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ABSTRACT

Generative models such as denoising diffusion models are quickly advancing their
ability to approximate highly complex data distributions. They are also increasingly
leveraged in scientific machine learning, where samples from the implied data
distribution are expected to adhere to specific governing equations. We present
a framework that unifies generative modeling and partial differential equation
fulfillment by introducing a first-principle-based loss term that enforces generated
samples to fulfill the underlying physical constraints. Our approach reduces the
residual error by up to two orders of magnitude compared to previous work in a
fluid flow case study and outperforms task-specific frameworks in relevant metrics
for structural topology optimization. We also present numerical evidence that
our extended training objective acts as a natural regularization mechanism against
overfitting. Our framework is simple to implement and versatile in its applicability
for imposing equality and inequality constraints as well as auxiliary optimization
objectives.

1 INTRODUCTION

Denoising diffusion models (Sohl-Dickstein et al., 2015) are generative models that have gained
popularity due to their success in learning intricate data distributions across various modalities,
including images (Ho et al., 2020; Nichol et al., 2021; Rombach et al., 2021), videos (Ho et al.,
2022a;b), graphs (Niu et al., 2020; Hoogeboom et al., 2022), text (Li et al., 2022; Wu et al., 2023), and
audio waveforms (Kong et al., 2021). Originally popularized within the image generation community,
their outstanding representation abilities are also increasingly leveraged in the context of scientific
machine learning. Diffusion models have been used, among others, to upscale low-fidelity data to
reduce computational costs (Shu et al., 2023), design new molecules (Xu et al., 2022) or materials
(Xie et al., 2022; Düreth et al., 2023) with desired properties, or generate metamaterial unit cells
tailored to a given stress-strain response in complex mechanical settings (Bastek & Kochmann, 2023).
For such inverse problems, a key strength is their ability to efficiently capture the full distribution of
feasible solutions and designs rather than focusing on a single deterministic outcome.

A common thread of all those applications is the explicit knowledge of the underlying governing
equations, which such implied distribution must obey. Often, the training data does not stem from
experimental observations but is rather generated by numerical simulations, which ensure that those
equations are fulfilled. Nevertheless, diffusion models are traditionally trained on a purely data-
driven objective (Xie et al., 2022; Buehler, 2022; Bastek & Kochmann, 2023; Vlassis & Sun, 2023;
Sardar et al., 2023; Li et al., 2023; Lienen et al., 2024) and hence do not strictly enforce the intrinsic
constraints during model training. Consequently, samples generated from such models may be

Code is available at https://github.com/jhbastek/PhysicsInformedDiffusionModels.
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statistically aligned with the training data but may not meet the required precision in scientific
applications, where adherence to the underlying physics is crucial for deployment (Jacobsen et al.,
2024).

More recently, efforts have been made to ensure that samples generated from the learned distribution
conform to the known constraints. Examples include imitating human motion (Yuan et al., 2022),
ensuring manufacturability of proposed designs (Mazé & Ahmed, 2023), or, most importantly for
physical systems, satisfying the underlying physical laws (Shu et al., 2023; Jacobsen et al., 2024),
typically given by a set of partial differential equations (PDEs). Yet, a fundamental framework that
rigorously addresses the incorporation of PDE constraints in such generative model settings, along
with a robust mechanism to enforce these constraints akin to the well-established physics-informed
neural networks (PINNs) (Raissi et al., 2019) has remained elusive. We close this gap by proposing
a new framework that unifies both settings and integrates PDE constraints meaningfully into the
training process. Unlike previous approaches that primarily rely on some form of post-processing of
generated samples and lack a derivation from first principles, we provide this theoretical foundation
and directly embed constraints into the proven representation strength of diffusion models. This
approach yields state-of-the-art results in terms of PDE fulfillment. By drawing synergies between
the domains of PINNs (Raissi et al., 2019) and generative modeling, we introduce physics-informed
diffusion models (PIDMs).

Contributions. We make the following key contributions: (i) We present a novel and rigorous
approach that unifies denoising diffusion models with PINNs and informs the model of PDE con-
straints during training, and we demonstrate via rigorous numerical experiments that our framework
significantly reduces the PDE residual compared to state-of-the-art methods. (ii) We provide evidence
that the additional training objective does not necessarily compromise the data likelihood; instead,
we observe that it acts as an effective regularization against overfitting. (iii) Our approach is simple
to implement into the training protocol of existing diffusion model architectures, and inference is
unaffected. (iv) While we here focus on PDEs as a sophisticated type of equality constraint, our
framework is equally applicable to other equality and inequality constraints as well as auxiliary
optimization objectives (potentially also provided via a differentiable surrogate model).

2 BACKGROUND

2.1 DENOISING DIFFUSION MODELS

Denoising diffusion models are state-of-the-art generative models (Ho et al., 2020; Dhariwal &
Nichol, 2021; Yang et al., 2024) that learn to gradually convert a sample of a simple prior, typically a
unit Gaussian, to a sample from a generally unknown data distribution q(x0). The idea is to introduce
a fixed forward diffusion process that incrementally adds Gaussian noise to a given data sample
x0 ∼ q(x0), following variance schedule {βt ∈ (0, 1)}Tt=1 over T steps, defined as

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

To generate new samples, we consider the reverse process,

q(x0:T ) = p(xT )

T∏
t=1

q(xt−1|xt), q(xt−1|xt) = N (xt−1;µ(xt, t),Σ(xt, t)), (2)

in which we approximate the unknown true inverse conditional distribution q(xt−1|xt) with a
neural network pθ(xt−1|xt) parameterized by θ. It aims to estimate the mean µθ, while we fix the
covariance to Σ (xt, t) = 1−ᾱt−1

1−ᾱt
βtI = ΣtI with ᾱt =

∏t
i=1 αi, αt = 1 − βt. The network is

trained by maximizing the variational lower bound of the log-likelihood, which can be simplified
to several loss terms that mainly consist of KL-divergences between two Gaussians (and are hence
computable in closed form) (Sohl-Dickstein et al., 2015). While the obvious choice is to estimate µθ,
alternative parameterizations are possible. We can obtain the mean µt at timestep t via a combination
of the reparameterization trick and Bayes’ theorem (Ho et al., 2020; Kingma & Welling, 2013):

µt(xt, ϵt) =
1√
αt

(
xt −

βt√
1− ᾱt

ϵt

)
=

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0, (3)
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where ϵt represents Gaussian noise to diffuse x0 to xt. Since xt is known during training, predicting
µt fixes the Gaussian noise ϵt or the clean signal x0 and vice versa, and we can equivalently train
the model to predict these quantities. While Ho et al. (2020) simplified the training to minimize an
unweighted noise mismatch, we here consider the loss

L(θ) := Et,x0,ϵ

[
λt ∥x0 − x̂0 (xt(x0, ϵ), t)∥2

]
, (4)

where x̂0 is the model estimate of the clean signal (omitting the parametric dependence on θ for
conciseness), and λt is set to Min-SNR-5 weighting (Hang et al., 2023). Note that equation 4 is
equivalent to the mean squared error of the ϵt or µt mismatch up to a time-dependent weighting
factor (Ho et al., 2020; Salimans & Ho, 2022).

2.2 ASSEMBLY OF GOVERNING EQUATIONS

Physical laws are typically formulated as a set of PDEs over a domain Ω ⊂ Rd, expressed as

F [u(ξ)] = 0, ξ = (ξ1, ξ2, · · · , ξd)⊺ ∈ Ω, u = (u1(ξ), u2(ξ), · · · , uc(ξ))
⊺ ∈ Rc, (5)

with boundary conditions
B[u(ξ)] = 0, ξ ∈ ∂Ω, (6)

where F is a differential operator, B is a boundary condition operator, ∂Ω is the boundary of domain
Ω, and u is the sought solution field that satisfies the set of PDEs for all ξ ∈ Ω and boundary
conditions on ∂Ω. We emphasize that we reserve ξ for spatial coordinates defined on a physical
domain, while x refers to data, which here typically contains the solution field on a discretized set of
spatial coordinates, as elaborated below.

