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🚀 Comparing our model, TANGOFLUX, with other state-of-the-art text-to-audio generation models:🔥 
TangoFlux achieves better quality audio (measured by CLAP and FD scores) while being approximately 
2x faster ⏩ than the next fastest model, all with fewer trainable parameters!
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TANGOFLUX Resources

Website → https://tangoflux.github.io

Code Repository → https://github.com/declare-lab/TangoFlux

Pretrained Model → https://huggingface.co/declare-lab/TangoFlux

Dataset Fork → https://huggingface.co/datasets/declare-lab/CRPO

Interactive Demo → https://huggingface.co/spaces/declare-lab/TangoFlux

ABSTRACT

We introduce TANGOFLUX, an efficient Text-to-Audio (TTA) generative model
with 515M parameters, capable of generating up to 30 seconds of 44.1kHz au-
dio in just 3.7 seconds on a single A40 GPU. A key challenge in aligning TTA
models lies in the difficulty of creating preference pairs, as TTA lacks structured
mechanisms like verifiable rewards or gold-standard answers available for Large
Language Models (LLMs). To address this, we propose CLAP-Ranked Preference
Optimization (CRPO), a novel framework that iteratively generates and optimizes
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preference data to enhance TTA alignment. We demonstrate that the audio prefer-
ence dataset generated using CRPO outperforms existing alternatives. With this
framework, TANGOFLUX achieves state-of-the-art performance across both ob-
jective and subjective benchmarks. We open source all code and models to support
further research in TTA generation.

1 INTRODUCTION

Audio plays a vital role in daily life and creative industries, from enhancing communication and
storytelling to enriching experiences in music, sound effects, and podcasts. However, creating high-
quality audio, such as foley effects or music compositions, demands significant effort, expertise,
and time. Recent advancements in text-to-audio (TTA) generation (Majumder et al., 2024; Ghosal
et al., 2023; Liu et al., 2023; 2024b; Xue et al., 2024; Vyas et al., 2023; Huang et al., 2023b;a) and
offer a transformative approach, enabling the automatic creation of diverse and expressive audio
content directly from textual descriptions. This technology holds immense potential to streamline
audio production workflows and unlock new possibilities in multimedia content creation. However,
many existing models face challenges with controllability, occasionally struggling to fully capture
the details in the input prompts, especially when the prompts are complex. This can sometimes
result in generated audio that omits certain events or diverges from the user intent. At times, the
generated audio may even contain input-adjacent, but unmentioned and unintended, events, that
could be characterized as hallucinations.

In contrast, the recent advancements in Large Language Models (LLMs) (Ouyang et al., 2022) have
been significantly driven by the alignment stage after pre-training and supervised fine-tuning. This
alignment stage, often leveraging reinforcement learning from human feedback (RLHF) or other
reward-based optimization methods, endows the generated outputs with human preferences, ethical
considerations, and task-specific requirements (Ouyang et al., 2022). Despite the rapid progress in
TTA models, until recently (Majumder et al., 2024) alignment, that could mitigate the aforemen-
tioned issues with audio outputs, has not been a mainstay in TTA model training.

One critical challenge in implementing alignment for TTA models lies in the creation of preference
pairs. Unlike LLM alignment, where off-the-shelf reward models (Lambert et al., 2024a;b) and
human feedback data or verifiable gold answers are available, TTA domain as yet lacks such tooling.
For instance, in general, LLM alignment settings, such as safety or instruction following, tools exist
for categorizing specific safety risks (Inan et al., 2023). Frontier LLMs like GPT-4 (OpenAI et al.,
2024) are often used directly to judge the candidate outputs (Zheng et al., 2023).

While audio language models (Chu et al., 2024; 2023; Tang et al., 2024) can process audio inputs
and generate textual outputs, they often produce noisy feedback, unfit for preference pair creation
for audio. BATON (Liao et al., 2024) employs human annotators to assign a binary score of 0 or
1 to each audio sample based on its alignment with a given prompt. However, such labor-intensive
manual approach is often economically not viable at a large scale.

To address these issues, we propose CLAP-Ranked Preference Optimization (CRPO), a simple yet
effective approach to generate audio preference data and perform preference optimization on recti-
fied flows. As shown in Fig. 1, CRPO consists of iterative cycles of data sampling, generating pref-
erence pairs, and performing preference optimization, resembling a self-improvement algorithm.
We first demonstrate that the CLAP model (Wu* et al., 2023) can serve as a proxy reward model
for ranking generated audios by alignment with the text description. Using this ranking, we con-
struct an audio preference dataset that yields superior performance after preference optimization,
as compared to other audio preference datasets, such as, BATON and Audio-Alpaca (Majumder
et al., 2024). Finally, we demonstrate the effectiveness of this iterative optimization, emphasizing
the importance of each component, including the modified loss function compared to conventional
preference optimization loss.

Additionally, many TTA models are trained on proprietary data (Evans et al., 2024b;a; Copet et al.,
2024), with their weights often unavailable to the public or accessible only through private APIs,
posing challenges for public use and foundational research. Moreover, the diffusion-based TTA
models (Ghosal et al., 2023; Majumder et al., 2024; Liu et al., 2024b) are known to require too
many denoising steps to generate a decent output, consuming much GPU compute and time.
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Figure 1: A depiction of the overall training pipeline of TANGOFLUX.

To address this, we introduce TANGOFLUX, trained on a completely non-proprietary dataset,
achieving state-of-the-art performance on benchmarks and out-of-distribution prompts, despite its
smaller size. Unlike conventional TTA models, TANGOFLUX supports variable-duration audio gen-
eration up to 30 seconds with a blazing inference speed of 3.7 seconds on a single A40 GPU. This is
achieved by the use of transformer (Vaswani et al., 2023) backbone that undergoes pretraining, fine-
tuning, and preference optimization with rectified flow matching as training objective—enabling
good quality audio output guided by much fewer sampling steps tracing the almost straight path
between the noise and output audio.

Our contributions:

(i) We introduce TANGOFLUX, a small and fast TTA model based on rectified flow that achieves
state-of-the-art performance for fully non-proprietary training data.

(ii) We propose CRPO, a simple and effective strategy to generate audio preference data and align
rectified flow, demonstrating its superior performance over other audio preference datasets.

(iii) We conduct extensive experiments and highlight the importance of each component of CRPO
in aligning rectified flows for improving scores on benchmarks.

(iv) We publicly release the code and model weights to foster research on text-to-audio generation.

2 METHOD

TANGOFLUX consists of FluxTransformer blocks which are Diffusion Transformer (DiT) (Pee-
bles & Xie, 2023) and Multimodal Diffusion Transformer (MMDiT) (Esser et al., 2024), condi-
tioned on textual prompt and duration embedding to generate audio at 44.1kHz up to 30 seconds.
TANGOFLUX learns a rectified flow trajectory from audio latent representation encoded by a vari-
ational autoencoder (VAE) (Kingma & Welling, 2022). TANGOFLUX training pipeline consists of
three stages: pre-training, fine-tuning then preference optimization. TANGOFLUX is aligned via
CRPO which iteratively generates new synthetic data and constructs preference pairs to perform
preference optimization. The overall pipeline is depicted in Fig. 1.

