
A Discussion of Limitations and Future Work1

We have presented a novel framework that integrates Compiled Neural Networks (CoNNs) with2

existing language models to bolster their rule understanding abilities. Although our approach has3

shown promising performance improvements on symbolic and arithmetic reasoning tasks, there are4

several limitations and potential avenues for future research that warrant further exploration.5

A significant limitation of our current framework lies in the more efficient and natural incorporation6

of CoNNs into language models. Currently, our method employs a sparse neural network that treats7

the pre-trained language model and CoNNs as separate modules. A more desirable solution is to8

leverage a dense neural network, simultaneously utilizing the benefits of both components. A potential9

direction to achieve this is initializing part of the language model’s parameters with CoNNs before10

pre-training and locking these parameters during training, thereby promoting seamless integration of11

CoNNs and reducing the associated computational overhead.12

Another promising area of research is the inclusion of explicit knowledge into CoNNs. While the13

current implementation centers on encoding rules into CoNNs, future work could exploit techniques14

from knowledge graphs to compile explicit knowledge into language models. This may significantly15

enhance language models’ interpretability and knowledge representation capabilities, potentially16

resulting in improved performance on an even broader range of tasks.17

Furthermore, examining the large-scale applicability of CoNNs is a beneficial endeavor. Although18

our experiments have been conducted on a relatively small scale (up to five stacked CoNNs), the19

advancements and abilities language models may gain from larger-scale combinations of CoNNs20

remain unclear. Exploring the scalability of our method and the performance advantages of deploying21

more complex CoNN architectures in language models could provide valuable insights into their22

potential.23

In addition, investigating the adaptability of our framework for various rules and knowledge sources24

is crucial. While our current implementation concentrates on rule-based reasoning, extending the25

approach to encompass other types of knowledge, such as facts, heuristics, or more intricate logical26

structures, is a possibility. Such an investigation could enhance our understanding of CoNNs’27

capabilities and limitations while representing diverse forms of knowledge.28

Finally, we acknowledge the limited scope of tasks and benchmarks used in our evaluation. To fully29

comprehend the potential and limitations of incorporating CoNNs into language models, it is vital30

to test our method on a more extensive array of tasks and domains. This could involve reasoning31

tasks requiring the integration of multiple knowledge types, as well as real-world scenarios with more32

demanding problem-solving contexts.33

In conclusion, our work on enhancing language models’ rule understanding capabilities through34

CoNN integration has yielded promising results, albeit with some limitations and remaining chal-35

lenges. By addressing these areas and extending our approach, we believe that it can ultimately lead36

to the development of more powerful, interpretable, and knowledge-rich language models.37

B Compiled Neural Networks38

In this section, we discuss the concept, implementation, and potential of Compiled Neural Networks39

(CoNN), a type of neural network inspired from previous works on transformers. CoNNs can40

perform diverse tasks such as computer arithmetic and linear algebra, demonstrating a wide range of41

applications in language model and beyond.42

B.1 Introduction43

Transformers have garnered significant attention due to their ability to capture high-order relations44

and manage long-term dependencies across tokens through attention mechanisms. This enables45

transformers to model contextual information effectively. Pre-trained language models, such as46

GPT-3 [Brown et al., 2020], exploit contextual learning to invoke various modules for different tasks,47

like performing arithmetic upon receiving arithmetic prompts. To further enhance rule comprehension48

in such models, CoNN-based modules are introduced as a part of Neural Comprehension.49

1

Example 1 The Parity CoNN

⋆

If we want the transformer to perform the Parity task full accurately:
Input: 1 0

1. Select(Indices,Indices,True) =
�
1 1
1 1

�

2. Aggregate
��

1 1
1 1

�
, [1 0]

�
= [1 1]

3. Zipmap([1 1] ,Lambda x : 0 if x % 2 == 0 else 1) = [1 1]

Output: [1 1]

Figure 1: Demonstration of the principles of Parity CoNN.

Distinct from common models like BERT [Devlin et al., 2018], CoNNs leverage a transformer50

structure and derive their weights from specialized design rather than pre-training. Each Attention51

layer and Multilayer Perceptron (MLP) layer in a CoNN represents a specific sequence transformation,52

leading to a neural network module embodying explicit and interpretable operations.53

RASP [Weiss et al., 2021] is a Restricted Access Sequence Processing Language that abstracts54

the computational model of Transformer-encoder by mapping its essential components, such as55

attention and feed-forward computation, into simple primitives like select, aggregate, and zipmap.56

This language enables RASP programs to perform various tasks like creating histograms, sorting, and57

even logical inference, as demonstrated by Clark et al. [2020].58

Tracr [Lindner et al., 2023] serves as a compiler that converts human-readable RASP code into59

weights for a GPT-like transformer architecture with only a decoder module. The Tracr framework60

uses JAX to transform RASP-defined code into neural network weights. Our neural reasoning61

framework employs weights generated by Tracr, which are then converted into PyTorch weights to be62

compatible with the pre-trained language model.63

Looped Transformers as Programmable Computers [Giannou et al., 2023] introduces a novel trans-64

former framework that simulates basic computing blocks, such as edit operations on input sequences,65

non-linear functions, function calls, program counters, and conditional branches. This is achieved66

by reverse engineering attention and hardcoding unique weights into the model, creating a looped67

structure. The resulting CoNN can emulate a general-purpose computer with just 13 layers of trans-68

formers, and even implement backpropagation-based context learning algorithms, showcasing the69

approach’s vast application prospects.70

Overall, the potential applications of CoNNs are extensive, given their capacity to perform a wide71

array of tasks beyond natural language processing. CoNNs offer increased interpretability and72

transparency through explicitly defined operations, which is vital in fields such as medical diagnosis73

and legal decision-making. Additionally, CoNNs can lead to more efficient and effective neural74

network architectures by reducing pre-training requirements and facilitating improved optimization75

of network parameters.76

B.2 Example77

In this subsection, we briefly describe how computational processes can be represented using trans-78

former code and demonstrate how new CoNN weights can be obtained with the aid of the Tracr79

compiler.80

B.2.1 Parity CoNN81

In the introduction, we tried to introduce how to perform parity checking on a sequence containing [082

| 1] using a compiled neural network. Whenever we need to check the sequence, this compiled neural83

network can output the completely correct answer.84

2

THE TRACR CODE OF Parity CONN

def parity(sop) -> rasp.SOp:
""" Multiply the length of each token."""
sop = rasp.SequenceMap(lambda x,y: x * y,sop ,length).named(’map_length ’)

""" Add each bit."""
out = rasp.numerical(rasp.Aggregate(rasp.Select(rasp.indices ,rasp.indices ,rasp.