We assume that samples generated from the model x0 ∼ pθ(x0) must satisfy equation 5 and
equation 6. In this study, we mainly consider image-based architectures common in diffusion
models. More formally, we consider a discretized pixel grid Ωh ⊂ Z × Z (which may serve as
an approximation of the continuous domain R2), where ∂Ωh consists of the boundary pixels. For
n× n pixels, the model’s output is thus defined over x0 ∈ Rc×n×n. For instance, in the context of
Darcy flow problems in porous media (Jacobsen et al., 2024) x0 describes the pressure field, or in
the context of solid mechanics the displacement field (Gao et al., 2022). While PINNs (Raissi et al.,
2019) establish an explicit map N : ξ 7→ u between the input and solution field, which enables the
computation of required derivatives for F (and potentially B) via automatic differentiation, we here
approximate those derivatives via finite differences or comparable methods that directly operate on
x0. The residual R(x0) of the (discretized) solution field x0 is then established as a measure of the
discrepancy between the generated sample x0 and the governing equations it is expected to satisfy. It
is defined by the corresponding PDEs and the respective boundary conditions. More precisely, we
stack both contributions into a vector as

R(x0) :=

[
F [x0]
B[x0]

]
. (7)

For evaluation, we introduce the mean absolute error RMAE(x0) as defined in equation 28 in Ap-
pendix A.6.

3 PHYSICS-INFORMED DIFFUSION MODELS

We explore a scenario in which our generative diffusion model must learn a distribution whose
samples are to comply with a set of governing equations, i.e., R(x0) = 0. In the usual data-driven
setting, this is only indirectly ensured through the training data, typically collected from a forward
simulator that produces data points which inherently follow the governing equations. These fully
describe the physical system and provide us with, in principle, an infinite source of information
(Rixner & Koutsourelakis, 2021), whereas solved instances {x1

0, · · · ,xn
0}, posing as training data,

represent only a finite set of evaluations in terms of the sought solution fields.1 Thus, our strategy is
to first state our optimization objective based on the more fundamental governing equations and only
subsequently incorporate training data.

1Even if we assume access to infinite training samples, the residual information may still be beneficial, since
it typically imposes constraints on higher-order derivatives (comparable to Sobolev training (Czarnecki et al.,
2017)).
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3.1 CONSIDERATION OF PDE CONSTRAINTS

We maintain the probabilistic perspective of generative models and introduce the residuals as virtual
observables (Rixner & Koutsourelakis, 2021) r̂ = 0, which we consider to be sampled from the
distribution

qR(r̂|x0) = N (r̂;R(x0), σ
2I). (8)

In the limit σ2 → 0, this recovers the deterministic setting of strictly enforcing the residual equations,
as all probability mass is concentrated in R(x0). This can be used to compute the virtual likelihood
pθ(r̂), which we expand in terms of drawn samples x0 as

pθ(r̂) =

∫
pθ(r̂,x0)dx0 =

∫
qR(r̂|x0)pθ(x0)dx0 = Ex0∼pθ(x0)qR(r̂|x0). (9)

This factorization of pθ(r̂,x0) is reasonable as the residual follows x0 via equation 8. The goal is to
maximize the usual log-likelihood over the virtual observable r̂, i.e.,

argmax
θ

Er̂ [log pθ(r̂)] = argmax
θ

Ex0∼pθ(x0) [log qR(r̂ = 0|x0)] . (10)

Thus, any samples from pθ(x0) are evaluated on their log-likelihood via equation 8, which can
also be understood as a probabilistic reinterpretation of the loss used to train PINNs (Raissi et al.,
2019). Alternatively, equation 10 can also be understood as sampling from an unnormalized target
distribution assembled by evaluating log qR over x0, as is often considered in data-free settings
(Zhang & Chen, 2022; Vargas et al., 2023; Berner et al., 2024). Our setting, however, differs as we
consider the more common scenario of applying diffusion models to learn a data distribution, as
elaborated as follows.

3.2 CONSIDERATION OF OBSERVED DATA

We emphasize our focus on a generative model class in which training data is typically available. This
is crucial for two main reasons: first, identifying solutions x0 that satisfy the governing equations
is non-trivial, and we may understand the obtained training data as guidance for the model towards
feasible solutions, which may accelerate the training. Alternatively, the constraints may be far from
a “well-posed” problem and admit a large set of solutions, while we are only interested in a small
subset of those reflected by the data. Second, equation 10 contains any distribution that produces
samples with zero residuals, and the model may simply collapse to a single solution instance (such
as in the classical PINN setup), which is not the use case for a generative scenario. Rather, we
aim to leverage the proven capabilities of generative models to learn complex distributions, such as
optimal mechanical designs or fluid flows based on some conditioning, while ensuring adherence
to the physical laws. Even if no data is available, we may introduce an uninformative prior such
as a unit Gaussian to promote the exploration of different solutions, which we briefly investigate in
Appendix A.6.1.

We thus extend the objective equation 10 by including the usual data likelihood term, which is taken
as the standard optimization objective in data-driven diffusion models as

argmax
θ

Ex0∼q(x0) [log pθ(x0)] + Ex0∼pθ(x0) [log qR(r̂ = 0|x0)] . (11)

We show in Appendix A.1 that, if diffusion models are interpreted as score-based models, a straight-
forward inclusion of the virtual (residual) likelihood in the loss function recovers a consistent training
objective in the sense that the optimal score model also maximizes the introduced virtual (residual)
likelihood and recovers samples from q(x0).

3.3 SIMPLIFICATION OF THE TRAINING OBJECTIVE

The joint loss equation 11 requires sampling not just from q(x0) but also pθ(x0), which is costly
for diffusion models due to their iterative nature. We explore two ideas to mitigate this increased
complexity by considering (i) a straightforward evaluation of the residual based on the readily
available x̂0 and (ii) an accelerated sampling strategy via denoising diffusion implicit models
(DDIMs) (Song et al., 2021a).
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Mean estimation. As seen in equation 4, the diffusion model objective can be understood as
minimizing a (time-weighted) mean-squared distance between the predicted and true sample, given a
noisy input. Hence, x̂0 is an estimate of E[x0|xt] (Song et al., 2021b). Evaluating the residual on this
estimate is therefore in general not fully consistent, as R(E[x0|xt]) ̸= E[R(x0|xt)] (also referred
to as the Jensen gap (Gao et al., 2017)). Only at the last sampling step will this estimate align with a
generated sample x0 (i.e., at t = 1, assuming β1 = 0) and otherwise introduce a conflicting objective
between the data and residual loss with increasing t. To mitigate this, we propose to increase the
variance of the introduced residual likelihood with increasing t, while enforcing tighter adherence to
the constraint as t→ 0.

Sample estimation. Alternatively, we may aim to evaluate the residual of an actual sample x0 ∼
pθ(x0), motivated by the implied consistency shown in Appendix A.1 (though in idealized settings).
This comes at the expense of increased computational complexity due to the many forward passes
required in the denoising process. We hence consider (deterministic) DDIM (Song et al., 2021a)
to accelerate sampling while maintaining high sample quality, with an inherent trade-off between
sample quality and the number of DDIM timesteps. We consider a simple two-step sampling of x0

from any t and again increase the variance as t → T , where timesteps are coarser, which leads to
reduced sample quality (see Appendix A.4 for further details). While we focus on diffusion models,
we note that single-step generation models such as consistency models (Song et al., 2023) are a
promising alternative, offering direct access to a sample.

Since the remaining derivations hold true for both the mean and sample estimation, we no longer
distinguish between these estimates and denote both of them with x∗

0 (i.e., x∗
0 := x̂0 = E[x0|xt] or

x∗
0 := DDIM[xt]), based on which the residual can efficiently be evaluated. As x∗

0 is obtainable at
any timestep t, we adapt equation 11 to

argmax
θ

Ex0∼q(x0) [log pθ(x0)] + Ex1:T∼pθ(x1:T ) [log qR(r̂ = 0|x∗
0(x1:T ))] . (12)

Estimates at noisier inputs may be less accurate for aforementioned reasons, thus we penalize
constraint violation less as t → T by modeling qR(r̂|x∗

0(x1:T )) for simplicity based on a scaled
version of the variance scheduler of the reverse process as

qR(r̂|x∗
0(x1:T )) =

T∏
t=1

qR(r̂|x∗
0(xt, t)), where qR(r̂|x∗

0(xt, t)) = N (r̂;R(x∗
0),Σt/c I),

(13)
where Σt is, as introduced before, the fixed variance of the denoising process. This idea of adjusting
the temperature of the target distribution shares some similarity with the annealed noise distribution
introduced in a concurrent work by Sanokowski et al. (2024) in the context of combinatorial opti-
mization. The scale factor c > 0 introduced in equation 13, which is the only hyperparameter in our
setup, effectively dictates the penalty for deviating from R(x∗

0) = 0. Figure 1 shows a graphical
illustration of this process.