2.1 AUDIO ENCODING

We use the VAE from Stable Audio Open (Evans et al., 2024c), which is capable of encoding stereo
audio waveforms at 44.1kHz into audio latent representations. Given a stereo audio X ∈ R2×d×sr

with d as the duration and sr as the sampling rate, the VAE encodes X into a latent representation
Z ∈ RL×C , with L, C being the latent sequence length and channel size, respectively. The VAE
decodes the latent representation Z back into the original stereo audio X . The entire VAE is kept
frozen during TANGOFLUX training.
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2.2 MODEL CONDITIONING

To enable the controllable generation of audio of varying lengths, we employ textual conditioning
and duration conditioning. Textual conditioning controls the event present of the generated audio
based on a provided description, while duration conditioning specifies the desired audio length, up
to a maximum of 30 seconds.

Textual Conditioning. Given the textual description of an audio, we obtain the text encoding ctext
from a pretrained text-encoder. Given the strong performance of FLAN-T5 (Chung et al., 2022;
Raffel et al., 2023) as conditioning in text-to-audio generation (Majumder et al., 2024; Ghosal et al.,
2023), we select FLAN-T5 as our text encoder.

Duration Encoding. Inspired by the recent works (Evans et al., 2024c;a;b), to generate audios with
variable length, we firstly use a small neural network to encode the audio duration into a duration
embedding cdur. This is concatenated with the text encoding ctext and fed into TANGOFLUX to
control the duration of audio output.

2.3 MODEL ARCHITECTURE

Following the recent success of FLUX models in image generation 1, we adopt a hybrid MMDiT and
DiT architecture as the backbone for TANGOFLUX. While MMDiT blocks demonstrated a strong
performance, simplifying some of them into single DiT block improved scalability and parameter
efficiency 2. These lead us to select a model architecture consisting of 6 blocks of MMDiT, followed
by 18 blocks of DiT. Each block uses 8 attention heads, with each attention head dimension of 128,
resulting in a width of 1024. This configuration results in a model with 515M parameters.

2.4 FLOW MATCHING

Several generative models have been successfully trained under the diffusion framework (Ho et al.,
2020; Song et al., 2022; Liu et al., 2022). However, this approach is known to be sensitive to
the choice of noise scheduler, which may significantly affect performance. In contrast, the flow
matching (FM) framework (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023) has been shown
to be more robust to the choice of noise scheduler, making it a preferred choice in many applications,
including text-to-audio (TTA) and text-to-speech (TTS) tasks (Liu et al., 2024a; Le et al., 2023; Vyas
et al., 2023).

Flow matching builds upon the continuous normalizing flows framework (Onken et al., 2021). It
generates samples from a target distribution by learning a time-dependent vector field that maps
samples from a simple prior distribution (e.g., Gaussian) to a complex target distribution. Prior work
in TTA, such as AudioBox (Vyas et al., 2023) and Voicebox (Le et al., 2023), has predominantly
adopted the Optimal Transport conditional path proposed by (Lipman et al., 2023). However, in our
approach, we utilize rectified flows (Liu et al., 2022) instead, which is a straight line path from noise
to distribution, corresponding to the shortest path.

Rectified Flows. Given a latent representation of an audio sample x1, a noise sample x0 ∼ N (0, I),
time-step t ∈ [0, 1], we can construct a training sample xt where the model learns to predict a veloc-
ity vt =

dxt

dt that guides xt to x1. While there exist several methods of constructing transport path xt

, we used rectified flows (RFs) (Liu et al., 2022), in which the forward process are straight paths be-
tween target distribution and noise distribution, defined in Eq. (1). It was empirically demonstrated
that rectified flows are sample efficient and degrade less compared to other formulations when re-
ducing lesser number of sampling steps (Esser et al., 2024). We use θ to denote the model u’s
parameter. The model directly regresses the predicted velocity u(xt, t; θ) against the ground truth
velocity vt where the loss is shown in Eq. (2).

xt = (1− t)x1 + tx̃0, vt =
dxt

dt
= x̃0 − x1, (1)

1https://blackforestlabs.ai/
2https://blog.fal.ai/auraflow/
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LFM = Ex1,x0,t ∥u(xt, t; θ)− vt∥2 . (2)

Inference. During inference, we sample a noise from prior distribution x̃0 ∼ N (0, I) and use an
ordinary differential equation solver to compute x1, based on the model-predicted velocity vt at each
time step t. We use the Euler solver for this process.

2.5 CLAP-RANKED PREFERENCE OPTIMIZATION (CRPO)

CLAP-Ranked Preference Optimization (CRPO) leverages a text-audio joint-embedding model like
CLAP (Wu* et al., 2023) as a proxy reward model to rank the generated audios by similarity with
the input description and subsequently construct the preference pairs.

We firstly set a pre-trained checkpoint of TANGOFLUX architecture as the base model to align,
denoted by π0. Thereafter, CRPO iteratively aligns checkpoint πk := u(·; θk) into checkpoint
πk+1, starting from k = 0. Each of such alignment iterations consists of three steps: (i) batched
online data generation, (ii) reward estimation and preference dataset creation, and (iii) fine-tuning
πk into πk+1 via direct preference optimization.

This approach to aligning rectified flow is inspired by a few LLM alignment approaches (Zelik-
man et al., 2022; Kim et al., 2024a; Yuan et al., 2024; Pang et al., 2024). However, there are key
distinctions to our work: (i) we focus on aligning rectified flows for audio generation, rather than
autoregressive language models; (ii) while LLM alignment benefits from numerous off-the-shelf re-
ward models (Lambert et al., 2024b), which facilitate the construction of preference datasets based
on reward scores, LLM judged outputs, or programmatically verifiable answers, the audio domain
lacks such models or method for evaluating audio. We demonstrate that the CLAP model can serve
as an effective proxy audio reward model, enabling the creation of preference datasets (see Sec-
tion 4.3). Finally, we highlight the necessity of generating online data at every iteration, as iterative
optimization on offline data leads to quicker performance saturation and subsequent degradation.

2.5.1 CLAP AS A REWARD MODEL

CLAP reward score is calculated as the cosine similarity between textual and audio embeddings
encoded by the model. Thus, we assume that CLAP can serve as a reasonable proxy reward model
for evaluating audio outputs against the textual description. In Section 4.3, we demonstrate that
using CLAP as a judge to choose the best-of-N inferred policies improves performance in terms of
objective metrics.