Comparison.TRUE).named(’Select ’),rasp.numerical(rasp.Map(lambda x: x, sop).named(’
map_length ’)),default =0).named(’Aggregate ’))

""" Calculate whether the remainder of dividing it by 2 is odd or even."""
out = rasp.Map(lambda x: 0 if x % 2 == 0 else 1,out).named(’Zipmap ’)

return out

bo
s 1 0 0 0 1

Aggregate_14:

Zipmap_13: 0

Zipmap_13: 1

indices: 0

indices: 1

indices: 2

indices: 3

indices: 4

map_length_16:

map_length_17: 0

map_length_17: 1

map_length_17: 2

map_length_17: 3

map_length_17: 4

map_length_17: 5

one:

selector_width_6: 0

selector_width_6: 1

selector_width_6: 2

selector_width_6: 3

selector_width_6: 4

selector_width_6: 5

selector_width:

tokens: 0

tokens: 1

tokens: bos

tokens: pad
Input

bo
s 1 0 0 0 10

5

10

15

20

25

Attn 1

bo
s 1 0 0 0 10

5

10

15

20

25

MLP 1

bo
s 1 0 0 0 10

5

10

15

20

25

Attn 2

bo
s 1 0 0 0 10

5

10

15

20

25

MLP 2

bo
s 1 0 0 0 10

5

10

15

20

25

Attn 3

bo
s 1 0 0 0 10

5

10

15

20

25

MLP 3

bo
s 1 0 0 0 10

5

10

15

20

25

Attn 4

bo
s 1 0 0 0 10

5

10

15

20

25

MLP 4

Figure 2: Input the [1,0,0,0,1] (target output = 0) for Parity CoNN.

bo
s 1 0 1 0 1

Aggregate_14:

Zipmap_13: 0

Zipmap_13: 1

indices: 0

indices: 1

indices: 2

indices: 3

indices: 4

map_length_16:

map_length_17: 0

map_length_17: 1

map_length_17: 2

map_length_17: 3

map_length_17: 4

map_length_17: 5

one:

selector_width_6: 0

selector_width_6: 1

selector_width_6: 2

selector_width_6: 3

selector_width_6: 4

selector_width_6: 5

selector_width:

tokens: 0

tokens: 1

tokens: bos

tokens: pad
Input

bo
s 1 0 1 0 10

5

10

15

20

25

Attn 1

bo
s 1 0 1 0 10

5

10

15

20

25

MLP 1

bo
s 1 0 1 0 10

5

10

15

20

25

Attn 2

bo
s 1 0 1 0 10

5

10

15

20

25

MLP 2

bo
s 1 0 1 0 10

5

10

15

20

25

Attn 3

bo
s 1 0 1 0 10

5

10

15

20

25

MLP 3
bo

s 1 0 1 0 10

5

10

15

20

25

Attn 4

bo
s 1 0 1 0 10

5

10

15

20

25

MLP 4

Figure 3: Input the [1,0,1,0,1] (target output = 1) for Parity CoNN.

The first step is to obtain a matrix of all ones to that of the sequence using the ’Select’ operation. In85

the second step, the ’Aggregate’ operation is used to combine the matrix obtained in the previous step86

with the input sequence (with the aim of calculating the total number of 0’s and 1’s in the sequence).87

The third step involves determining whether the total count is odd or even by "Zipmap".88

Figures 2 and 3 present two distinct input sequences, and illustrate the corresponding hidden state89

and final output obtained after passing through the internal layers of the Parity CoNN architecture.90

3

THE TRACR CODE OF Reverse CONN

def reverse(sop) -> rasp.SOp:
""" Get the indices from back to front."""
opp_idx = (length - rasp.indices).named("opp_idx")

""" opp_idx - 1, so that the first digit of indices = 0."""
opp_idx = (opp_idx - 1).named("opp_idx -1")

""" Use opp_idx to query indices , get the Select."""
reverse_selector = rasp.Select(rasp.indices , opp_idx ,rasp.Comparison.EQ).named("

reverse_selector")

""" Aggregate the reverse_selector and sop """
return rasp.Aggregate(reverse_selector , sop).named("reverse")

B.2.2 Reverse CoNN91

Figures 4 and 5 show the hidden state and output of Reverse CoNN when inputting text. The92

embedding of CoNN can be customized, so tokens can be either words like ’hello’ or individual93

letters.94

bo
s

he
llo

,

wo
rld

aggregate_38: 0
aggregate_38: 1
aggregate_38: 2
aggregate_38: 3
aggregate_38: 4
aggregate_38: 5
aggregate_38: 6
aggregate_38: 7

indices: 0
indices: 1
indices: 2
indices: 3
indices: 4
indices: 5
indices: 6
indices: 7
map_37: 1
map_37: 2
map_37: 3
map_37: 4
map_37: 5
map_37: 6
map_37: 7
map_37: 8

one:
opp_idx-1_42: -8
opp_idx-1_42: -7
opp_idx-1_42: -6
opp_idx-1_42: -5
opp_idx-1_42: -4
opp_idx-1_42: -3
opp_idx-1_42: -2
opp_idx-1_42: -1
opp_idx-1_42: 0
opp_idx-1_42: 1
opp_idx-1_42: 2
opp_idx-1_42: 3
opp_idx-1_42: 4
opp_idx-1_42: 5
opp_idx-1_42: 6
opp_idx-1_42: 7

opp_idx_43: -7
opp_idx_43: -6
opp_idx_43: -5
opp_idx_43: -4
opp_idx_43: -3
opp_idx_43: -2
opp_idx_43: -1
opp_idx_43: 0
opp_idx_43: 1
opp_idx_43: 2
opp_idx_43: 3
opp_idx_43: 4
opp_idx_43: 5
opp_idx_43: 6
opp_idx_43: 7
opp_idx_43: 8
reverse_40: 0
reverse_40: 1
reverse_40: 2
reverse_40: 3
reverse_40: 4
reverse_40: 5
reverse_40: 6
reverse_40: 7

selector_width_6: 0
selector_width_6: 1
selector_width_6: 2
selector_width_6: 3
selector_width_6: 4
selector_width_6: 5
selector_width_6: 6
selector_width_6: 7
selector_width_6: 8

selector_width:
tokens: ,
tokens: bos
tokens: hello
tokens: pad
tokens: world

Input

bo
s

he
llo

,

wo
rld

0

10

20

30

40

50

60

70

80
Attn 1

bo
s

he
llo

,

wo
rld

0

10

20

30

40

50

60

70

80
MLP 1

bo
s

he
llo

,

wo
rld

0

10

20

30

40

50

60

70

80
Attn 2

bo
s

he
llo

,

wo
rld

0

10

20

30

40

50

60

70

80
MLP 2

bo
s

he
llo

,

wo
rld

0

10

20

30

40

50

60

70

80
Attn 3

bo
s

he
llo

,

wo
rld

0

10

20

30

40

50

60

70

80
MLP 3

bo
s

he
llo

,

wo
rld

0

10

20

30

40

50

60

70

80
Attn 4

bo
s

he
llo

,

wo
rld

0

10

20

30

40

50

60

70

80
MLP 4

bo
s

he
llo

,

wo
rld

0

10

20

30

40

50

60

70

80
Attn 5

bo
s

he
llo

,

wo
rld

0

10

20

30

40

50

60

70

80
MLP 5

Figure 4: Input the [’hello’,’,’,’world’] for Reverse CoNN.