Figure 1: An approximation x∗
0 of the clean signal for residual evaluation can be obtained at

any denoising timestep t by directly considering the estimated expectation E[x0|xt] or by actual
(accelerated DDIM (Song et al., 2021a)) sampling. We tighten the variance of the virtual likelihood
as t→ 0.

As equation 12 still requires sampling over x1:T ∼ pθ(x1:T ), we simplify this by instead sampling
from the available q(x1:T ), effectively ignoring the likelihood ratio (see Appendix A.3 for details).
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As the original (Sohl-Dickstein et al., 2015) and physics-driven objectives are then under the same
expectation, the classical data loss equation 4 can be straightforwardly extended to include a physics-
informed loss, resulting in the loss of our proposed PIDM:

LPIDM(θ) = Et∼[1,T ],x0:T∼q(x0:T )

[
λt∥x0 − x̂0(xt, t)∥2 +

1

2Σ̄t
∥R(x∗

0(xt, t))∥2
]
, (14)

where Σ̄t = Σt/c is the rescaled variance. Since Σ0 = 0 for a deterministic last step, we set
Σ0 ← Σ1. Algorithm 1 displays the updated training objective, requiring only minor modifications
to the standard training setup (Ho et al., 2020).

Algorithm 1 Physics-informed diffusion model training

1: Set Σ̄t = Σt/c
2: repeat
3: x0 ∼ q(x0)
4: t ∼ Uniform{1, . . . , T}
5: ϵ ∼ N (0, I)
6: xt =

√
ᾱtx0 +

√
1− ᾱtϵ

7: Estimate x∗
0 via x̂0 = E[x0|xt] or DDIM sampling (Song et al., 2021a)

8: Take gradient descent step on∇θ

[
λt∥x0 − x̂0(xt, t)∥2 + 1

2Σ̄t
∥R(x∗

0(xt, t))∥2
]

9: until converged

We point out that the model can also be trained to match the mean or noise as in Ho et al. (2020),
from which we can equally assemble E[x0|xt] if considering mean estimation via equation 3 (see
Appendix A.2 for estimation with score models) but we empirically found that this leads to larger
residual errors. Also, we emphasize that PDEs can be understood as a specific instance of equality
constraints and we could generally consider any differentiable forward surrogate modelRθ(x0) that
estimates some property or classification of the predicted samples to be matched, i.e.,Rθ(x0) = r̂target.
For a discussion on how to incorporate inequality constraints and auxiliary optimization objectives see
Appendix A.5. Lastly, we note that the optimal scaling c generally depends on the considered scenario,
and it is here estimated by a simple parameter sweep. As usual in multi-objective optimization,
trade-offs between the different loss contributions are expected, and c must be selected so that the
model is meaningfully informed by the residual loss but does not ignore the data likelihood.

4 EXPERIMENTS

We here present two benchmarks for distributions from which samples are implied to adhere to
specific governing PDEs and constraints, as recently studied in contemporary work (Jacobsen et al.,
2024; Giannone et al., 2023). To obtain intuition for the effects of the proposed loss, see the toy
problem presented in Appendix A.6.1 as an instructive example.

4.1 DARCY FLOW

Setup. We first study the 2D Darcy flow equations, which describe the steady-state solution for fluid
flow through a porous medium, here on a square domain Ω = [0, 1]2. Generally, we follow the setup
of previous studies (Jacobsen et al., 2024; Zhu & Zabaras, 2018) by sampling permeability fields
K(ξ) from a Gaussian random field, which are solved for their (unique) pressure distribution p(ξ).
Similarly, we create a training and a validation dataset of 10,000 and 1,000 datapoints, respectively, by
solving the governing equations (see equation 29) for a sampled permeability field on a 64× 64 grid.
Second-order central finite differences are used to assemble and solve a linear system (see Jacobsen
et al. (2024)), giving pairs (K,p) with K,p ∈ Rn×n. We consider a U-Net (Ronneberger et al.,
2015) architecture with 64×64 pixels as in- and output dimensions that align with the considered grid
and allow for the same residual evaluation via finite differences also used to create the dataset. We
increase the variance of the virtual residual likelihood by setting c = 10−3 for the mean estimation
and c = 10−5 for the sample estimation. Throughout the experiments, we observed that the mean
estimation performs best with a variance of the residual likelihood around two orders of magnitude
smaller than the best performance for the sample estimation. Further details of the considered setup
and implementation are given in Appendices A.6.2 and A.7.
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Figure 2: Evaluation of the residual error (a) and test data loss (b) during training. In (a), we generate
16 samples every 10k training iterations and plot the average (solid lines) and individual (dots) residual
errors for the standard diffusion model (‘Diffusion’), the physics-guided model (‘PG-Diffusion’)
(Shu et al., 2023), CoCoGen (Jacobsen et al., 2024), and the proposed PIDM using either mean
or sample estimation (‘PIDM-ME’ and ‘PIDM-SE’, respectively). Note that for CoCoGen not all
samples converged, so that we excluded the non-converged data from the indicated average. In (b),
we plot the data loss evaluated on a test set for the proposed PIDM variants and those frameworks
that differ from ours during training.
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Figure 3: Generated permeability and pressure fields as well as the corresponding residual error from
diffusion models trained on the Darcy flow dataset, where (a) is sampled from a standard diffusion
model and (b) from our proposed PIDM with mean estimation. Additional samples are shown in
Appendix A.8.1.

Results. To evaluate the performance of our proposed PIDM, we benchmark it against three relevant
setups: (i) a model trained on the standard (purely data-driven) objective equation 4, (ii) a “physics-
guided” model trained on the standard objective but using residual information as guidance, as
proposed by Shu et al. (2023), and (iii) a model similar to (i) but with first-order residual corrections
during inference, as described in CoCoGen (Jacobsen et al., 2024) (see Appendix A.6.2 for further
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details). We examine the performance of the different diffusion model variants by tracking the
evolution of the residual error of generated samples from the learned distributions x0 ∼ pθ(x0)
alongside the test data loss throughout the training process in Figure 2. The PIDM showcases
a remarkable improvement, reducing the residual error by around two orders of magnitude in
comparison to the standard diffusion model. This holds for both the mean and sample (DDIM)
estimation, where the former outperforms the latter variant in terms of the residual error. The mean
estimation takes around 23% longer to train compared to the standard diffusion model due to the
residual evaluation, whereas the sample estimation took around 69% longer due to the additional
forward pass (see Appendix A.4). We could not observe a significant reduction of the residual error
for the physics-guided model (Shu et al., 2023). We hypothesize that the mere inclusion of gradient
information into the model seems insufficient because it does not truly enforce residual minimization.
CoCoGen (Jacobsen et al., 2024) shows a moderate improvement but does not bring the residual
close to values where the samples could be considered physically consistent. We display generated
samples in Figure 3 and Appendix A.8.1 for both the standard diffusion model and PIDM, confirming
a drastically reduced residual error over the whole domain. Figures 2b, 3b and 8 confirm that the
PIDMs maintain the generative diversity with both estimation techniques and do not collapse to a
single solution instance. It successfully generates permeability (and pressure) fields that adhere to the
data distribution (besides respecting the PDE).

For any multi-objective loss as given in equation 14, a trade-off between the data and residual
minimization is generally expected, depending on their relative weighting dictated by c (Wang et al.,
2021). Interestingly, Figure 2b shows that the PIDM with mean estimation eventually recovers a
similar test data loss as the vanilla diffusion model and is significantly less prone to overfitting. Even
more notable is that the PIDM with sample estimation initially has a similar test data loss trajectory
as the vanilla model—despite the additional loss term—and also remains more robust to overfitting.
This is strong evidence of the consistent data and physics loss (see Appendix A.1). Thus, sample
estimation drastically improves the alignment of the two losses with only a single additional forward
pass. The increased robustness to overfitting in both mean and sample estimation is a clear indicator
that the model learns a more robust internal representation of the data distribution, as it is forced to
generate samples that adhere to the true distribution or, equivalently, the underlying data generation
mechanism—viz. the known constraints that govern the system. Thus, adding the physical (residual)
loss may benefit the generative performance by enhancing its generalization capability.