2.5.2 BATCHED ONLINE DATA GENERATION

To construct a preference dataset at iteration k, we first sample a set of prompts Mk from a
larger pool B. Subsequently, we generate N audios for each prompt yi ∈ Mk using πk and use
CLAP3 (Wu* et al., 2023) to rank those audios by similarity with yi. For each prompt yi, we select
the highest-rewarded or -ranking audio xw

i as the winner and the lowest-rewarded audio xl
i as the

loser, yielding a preference dataset Dk = {(xw
i , x

l
i, yi) | yi ∈ Mk}.

2.5.3 PREFERENCE OPTIMIZATION

Direct preference optimization (DPO) (Rafailov et al., 2024c) is shown to be effective at instilling
human preferences in LLMs (Ouyang et al., 2022). Consequently, DPO is successfully translated
into DPO-Diffusion (Wallace et al., 2023) for alignment of diffusion models. The DPO-diffusion
loss is defined as

LDPO-Diff = −E(xw
0 ,xl

0)∼D log σ

(
βExw

1:T
∼pθ(x

w
1:T

|xw
0 ),xl

1:T
∼pθ(x

l
1:T

|xl
0)

[
log

pθ(x
w
0:T )

pref(x
w
0:T )

− log
pθ(x

l
0:T )

pref(x
l
0:T )

])
(3)

3https://huggingface.co/lukewys/laion_clap/blob/main/
630k-audioset-best.pt
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= −En,ϵw,ϵl log σ
(
−β(∥ϵwn −ϵθ(x

w
n )∥22−∥ϵwn −ϵref(x

w
n )∥22−(∥ϵln−ϵθ(x

l
n)∥22−∥ϵln−ϵref(x

l
n)∥22))

)
(4)

After some algebraic simplification of Eq. (3), as shown by Wallace et al. (2023), LDPO-Diff reduces
to a tractable term shown in Eq. (4). Here, T denotes the diffusion timestep n ∼ U(0, T ), xl

n and
xw
n the losing and winning audio respectively, and ϵ ∼ N (0, I).

Following Esser et al. (2024), DPO-Diffusion loss is applicable to rectified flow through the equiv-
alence (Lipman et al., 2023) between ϵθ and u(·; θ), thereby the noise matching loss terms can be
substituted with flow matching terms:

LDPO-FM = −Et∼U(0,1),xw,xl log σ

(
− β

(
∥u(xw

t , t; θ)− vwt ∥22︸ ︷︷ ︸
Winning loss

−∥u(xl
t, t; θ)− vlt∥22︸ ︷︷ ︸
Losing loss

−
(
∥u(xw

t , t; θref)− vwt ∥22︸ ︷︷ ︸
Winning reference loss

−∥u(xl
t, t; θref)− vlt∥22︸ ︷︷ ︸

Losing reference loss

)))
, (5)

where t is the flow matching timestep and xl
t and xw

t represent losing and winning audio, respec-
tively.

The DPO loss for LLMs models the relative likelihood of the winner and loser responses, allowing
minimization of the loss by increasing their margin, even if both log-likelihoods decrease (Pal et al.,
2024). As DPO optimizes the relative likelihood of the winning responses over the losing ones,
not their absolute values, convergence actually requires both likelihoods to decrease despite being
counterintuitive (Rafailov et al., 2024b). The decrease in likelihood does not necessarily decrease
performance, but required for improvement (Rafailov et al., 2024a). However, in the context of rec-
tified flows, this behavior is less clear due to the challenges in estimating the likelihood of generating
samples with classifier-free guidance (CFG). A closer look at LDPO-FM (Eq. (5)) reveals that it can
similarly be minimized by increasing the margin between the winning and losing losses, even if both
losses increase. In Section 4.5, we demonstrate that preference optimization of rectified flows via
LDPO-FM suffer from this phenomenon as well.

To remedy this, we incorporate the winning loss directly into the optimization objective to prevent
winning loss from increasing. Our loss is denoted as

LCRPO := LDPO-FM + LFM,

where LFM is the flow matching loss computed on the winning audio as shown in Eq. (2). While the
DPO loss is effective at improving preference rankings between chosen and rejected audio, relying
on it alone can lead to overoptimization. This can distort the semantic and structural fidelity of the
winning audio, causing the model’s outputs to drift from the desired distribution. Adding the LFM
component mitigates this risk by anchoring the model to the high-quality attributes of the chosen
data. This regularization stabilizes training and preserves the essential properties of the winning
examples, ensuring a balanced and robust optimization process. Our empirical results demonstrates
LCRPO outperform LDPO-FM as shown in Section 4.5.

3 EXPERIMENTS

3.1 MODEL TRAINING

We pretrained TANGOFLUX on Wavcaps (Mei et al., 2024) for 80 epochs with the
AdamW (Loshchilov & Hutter, 2019), β1 = 0.9, β2 = 0.95, a max learning rate of 5 × 10−4.
We used a linear learning rate scheduler for 2000 steps. We used five A40 GPUs with a batch size
of 16 on each device, resulting in an overall batch size of 80. After pretraining, TANGOFLUX was
finetuned on the AudioCaps training set for 65 additional epochs. Several works find that sampling
timesteps t from the middle of its range [0, 1] leads to superior results (Hang et al., 2024; Kim
et al., 2024b; Karras et al., 2022), thus, we sampled t from a logit-normal distribution with a mean
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of 0 and variance of 1, following the approach in (Esser et al., 2024). We name this version as
TANGOFLUX-base.

During the alignment phase, we used the same optimizer, but an overall batch size of 48, a maximum
learning rate of 10−5, and a linear warmup of 100 steps. For each iteration of CRPO, we train
for 8 epochs and select the last epoch checkpoint to perform batched online data generation. We
performed 5 iterations of CRPO due to the manifestation of performance saturation.

3.2 DATASETS

Training dataset. We use complete open source data which consists of approximately 400k audios
from Wavcaps (Mei et al., 2024) and 45k audios from the training set of AudioCaps. (Kim et al.,
2019). For audios shorter than 30 seconds, we pad the remaining audio with silence. For audios
longer than 30 seconds, we perform center cropping of 30 seconds. Since the audio files are all
mono, we duplicated the channel to create ”stereo” audio for compatibility with our model.

CRPO dataset. We initialize the prompt bank as the prompts of AudioCaps training set, with a
total of 45k prompts. At the start of each iteration of CRPO, we randomly sample 20k prompts
from the prompt bank and generate 5 audios per prompt, and use the CLAP model to construct 20k
preference pairs.

Evaluation dataset. For the main results, we evaluated TANGOFLUX on the AudioCaps test set,
using the same 886-sample split as (Majumder et al., 2024). Objective metrics are reported on
this subset. Additionally, we categorized AudioCaps prompts using GPT-4 to identify those with
multiple distinct events, such as ”Birds chirping and thunder strikes,” which includes “sound of birds
chirping” and “sound of thunder.” Metrics for these multi-event captions are reported separately.
Subjective evaluation was conducted on an out-of-distribution dataset with 50 challenging prompts.