bo
s r e v e r s eaggregate_31: 0

aggregate_31: 1
aggregate_31: 2
aggregate_31: 3
aggregate_31: 4
aggregate_31: 5
aggregate_31: 6
aggregate_31: 7

indices: 0
indices: 1
indices: 2
indices: 3
indices: 4
indices: 5
indices: 6
indices: 7
map_30: 1
map_30: 2
map_30: 3
map_30: 4
map_30: 5
map_30: 6
map_30: 7
map_30: 8

one:
opp_idx-1_35: -8
opp_idx-1_35: -7
opp_idx-1_35: -6
opp_idx-1_35: -5
opp_idx-1_35: -4
opp_idx-1_35: -3
opp_idx-1_35: -2
opp_idx-1_35: -1
opp_idx-1_35: 0
opp_idx-1_35: 1
opp_idx-1_35: 2
opp_idx-1_35: 3
opp_idx-1_35: 4
opp_idx-1_35: 5
opp_idx-1_35: 6
opp_idx-1_35: 7

opp_idx_36: -7
opp_idx_36: -6
opp_idx_36: -5
opp_idx_36: -4
opp_idx_36: -3
opp_idx_36: -2
opp_idx_36: -1
opp_idx_36: 0
opp_idx_36: 1
opp_idx_36: 2
opp_idx_36: 3
opp_idx_36: 4
opp_idx_36: 5
opp_idx_36: 6
opp_idx_36: 7
opp_idx_36: 8
reverse_33: 0
reverse_33: 1
reverse_33: 2
reverse_33: 3
reverse_33: 4
reverse_33: 5
reverse_33: 6
reverse_33: 7

selector_width_6: 0
selector_width_6: 1
selector_width_6: 2
selector_width_6: 3
selector_width_6: 4
selector_width_6: 5
selector_width_6: 6
selector_width_6: 7
selector_width_6: 8

selector_width:
tokens: a
tokens: b
tokens: bos
tokens: c
tokens: d
tokens: e
tokens: f
tokens: g
tokens: h
tokens: i
tokens: j
tokens: k
tokens: l
tokens: m
tokens: n
tokens: o
tokens: p
tokens: pad
tokens: q
tokens: r
tokens: s
tokens: t
tokens: u
tokens: v
tokens: w
tokens: x
tokens: y
tokens: z

Input

bo
s r e v e r s e0

20

40

60

80

100

Attn 1

bo
s r e v e r s e0

20

40

60

80

100

MLP 1

bo
s r e v e r s e0

20

40

60

80

100

Attn 2

bo
s r e v e r s e0

20

40

60

80

100

MLP 2

bo
s r e v e r s e0

20

40

60

80

100

Attn 3

bo
s r e v e r s e0

20

40

60

80

100

MLP 3

bo
s r e v e r s e0

20

40

60

80

100

Attn 4

bo
s r e v e r s e0

20

40

60

80

100

MLP 4

bo
s r e v e r s e0

20

40

60

80

100

Attn 5
bo

s r e v e r s e0

20

40

60

80

100

MLP 5

Figure 5: Input the [’r’,’e’,’v’,’e’,’r’,’s’,’e’] for Reverse CoNN.

B.2.3 Addition CoNN95

Due to the high complexity of the model, we decided to omit the hidden state transformation for96

the Addition CoNN. However, we have provided code later in the text that will allow for easy97

implementation of this CoNN. The code includes add_in_the_same_position and add_carry98

functions, which are used to calculate the addition and carry of pairs in the CoNN respectively. We99

divide the entire operation into two models. For the add_carry model, we refer to the approach100

4

THE TRACR CODE OF Addition CONN

def split(sop , token , index):
""" Match the position of target token """
target_position = rasp.Aggregate(rasp.Select(sop , rasp.Map(lambda x: token , sop),

rasp.Comparison.EQ), rasp.indices)

"""If need to match the front position."""
if index == 0:

out = rasp.Aggregate(rasp.Select(rasp.indices , rasp.indices - (length -
target_position), rasp.Comparison.EQ),

sop) # Move the sop on the left side of the token to the far
right.

return rasp.SequenceMap(lambda x, i: x if i == 2 else "_", out , rasp.categorical(
rasp.SequenceMap(lambda x, i: 2 if x >= i else 0, rasp.indices , length -

target_position))) # Use "_" to fill the empty position on the left.

"""If need to match the finally number."""
else:

return rasp.SequenceMap(lambda x, i: x if i else "_", sop ,
rasp.SequenceMap(lambda x, i: 1 if x > i else 0, rasp.

indices , target_position)).named(
f"shift") # Use "_" to fill the empty position on the left.

def atoi(sop):
""" Converts all text to number , and uses 0 for strings of types other than numbers ,

It may be mixed with ’str’ or ’int ’.
"""

return rasp.SequenceMap(lambda x, i: int(x) if x.isdigit () else 0, sop , rasp.indices)
.named(

"atoi")

def shift(sop):
""" Get the target indices."""
idx = (rasp.indices - 1).named("idx -1")

""" Use opp_idx to query indices , get the Select."""
selector = rasp.Select(idx , rasp.indices ,

rasp.Comparison.EQ).named("shift_selector")

""" Aggregates the sops and selectors (converted from indexes)."""
shift = rasp.Aggregate(selector , sop).named("shift")
return shift

def add_in_the_same_position(sop):
x = atoi(split(sop ,’+’ ,0)) + atoi(split(sop ,’+’ ,1))
return x

def carry(sop):
weight = shift(rasp.Map(lambda n:1 if n>9 else 0,sop))

weight = rasp.Aggregate(rasp.Select(rasp.indices ,rasp.indices ,lambda key ,query:key ==
query),weight ,default =0)

x = rasp.Map(lambda n:n-10 if n>9 else n,sop)
return x + weight

of ALBERT. After the output of the add_in_the_same_position model, we cyclically use the101

add_carry model L times, where L is the length of the text, to ensure that all digits can carry. It102

is important to note that this particular Addition CoNN is only capable of performing addition103

operations on natural numbers.104

B.2.4 Subtraction CoNN105

The subtraction CoNN is similar to the addition CoNN. First, each digit is subtracted from its106

corresponding digit, and then it is determined whether to carry over. For ease of experimentation, this107

subtraction CoNN only supports subtraction of natural numbers where the minuend is greater than108

the subtrahend.109

5

THE TRACR CODE OF Subtraction CONN

def split(sop , token , index):...

def atoi(sop):...

def shift(sop):...

def sub_in_the_same_position(sop):
x = atoi(split(sop ,’-’ ,0)) - atoi(split(sop ,’-’ ,1))
return x

def carry(sop):
weight = shift(rasp.Map(lambda n:1 if n<0 else 0,sop))
weight = rasp.Aggregate(rasp.Select(rasp.indices ,rasp.indices ,lambda key ,query:key ==

query),weight ,default =0)
x = rasp.Map(lambda n:n+10 if n<0 else n,sop)
return x - weight

Model Layers Heads Vocabulary Size Window Size Hidden Size MLP Hidden Size # Parameters Compared to GPT-3

Pariity 4 1 4 40 132 1959 2.2M ≈ 1/100,000
Reverse 4 1 28 40 297 1640 4.3M ≈ 1/50,000
Last Letter 3 1 28 16 103 32 62.6K ≈ 1/3,000,000
Copy 1 1 28 16 69 26 8.8K ≈ 1/20,000,000
Add_in_the_same_position 7 1 13 40 535 6422 51.8M ≈1/3000
Add_Carry 3 1 122 40 130 52 117K ≈1/1,500,000
Sub_in_the_same_position 7 1 13 40 535 6422 51.8M ≈1/3000
Sub_Carry 3 1 122 40 130 52 117K ≈1/1,500,000

Table 1: We reported on a CoNN with a single function, including its actual parameter size and
comparison with the parameters of GPT-3.