4.2 TOPOLOGY OPTIMIZATION

Setup. We consider 2D structural topology optimization as a second example. In this setting, the
goal is to find the optimal material distribution ρopt(ξ) that maximizes the mechanical stiffness, or
equivalently, minimizes the compliance of a structure under a set of constraints that typically consist
of mechanical equilibrium, boundary conditions, and a volume constraint. This is classically solved
via the SIMP method based on a finite element (FE) discretization (Bendsøe & Sigmund, 2004). We
again consider a square domain Ω = [0, 1]2 and benchmark our proposed PIDM to state-of-the-art
frameworks (Mazé & Ahmed, 2023; Giannone et al., 2023) that also provide a dataset consisting
of 30,000 optimized structures with various boundary conditions and volume constraints and two
proposed test scenarios with in- and out-of-distribution boundary conditions. We train a U-Net
architecture similar to the one in Section 4.1 but with a larger latent dimension and additional in-
and output channels on this dataset. To ensure consistent evaluation of the residuals, we do not
use finite differences but interpret the pixels as nodes of the underlying FE mesh to assemble a
consistent stiffness matrix equivalent to the one used to generate the data. We scale the variance of
the residual likelihood with c = 0.01 and introduce the volume constraint as an additional equality
constraint with c = 0.1 (as the optimal topology will contain the maximum allowed material). We
also introduce a slight bias to minimize compliance (setting λ = 10−6 for the optimization objective,
see Appendix A.5.2). Further details of the setup, model architecture, residual evaluation, and
implementation are presented in Appendices A.6.3 and A.7.

Results. We evaluate the performance of our proposed PIDM in comparison to the standard diffusion
model, PG-Diffusion (Shu et al., 2023) and CoCoGen (Jacobsen et al., 2024), as well as two recent
variants specifically tailored to topology optimization. These propose to modify the sampling process
by either using additional guidance models to reduce compliance and improve manufacturability
(Mazé & Ahmed, 2023) or enforcing the denoising trajectory to be closer to an iterative optimization
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trajectory (Giannone et al., 2023). Both methods require auxiliary datasets which complicate model
training—in contrast, our method is a much simpler and well-motivated extension of the standard
training without requiring any additional data or models. While training of the ‘main’ diffusion
model takes longer for the PIDM due to the additional computational complexity and memory
requirements, we note that inference is identical to the standard diffusion model and does not require
additional surrogate models as, e.g., in Mazé & Ahmed (2023). Results are shown in Table 1 for the
PIDM with sample estimation, which we observed to outperform the mean estimation slightly. We
evaluate relevant performance metrics on the two test sets (with seen and unseen boundary conditions,
respectively), with generated samples presented in Figure 4 and Appendix A.8.2.

Table 1: Performance comparison of diffusion model variants for topology optimization. We consider
in- and out-of-distribution boundary conditions as described in Mazé & Ahmed (2023) and provide
the medianRMAE of the predicted solution fields (where applicable), the median compliance error
(MDN % CE) and the mean volume fraction error (% VFE). *Giannone et al. (2023) further improve
their model by running additional SIMP post-processing steps, but for a consistent comparison, we
consider unprocessed samples from the model.

Model Size in-distribution out-of-distribution

RMAE ↓ MDN % CE ↓ % VFE ↓ RMAE ↓ MDN % CE ↓ % VFE ↓
Diffusion 136M 1.86e−3 −0.2 2.93 1.97e−3 0.3 2.80
PG-Diffusion (Shu et al., 2023) 136M 1.82e−3 0.09 3.59 1.92e−3 0.81 3.23
CoCoGen (Jacobsen et al., 2024) 136M 1.51e−3 0.14 4.00 1.56e−3 0.58 3.64
TopoDiff-G (Mazé & Ahmed, 2023) 239M - 0.83 1.49 - 1.82 1.80
DOM* (Giannone et al., 2023) 121M - 0.74 1.52 - 3.47 1.59
PIDM (ours) 136M 1.24e−3 0.06 2.25 1.29e−3 0.56 1.91
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Figure 4: Generated designs, including the compliance error CE and volume ρ̄, and the residual error
(based on the displacement fields, not shown) from diffusion models trained on the SIMP dataset and
the corresponding SIMP design, including the compliance C and volume Vmax. We plot a sample (a)
from a standard diffusion model and (b) from our proposed PIDM. All samples are conditioned on
the out-of-distribution test set. In the SIMP design, we indicate the applied load by a blue dot, and
the given boundary conditions in red.

Importantly, the PIDM provides not only the optimized designs but also the displacement fields,
which are of significant interest for mechanical analysis, e.g., to estimate the stress distribution in the
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structure. We observe a residual reduced by 33% and 35% compared to the standard diffusion model
on the in- and out-of-distribution set, respectively, highlighting closer adherence to the mechanical
equilibrium. Somewhat surprisingly, we observe that the standard model performs very well in terms
of the optimization objective, but also emphasize that it has an increased volume fraction error—thus
results are not fully comparable, as more volume will allow for stiffer structures. Contrary, the
PIDM only has a slight increase in the volume fraction error but significantly outperforms previous
frameworks (Mazé & Ahmed, 2023; Giannone et al., 2023) in terms of compliance minimization,
despite the absence of auxiliary data and surrogate models. Lastly, adaptations of PG-Diffusion
(Shu et al., 2023) and CoCoGen (Jacobsen et al., 2024) also cannot match the PIDM in terms of
the residual (on both test sets), though CoCoGen can reduce it slightly. Additionally, the median
compliance and especially the volume fraction error perform significantly worse.

5 RELATED WORK

Conceptually closest to our work are two recent contributions by Shu et al. (2023) and Jacobsen et al.
(2024), to which we compare the proposed PIDM extensively in Section 4. Our studies indicate that
the PIDM significantly reduces the residual error of generated samples compared to both variants,
especially for the Darcy flow study. Focusing on topology optimization, two recent contributions
(Mazé & Ahmed, 2023; Giannone et al., 2023) propose improvements that require auxiliary data
and/or surrogate models, while we here show that the PIDM, solely by being physics-informed,
significantly outperforms both methods in terms of the optimal stiffness. In a broader context, Wang
et al. (2023) optimized the conditioning variable to create an online dataset of soft robot designs,
which includes physical performance and may generate samples with improved physical utility. Yet,
the focus was on leveraging pre-trained models to create diverse 3D shapes. Yuan et al. (2022)
leveraged diffusion models for human motion synthesis, where inference is altered by projecting
the intermediate steps to a physically plausible motion that is verified via a reinforcement learning
approach. Similarly, Christopher et al. (2024) projected intermediate steps to the closest point in a
feasible set, which is generally unknown for more complicated constraints such as PDEs. In general,
such post-processing methods may indeed mitigate some of the mismatches of the generated samples
(or fulfill them exactly if the constraints are sufficiently simple). Yet, they are fundamentally limited,
as they do not address the underlying distribution learned by the model.