3.3 OBJECTIVE EVALUATION

Baselines. We compare TANGOFLUX to four existing strong baselines for text-to-audio generation:
Tango 2, AudioLDM 2, and Stable Audio Open, including the previous SOTA models.
For all of our baseline evaluations, we use the default recommended classifier free guidance (CFG)
scale (Ho & Salimans, 2022) and number of steps. For TANGOFLUX, we use a CFG scale of 4.5 and
50 steps for inference. Since TANGOFLUX and Stable Audio Open allow variable audio generation
length, we set the duration conditioning to 10 seconds and use the first 10 seconds of generated
audio to perform the evaluation. We also report the effect of CFG scale in the appendix A.1.

Evaluation metrics. We evaluate TANGOFLUX using both objective and subjective metrics. For
objective metrics, we report the 4 metrics: Fréchet Distance (FDopenl3) (Cramer et al., 2019), Kull-
back–Leibler divergence (KLpasst) , CLAPscore and Inception Score (IS) (Salimans et al., 2016). We
chose this set of metrics proposed by (Evans et al., 2024a) due to the capabilities to perform high-
quality audio evaluation up to 48kHz. FDopenl3 evaluates the similarity between the statistics of a
generated audio set and another reference audio set in the feature level space. A low FDopenl3 indi-
cates that the generated audio is realistic and closely resembles the reference audio. KLpasst computes
the KL divergence over the probabilities of the labels between the generated and the reference audio
given the state-of-the-art audio tagger PaSST. A low KLpasst signifies the generated and reference
audio share similar semantics tags. CLAPscore is a reference-free metric that measures the cosine
similarity between the audio as well as the text prompt. High CLAPscore score denotes the generated
audio aligns with the textual prompt. IS measures the specificity and coverage for a set of samples.
A high IS score represents the diversity of the generated audio. We use stable-audio-metrics (Evans
et al., 2024a) to compute FDopenl3, KLpasst, CLAPscore and AudioLDM evaluation toolkit (Liu et al.,
2023) to compute IS. Note that we use different CLAP checkpoints to create our preference dataset
(630k-audioset-best) and to perform the evaluation (630k-audioset-fusion-best). 4

4https://huggingface.co/lukewys/laion_clap/blob/main/
630k-audioset-fusion-best

7

https://huggingface.co/lukewys/laion_clap/blob/main/630k-audioset-fusion-best
https://huggingface.co/lukewys/laion_clap/blob/main/630k-audioset-fusion-best


3.4 HUMAN EVALUATION

To evaluate the instruction-following capabilities and robustness of TTA models, we created 50 out-
of-distribution complex captions, such as ”A pile of coins spills onto a wooden table with a metallic
clatter, followed by the hushed murmur of a tavern crowd and the creak of a swinging door.” These
captions describe multiple events (ranging from 3 to 6 per caption) and go beyond conventional or
overused sounds, such as simple animal noises, footsteps, or city ambiance. Events were identified
using GPT4o to evaluate the captions generated. Each of the generated prompts contains multiple
events including several where the temporal order of the events must be maintained. Details of our
caption generation template and samples of generated captions can be found in the Appendix A.2.

Following prior studies (Ghosal et al., 2023; Majumder et al., 2024), our subjective evaluation fo-
cuses on two primary attributes of the generated audio: overall audio quality (OVL) and relevance
to the text input (REL). The OVL metric evaluates the general sound quality, including clarity and
naturalness, irrespective of the alignment with the input prompt. In contrast, the REL metric specif-
ically measures the alignment of the generated audio with the provided text input. Annotators rated
each audio sample on a scale from 0 (worst) to 100 (best) for both OVL and REL. This evaluation
was performed on 50 GPT4o-generated prompts, with each sample independently assessed by at
least four annotators.

Additional details on the evaluation instructions and annotators can be found in Appendix A.2.

3.4.1 METRICS

We report three key metrics for subjective evaluation:

Scores: The average of the scores assigned by individual annotators. Due to the subjective nature of
these scores and the significant variance observed in the annotator scoring patterns, the ratings were
normalized to z-scores at the annotator level: zij = (sij − µi)/σi. zij : The z-score for annotator
i’s score of model Mj . This is the score after applying z-score normalization. sij : The raw score
assigned by annotator i to model j. This is the original score before normalization. µi: The mean
score assigned by annotator i across all models. It represents the central tendency of the annotator’s
scoring pattern. σi: The standard deviation of annotator i’s scores across all models. This measures
the variability or spread in the annotator’s ratings.

This normalization procedure adjusts the raw scores, centering them around the annotator’s mean
score and scaling by the annotator’s score spread (standard deviation). This ensures that scores from
different annotators are comparable, helping to mitigate individual scoring biases.

Ranking: Despite z-score normalization, the variability in annotator scoring can still introduce noise
into the evaluation process. To address this, models are also ranked based on their absolute scores.
We utilize the mean (average rank of a model), and mode (the most common rank of a model) as
metrics for evaluating these rankings.

Elo: Elo-based evaluation, a widely adopted method in language model assessment, involves
pairwise model comparisons. We first normalized the absolute scores of the models using z-
score normalization and then derived Elo scores from these pairwise comparisons. Elo score
mitigates the noise and inconsistencies observed in scoring and ranking techniques. Specifi-
cally, Elo considers the relative performance between models rather than relying solely on ab-
solute or averaged scores, providing a more robust measure of model quality under subjective
evaluation. While ranking-based evaluation provides an ordinal comparison of models, deter-
mining the order of performance (e.g., Model A ranks first, Model B ranks second), it does
not capture the magnitude of differences between ranks. For instance, if the difference between
the first and second rankers is minimal, this is not evident from ranks alone. Elo scoring ad-
dresses this limitation by integrating both ranking and pairwise performance data. In ranking-
based systems, the rank Ri of a model Mi is determined purely by its position relative to others:
Ri = position of Mi in the sorted list of models based on performance.. However, this approach
fails to quantify: 1) The gap in performance between consecutive ranks. 2) The consistency of
relative performance across different pairwise comparisons. Elo scoring provides a probabilistic
measure of model performance based on pairwise comparisons. By leveraging annotator scores, Elo
assigns a continuous score Ei to each model Mi, capturing its relative strength.
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Model #Params. Duration Steps FDopenl3 ↓ KLpasst ↓ CLAPscore ↑ IS↑ Inference
Time (s)

AudioLDM 2-large 712M 10 sec 200 108.3 1.81 0.419 7.9 24.8
Stable Audio Open 1056M 47 sec 100 89.2 2.58 0.291 9.9 8.6
Tango 2 866M 10 sec 200 108.4 1.11 0.447 9.0 22.8
TANGOFLUX-base 515M 30 sec 50 80.2 1.22 0.431 11.7 3.7
TANGOFLUX 515M 30 sec 50 75.1 1.15 0.480 12.2 3.7

Table 1: Comparison of audio generation models across various metrics. Output length represents
the duration of the generated audio. Metrics include FDopenl3 for Frechet Distance, KLpasst for KL
divergence, and CLAPscore for alignment. All inference time is computed on the same A40 GPU.
We report the trainable parameters in the #Params column.

