is biased towards shorter-length games, with the value of smoothed rolling score as a function of620

training sample confounded by the policy-specific relationship between NLE score and total game621

turns. Rolling NLE score is thus not interchangeable with the large-batch “standard evaluations”622

employed elsewhere in this paper and presented in-depth in Appendix F. However, unlike BC loss, it623

serves as an efficient and useful (if noisy) proxy measure of policy generalization over the course of624

training.625

Model Parameter Scaling Training Curves As shown in Figure 11, the generalization capability626

of Transformer + LSTM policies (approximated via rolling NLE score) peaks soon after the start627

of training, decaying and flattening out as training proceeds despite continued improvement in BC628

3As indicated by overall mean NLE score in the “standard evaluation” procedure.

20



Figure 12: Dataset scaling experiment training curves. All experiments for a given dataset
size were trained on a dataset sub-sampled without replacement from HiHack. The sub-sampling
procedure was seeded. Training hyperparameters and model architectures were identical across all
runs belonging to a single policy class. As in Figure 12, solid lines reflect point-wise averages across
6 random seeds, while shaded regions reflect point-wise min-to-max value ranges across seeds in all
plots. Top: Rolling NLE evaluation score vs total BC training samples, across dataset sizes for the
“LSTM” and “Transformer + LSTM” policy classes. Bottom: BC loss vs total BC training samples,
across dataset sizes for the “LSTM” and “Transformer + LSTM” policy classes.

loss. This observation supports the claim made in Section 7 that Transformer-based models overfit to629

HiHack.630

Despite the aforementioned noisy nature of rolling NLE score, the “Policy Performance vs. Training631

Samples” curves on the left of Figure 11 allude to our large-scale “standard evaluation” finding from632

Section 5; namely, that policy performance does not increase when model parameter count is scaled633

up, even after training hyperparameters are tuned. Similarly, the “Loss vs. Training Samples” curves634

on the right of this figure indicate nearly identical training errors across both models as a function of635

BC training samples.636

Dataset Scaling Training Curves In Figure 12, we note that for datasets consisting of, or exceeding,637

1,000 AutoAscend games, LSTM policies do not appear to overfit over the course of our BC638

experiments, with rolling NLE score consistently monotonically increasing as a function of BC639

training samples for all such policies. However, a positive relationship between dataset size and640

maximal rolling NLE score over training persists, indicating that the addition of more data does641

lead to measurable (if sub log-linear) improvements in policy generalization. An inspection of642

LSTM policy loss curves reveals a similar story. Losses across policy seeds trained on 10 and 100643

AutoAscend games drop swiftly to values near zero, supporting this overfitting hypothesis.644

The Transformer + LSTM policy loss curves in Figure 12 similarly reveal harsh overfitting for policies645

trained with 10 and 100 games. Interestingly, the generalization capability of these policies, again646

indicated by rolling NLE score over training, is vastly superior to that of their LSTM counterparts.647

Indeed, we observe that a Transformer + LSTM policy trained on just 100 games vastly outperforms648

a pure LSTM policy trained on 10x as many games. We attribute this gap to the frozen nature of the649

pre-trained LSTM component of the Transformer + LSTM policies employed as a “recurrent” encoder650

in these policies, and hypothesize that it is the static quality of the recurrent representation output651

21



by this encoder which bolsters the generalization capability of the resultant models in exceptionally652

low-data regimes.653

Figure 13: Aggregate rolling NLE evaluation score curves for the central BC and APPO + BC
experiments discussed in this paper. Model parameter and dataset scaling training curves are
omitted here on account of being visualized in Figures 11 and 12, respectively. For APPO + BC
experiments, batch accumulation was employed to ensure that the ratio of RL to BC samples “seen”
during training was 1:1. This property is indicated via the secondary x-axes of APPO + BC figures
here, which show RL sample quantities. Top: Rolling NLE evaluation score vs total BC training
samples in pure BC experiments, across non-hierarchical and hierarchical (LSTM) and (Transformer
+ LSTM)-based policy classes. Bottom: Rolling NLE evaluation score vs total BC training samples
in APPO + BC experiments, across non-hierarchical and hierarchical (LSTM) and (Transformer +
LSTM)-based policy classes.