6 CONCLUSION

We have unified the data-driven perspective of diffusion models with a physics-informed paradigm,
enabling the models to internalize the constraints that generated samples must adhere to. Our
framework significantly outperforms purely data-driven models and prior work, as verified by two
highly relevant case studies, and numerical evidence hints that the PIDM obtains a more robust
representation of the data distribution that is less prone to overfitting. We hope this work stimulates
others to extend their generative model training objective when, besides data, further information—be
it in the form of PDEs or other constraints—on the generated samples is available, as is often the case
within the realm of scientific machine learning. Future work may explore more sophisticated virtual
likelihood variance schedulers, which we here simply coupled to the standard denoising process with
a scaling estimated by a parameter sweep. More generally, architectures with a consistent residual
evaluation that do not operate on a fixed regular grid should be considered, currently restricting the
studies to geometrically simple domains. Remedy can be found in graph-based architectures that
can handle arbitrary meshes (Gao et al., 2022) or by employing implicit encodings of coordinates
(Liu et al., 2023). Additionally, coordinate-based representations allow for exact calculation of the
gradients required to evaluate the imposed PDEs via automatic differentiation, though at increased
computational cost.
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A APPENDIX

A.1 CONSISTENCY

We here give a theoretical argument for the fact that, in an ideal setting, diffusion models trained
via score-matching with an additional virtual (residual) likelihood term continue to recover the true
distribution. Adopting the perspective of score-based models (Song et al., 2021b), we consider a
continuous time variable t ∈ [0, T ] instead of the discrete setting. The forward diffusion process of
some data x ∈ RD can then generally be described by the stochastic differential equation (SDE)

dx = Ftxdt+Gtdw, (15)

where w is a Wiener process, and the drift and diffusion coefficients Ft ∈ RD×D and Gt ∈ RD×D,
respectively, are chosen so that the transition kernel is a simple Gaussian that can be computed in
closed form. Here, the popular diffusion variants proposed by Ho et al. (2020) and DDIM (Song

et al., 2021b) correspond to their continuous counterparts Ft =
1
2

d logαt

dt I and Gt =
√
− d logαt

dt I ,
where αt is continuously decreasing from α0 ≈ 1 to αT ≈ 0. There is no unique reverse diffusion
process, but common choices of the corresponding reverse SDE are included in the parameterization
proposed by Zhang & Chen (2023),

dx =

[
Ftx−

1 + λ2

2
GtG

T
t ∇ log pt(x)

]
dt̄+ λGtdw̄, (16)

where w̄ is a Wiener process that runs, as dt̄, backwards in time, and λ ≥ 0. If the score∇ log pt(x)
is known, we can generate new samples by sampling from the known prior distribution p(xT ) and
applying equation 16. DDPM (Ho et al., 2020) and (deterministic) DDIM (Song et al., 2021a) then
correspond to certain parameterizations (λ = 1 and λ = 0, respectively) and discretizations of
equation 16 (Song et al., 2021b; Zhang & Chen, 2023). We can show that a straightforward extension
of the usual score-matching objective with the virtual residual likelihood is consistent as it continues
to recover the data distribution:

Proposition 1. (Consistency) Let p(x0) be a distribution with samples x0 ∼ p(x0) satisfying some
constraint R(x0) = 0. Consider

sopt = argmin
s

Et∼Unif[0,T ]Ep(x0)p(xt|x0)

[
Λ(t) ∥∇ log p(xt|x0)− s(xt, t)∥2 − log qR(r̂|x∗

0(xt))
]
,

(17)
where Λ(t) > 0 is a time-dependent weight and x∗

0 is obtained by solving the reverse SDE equation 16
initiated at xt with score s(xt, t). Then, solving the reverse SDE equation 16 from xT ∼ p(xT ) with
sopt as the score for x0 corresponds to sampling from p(x0).

Proof. It is well-known that score matching∇ log p (xt|x0) is equivalent to matching ∇ log p(xt)
(Vincent, 2011). Assuming perfect recovery of the score, i.e., s(x, t) = ∇ log p(xt) for all xt, t, the
marginal distribution p∗(xt) of equation 16 matches the forward diffusion p(xt) for all 0 ≤ t ≤ T
independent of λ when p(xT ) = p∗(xT ) (Zhang & Chen, 2023, Prop. 1). To generate new samples,
we may start from any latent x∗

t ∼ p∗(xt), which can hence equivalently be obtained via the forward
marginal xt ∼ p(xt), and solve equation 16 for x∗

0 ∼ p(x0). As we consider virtual observables
r̂ = 0 introduced via qR(r̂|x∗

0) = N (r̂;R(x∗
0), σ

2I) we have

− log qR(r̂|x∗
0) =

1

2
∥R(x∗

0)/σ
2∥2 + C, (18)

where C is a constant that does not depend on x∗
0 (and hence s). Since x∗

0 ∼ p(x0) satisfies R(x∗
0) =

0 by assumption, the optimal score model is also a minimizer of the (negative) virtual log-likelihood
equation 18 and sopt recovers the optimal score. Hence, solving equation 16 from xT ∼ p(xT ) for
x0 with sopt as the score generates samples from the true distribution x0 ∼ p(x0).

Remark. In practice, equation 16 has to be discretized, since no closed-form solution is available.
Hence, even for a perfect score model, this numerical approximation will introduce a bias (Zhang &
Chen, 2023). Also, note that we are free to choose DDPM (Ho et al., 2020) or DDIM (Song et al.,
2021a) to discretize equation 16 since the optimal score is unaffected by this choice.
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Lastly, we emphasize that minimizing the residual error on some intermediate latent variables
introduces inconsistencies. Assume some general forward conditional marginal of the form
p(xt|x0) = N (xt;αtx0, σ

2
t I), from which we can sample via xt = αtx0 + σ2

t ϵ, where
ϵ ∼ N (0, I). But in general, R(αtx0 + σ2

t ϵ) ̸= 0; thus enforcing R(xt) = 0 does not align
with the underlying marginal distribution.

A.2 MEAN ESTIMATION FOR SCORE-BASED MODELS

As summarized in Appendix A.1, score-based models are an alternative perspective on diffusion
models that may be understood as their continuous-time generalization (Song et al., 2021b). Here,
the model learns the data score sθ(xt, t) ≈ ∇ log pt(x), with which we can solve the reverse SDE
equation 16 to generate new samples. For a forward conditional marginal of form p(xt|x0) =
N (xt;αtx0, σ

2
t I), we can obtain x̂0 = E[x0|xt] as (see e.g., Kingma et al. (2021))

x̂0 =
1

αt

(
xt + σ2

t sθ(xt, t)
)
, (19)

based on which the virtual residual likelihood can be estimated.

A.3 DETAILS ON THE SIMPLIFIED TRAINING OBJECTIVE

As shown in Section 3, we arrive at an optimization objective equation 12 that requires sampling over
latents from the learned distribution x1:T ∼ pθ(x1:T ). We simplify this by instead sampling from the
available q(x1:T ), which can be understood as ignoring the likelihood ratio, as we aim to minimize

Ex0∼q(x0) [− log pθ(x0)] + Ex1:T∼pθ(x1:T ) [− log qR(r̂ = 0|x∗
0(x1:T ))]

≤ Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
+ Ex1:T∼pθ(x1:T ) [− log qR(r̂ = 0|x∗

0(x1:T ))]

= Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
+ Ex1:T∼q(x1:T )

[
−pθ(x1:T )

q(x1:T )
log qR(r̂ = 0|x∗

0(x1:T ))

]
≈ Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
+ Ex1:T∼q(x1:T ) [− log qR(r̂ = 0|x∗

0(x1:T ))]

= Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )
− log qR(r̂ = 0|x∗

0(x1:T ))

]
.

We justify this simplification by the assumption that optimizing the variational bound will bring
pθ(x1:T ) close to q(x1:T ) and thus reduce this bias with ongoing model training. Evaluating the final
expression gives us the presented physics-informed diffusion model loss equation 14.

A.4 DDIM SAMPLING

For completeness, we here provide the deterministic DDIM sampling scheme derived by Song et al.
(2021a) in terms of x̂0:

xτi−1
=

√
ᾱτi−1

x̂0(xτi , t) +

√
1− ᾱτi−1

1− ᾱτi

·
(
xτi −

√
ᾱτi x̂0(xτi , t)

)
. (20)

Generally, τ is a sub-sequence of the full denoising sequence [1, . . . , T ]. During training, xt is
available and we aim to estimate x0 in a given number of reduced timesteps, considering a sequence
τ = [1, . . . , t]. As we empirically found no notable improvement by providing multiple intermediate
timesteps, but this comes with the cost of the additional forward passes, we set τ = [1, t]. Hence, we
sample x1 from xt in one step via equation 20 and then obtain x0 by x̂0(x1, t = 1), resulting in two
forward passes of the model. Note that we reduce the impact of worse estimates at noisier timesteps
by the increased variance of the virtual residual likelihood, penalizing deviations from R(x0) = 0
less.
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A.5 OTHER CONSTRAINT TYPES AND AUXILIARY OPTIMIZATION OBJECTIVES

A.5.1 INEQUALITY CONSTRAINTS

Inequality constraints are also common in physics (e.g., the second law of thermodynamics). Consid-
eration of these constraints of type

h(x0) ≤ hmax (21)

can be introduced viaRineq = ReLU(h(x0)−hmax) = max(0, h(x0)−hmax), which we analogously
introduce into the variational loss as the Gaussian qRineq(r̂ineq|x∗

0(xt, t)) = N (r̂ineq;Rineq(x
∗
0),Σt/c)

with r̂ineq = 0.