Model #Params. Duration FDopenl3 ↓ KLpasst ↓ CLAPscore ↑ IS↑
AudioLDM 2-large 712M 10 sec 107.9 1.83 0.415 7.3
Stable Audio Open 1056M 47 sec 88.5 2.67 0.286 9.3
Tango 2 866M 10 sec 108.3 1.14 0.452 8.4
TANGOFLUX-base 515M 30 sec 79.7 1.23 0.438 10.7
TANGOFLUX 515M 30 sec 75.2 1.20 0.488 11.1

Table 2: Comparison of text-to-audio models on multi-event inputs.

4 RESULTS

4.1 MAIN RESULTS

Table 1 compares TANGOFLUX with prior text-to-audio generation models on AudioCaps in terms
of the objective metrics. Model performance on the prompts with more than one event, namely
multi-event prompts, are reported in Table 2.

The results suggest that TANGOFLUX consistently outperforms the prior works on all objective
metrics, except Tango 2 on KLpasst. Interestingly, the margin on CLAPscore between TANGOFLUX
and baselines is higher when evaluated on multi-event prompts. This suggests that TANGOFLUX
excels at understanding and generating audio for complex instructions involving multiple events,
effectively capturing nuanced details and relationships within the text compared to the baselines.

4.2 BATCHED ONLINE DATA GENERATION IS NECESSARY

To show the impact of generating new samples at each iteration, in Fig. 2 we present the results
of 5 training iterations of CRPO, both with and without generating new data at each iteration. Our
findings suggest that training on the same dataset over multiple iterations leads to quick performance
saturation and eventual degradation. Specifically, for offline CRPO, the CLAP score decreases
after the second iteration, while the KL increases significantly. By the final iteration, performance
degradation is evident, with both the CLAP score and KL worse than the first iteration, emphasizing
the limitations of using offline data. In contrast, the online CRPO with data generation at the
beginning of each iteration consistently outperforms the offline CRPO in terms of both CLAP score
and KL.

A possible explanation of this performance degradation could be reward over-optimization (Rafailov
et al., 2024a; Gao et al., 2022). Previous work by (Kim et al., 2024a) demonstrated that the refer-
ence model serves as a lower bound in DPO training for language models. Several iterations of
updating the reference model (lower bound) with the same dataset cause the current model to exces-
sively minimize the loss in unexpected ways. In Section 4.5, we identify unexpected phenomena in
loss minimization that could explain over-optimization. This over-optimization ultimately leads to
performance degradation as shown by the spike in KL and drop in CLAP score.

4.3 CLAP AS REWARD MODEL
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Figure 2: The trajectory of CLAP score and KL divergence across the training iterations. This plot
shows the stark difference between online and offline training. Offline training clearly peaks early,
by the second iteration, indicated by the peaking CLAP score and increasing KL. In contrast, the
CLAP score of online training continues to increase until iteration 4, while the KL divergence has a
clear downward trend throughout.

Dataset FDopenl3 ↓ KLpasst ↓ CLAPscore ↑
BATON 80.5 1.20 0.437
Audio Alpaca 80.0 1.20 0.448
CRPO 79.1 1.18 0.453

Table 3: Comparison of difference preference
dataset used for preference tuning. Metrics in-
clude FDopenl3 for Frechet Distance, KLpasst for
KL divergence, and CLAPscore for alignment.

We experiment to validate that the CLAP model
can serve as a proxy reward model for evalu-
ating audio output. We experiment with eval-
uating TANGOFLUX with a Best-of-N policy,
with N ∈ {1, 5, 10, 15}. We use the 630k-
audioset-best.pt checkpoint to rank the gener-
ated audio. We report the result in Table 4.
Results suggest that increasing N yield better
CLAPscore and KLpasst while FDopenl3 remains
about the same. This indicates that the CLAP
model effectively identifies and ranks higher-
quality audio outputs that better align with the
textual descriptions, without sacrificing output diversity or quality as shown by the lower KLpasst
and similar FDopenl3.

4.4 CRPO DATASET IS BETTER THAN OTHER AUDIO PREFERENCE DATASETS

To validate the effectiveness of CRPO in constructing preference datasets, we compared the perfor-
mance of CRPO with two other audio preference datasets: Audio-Alpaca (Majumder et al., 2024)
and BATON (Liao et al., 2024).

BATON: BATON collects human-annotated data by asking labelers to assign a binary score of 0 or
1 to each audio sample based on its alignment with a given prompt. A score of 1 indicates alignment,
while 0 indicates misalignment. From this data, we construct a preference dataset by pairing audio
samples scored as 1 (winners) with those scored as 0 (losers) for the same prompt, creating a set of
winner-loser pairs.

Audio-Alpaca: Audio-Alpaca, in contrast, is already structured as a preference dataset, requiring
no further processing.

We use the base model TANGOFLUX-base for preference optimization, conducting only one itera-
tion since Audio-Alpaca and BATON are fixed datasets. Table 3 reports objective metrics FDopenl3,
KLpasst, and CLAPscore, demonstrating that preference optimization with the CRPO dataset out-
performs the other two audio preference datasets across all metrics. Despite its simplicity, CRPO
proves highly effective for constructing audio preference datasets for optimization.

4.5 LCRPO VS LDPO-FM
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Figure 3: Winning and Losing losses of LDPO-FM and LCRPO at each iteration. Winning and Losing
losses increase each iteration, as well as their margin.

Model N FDopenl3 ↓ KLpasst ↓ CLAPscore ↑
TANGOFLUX 1 75.0 1.15 0.480

5 74.3 1.14 0.494
10 75.8 1.08 0.499
15 75.1 1.11 0.502

Tango 2 1 108.4 1.11 0.447
5 108.8 1.05 0.467

10 108.4 1.08 0.474
15 108.7 1.06 0.473

Table 4: Comparison of different preference datasets used
for preference tuning. Metrics include FDopenl3 for Fréchet
Distance, KLpasst for KL divergence, and CLAPscore for
alignment.

We investigate whether using DPO
to align rectified flow increases both
winning and losing losses of Eq. (5)
while increasing the margin of them
simultaneously. To do so, we calcu-
late the average winning and losing
losses on the training set using the fi-
nal checkpoint (epoch 8) from each
iteration. We present the result in
Fig. 3. We also present benchmark
performance on AudioCaps training
with LCRPO and LDPO-FM in Fig. 4.
Here, we investigate only with offline
data such that we use the fixed dataset
generated by TANGOFLUX-base.
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Figure 4: Comparison of metrics across iterations for LDPO-FM and LCRPO.