B.3 CoNN model parameters110

The parameter sizes of all CoNN models used in this work are listed in Table 1. It is noteworthy that111

even for GPT-3, which has parameters that are orders of magnitude larger, it remains challenging to112

solve symbolic problems. However, with the use of compiled neural networks, only a small number113

of parameters are needed to achieve Neural Comprehension.114

B.4 Environmental and Human-centric Benefits of Compiled Neural Networks115

Compiled Neural Networks (CoNNs) address concerns related to the environmental impact of training116

large models and the need for human-centric computing. CoNN models can reduce energy consump-117

tion and carbon emissions by minimizing extensive pre-training and decreasing parameter size, as118

seen in Table 1. This reduction in computational power and energy requirements makes both the119

training and inference processes more environmentally friendly. Additionally, Neural Comprehension120

offers a more interpretable and transparent alternative to conventional deep learning models. CoNN’s121

explicit operation definitions and specialized architecture enable users to comprehend the reasoning122

behind model decisions, fostering trust and facilitating human-AI collaboration. Increased inter-123

pretability also allows for scrutiny of model behavior, promoting the development of fair, accountable,124

and transparent systems aligned with ethical considerations and human values.’125

C AutoCoNN126

We identify a critical limitation in pre-trained language models, namely, their lack of deep conceptual127

comprehension of symbolic operations like addition, which we refer to as Neural Comprehension. For128

example, when ChatGPT is directly asked, ’What are the correct steps to perform addition?’, it can129

explain the correct addition steps. However, it cannot apply this knowledge to solve more complex130

addition problems, such as ’What is the answer to 103541849645165+656184535476748421?’. To131

address this gap, we propose a novel method called AutoCoNN (Automatic Compiler of Neural132

Networks) for the fast and efficient compilation of neural networks by utilizing the code writing,133

context learning, and language understanding capabilities of large language models.134

AutoCoNN consists of a three-stage process: Observation, Induction, and Comprehension. The135

purpose of this framework is to automate the construction of Compiler Neural Networks (CoNN)136

6

for various tasks and domains, thereby enhancing the learning and problem-solving abilities of137

language models within the Neural Comprehension framework in a scalable and efficient manner138

while minimizing the need for human intervention.139

C.1 Method140

1 任务

Task

Required Ability

ordinary people

 target_position = rasp.Aggregate(rasp.Select(sop,
rasp.Map(lambda x: token, sop), rasp.Comparison.EQ),
rasp.indices) # Match the position of target token
......

“ 578 + 18937 = ?”

 19515

 “using 'token' as the
separator string 'sop',
return the 'index' th
and then align right.”

Large
Language Model

Write ability by LLM.

Auto-Select

LM

Output

CNN

(A) Comparison between AutoCoNN and
expert-written CoNN

Observation Induction

…
Easy and
Convenient

Compile

(B) AutoCoNN

Text

CoNN

Write CoNN by himself.

 “using 'token' as the
separator string 'sop',
return the 'index' th
and then align right.”

Large
Language Model

Auto-Select

Experts

Time-consuming
and Expensive

Easy and
Convenient

Comprehension

Figure 6: Introduction and Comparison of AutoCoNN

The specific process of AutoCoNN is illustrated in Figure 6. During the Observation stage, we141

identify the abilities required to solve a given task, such as addition, subtraction, multiplication,142

and division for arithmetic reasoning tasks. This stage aims to determine the rules and symbolic143

comprehension that pre-trained language models lack.144

In the Induction stage, we leverage the code writing capabilities of large language models to generate145

CoNNs representing the desired rules and concepts. We achieve this by providing the model with a146

small set of examples that include CoNN code and accompanying comments. As a result, the model147

generates code that compiles a neural network customized for the specific problem at hand. However,148

as the model’s comprehension of CoNNs is limited, it may encounter run-time errors or produce149

unintended outputs. To mitigate this issue, we employ a trial-and-error mechanism throughout150

the decoding phase by implementing sample decoding, which adjusts the temperature parameter,151

allowing for random decodings and generating diverse text outputs. These outputs are compiled into152

new CoNNs, and the accuracy of the networks is evaluated using a small test set. By selecting the153

best-performing CoNN, we obtain a neural network that effectively captures the desired mathematical154

concepts and rules. The sample encoding formula for temperature-based decoding is as follows,155

where p(wi) is the probability of word wi, zi is the logits for word wi, and T is the temperature156

parameter:157

p(wi) =
e

zi
T∑

j e
zj
T

(1)

We evaluate the accuracy of these compiled networks using a small test set, requiring only one or two158

samples. By selecting the best-performing CoNN, we obtain a more accurate neural network that159

effectively captures the desired mathematical concepts and rules.160

CoNN Model Expert’s Working Time Success by AutoCoNN Can AutoCoNN solve

Parity Model 1 hours 8/20 ✓✓

Reverse Model 0.5 hour 15/20 ✓✓

Last Letter Model 0.5 hour 13/20 ✓✓

Copy Model 0.2 hour 17/20 ✓✓

Addition Model 48 hours 0/20 ✗

Subtraction Model 48 hours 0/20 ✗

Table 2: Comparison between AutoCoNN and Expert
Built CoNN. The column ’Expert’s Working Time’ refers
to the time required for a trained engineer to write the
CoNN code; ’Success by AutoCoNN’ refers to the accu-
racy of 20 results generated by using GPT-3.5 for diverse
decoding; ’Can AutoCoNN solve’ refers to whether Au-
toCoNN can identify suitable CoNN code from the 20
results through validation.