A.5.2 OPTIMIZATION OBJECTIVES

Optimization objectives of the form
minJ (x0) (22)

can also be considered by treating the optimum as a pseudo-observable ĵopt and a similar strategy as
before. In general, however, this optimum is—unlike r̂ and r̂ineq—typically unknown. As a remedy,
we may extend the mismatch of the actual and optimal objective by a pseudo-observable r̂opt = 0 and
pose this as a sample from the exponential distribution, as shown by Rixner & Koutsourelakis (2021):

J (x0)− ĵopt + r̂opt ∼ Expon (λ) , (23)

where

Expon (x;λ) =

{
λe−λx x ≥ 0

0 x < 0
. (24)

By similar reasoning as before, we introduce

qJ (r̂opt|x∗
0(x1:T )) =

T∏
t=1

qJ (r̂opt|x∗
0(xt, t)),

where qJ (r̂opt|x∗
0(xt, t)) = λe−λ(J (x∗

0)−ĵopt),

(25)

and observe that the log-likelihood

log qJ (r̂opt|x∗
0(x1:T )) =

T∑
t=1

[
log(λ)− λJ (x∗

0(xt, t)) + λĵopt

]
(26)

decouples ĵopt from x∗
0 due to the properties of the exponential distribution. Therefore, knowledge of

ĵopt is not required for training. The loss function is hence extended to

LPIDM-opt(θ) = Et,x0:T

[
λt∥x0 − x̂0(xt, t)∥2 +

1

2Σ̄t
∥R(x∗

0(xt, t))∥2 + λJ (x∗
0(xt, t))

]
. (27)

Note that we could also couple the parameter λ of the exponential distribution to the denoising
timestep (similar to Σ̄t), but choose to keep it constant here. As usual in multi-objective optimization,
trade-offs between the different loss contributions are expected, depending on the relative weighting
(Wang et al., 2021).

A.6 NUMERICAL STUDIES

For the presented evaluations, we introduce the mean absolute residual error as follows

RMAE (x0) =
1

M +N

 M∑
i=1

|Fi [x0]|+
N∑
j=1

|Bj [x0]|

 , (28)

where i and j denote the i-th PDE and j-th boundary condition constraint, and we consider a total of
M and N such constraints, respectively.
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A.6.1 TOY PROBLEM

Setup. In a simple, instructive example, we demonstrate the implications of the proposed physics-
informed loss function equation 14 both considering the mean and sample estimation for the residual
evaluation. The objective is to learn a distribution q(x0) that samples points uniformly on the unit
circle S1 = {ξ ∈ R2 : ∥ξ∥ = 1}, so that samples should obey a simple algebraic equality constraint.
Thus, generated samples of the model x0 directly correspond to the two spatial coordinates (ξ1, ξ2).
We here identified c = 0.1 and c = 0.005 via a simple hyperparameter sweep for the mean and
sample estimation, respectively, and thus increased the variance of the implied virtual likelihood.

We choose a simple 3-layer MLP of latent dimension 128 with a 2D vector (ξ1, ξ2) as in- and output.
Information about the diffusion timestep t is added by transforming t to an embedding which is
element-wise multiplied by the output of the linear layer, generally followed by the Softplus activation
except for the last layer. We train the model for 400 epochs on 10,000 randomly sampled points of
the unit circle, using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 5× 10−4. We
use a batch size of 128, and 100 diffusion timesteps with a cosine scheduler (Dhariwal & Nichol,
2021). The training time of each considered model variant takes around 12 minutes on an Nvidia
Quadro RTX 6000 GPU (equipped with 24GB GDDR6 memory).

Results. To understand the impact of the physics-informed loss, we train the proposed PIDM either
via mean or sample estimation in four different scenarios: (i) via the classical setup of the variational
bound on the data likelihood equation 4, (ii) via the proposed PIDM loss equation 14, (iii) by only
considering the residual loss (and neglecting the variational bound), and (iv) by again considering the
PIDM loss equation 14 but with data sampled from an uninformative prior x0 ∼ N (0, I). We present
the average residual error of 100 samples generated over 400 training epochs and plot 100 generated
samples after training in Figure 5 and Figure 6 for the mean and sample estimation, respectively.
More specifically, we provide the mean absolute residual error evaluated asRMAE (x0) = |∥ξ∥2− 1|,
which is averaged over all samples.
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Figure 5: (Mean estimation) Evaluation of the average residual error of 100 generated samples
during training (a, averaged over 10 training runs with 25/75%-quantiles using different seeds) and
100 generated samples after training (b, from representative models) in four different settings. We
consider a diffusion model trained with the standard (data-driven) objective (i), our proposed PIDM
(ii), a model trained solely on the residual loss term (iii), and again our proposed PIDM but with data
sampled from an uninformative Gaussian prior (iv). The residual during training is evaluated via
mean estimation, i.e., x∗

0 = E[x0|xt]. In (b), we indicate the unit circle to which all samples should
be constrained. Colors in (b) match those in (a).

We observe that the studies for the mean and sample estimation present a similar picture, and we
may summarize the findings independently of the considered estimation mechanism as follows.
As indicated in Figure 5a and 6a, we observe that the proposed physics-informed loss (ii) indeed
outperforms the standard setup (i) in terms of the residual error after approximately 100-120 training
epochs. This is also visually confirmed in Figure 5b, where the samples from the “constraint-informed”
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Figure 6: (Sample estimation) The setting is identical to the one provided in Figure 5, but we here
estimate x∗

0 via DDIM (Song et al., 2021a).

−1 0 1

−1

0

1

ξ1

ξ 2

c = 0 (RMAE = 0.080)

−1 0 1

−1

0

1

ξ1

ξ 2

c = 0.005 (RMAE = 0.061)

−1 0 1

−1

0

1

ξ1

ξ 2

c = 0.02 (RMAE = 0.048)

−1 0 1

−1

0

1

ξ1

ξ 2

c = 0.04 (RMAE = 0.013)

−1 0 1

−1

0

1

ξ1

ξ 2

c = 1 (RMAE = 0.0037)

−1 0 1

−1

0

1

ξ1

ξ 2

c = 5 (RMAE = 0.0024)

Figure 7: Evaluation of 400 generated samples after training our proposed PIDM with sample
estimation in the same setting as Figure 6 but with varying scale factors c. We also indicate the mean
absolute residual error RMAE, averaged over all samples and the unit circle to which all samples
should be constrained.

model align more accurately on the unit circle (see also the top inset). When training the model
solely on the constraints (iii), the model efficiently reduces the residual. However, it converges to
a single point randomly located somewhere on S1, as shown in the bottom inset. This is indeed
expected: the model finds no penalty for collapsing to any points on S1, and similar results are
generally observable if the residual penalty vastly exceeds the data loss term. Interestingly, the
model can also approximate the target distribution even in the absence of training data using only an
uninformative prior (iv), though here at a reduced accuracy. We do not explore this idea further, but

20



Published as a conference paper at ICLR 2025

this suggests the use of an uninformative prior as a regularization that prompts the model to explore
a wider range of solutions within the constraint space. Although the simple setting of this study
prevents straightforward analogies to more complex setups, it confirms the validity of our proposed
framework and its ability to enforce constraints.

Study on the influence of relative weighting. To systematically examine the effect of the scale
factor c that dictates the importance the model assigns to the residual loss, we provide results
for six different values in Figure 7. The experimental setup remains consistent with the previous
configuration for the sample estimation, except for the variation in c. As c → 0, we recover the
standard (data-driven) diffusion model. For increasing c, the residual error is increasingly reduced,
but the model eventually generates samples increasingly concentrated at a point randomly located on
the constraint manifold.

As c ≫ 1, the distribution fully collapses as the model ignores the data loss, and the behavior
resembles that of a model trained exclusively on the residual loss (similar to scenario (iii) in Figure 6).
For moderate values, such as c = 0.005, the distribution achieves an optimal balance: maintaining
full diversity while effectively minimizing the residual error.