As shown in Fig. 3, the winning and losing losses for both LCRPO and LDPO-FM increase with each
iteration, along with their margin. Despite the increase in losses, benchmark performance improves,
with LCRPO achieving superior results in CLAPscore while maintaining similar KLpasst and FDopenl3
across all iterations. We observe a notable acceleration in loss growth after iteration 3, which may
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indicate performance saturation or degradation. In contrast, LCRPO exhibits a more gradual and
stable increase in loss, maintaining a smaller margin and more controlled growth, leading to less
performance degradation compared to LDPO-FM. This highlights the role of the winning loss as a
regularizer in controlling the overall optimization dynamics. Specifically, adding winning loss helps
to stabilize the training process by preventing the model from excessively focusing on increasing the
margin through increasing both winning loss and losing loss.

Figure 5: CLAP and FD Scores vs Inference Time for each model. We plot this for steps count of
10, 25, 50, 100, 150 and 200.

Interestingly, our findings show that in aligning rectified flow with DPO, both winning and losing
losses increase, while the margin between them widens—similar to the behavior observed when
aligning LLMs with DPO (Rafailov et al., 2024b). This behavior is consistent across both LCRPO
and LDPO-FM, where performance improves despite the seemingly counterintuitive nature of this
phenomenon, as also noted by (Rafailov et al., 2024a) in the context of LLMs.

4.6 INFERENCE TIME AND PERFORMANCE COMPARISON

We compare inference times, CLAP scores, and FD scores across models for steps 10, 25, 50, 100,
150, and 200, as shown in Figure 5. TANGOFLUX demonstrates a remarkable balance between
efficiency and performance, consistently achieving higher CLAP scores and lower FD scores while
requiring significantly less inference time compared to other models. For example, at 50 steps,
TANGOFLUX achieves a CLAP score of 0.480 and an FD score of 75.1 in just 3.7 seconds. In com-
parison, Stable Audio Open requires 4.5 seconds for the same step count but only achieves a
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CLAP score of 0.284 (41% lower than TANGOFLUX) and an FD score of 87.8 (17% worse than
TANGOFLUX). This demonstrates that TANGOFLUX achieves superior performance metrics in
less time. Additionally, at a lower step count of 10, TANGOFLUX maintains strong performance
with a CLAP score of 0.465 and an FD score of 77.2 in just 1.1 seconds. In contrast, Audioldm2
at the same step count achieves a lower CLAP score of 0.357 (23% lower) and a significantly worse
FD score of 131.7 (70% higher), while requiring 1.5 seconds (36% more time). We also observe
that reducing the step count from 200 to 10 has a minimal impact on TANGOFLUX’s performance,
highlighting its robustness. Specifically, TANGOFLUX’s CLAP score decreases by only 3.2% (from
0.480 to 0.465), and its FD score increases by only 4.5% (from 73.9 to 77.2). In contrast, Tango 2
shows a larger degradation, with its CLAP score decreasing by 16.0% (from 0.443 to 0.372) and its
FD score increasing by 37.8% (from 108.4 to 158.6).

These results highlight TANGOFLUX’s effectiveness in delivering high-quality outputs with lower
computational requirements, making it a highly efficient choice for scenarios where inference time
is critical.

TL;DR

1. Model Comparison:
• TANGOFLUX outperforms prior works in almost all objective metrics on AudioCaps,

especially for prompts with multiple events.
• It achieves superior performance in FDopenl3, CLAPscore, and Inception Score (IS), with

notable efficiency gains (lowest inference time).
• Only Tango 2 marginally surpasses TANGOFLUX in KLpasst.

2. Multi-Event Prompts:
• The margin in CLAPscore between TANGOFLUX and baselines is larger for multi-event

inputs, demonstrating its capability to handle complex and nuanced scenarios.
3. Training Strategies:

• Online batched data generation significantly outperforms offline strategies, preventing per-
formance degradation caused by over-optimization.

• Online training maintains consistent improvement across CLAPscore and KLpasst over iter-
ations.

4. Preference Optimization:
• CRPO dataset leads to better results than other preference datasets like BATON and

Audio-Alpaca across all metrics.
• Larger N in the Best-of-N policy enhances CLAPscore and KLpasst, validating CLAP as an

effective reward model.
5. Optimization Techniques:

• LCRPO demonstrates more stable and effective optimization than LDPO-FM, with reduced
performance saturation and better benchmark results.

• The controlled growth in optimization metrics with LCRPO highlights its robustness for
rectified training processes.

6. Inference Time:
• While delivering superior performance, TANGOFLUX also boasts a much lower inference

time, resulting in greater efficiency compared to other models.
• TANGOFLUX shows less performance decline compared to other models when sampling

at fewer steps.

4.7 HUMAN EVALUATION RESULTS

The results of the human evaluation are presented in Table 5, with detailed comparisons of the
models across the evaluated metrics: z-scores, rankings, and Elo scores for both overall audio quality
(OVL) and relevance to the text input (REL). Below, we provide an analysis of the findings.
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Z-scores: The z-scores offer a normalized perspective on annotator evaluations, mitigating individ-
ual biases by transforming the absolute variable into a standard normal variable with zero mean and
one standard deviation. Among the models, TANGOFLUX demonstrated the highest performance
across both metrics, with z-scores of 0.2486 for OVL and 0.6919 for REL. This indicates its superior
quality and strong alignment with the input prompts. Conversely, AudioLDM 2 scored the lowest
with z-scores of -0.3020 (OVL) and -0.4936 (REL), suggesting both lower sound quality and weaker
adherence to textual inputs compared to the other models.

Ranking: Rankings provide an alternative ordinal measure of performance, capturing both the mean
and mode of model rankings. Consistent with the z-score findings, TANGOFLUX achieved the best
rankings with a mean rank of 1.7 for OVL and 1.1 for REL, and a mode rank of 2 (OVL) and 1
(REL). This reinforces the model’s superior position in the subjective evaluations. AudioLDM 2
consistently ranked the lowest, with mean rankings of 3.5 (OVL) and 3.7 (REL), and mode rankings
of 4 for both metrics. Interestingly, StableAudio and Tango 2 showed competitive mean ranks
for OVL, both at 2.4, but diverged on REL where Tango 2 outperformed StableAudio (1.9 vs.
3.3 in mean rank). However, curiously, StableAudio has two modes 1 and 3 for OVL, indicating
a polarized perception by the annotators. The lower mode could be explained by a possible bias
induced by the stark misalignment between the prompt and audio output, indicated by the mean and
mode of 3.3 and 3, respectively, in terms of ranking by REL.