During the Comprehension stage, the161

original large language model is inte-162

grated with the compiled neural network163

using our Neural Comprehension frame-164

work, enhancing its rule comprehension165

capabilities.166

Table 2 presents the effectiveness of Au-167

toCoNN in obtaining CoNN models suit-168

able for Neural Comprehension. The re-169

sults indicate that for simple CoNN mod-170

els, AutoCoNN can reduce manpower171

costs. However, when building more172

complex CoNN models, the method may173

be constrained by the code capabilities of174

large language models, posing challenges175

in achieving its goal.176

7

D Supplementary Experiment177

D.1 The effect of training data scale on length generalization of gradient-based models178

Text Leng

0
5

10
15

20
25

30
35

40

Trai
ning D

ata
1M

3M
5M

7M
9M

11M
13M

15M

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

(a) Parity

Text Leng

0
5

10
15

20
25

30
35

40

Trai
ning D

ata

1M
3M

5M
7M

9M
11M

13M
15M

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

(b) Reverse

Text Leng

3 5
10

15
20

25
30

35
40

Trai
ning D

ata

1M
3M

5M
7M

9M
11M

13M
15M

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

(c) Addition

Text Leng

3 5
10

15
20

25
30

35
40

Trai
ning D

ata

1M
3M

5M
7M

9M
11M

13M
15M

Ac
cu

ra
cy

 (%
)

0

20

40

60

80

100

(d) Subtraction

Figure 7: Length Generalization Performance of Language Models with Different Dataset Sizes.

To investigate the impact of training data scale on out-of-distribution (OOD) performance, we179

conducted experiments using the T5-large model with varying amounts of in-distribution training180

data. The experimental setup closely followed that of Main Figure 3, utilizing numbers with 10 to181

20 digits as the training set but varying the number of training examples between 1 million and 15182

million. The peak validation set performance for each experiment is reported in Figure 7.183

The results in Figure 7 show that increasing the scale of the In-Dist training data leads to only marginal184

improvements in OOD performance. This finding is discouraging, suggesting that gradient-based185

language models face challenges in capturing the true underlying meaning of symbols and their186

transformation rules based on the data distribution alone.187

D.2 Real-world Arithmetic Reasoning Tasks188

In Table 3, we compared Vanilla CoT with the Neural Comprehension framework for arithmetic189

reasoning tasks. We integrated the Addition and Subtraction CoNNs with LLMs and observed190

improved performance across several tasks. This suggests that the proposed Neural Comprehension191

framework can compensate for the difficulties faced by large-scale language models in computational192

tasks. Nevertheless, the performance improvement is not as significant due to the choice of specific193

CoNN models to ensure clarity in our experiments. Designing CoNN models to support more general194

arithmetic tasks could potentially yield more substantial improvements. In addition, since the Neural195

8

Method GSM8K SingleEq AddSub MultiArith SVAMP Average

Previous SOTA (Fintune) 35a/57b 32.5c 94.9d 60.5e 57.4f -

GPT-3 Standard 19.7 86.8 90.9 44.0 69.9 62.26

GPT-3 (175B)
code-davinci-001

CoT 13.84 62.02 57.22 45.85 38.42 43.47

CoT + Neural Comprehension 13.95(+0.11) 62.83(+0.81) 60.25(+3.03) 45.85(+0.0) 38.62(+0.2) 44.30(+0.83)

Instruct-GPT (175B)
code-davinci-002

CoT 60.20 91.01 82.78 96.13 75.87 81.20

CoT + Neural Comprehension 60.42(+0.22) 91.01(+0.0) 82.78(+0.0) 96.13(+0.0) 76.09(+0.22) 81.29(+0.09)

Table 3: Problem solve rate (%) on arithmetic reasoning datasets. The previous SoTA baselines are
obtained from: (a) GPT-3 175B finetuned [Cobbe et al., 2021]; (b) GPT-3 175B finetuned plus an
additional 175B verifier[Cobbe et al., 2021]; (c) Hu et al. [2019]; (d) Roy and Roth [2016]; (e) Roy
and Roth [2016]; (f) Amini et al. [2019]; (f) Pi et al. [2022]

Comprehension framework improves the gap between the data distribution learned by the language196

model during training through gradient descent and the real rules, it can also be combined with some197

existing logical improvements to language models, including self-consistency [Wang et al., 2023],198

least-to-most [Zhou et al., 2022], self-improve [Huang et al., 2022], and self-verification [Weng et al.,199

2022]. It can also be combined with some zero-shot methods [Kojima et al., 2022, Zhang et al.,200

2023].201

Method T5-small T5-base T5-large

Origin 1.74 1.52 3.87

Neural Comprehension 1.82 1.59 4.02

Ours Improve +0.08 +0.07 +0.15

Table 4: The test set problem-solving rate (%)
of the T5 model on the GSM8K dataset.

To further evaluate the effectiveness of the Neural202

Comprehension framework, Table 4 presents the203

results of fine-tuning T5 models with Addition204

and Subtraction CoNN on the GSM8K training205

dataset. The comparison of three different-sized206

models reveals that the framework can model deter-207

ministic rules defined by humans, thus avoiding the208

uncertainty associated with gradient descent learning209

from data distribution.210

D.3 The Efficiency of Neural Comprehension211

Vanilla Neural Comprehension δTime

Model Params Task GPU CPU GPU CPU GPU CPU

T5-small 60M Coin Flip 5.280s 5.720s 5.431s 5.872s 0.151s (2.86%) 0.152s (2.66%)

T5-base 220M Coin Flip 7.865s 13.767s 8.010s 13.939s 0.145s (1.84%) 0.172s (1.25%)

T5-large 770M Coin Flip 14.055s 32.953s 14.194s 33.120s 0.139s (0.99%) 0.167s (0.51%)

T5-small 60M Last Letter Concatenation 16.233s 28.309s 16.744s 28.720s 0.511s (3.15%) 0.411s (1.45%)

T5-base 220M Last Letter Concatenation 28.912s 55.660s 29.426s 56.087s 0.514s (1.78%) 0.427s (0.77%)

T5-large 770M Last Letter Concatenation 49.584s 103.739s 50.066s 104.134s 0.482s (0.97%) 0.395s (0.38%)

Table 5: In Neural Comprehension framework, the inference latency comparison of the T5 model.

To evaluate the efficacy of Neural Comprehension, we conducted further experiments comparing the212

inference latency of both the Vanilla and Neural Comprehension frameworks on an equal number of213

sequences and equal sequence lengths using GPU and CPU configurations. We employed a batch214

size of 1 and assessed the inference latency of Neural Comprehension in conjunction with various T5215

model sizes across two symbolic inference tasks to ascertain efficiency. The full results are detailed216

in Table 5.217

Our findings reveal that implementing Neural Comprehension increases computational requirements,218

primarily attributed to the supplementary parameter volume and computational demands introduced by219

CoNNs. However, as the scale of pre-trained language models expands, the proportion of δTime within220

the Neural Comprehension framework progressively diminishes, particularly for larger language221

models.222

9

Model Model Creator Modality Version # Parameters Tokenizer Window Size Access

T5-small Google Text T5.1.0 60M T5 512 Open
T5-base Google Text T5.1.0 220M T5 512 Open
T5-large Google Text T5.1.0 770M T5 512 Open

GLM-130B Tsinghua University Text GLM-130B 130B ICE 2048 open
GPT-3 OpenAI Text,Code code-davinci-001 175B* GPT-2 2048 limited
GP-3.5 OpenAI Text,Code,Instruct code-davinci-002 175B* GPT-2 8096 limited
GPT-4 OpenAI Text,Code,Instruct,. . . gpt-4 175B* GPT-2 8000 limited

Table 6: Models. Description of the models evaluated in this effort: provenance for this information
is provided in models. ∗ indicates that we believe the associated OpenAI models are this size, but this
has not been explicitly confirmed to our knowledge.