A.6.2 DETAILS OF THE DARCY FLOW STUDY

Background. The Darcy flow equations describe the steady-state solution of fluid flow through a
porous medium. Given a permeability field K(ξ), the pressure distribution p(ξ) and velocity field
u(ξ) are governed by

u(ξ) = −K(ξ)∇p(ξ), ξ ∈ Ω

∇ · u(ξ) = f(ξ), ξ ∈ Ω

u(ξ) · n̂(ξ) = 0, ξ ∈ ∂Ω∫
Ω

p(ξ)dξ = 0,

(29)

where n̂ denotes the outward unit vector normal to the boundary. Similar to contemporary work (Zhu
& Zabaras, 2018; Jacobsen et al., 2024), we consider a 2D square domain and set the source function
to

f(ξ) =


r, if

∣∣ξi − 1
2w

∣∣ ≤ 1
2w, for i = 1, 2

−r, if
∣∣ξi − 1 + 1

2w
∣∣ ≤ 1

2w, for i = 1, 2

0, otherwise,
(30)

with r = 10 and w = 0.125. We sample K(ξ) from a Gaussian random field (GRF), i.e.,

K(ξ) = exp(G(ξ)), G(·) ∼ N (0, k(·, ·)) (31)

with covariance
k (ξ, ξ′) = exp (−∥ξ − ξ′∥2 /l) , with l = 0.1. (32)

Instead of directly considering the GRF, we reduce its dimensionality by considering its Karhunen-
Loève expansion up to s = 64 terms,

G(ξ) =

s∑
i=1

√
λiziϕi(ξ), (33)

with λi and ϕi(ξ) as, respectively, the eigenvalues and eigenfunctions of equation 32 sorted by
decreasing λi, and zi ∼ N (0, 1). Discretization of equation 29 is achieved via second-order central
finite differences, and we refer to Jacobsen et al. (2024) for details. To incorporate the boundary
conditions and the integral constraint, we extend the linear system of type Ap = f by additionally
imposing the above constraints, so that A ∈ R(n2+4n+1)×n2

,p ∈ Rn2

, and f ∈ Rn2+4n+1 (where
n = 64). We solve for the over-determined pressure field using the scipy.linalg.lstsq
(Virtanen et al., 2020) solver with default settings.

Model architecture and residual computation. The considered U-Net (Ronneberger et al., 2015)
architecture is based on Wang (2022), given its demonstrated success in learning the denoising
process (Dhariwal & Nichol, 2021). Our configuration uses an image input resolution of 64 × 64
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pixels, aligning with the grid resolution of the linear system under consideration. Importantly, we
require the residual evaluation of the predicted images R(x∗

0), as required in equation 14, to be
consistent with the data, as otherwise the optimal data likelihood is in partial conflict with the (virtual)
residual likelihood. This is ensured by using the same finite difference stencils as in the dataset
creation, essentially reassembling f , except that we remove the integral constraint, since it can be
trivially fulfilled by shifting the predicted pressure field (Jacobsen et al., 2024). Finite difference
stencils are implemented via torch.nn.Conv2D (Paszke et al., 2019) with a custom kernel, which
we can precompute for stencils up to arbitrary order via findiff (Baer, 2018).

We here restrict ourselves to an unconditional model, though extensions to conditional generation
(Ho & Salimans, 2022) are straightforward. The U-Net has two in- and output channels and is trained
to predict the clean signal based on a noisy input, as stated in Section 2.1. Thus, the model is trained
to generate pairs (K,x) where K is sampled similar to equation 31, and p is the corresponding
(unique) pressure field that satisfies the Darcy flow equations equation 29. The residual is then
assembled by considering F [x0] := ∇ · (K∇p) + f = 0. Further details of the model architecture
and training hyperparameters are given in Appendix A.7 and the code.

Comparison with other frameworks. Note that our architecture of the physics-guided diffusion
model (ii) is not an exact replication of the one given by Shu et al. (2023) due to the different setting,
but the proposed conditioning mechanism is closely mimicked, as detailed in the code. Jacobsen
et al. (2024) presented a strategy to iteratively “correct” the latent variables xt and samples x0 during
inference by applying gradient descent based on the PDE residuals (iii). We first followed the optimal
setting proposed in Jacobsen et al. (2024) and applied gradient-based descent ∇xt∥R(xt)∥22 with
ϵ = 2 × 10−4/max∇xtR(xt) for the last N steps of the sampling iterations and M additional
iterations. We set M = 25 and N = 50 according to the best-reported results (equal to starting
corrections halfway through the sampling). However, we encountered stability issues for the above
value of ϵ, likely due to differences in the sampling scheme and fewer considered timesteps compared
to Jacobsen et al. (2024), who adopted a score-based perspective. We therefore conducted a parameter
sweep to identify the converging results with the best performance, which we identified at ϵ = 1×
10−6/max∇xt

R(xt). While additional sweeps might yield some further incremental improvement,
we observed that different values of ϵ yielded similar results, as long as the updates converged.

A.6.3 DETAILS OF THE TOPOLOGY OPTIMIZATION STUDY

Background. Topology optimization aims to identify a structure with optimal mechanical prop-
erties, typically optimal mechanical stiffness. This can be formalized as the minimization of the
mechanical compliance C under a set of equality constraints (given by mechanical equilibrium
and boundary conditions) and inequality constraints (typically a volume constraint). Under the
assumptions of linear elasticity, the problem reads

min
ρ(ξ)

∫
Ω

1

2
σ(ξ) : ε(ξ)dΩ︸ ︷︷ ︸

C

, ξ ∈ Ω

subject to: ρ(ξ) ∈ [0, 1],∫
Ω

ρ(ξ) dΩ ≤ Vmax,

∇ · σ(ξ) + f(ξ) = 0.

(34)

The last equation implies quasistatic mechanical equilibrium. Here, ε and σ denote the strain and
stress tensor fields, respectively, f is a distributed body force and Vmax a given (maximum) volume
constraint. We consider a linear elastic material, which couples ε and σ via Hooke’s law, σ = C : ε,
where C is the fourth-order stiffness tensor, and the colon denotes double tensor contraction. For
simplicity, we may assume an isotropic material, so C is characterized by two material constants (e.g.,
Young’s modulus E and Poisson’s ratio ν). The solution field is given in terms of the displacements
u(ξ), from which the strain tensor follows as ε = 1

2 [∇u+ (∇u)⊺]. Dirichlet boundary conditions
are applied as u = ū on the boundary ∂Ωu ⊂ Ω, and traction boundary conditions σ · n̂ = t on
∂Ωt ⊂ Ω, where n̂ denotes the outward unit vector normal to the boundary ⊂ Ω.
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In practice, equation 34 is usually discretized via finite elements. We here consider a regular finite
element mesh, based on a 65×65 grid of nodes with (64×64) four-node quadrilateral elements under
plane-stress assumptions (with E = 1, ν = 0.3). This turns the mechanical equilibrium equation
into a linear system of type KU = F , where K ∈ R2n2×2n2

is the global stiffness matrix and
U ,F ∈ R2n2

are the global nodal displacement and the external force vectors, respectively, with
n = 65. Dirichlet boundary conditions are imposed by appropriately modifying K and F . Optimized
topologies can subsequently be obtained via the Solid Isotropic Material with Penalization (SIMP)
method (we refer to Bendsøe & Sigmund (2004) for details). SIMP considers continuous densities
in equation 34 to allow for gradient-based optimization, defining C(ξ) = ρ(ξ)pC0, where p > 1
promotes binary entries (corresponding to material placement, ρ = 1, or void, ρ = 0) and C0 denotes
the material properties of the given isotropic base material. As SIMP often requires many costly finite
element analyses to iteratively refine the solution and may get stuck in local minima, deep learning
frameworks including generative adversarial networks (Nie et al., 2021) and diffusion models (Mazé
& Ahmed, 2023; Giannone et al., 2023) have been explored as alternatives to mitigate some of these
challenges.

Model architecture and residual computation. We consider the same U-Net architecture as in
Section 4.1 except for the following differences. Similar to Nie et al. (2021), we also provide the von
Mises stress and strain energy fields of the unoptimized domain, as well as the boundary conditions
(including the loads) and volume fraction to allow for conditioning in addition to the noisy signal of
the solution fields (consisting of the two displacement and density fields) to the model. The model
aims to reconstruct the clean signal of the two displacement fields u1,2 and the optimal density ρ.
Besides, we increase the latent dimension of the U-Net to 128 to have a similar number of overall
parameters compared to previous work (Mazé & Ahmed, 2023; Giannone et al., 2023). Lastly, we
apply a sigmoid activation after the density field channel output to ensure ρ ∈ [0, 1]. The predicted
ρ(ξ) then enters the governing equations via C(ξ) = ρ(ξ)C0.