Elo Scores: The Elo scores provide a probabilistic and continuous measure of model performance,
offering insights into the magnitude of differences in relative performance. Here, TANGOFLUX
again excelled, achieving the highest Elo scores for both OVL (1,501) and REL (1,628). The
Elo results highlight the robustness of TANGOFLUX, as it consistently outperformed other mod-
els in pairwise comparisons. Tango 2 emerged as the second-best performer, with Elo scores
of 1,419 (OVL) and 1,507 (REL). StableAudio followed, showing competitive performance in
OVL (1,444) but a weaker REL score (1,268). As observed in other metrics, AudioLDM 2 ranked
last with the lowest Elo scores (1,236 for OVL and 1,196 for REL).

TL;DR

1. TANGOFLUX consistently demonstrated superior performance across all metrics, highlight-
ing its strength in generating high-quality, text-relevant audio. This is particularly evident in
its significant lead in the REL metrics, showcasing its robust capability to align with complex,
multi-event prompts.
2. Tango 2 performed strongly in REL, reflecting its alignment capability. However, it
slightly lagged behind TangoFlux in OVL, indicating potential room for improvement in
audio clarity and naturalness.
3. Stable Audio Open displayed competitive performance in OVL, but its REL scores
suggest limitations in accurately and faithfully representing complex text inputs.
4. AudioLDM2 consistently underperformed across all metrics, reflecting challenges in both
audio quality and relevance to complex prompts. This positions it as the least preferred model
in this evaluation.

Model

z-scores Ranking Elo
OVL REL OVL REL OVL REL

Mean Mode Mean Mode
AudioLDM 2 -0.3020 -0.4936 3.5 4 3.7 4 1,236 1,196
Stable Audio Open 0.0723 -0.3584 2.4 1, 3 3.3 3 1,444 1,268
Tango 2 -0.019 0.1602 2.4 2 1.9 2 1,419 1,507
TANGOFLUX 0.2486 0.6919 1.7 2 1.1 1 1,501 1,628

Table 5: Human evaluation results on two attributes: OVL (overall quality) and REL (relevance).
We report the z-scores, ranking, and Elo scores to mitigate individual annotator biases and present a
relative performance comparison.
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5 RELATED WORKS

Text-To-Audio Generation. TTA Generation has garnered attention lately due to models such as
AudioLDM series model (Liu et al., 2024b; 2023), Tango series model (Majumder et al., 2024;
Ghosal et al., 2023; Kong et al., 2024) and Stable Audio series model (Evans et al., 2024a;c;b).
These models commonly adopt the diffusion framework (Song & Ermon, 2020; Rombach et al.,
2022; Song et al., 2022; Ho et al., 2020), which trains a latent diffusion model conditioned on either
T5 embedding or CLAP embedding. However, another common framework for TTA generation is
the flow matching framework which was employed in models such as VoiceBox (Le et al., 2023),
AudioBox (Vyas et al., 2023), FlashAudio (Liu et al., 2024c).

Alignment Method. Preference optimization is the standard approach for aligning LLMs, achieved
either by training a reward model to capture human preferences (Ouyang et al., 2022) or by using
the LLM itself as the reward model (Rafailov et al., 2024c). Recent advances improve this process
through iterative alignment, leveraging human annotators to construct preference pairs or utilizing
pre-trained reward models. (Kim et al., 2024a; Chen et al., 2024; Gulcehre et al., 2023; Yuan et al.,
2024). Verifiable answers can enhance the construction of preference pairs. For diffusion and flow-
based models, Diffusion-DPO shows that these models can be aligned similarly (Wallace et al.,
2023). However, constructing preference pairs for TTA remains challenging due to the lack of
”gold” audio for given text prompts and the subjective nature of audio. Tango2 addresses this by
using prompt perturbation, while BATON (Liao et al., 2024) relies on human annotation to construct
preference pairs which is not a scalable solution.

6 CONCLUSION

We introduce TANGOFLUX, a fast flow-based text-to-audio model aligned using synthetic pref-
erence data generated online during training. Objective and human evaluations show that
TANGOFLUX produces audio more representative of user prompts than existing diffusion-based
models, achieving state-of-the-art performance with significantly fewer parameters. Additionally,
TANGOFLUX demonstrates greater robustness, maintaining performance even when sampling with
fewer time steps. These advancements make TANGOFLUX a practical and scalable solution for
widespread adoption.
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Model Steps CFG FDopenl3 ↓ KLpasst ↓ CLAPscore ↑

TANGOFLUX

50 3.0 77.7 1.14 0.479
50 3.5 76.1 1.14 0.481
50 4.0 74.9 1.15 0.476
50 4.5 75.1 1.15 0.480
50 5.0 74.6 1.15 0.472

Table 6: TANGOFLUX with different classifier free guidance (CFG) values.

A APPENDIX

A.1 EFFECT OF CFG SCALE

We conduct an ablation of the effect of CFG scale for TANGOFLUX and show the result in Table 6.
It reveals a trade-off: higher CFG values improve FD score (lower FD) but slightly reduce semantic
alignment (CLAP score), which peaks at CFG=3.5. The results emphasize CFG=3.5 as the optimal
balance between fidelity and semantic relevance.

A.2 HUMAN EVALUATION

The human evaluation was performed using a web-based Gradio5 app. Each annotator was presented
with 20 prompts, each having four audio samples generated by four distinct text-to-audio models,
shuffled randomly, as shown in Fig. 6. Before the annotation process, the annotators were instructed
with the following directive:

Welcome username

# Instructions for evaluating audio clips
Please carefully read the instructions below.

## Task
You are to evaluate four 10-second-long audio outputs to each of the 20 prompts below. These
four outputs are from four different models. You are to judge each output with respect to two
qualities:

• Overall Quality (OVL): The overall quality of the audio is to be judged on a scale
from 0 to 100: 0 being absolute noise with no discernible feature. Whereas, 100 is
perfect. Overall fidelity, clarity, and noisiness of the audio are important here.

• Relevance (REL): The extent of audio alignment with the prompt is to be judged on
a scale from 0 to 100: with 0 being absolute irrelevance to the input description.
Whereas, 100 is a perfect representation of the input description. You are to judge if
the concepts from the input prompt appear in the audio in the described tempo-
ral order.

You may want to compare the audios of the same prompt with each other during the
evaluation.

## Listening guide

1. Please use a head/earphone to listen to minimize exposure to the external noise.
2. Please move to a quiet place as well, if possible.

## UI guide

5https://www.gradio.app
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1. Each audio clip has two attributes OVL and REL below. You may select the appropri-
ate option from the dropdown list.

2. To save your judgments, please click on any of the save buttons. All the save buttons
function identically. They are placed everywhere to avoid the need to scroll to save.

Hope the instructions were clear. Please feel free to reach out to us for any queries.

Figure 6: The Gradio-based human evaluation form created for the annotators to score the model
generated audios with respect to the input prompts.