E Implementation and Details223

In this section, we provide a detailed description of the experimental setup from a model and dataset224

perspective, ensuring repeatability of our experiments.225

E.1 Model226

Our experiments primarily involve the T5, GPT, and GLM-130B families of models. Neural Compre-227

hension framework supports seamless integration with language models having decoder structures,228

regardless of the scale of the language model. We fine-tune the T5 models, while the larger mod-229

els with over 10 billion parameters are used for few-shot In-context learning. Table 6 presents a230

comprehensive list of all models used in our experiments1.231

E.1.1 Fine-tuning232

Training Setting Configuration
optimizer Adafactor
base learning rate 1× 10−4

weight decay 2× 10−5

decay rate -0.8
optimizer eps (1× 10−30,2× 10−3)
batch size 64
training epochs 20
gradient clip 1.0
gradient accumulation 1.0
warmup epochs 1
warmup schedule cosine

Table 7: Training Setting

For the T5 models, we employ the standard fine-233

tuning approach using the pre-trained models as234

a starting point. We follow the pre-processing235

steps in the T5 original paper, which involves set236

the input text max length to 150 and using the237

tokenizer to process the data. We use a batch size238

of 64 for all models and the Adafactor optimizer239

[Shazeer and Stern, 2018] with a learning rate240

of 1× 10−4. The models are trained for a maxi-241

mum of 20 epochs. We use a cosine learning rate242

schedule with a warm-up phase comprising 5%243

of the total number of training steps. We employ244

a dropout rate of 0.1 during training to mitigate245

overfitting. Our experiments utilize the PyTorch246

framework [Paszke et al., 2019] for training and247

inference. Table 5 displays the parameter settings248

for the T5 models during training, which is conducted on four NVIDIA A6000 GPUs with 48GB of249

memory each.250

In Table 7, we list the hyperparameters used to train the T5 model. We carefully selected these251

parameters to ensure that the within-distribution validation accuracy roughly converged. We report252

all peak validation set results, and in every experiment we ran, we found that within-distribution253

validation accuracy monotonically increased during training iterations (until it approached 100%),254

and we never observed overfitting. This may be due to the regular nature of the tasks we considered255

in the paper. We followed the Anil et al. [2022]’s setup and did not use OOD performance in model256

selection, as this would constitute "peaking at the test conditions". Regarding the number of training257

iterations, we also tried training the T5 model with more iterations in the addition task, but this did258

not lead to substantial differences in OOD performance (i.e., it was still equally poor).259

1The specific configurations of the GPT series of models can be found at https://platform.openai.
com/docs/model-index-for-researchers/model-index-for-researchers

10

https://platform.openai.com/docs/model-index-for-researchers/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers/model-index-for-researchers

PARITY DATASET

def generate_parity_data(n):
data = []
for _ in range (100000):

input_str = ’’.join(str(random.randint(0, 1)) for _ in range(n))
label = sum(int(x) for x in input_str) % 2
data.append ({’input ’: input_str , ’label ’: label})

return data

parity_data = {}
for n in range(1, 41):

parity_data[n] = generate_parity_data(n)

E.1.2 Few-shot In-Context Learning260

For the few-shot context learning on GPT and GLM-130B models, we employ an approach inspired261

by the recent work on GPT-3 [Brown et al., 2020]. In this methodology, the models are provided a262

context consisting of a few examples of the input-output pairs in natural language format. Following263

this, the models are expected to generalize and perform well on the task without any explicit fine-264

tuning. We carefully design the context to include diverse examples that represent the range of265

input types and required model reasoning. Importantly, we limit the context length to be within the266

maximum token limits of the models. For instance, GPT-3 has a token limit of 2048. Due to limited267

access to the GPT family of models, we utilize the official API for these experiments 2. .For the268

GLM-130B, we employ the FasterTransformer framework to set up local inference with INT4 on269

eight NVIDIA GeForce RTX 3090 GPUs with 24GB of memory each.270

E.2 Tasks and Dataset271

In this paper, all data sets related to length generalization consist of independent data sets with the272

same number of digits but different lengths, and each digit in the test set is unique. Therefore, there273

may be slight fluctuations between data sets of different lengths, but the overall trend is generally clear.274

To further illustrate the differences between data sets of different lengths, the following examples are275

provided:276

Parity: 110︸︷︷︸
Length = 3

= 0 101100︸ ︷︷ ︸
Length = 6

= 1 010001110101︸ ︷︷ ︸
Length = 12

= 0

Reverse: abc︸︷︷︸
Length = 3

= cba figure︸ ︷︷ ︸
Length = 6

= erugif accomplished︸ ︷︷ ︸
Length = 12

= dehsilpmocca

Addition: 1 + 2︸ ︷︷ ︸
Length = 3

= 3 18 + 245︸ ︷︷ ︸
Length = 6

= 263 48864 + 964315︸ ︷︷ ︸
Length = 12

= 1013179

Arithmetic Reasoning: Joan found 6546634574688499︸ ︷︷ ︸
Length = 16

seashells and Jessica found

3855196602063621︸ ︷︷ ︸
Length = 16

seashells on the beach. How many seashells did they find

together ?

E.2.1 Data Generation Details277

Synthetic Parity Dataset: We sample instances of lengths 1-40 from a uniform Bernoulli distribution.278

We first uniformly sample the number of ones, and then randomly shuffle the positions of each one279

within a fixed-length bitstring. For the experiments in Main Figure 3, we train T5 on lengths 10-20,280

with 99000 training samples per bit. For all methods, we test each bit using 1000 samples.281

Synthetic Reverse Dataset: We selected a dataset of instances with lengths ranging from 1 to 40. For282

the experiments in Main Figure 3, the training set consists of 99000 samples each for lengths 10-20.283

Each input is a randomly generated word string of specified length, where the letters are selected284

uniformly at random from a set of 26 letters using a Bernoulli distribution (without necessarily having285

2OpenAI’s API:https://openai.com/api/

11

https://openai.com/api/

REVERSE DATASET

reverse_data = {}
for n in range(1, 41):

reverse_data[n] = []
for _ in range (100000):

word = ’’.join(random.choice(string.ascii_lowercase) for _ in range(n))
reverse_data[n]. append ({’input’:word ,’label ’:’’.join(list(reversed(word)))})