For the residual and compliance computation, using finite differences as in Section 4.1 to assemble
equation 34 introduces inconsistencies with the FEM solution (i.e., training data with non-zero
residuals), likely due to the sharp transitions in the density field and point-wise introduction of loads.
This is problematic, as the minimization of the residual then does not fully correspond to samples
from the data distribution, leading to an optimization conflict. We hence treat the pixels as direct
representations of the FE grid and apply the stiffness matrix K to evaluate the residual. As we
consider a U-Net with in- and output pixel dimensions of 64× 64, we apply bilinear interpolation to
down- or upscale all nodal quantities to a 65× 65 grid where necessary. Note that we can obtain the
global stiffness matrix efficiently by precomputing the local stiffness matrix (up to a factor depending
on the corresponding density ρ(ξ) at the element level) given, e.g., by SolidsPy (Gómez & Guarín-
Zapata, 2018) and vectorizing the global assembly. Further details of the model architecture and
training hyperparameters are given in Appendix A.7 and the code.

Evaluation. We present metrics consistent with Mazé & Ahmed (2023); Giannone et al. (2023),
namely, the compliance error is introduced as CE = (C(x0) − C(x0,SIMP))/C(x0,SIMP) and the
volume fraction error as VFE = |ρ̄(x0)− ρtarget| /ρtarget, where ρ̄ is the (binarized) density averaged
over the domain. All models use 100 denoising steps to generate a sample. We note that the models
provided by Mazé & Ahmed (2023); Giannone et al. (2023) are trained for only 200k iterations
but with a 16 times larger batch size (64). Besides, these frameworks require additional overhead
due to the generation of auxiliary data and training of potential surrogate models (Mazé & Ahmed,
2023). For the comparison with PG-Diffusion (Shu et al., 2023) and CoCoGen (Jacobsen et al., 2024)
we included both the mechanical equilibrium equations and the volume constraint in the residual.
For CoCoGen, computing the full Jacobian ∇xtR(xt) (here, R(xt) is vector-valued), which the
authors use to scale the residual exceeds the VRAM of our GPU (even with a batch size of 1 and
efficient implementation via torch.func.jacfwd). We thus considered a constant scaling factor,
conducted an extensive hyperparameter study, and report the best results (in terms of the median
residual on the in-distribution test set).
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A.7 U-NET ARCHITECTURE AND TRAINING DETAILS

As described in Section 4.1 and 4.2 we consider a U-Net-based architecture (Ronneberger et al.,
2015). The main model and training hyperparameters are summarized in Tables 2 and 3, respectively.
The model is implemented and trained using PyTorch (Paszke et al., 2019). Further details can be
found in the code.

For the Darcy flow study, training for 300k iterations took approximately 13 hours for the standard
diffusion setup, 16 hours for the PIDM with mean estimation, and 22 hours for the PIDM with sample
estimation. For the topology optimization study, training took approximately 48 hours for the standard
diffusion setup and 54 hours for the PIDM (with sample estimation). All models were trained on a
single Nvidia Quadro RTX Quadro RTX 6000 GPU equipped with 24GB GDDR6 memory.

Table 2: Denoising diffusion architecture hyperparameters.

Hyperparameter Value
In-, output channels (Darcy flow) 2, 2
In-, output channels (Topology optimization) 10, 3

ResNet blocks per down- and upsampling pass 2
ResNet block normalization Group Normalization (Wu & He, 2018)
ResNet block activation function SiLU (Elfwing et al., 2018)
Attention block normalization Layer Normalization (Ba et al., 2016)
Feature map resolutions (downsampling pass) 64× 64→ 32× 32→ 16× 16→ 8× 8
Latent dimensions (in feature maps, Darcy flow) 32→ 64→ 128→ 256
Latent dimensions (in feature maps, Top. opt.) 128→ 256→ 512→ 1024
Attention (Vaswani et al., 2017; Katharopoulos et al., 2020) head dimension 32
Number of attention heads 8

Table 3: Denoising diffusion process and training hyperparameters.

Hyperparameter Value
Number of diffusion timesteps 100
βt-scheduler Cosine schedule (Dhariwal & Nichol, 2021)
Batch size (Darcy flow), mean estimation 64
Batch size (Darcy flow), sample estimation 16
Batch size (Topology optimization, sample estimation) 4
Iterations (Darcy flow) 300k
Iterations (Topology optimization) 600k
Learning rate 10−4

Optimization algorithm Adam (Kingma & Ba, 2014)
EMA start (iteration) 1,000
Exponential Moving Average (EMA) decay 0.99
Dropout none
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A.8 ADDITIONAL SAMPLES

A.8.1 DARCY FLOW
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Figure 8: Additional samples of permeability and pressure fields as well as the corresponding residual
error from the proposed PIDM trained on the Darcy flow dataset. Sample (a) and (b) are sampled
from a PIDM with mean estimation, while (c) and (d) are sampled from a PIDM with sample (DDIM)
estimation.
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A.8.2 TOPOLOGY OPTIMIZATION

0 1
ξ1

0

1
ξ 2

Design ρ
(CE = 6.05%, ρ̄ = 0.36)

0 1
ξ1

0

1

ξ 2

ResidualRMAE(ρ,u1,u2)

0 1
ξ1

0

1

ξ 2

SIMP Design ρ
(C = 13.17, Vmax = 0.36)

0.2

0.4

0.6

0.8

10−3

10−2

10−1

0.2

0.4

0.6

0.8

1.0

0 1
ξ1

0

1

ξ 2

Design ρ
(CE = 34.84%, ρ̄ = 0.44)

0 1
ξ1

0

1
ξ 2

ResidualRMAE(ρ,u1,u2)

0 1
ξ1

0

1

ξ 2

SIMP Design ρ
(C = 9.82, Vmax = 0.44)

0.2

0.4

0.6

0.8

10−3

10−2

10−1

100

0.2

0.4

0.6

0.8

1.0

0 1
ξ1

0

1

ξ 2

Design ρ
(CE = 0.12%, ρ̄ = 0.38)

0 1
ξ1

0

1

ξ 2

ResidualRMAE(ρ,u1,u2)

0 1
ξ1

0

1
ξ 2

SIMP Design ρ
(C = 4.55, Vmax = 0.38)

0.2

0.4

0.6

0.8

10−3

10−2

10−1

100

0.2

0.4

0.6

0.8

1.0

0 1
ξ1

0

1

ξ 2

Design ρ
(CE = 0.32%, ρ̄ = 0.48)

0 1
ξ1

0

1

ξ 2

ResidualRMAE(ρ,u1,u2)

0 1
ξ1

0

1

ξ 2

SIMP Design ρ
(C = 3.89, Vmax = 0.48)

0.2

0.4

0.6

0.8

10−3

10−2

10−1

0.2

0.4

0.6

0.8

1.0

(a)

(b)

(c)

(d)

Figure 9: Additional generated designs, including the compliance error CE and volume ρ̄, and the
residual error (based on the displacement fields, not shown) from the PIDM trained on the SIMP
dataset and the corresponding SIMP design, including the compliance C and volume Vmax. All
samples are conditioned on the out-of-distribution test set. In the SIMP design, we indicate the
applied load by a blue dot, and the Dirichlet boundary conditions in red.

26


	Introduction
	Background
	Denoising diffusion models
	Assembly of governing equations

	Physics-informed diffusion models
	Consideration of PDE constraints
	Consideration of observed data
	Simplification of the training objective

	Experiments
	Darcy flow
	Topology optimization

	Related Work
	Conclusion
	Appendix
	Consistency
	Mean estimation for score-based models
	Details on the simplified training objective
	DDIM sampling
	Other constraint types and auxiliary optimization objectives
	Inequality constraints
	Optimization objectives

	Numerical studies
	Toy problem
	Details of the Darcy flow study
	Details of the topology optimization study

	U-Net architecture and training details
	Additional samples
	Darcy flow
	Topology optimization