A.2.1 PROMPTS USED IN THE EVALUATION

Prompts Multiple Events Temporal Events

A robotic arm whirs frantically while an electric
plasma arc crackles and a metallic voice counts down
ominously, interspersed with glass vials clinking to
the floor.

✓ ✓

Unfamiliar chirps overlap with a low, throbbing hum
as bioluminescent plants audibly crackle and squelch
with movement.

✓ ✗

Dripping water echoes sharply, a distant growl rever-
berates through the cavern, and soft scraping metal
suggests something lurking unseen.

✓ ✗

Alarms blare with rising urgency as fragments clatter
against a metallic hull, interrupted by a faint hiss of
escaping air.

✓ ✓

Hundreds of tiny wings buzz with a chaotic pitch
shift, joined by the faint clattering of mandibles and
an organic squish as they collide.

✓ ✗

Jagged rocks crumble underfoot while distant ocean
waves crash below, punctuated by the sudden snap of
a rope.

✓ ✓

22



Digital beeps and chirps meld with overlapping chat-
ter in multiple languages, as automated drones whiz
past, scanning barcodes audibly.

✓ ✗

Rusted swings creak in rhythmic disarray, a faint me-
chanical laugh stutters from a distant speaker, and the
sound of gravel crunches under unseen footsteps.

✓ ✗

Bubbling lava gurgles ominously, instruments beep ir-
regularly, and faint crackling signals static from a fail-
ing radio.

✓ ✓

Tiny pops and hisses of chemical reactions intermin-
gle with the rhythmic pumping of a centrifuge and the
soft whirr of air filtration.

✓ ✗

The faint hiss of a gas leak grows louder as metal
chains rattle and a single marble rolls across the floor.

✓ ✓

A hand slaps a table sharply, followed by the shuffle
of playing cards and the hum of an overhead fan.

✓ ✓

A train horn blares in the distance as a bicycle bell
chimes and a soda can pops open with a fizzy hiss.

✓ ✗

A drawer creaks open, papers rustle wildly, and the
sharp click of a lock snapping shut echoes.

✓ ✗

A burst of static interrupts soft typing sounds, fol-
lowed by the distant chirp of a pager and a cough.

✓ ✓

A heavy book thuds onto a desk, accompanied by the
faint buzz of a fluorescent light and a muffled sneeze.

✓ ✗

The sharp squeak of sneakers on a gym floor blends
with the rhythmic bounce of a basketball and the
screech of a metal door.

✓ ✗

An elevator dings, its doors sliding open, as muffled
voices overlap with the shuffle of heavy bags.

✓ ✗

A clock ticks steadily, a light switch clicks on, and the
crackle of a fire igniting briefly fills the silence.

✓ ✓

A fork scrapes a plate, water drips slowly into a sink,
and the faint hum of a refrigerator lingers in the back-
ground.

✓ ✗

A cat hisses sharply as glass shatters nearby, followed
by hurried footsteps and the slam of a closing door.

✓ ✓

A parade marches through a town square, with drum-
beats pounding, children clapping, and a horse neigh-
ing amidst the commotion.

✓ ✓

A basketball bounces rhythmically on a court, shoes
squeak against the floor, and a referee’s whistle cuts
through the air.

✓ ✗

A baby giggles uncontrollably, a stack of blocks
crashes to the ground, and the faint hum of a lullaby
toy plays in the background.

✓ ✗

The rumble of a subway train grows louder, followed
by the screech of brakes and muffled announcements
over a crackling speaker.

✓ ✓
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A beekeeper moves carefully as bees buzz intensely,
a smoker puffs softly, and wooden frames creak as
they’re lifted.

✓ ✗

A dog shakes off water with a noisy splatter, a bicycle
bell rings, and a distant lawnmower hums faintly in
the background.

✓ ✗

Books fall off a shelf with a heavy thud, a chair
scrapes loudly across a wooden floor, and a surprised
gasp echoes.

✓ ✗

A soccer ball hits a goalpost with a metallic clang,
followed by cheers, clapping, and the distant hum of
a commentator’s voice.

✓ ✓

A hiker’s pole taps against rocks, a mountain goat
bleats sharply, and loose gravel tumbles noisily down
a steep slope.

✓ ✓

A rooster crows loudly at dawn, joined by the rustle
of feathers and the crunch of chicken feed scattered
on the ground.

✓ ✗

A carpenter saws through wood with steady strokes,
a hammer strikes nails rhythmically, and a measuring
tape snaps back with a metallic zing.

✓ ✗

A frog splashes into a pond as dragonflies buzz
nearby, accompanied by the distant croak of toads
echoing through the marsh.

✓ ✗

The crack of a whip startles a herd of cattle, their
hooves clatter against a dirt path as a rancher shouts
commands.

✓ ✗

A paper shredder whirs noisily, the rustle of docu-
ments being fed in grows louder, and a stapler clicks
shut in rapid succession.

✓ ✗

An elephant trumpets in the savanna as a herd stomps
through dry grass, accompanied by the buzz of flies
and the distant roar of a lion.

✓ ✗

A mime claps silently as a juggling act clinks glass
balls together, and a crowd bursts into laughter at the
clatter of a dropped prop.

✓ ✗

A train conductor blows a sharp whistle, metal wheels
screech on the rails, and passengers murmur while
settling into their seats.

✓ ✓

A squirrel chitters nervously as acorns drop from a
tree, landing with dull thuds, while leaves rustle above
in quick bursts of movement.

✓ ✗

A blacksmith hammers molten iron with rhythmic
clangs, a bellows pumps air with a whoosh, and
sparks sizzle on a stone floor.

✓ ✗

A skateboard grinds loudly against a metal rail, fol-
lowed by the sharp slap of wheels hitting pavement
and a triumphant cheer from the rider.

✓ ✗
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An old typewriter clacks rapidly as paper rustles with
each keystroke, interrupted by the sharp ding of the
carriage return.

✓ ✗

A pack of wolves howls in unison as dry leaves crunch
underfoot, and the faint trickle of a nearby stream
echoes through the forest.

✓ ✗

Table 7: Prompts used in human evaluation and their characteristics.

25


	Introduction
	Method
	Audio Encoding
	Model Conditioning
	Model Architecture
	Flow Matching
	CLAP-Ranked Preference Optimization (CRPO)
	CLAP as a Reward Model
	Batched Online Data Generation
	Preference Optimization


	Experiments
	Model Training
	Datasets
	Objective Evaluation
	Human Evaluation
	Metrics


	Results
	Main Results
	Batched Online Data Generation is Necessary
	CLAP as reward model
	CRPO Dataset is Better than Other Audio Preference Datasets
	LCRPO vs LDPO-FM
	Inference Time and Performance Comparison
	Human Evaluation Results

	Related Works
	Conclusion
	Appendix
	Effect of CFG scale
	Human Evaluation
	Prompts Used in the Evaluation