Aggregate BC and APPO + BC Training Curves The “Aggregate Policy Performance vs Training654

Samples” curves of Figure 13 align with the general model family training trends previously observed655

in the scaling experiments. Notably, we find once again that (LSTM)-based policies’ rolling NLE656

scores improve monotonically with training samples whether training is conducted with BC or APPO657

+ BC, while this is not the case for (Transformer + LSTM)-based models. Indeed, the generalization658

properties’ of policies belonging to this model family improve at the start of training before worsening659

as training proceeds across BC experiments. We interpret continued demonstration of these trends as660

further support for the claims of (LSTM)-underfitting and (Transformer + LSTM)-overfitting made in661

Section 7 of the main body of the paper as well as in Appendix F.662

Moreover, we note that the introduction of an RL loss induces a particularly large amount of volatility663

in the rolling NLE score associated with (Transformer + LSTM)-based models, disrupting the664

monotonically decreasing relationship between rolling NLE score and training samples previously665

observed for these policies following 2 · 108 training samples in the pure BC experiments. This666

observation suggests that the performance of these policies is likely bottlenecked by an insufficient667

throughput of “on-policy” or interactive data, as compared to their LSTM counterparts, which train668

on 2x as many samples in our compute-time constrained experimental setting.669

22



Figure 14: Max dungeon level reached vs. total turns across “in-depth evaluation” games, visual-
ized via 2-D contour density plots. Contour densities are indicated by the color-bars accompanying
each subplot. Mean quantity values (computed dimension-wise for all policies) across the “in-depth
evaluation” batch are indicated by white ‘7’ symbols in each subplot. The symbolic bot’s vastly
superior ability to play longer and descend much further into the dungeon creates a separation in
scale between it and its neural counterparts; as a result, for clarity, we indicate the max dungeon
level vs turns subspace displayed in the neural policy contours with a bolded black rectangle in our
visualization of AutoAscend’s behavior. Top Left: Best-performing BC neural policy seeds. Bottom
Left: Best-performing APPO + BC neural policy seeds. Right: AutoAscend.

H Distributional Visualizations of Evaluation Results670

Max Dungeon Level Reached vs. Total Turns In Figure 14, we supplement the absolute mean671

and median max-dungeon level and agent life-time (in game turns) statistics introduced in Table 2672

with 2-D distributional visualizations of both the raw values of these metrics as well as their mutual673

inter-relationship, evaluated via n = 3402 seeded NLE games run individually for all policy class674

representatives in our “in-depth evaluation.”675

The AutoAscend 2-D contour plot on the right of this figure demonstrates an interesting emergent676

property of the bot’s behavior: the high-level “descent” behavior of AutoAscend appears to fall along677

one of two modes across games. In the first of these modes, the bot spends a very large amount of678

turns on dungeon level 1, and avoids descending further into the dungeon before the end of the game.679

In the second mode, the bot begins to rapidly descend fairly deep into the dungeon, reaching as far as680

level 11. The overall relationship between AutoAscend’s total in-game life-time and max-dungeon681

level reached appears to be roughly quadratic.682

In contrast, none of the neural policy class representatives tested here comes close to achieving683

AutoAscend’s secondary behavior mode. A large majority of games for all neural policy classes684

appear to end on the first level of the dungeon, with policies very rarely surviving as long on this685

23



level as AutoAscend in games belonging to its corresponding behavior mode. This suggests that686

neural policies may be failing to master the very low-level behaviors of the bot, even when these687

behaviors are factorized across AutoAscend strategies, as in the case of hierarchical policy variants.688

Nevertheless, the qualitative performance of hierarchical policies clearly improves upon that of689

non-hierarchical models, with the Hierarchical Transformer + LSTM policy trained with BC both690

surviving longer of dungeon level 1 and descending with higher frequency than other BC-trained691

policy representatives. Furthermore, this qualitative behavior appears to be strengthened when692

interaction is added into the mix, with the mode centered on “dungeon level 2” increasing in density693

for the APPO + BC variant of the Hierarchical Transformer + LSTM representative policy.694

Taken together, these sets of observations lead us to hypothesize that the quality of neural policies695

trained with imitation learning on extremely complex, long-horizon tasks like NetHack may be further696

improved with increases in the scale of hierarchically-informed behavioral factorization, beyond the697

scale of factorization explored in this paper. We consider this to be a very exciting direction for future698

work.699

Figure 15: Log-score distribution across “in-depth evaluation” games. As in Figures 8 and 10,
we indicate absolute median and mean values of policies’ NLE scores in the “in-depth evaluation”
with dashed-blue and solid-pink lines. The introduction of an RL loss reduces the “mass” associated
with the left-tail of log-score and increases the “mass” associated with the right-tail across all neural
policy classes, inducing right-ward shifts in median and mean scores, though difficult to perceive in
this figure on account of the log-scale of the x-axis. We refer the reader to Table 2 in the main paper
for aggregate absolute numerical values of NLE score. Top Left: Best-performing BC neural policy
seeds. Bottom Left: Best-performing APPO + BC neural policy seeds. Right: AutoAscend.

24



Log-Score Distributions We conclude this supplementary analysis with a visualization of log-score700

distributions across neural policy classes in Figure 15, computed over the “in-depth evaluation” seeded701

games. The trends displayed in this figure align with those described and demonstrated previously.702

Improvements in model architecture as well as the introduction of hierarchy and interactive learning703

lead to a re-distribution of “mass” between left and right tails of distribution, with the overall counts704

of “low score” games decreasing and “high score” games increasing when these improvements are705

applied. The gap to AutoAscend is significantly reduced, but not bridged.706

25