ADDITION DATASET

Generate two random n-digit numbers and their sum
def generate_additive_example(n):

data = []
k = (n - 1) % 2
n = (n - 1) // 2 if n > 2 else n

for _ in range (100000):
a = random.randint (10**(n+k-1), 10**(n+k) - 1)
b = random.randint (10**(n-1), 10**n - 1)
data.append ({’input ’: str(a)+’+’+str(b), ’label’: a + b})

return data

Generate an additive data set for digits ranging from 3 to 40
additive_data = {}
for n in range(3, 41):

additive_data[str(n)] = generate_additive_example(n)

any actual meaning), and all letters are converted to lowercase. The test set for lengths 1-40 contains286

at least 1000 test samples.287

Synthetic Addition and subtraction Dataset: Addition and subtraction are fundamental arithmetic288

operations that are commonly taught in primary school. To generate the dataset, we takes as input the289

number of digits n and returns a list of 100000 examples. The function first calculates the remainder290

k when (n − 1) is divided by 2, and then divides (n − 1) by 2 if n is greater than 2, else it sets n291

to itself. This ensures that the length of the first number is either equal to or one digit longer than292

the length of the second number. The function then generates 100000 examples using randomly293

generated numbers. Specifically, it generates two numbers a and b where a is a random integer294

between 10(n+k−1) and 10(n+k) − 1, and b is a random integer between 10(n−1) and 10n − 1. It295

then appends each example to the list data in the form of a dictionary with the input as the string296

"a+b" and the label as the sum a+b.297

For the experiments in Figure Main Figure 1, we provided 99000 training data examples for addition298

with numbers ranging from 3 to 10 digits in length for the T5 model. For the GPT-3.5 and GPT-4299

models, we provided 8 few-shot samples within 10 digits. We evaluated the performance of all three300

models on numbers ranging from 3 to 30 digits in length, with 1000 test samples per digit. On the301

other hand, for the experiments in Figure Main Figure 3, we provided 99000 training data examples302

for addition with numbers ranging from 10 to 20 digits in length for the T5 model. For the GPT-3.5303

and GPT-4 models, we provided 8 few-shot samples within the range of 10 to 20 digits. We evaluated304

the performance of all three models on numbers ranging from 3 to 30 digits in length, with 1000 test305

samples per digit.306

For subtraction, we use a similar approach.307

E.2.2 Symbolic Reasoning Dataset308

Coin Flip: We followed Wei et al. [2022]’s setup and randomly concatenated first and last names309

from the top 1000 names in the census data (https://namecensus.com/) to create the <NAME>310

token. In our work, flipping a coin corresponds to 1 and not flipping a coin corresponds to 0. To make311

the inputs as close to English as possible without using too many symbols, we used the sentence312

models "<NAME> flips the coin." and "<NAME> does not flip the coin." to represent whether313

the coin was flipped or not. This task is similar to the parity task, but requires further semantic314

understanding. We constructed a training set of 1500 samples, with 500 samples for each of 2-4315

12

https://namecensus.com/

SUBTRACTION DATASET

Generate two random n-digit numbers and their minus
def generate_minus_example(n):

data = []
k = (n - 1) % 2
n = (n - 1) // 2 if n > 2 else n
for _ in range (100000):

a = random.randint (10**(n+k-1), 10**(n+k) - 1)
b = random.randint (10**(n-1), 10**n - 1)
if a > b:

data.append ({’input ’: str(a)+’-’+str(b), ’label’: a - b})
else:

data.append ({’input ’: str(b)+’-’+str(a), ’label’: b - a})
return data

Generate an subtraction data set for digits ranging from 3 to 40
minus_data = {}
for n in range(3, 41):

minus_data[str(n)] = generate_minus_example(n)

COIN FILP DATASET

dataset = []
for i in range (500):

randomly choose two names from the name_list
for o in range (2,5):

sentence = ’A␣coin␣is␣heads␣up.’
label = []
for time in range(o):

name = random.sample(names , k=1)[0]

randomly choose whether to flip the coin or not
flip = random.choice ([True , False])

generate the statement and label based on whether the coin was flipped or
not

if flip:
sentence += f"␣{name.capitalize ()}␣flips␣the␣coin."
label.append (1)

else:
sentence += f"␣{name.capitalize ()}␣does␣not␣flip␣the␣coin."
label.append (0)

sentence += ’␣Is␣the␣coin␣still␣heads␣up?’

dataset.append ({’question ’:sentence , ’answer ’:{0:’yes’ ,1:’no’}[sum(label)%2]})

coin flips. For the test set, we selected 100 non-overlapping samples for each of 2-4 coin flips, and316

evaluated the model every 5 steps.317

Last Letter Concatenation: We followed Wei et al. [2022]’s setup and randomly concatenated first318

and last names from the top 1000 names in the census data to create the <NAME> token. This task319

requires the model to connect the last letter of each word in a concatenated name. This task requires320

Neural Comprehension of rules in two aspects. First, it requires the model to correctly identify the321

last letter of each word. Second, it requires the model to concatenate all the last letters of the words322

together. We concatenated 2-5 first or last names, and constructed a training set of 1500 samples,323

with 500 samples for each name length of 2-4. For the test set, we selected 100 non-overlapping324

samples for each name length of 2-4, and evaluated the model every 5 steps.325

E.2.3 Arithmetical Reasoning Dataset326

Dataset Number of samples Average words Answer Format Lience
GSM8K 1319 46.9 Number MIT License
SingleEq 508 27.4 Number MIT License
AddSub 395 31.5 Number Unspecified
MultiArith 600 31.8 Number Unspecified
SVAMP 1000 31.8 Number MIT License

Table 8: Arithmetical Reasoning Dataset Description.

13

In Table 8, we summarize the information of all arithmetic reasoning datasets used in this work. We327

provide the links to access these datasets:328

• GSM8K: https://github.com/openai/grade-school-math329

• SingleEq: https://gitlab.cs.washington.edu/ALGES/TACL2015330

• AddSub: https://www.cs.washington.edu/nlp/arithmetic331

• MultiArith: http://cogcomp.cs.illinois.edu/page/resource_view/98332

• SVAMP: https://github.com/arkilpatel/SVAMP333

F Some examples of Neural Comprehension334

In this section, we will use gray font to represent the task input, yellow font to represent the neural335

network output during training, and blue background to represent the neural network output during336

generated.337

F.1 Synthetic Symbolic338

Q: 1011001010 A: 1

Q: 01111011000 A: 0

Q: 1010011001110 A: 1

Q: 10000001001001 A: 0

Q: 110100011110001 A: 0

Q: 1110011001010110 A: 1

Q: 1100000111011000101 A: 1

Q: 01100000110110010001 A: 0
——–(LLM’s few-shot prompt)——–
Q: 011110001010101101011 A: 0

Table 9: The example of Parity

Q: neofascism A: msicsafoen

Q: betaquinine A: eniniuqateb

Q: corediastasis A: sisatsaideroc

Q: ferroelectronic A: cinortceleorref

Q: cryoprecipitation A: noitatipicerpoyrc

Q: cryofibrinogenemia A: aimenegonirbifoyrc

Q: chemocarcinogenesis A: sisenegonicracomehc

Q: ponjpcdqjuuhiviojmby A: ybmjoivihuujqdcpjnop
———-(LLM’s few-shot prompt)———-
Q: helloworldhellochina A: anihcollehdlrowolleh

Table 10: The example of Reverse

14

https://github.com/openai/grade-school-math
https://gitlab.cs.washington.edu/ALGES/TACL2015
https://www.cs.washington.edu/nlp/arithmetic
http://cogcomp.cs.illinois.edu/page/resource_view/98
https://github.com/arkilpatel/SVAMP

Q: 82637+3058 A: 85695

Q: 58020+96632 A: 154652

Q: 717471+58704 A: 776175

Q: 298309+702858 A: 1001167

Q: 1061462+2623780 A: 3685242

Q: 58720970+61609034 A: 120330004

Q: 364920479+78861480 A: 443781959

Q: 6050330002+211065324 A: 6261395326
———-(LLM’s few-shot prompt)———-
Q: 20021012+20021004 A: 40042016

Table 11: The example of Addition

Q: 82637-3058 A: 79579

Q: 96632-58020 A: 38612

Q: 717471-58704 A: 658767

Q: 702858-298309 A: 404549

Q: 2623780-1061462 A: 1562318

Q: 68720970-61609034 A: 7111936

Q: 364920479-78861480 A: 286058999

Q: 6050330002-211065324 A: 393967676
———-(LLM’s few-shot prompt)———-
Q: 20021012-20021004 A: 8

Table 12: The example of Subtraction

F.2 Symbolic Reasoning339

A coin is heads up. Devin flips the coin. Maxwell does not flip the coin.

James flips the coin. Kenneth flips the coin. Is the coin still heads up?

1 0 1 1 -> 1

A coin is heads up. Ira flips the coin. Danny does not flip the coin.

Horace flips the coin. Is the coin still heads up?

1 0 1 -> 0

Table 13: The example of Coin Flip

Take the last letters of the words in Elias Earnest Milton and concatenate them.
The last letter of Elias -> s The last letter of Earnest -> t
The last letter of Milton -> n The answer is stn

Take the last letters of the words in Randolph Weldon Olin Robbieänd concatenate them.

The last letter of Randolph -> h The last letter of Weldon -> n

The last letter of Olin -> n The last letter of Robbie -> e The answer is hnne

Table 14: The example of Last Letter Concatenation

15

F.3 Arithmetical Resoning340

Joan found 65466345746884996 seashells and Jessica found 38551966020636213
seashells on the beach . How many seashells did they find together ?

Joan started with 65466345746884996 seashells. She gave some to Sam. So:

65466345746884996 - 38551966020636213 = 2691437972624878
The answer is 2691437972624878

Table 15: The example of Arithmetirc Reasoning

References341

A. Amini, S. Gabriel, P. Lin, R. Koncel-Kedziorski, Y. Choi, and H. Hajishirzi. Mathqa: Towards342

interpretable math word problem solving with operation-based formalisms. north american chapter343

of the association for computational linguistics, 2019.344

C. Anil, Y. Wu, A. J. Andreassen, A. Lewkowycz, V. Misra, V. V. Ramasesh, A. Slone, G. Gur-Ari,345

E. Dyer, and B. Neyshabur. Exploring length generalization in large language models. In A. H.346

Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing347

Systems, 2022. URL https://openreview.net/forum?id=zSkYVeX7bC4.348

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,349

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information350

processing systems, 33:1877–1901, 2020.351

P. Clark, O. Tafjord, and K. Richardson. Transformers as soft reasoners over language. In C. Bessiere,352

editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,353

IJCAI-20, pages 3882–3890. International Joint Conferences on Artificial Intelligence Organization,354

7 2020. doi: 10.24963/ijcai.2020/537. URL https://doi.org/10.24963/ijcai.2020/537.355

Main track.356

K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training357

verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.358

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional359

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.360

A. Giannou, S. Rajput, J. yong Sohn, K. Lee, J. D. Lee, and D. Papailiopoulos. Looped transformers361

as programmable computers, 2023.362

M. Hu, Y. Peng, Z. Huang, and D. Li. A multi-type multi-span network for reading comprehension363

that requires discrete reasoning. empirical methods in natural language processing, 2019.364

J. Huang, S. S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and J. Han. Large language models can365

self-improve. arXiv preprint arXiv:2210.11610, 2022.366

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot rea-367

soners. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information368

Processing Systems, 2022. URL https://openreview.net/forum?id=e2TBb5y0yFf.369

D. Lindner, J. Kramár, M. Rahtz, T. McGrath, and V. Mikulik. Tracr: Compiled transformers as a370

laboratory for interpretability. arXiv preprint arXiv:2301.05062, 2023.371

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,372

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,373

B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance374

deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and375

R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran As-376

sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/377

file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.378

16

https://openreview.net/forum?id=zSkYVeX7bC4
https://doi.org/10.24963/ijcai.2020/537
https://openreview.net/forum?id=e2TBb5y0yFf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

X. Pi, Q. Liu, B. Chen, M. Ziyadi, Z. Lin, Y. Gao, Q. Fu, J.-G. Lou, and W. Chen. Reasoning like379

program executors. 2022.380

S. Roy and D. Roth. Solving general arithmetic word problems. arXiv: Computation and Language,381

2016.382

N. Shazeer and M. Stern. Adafactor: Adaptive learning rates with sublinear memory cost, 2018.383

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou. Self-384

consistency improves chain of thought reasoning in language models. In The Eleventh International385

Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=386

1PL1NIMMrw.387

J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought prompting388

elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.389

G. Weiss, Y. Goldberg, and E. Yahav. Thinking like transformers. In International Conference on390

Machine Learning, pages 11080–11090. PMLR, 2021.391

Y. Weng, M. Zhu, S. He, K. Liu, and J. Zhao. Large language models are reasoners with self-392

verification. arXiv preprint arXiv:2212.09561, 2022.393

Z. Zhang, A. Zhang, M. Li, and A. Smola. Automatic chain of thought prompting in large language394

models. In The Eleventh International Conference on Learning Representations, 2023. URL395

https://openreview.net/forum?id=5NTt8GFjUHkr.396

D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, O. Bousquet, Q. Le, and397

E. Chi. Least-to-most prompting enables complex reasoning in large language models. arXiv398

preprint arXiv:2205.10625, 2022.399

17

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=5NTt8GFjUHkr

	Discussion of Limitations and Future Work
	Compiled Neural Networks
	Introduction
	Example
	Parity CoNN
	Reverse CoNN
	Addition CoNN
	Subtraction CoNN

	CoNN model parameters
	Environmental and Human-centric Benefits of Compiled Neural Networks

	AutoCoNN
	Method

	Supplementary Experiment
	The effect of training data scale on length generalization of gradient-based models
	Real-world Arithmetic Reasoning Tasks
	The Efficiency of Neural Comprehension

	Implementation and Details
	Model
	Fine-tuning
	Few-shot In-Context Learning

	Tasks and Dataset
	Data Generation Details
	Symbolic Reasoning Dataset
	Arithmetical Reasoning Dataset

	Some examples of Neural Comprehension
	Synthetic Symbolic
	Symbolic Reasoning
	Arithmetical Resoning

