
A SUPPLEMENTARY INFORMATION

A.1 LOW-RANK TENSOR DECOMPOSITION

Low-rank tensor decomposition (Kolda & Bader, 2009) aims to factorize a generic tensor into a sum
of rank-one tensors. For example, given a 3rd-order tensor X ∈ RI×J×K , the rank-R decomposition
of X takes the form of a ternary product between three factor matrices:

X ≈ [[A,B,C]] ≡
R∑
r=1

a:r ⊗ b:r ⊗ c:r (A.1)

where a:r ∈ RI , b:r ∈ RJ and c:r ∈ RK are the columns of the latent factor matrices A ∈ RI×R,
B ∈ RJ×R and C ∈ RK×R and ⊗ denotes the outer product. When R is the rank of X , Eq. (A.1)
holds with an equality, and the above operation is called Canonical Polyadic (CP) decomposition.
Elementwise the previous relation is written as:

(X )ijk ≈ [[ai,bj , ck]] ≡
R∑
r=1

AirBjrCkr (A.2)

where ai, bj , ck ∈ RR are rows of the factor matrices. For 2nd-order tensors (matrices) the operation
is equivalent to the low-rank matrix decomposition (X ≈ ABT).
For a generic N -order tensor X ∈ RI1×I2×···×IN , low-rank decomposition is expressed as:

(X )i1i2...iN ≈ [[a
(1)
i1
,a

(2)
i2
, . . . ,a

(N)
iN

]] ≡
R∑
r=1

A
(1)
i1r

A
(2)
i2r
. . .A

(N)
iNr

(A.3)

where a
(1)
i1
,a

(2)
i2
, . . . ,a

(N)
iN
∈ RR (in ∈ {1, . . . , In}, n ∈ {1, . . . , N}) are rows of factor matrices

A(1) ∈ RI1×R, A(2) ∈ RI2×R, . . . ,A(N) ∈ RIN×R.

A.2 SKIP-GRAM WITH NEGATIVE SAMPLING (SGNS)

The skip-gram approach was initially proposed in WORD2VEC (Mikolov et al., 2013) to ob-
tain low-dimensional representations of words. Starting from a textual corpus of words
w1, w2, . . . , wm from a vocabulary V , it assigns to each word ws a context corresponding to words
ws−T , . . . , ws−1, ws+1, . . . , ws+T surrounding ws in a window of size T . Then a set of training
samplesD = {(i, j), i ∈ W, j ∈ C} is built by collecting all the observed word-context pairs, where
W and C are the vocabularies of words and contexts respectively (normallyW = C = V). Here
we denote as #(i, j) the number of times (i, j) appears in D. Similarly we use #i =

∑
j #(i, j)

and #j =
∑
i#(i, j) as the number of times each word occurs in D, with relative frequencies

PD(i, j) =
#(i,j)
|D| , PD(i) = #i

|D| and PD(j) = #j
|D| .

SGNS computes d-dimensional representations for words and contexts in two matrices W ∈ R|W|×d
and C ∈ R|C|×d, performing a binary classification task in which pairs (i, j) ∈ D are positive
examples and pairs (i, jN ) with randomly sampled contexts are negative examples. The probability
of the positive class is parametrized as the sigmoid (σ(x) = (1 + e−x)−1) of the inner product of
embedding vectors:

P [ (i, j) ∈ D | wi, cj ] = σ(wi · cj) = σ
(
(WCT)ij

)
(A.4)

and each word-context pair (i, j) contributes to the loss as follows:

`(i, j) = log σ(wi · cj) +
κ∑

jN∼PN

log[1− σ(wi · cjN )] (A.5)

' log σ(wi · cj) + κ · E
jN∼PN

[log σ(−wi · cjN )] (A.6)

where the second expression uses the symmetry property σ(−x) = 1 − σ(x) inside the expected
value and κ is the number of negative examples, sampled according to the empirical distribution of
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contexts PN (j) = PD(j). In the original formulation of WORD2VEC, negative samples are picked

from a smoothed distribution PN (j) =
(#j)3/4∑
j′ (#j

′)3/4
instead of the unigram probability #j

|D| , but this
smoothing has not been proved to have positive effects in graph representations.
Following results found in Levy & Goldberg (2014), the sum of all `(i, j) weighted with the
probability each pair (i, j) appears in D gives the objective function asymptotically optimized:

LSGNS =−
|W|∑
i=1

|C|∑
j=1

PD(i, j)
[
log σ(wi · cj) + κ · E

jN∼PN
[log σ(−wi · cjN )

]
(A.7)

· · · =−
|W|∑
i=1

|C|∑
j=1

[
PD(i, j) log σ(wi · cj) + κ PN (i, j) log σ(−wi · cj)

]
(A.8)

where PN (i, j) = PD(i) · PD(j) is the probability of (i, j) under assumption of statistical indepen-
dence.
In Levy & Goldberg (2014) it has been shown that SGNS local loss L(i, j) exhibits a global optimum
with respect to the parameters wi, cj that satisfies these relations:

∂L(i, j)
∂(wi · cj)

= 0 ⇔ (WCT)ij ≈ log

(
PD(i, j)

κ PN (i, j)

)
= PMI(i, j)− log(κ) (A.9)

which tell us that SGNS optimization is equivalent to a rank-d matrix decomposition of the word-
context pointwise mutual information (PMI) matrix shifted by a constant. Such factorization is an
approximation of the empirical PMI matrix since in the typical case d� min

(
{|W|, |C|}

)
.

A.3 GENERALIZATION OF SGNS TO HIGHER-ORDER REPRESENTATIONS

SGNS can be generalized to learn d-dimensional embeddings from collections of higher-order
co-occurrences. Starting with N vocabularies

[
V1,V2, . . . ,VN

]
and a set of N -order tuples D =

{(i1, i2, . . . , iN ), i1 ∈ V1, i2 ∈ V2, . . . , iN ∈ VN}, the objective is to learn N factor matrices
A(1) ∈ R|V1|×d, . . . ,A(N) ∈ R|VN |×d which summarize the co-occurrence statistics of D.

Keeping an example (i1, i2, . . . , iN ) ∈ D, we define the loss with negative sampling scheme fixing
i1 and picking negative tuples (ν2, . . . , νN ) according to the noise distribution PN (ν2, . . . , νN ) =∏N
n=2

#νn
|D| ≡

∏N
n=2 PD(νn):

`(i1, i2, . . . , iN ) = log σ
(
[[a

(1)
i1
,a

(2)
i2
, . . . ,a

(N)
iN

]]
)
+

+ κ · E
ν2,...,νN∼PN

[
log σ

(
− [[a

(1)
i1
,a(2)ν2 , . . . ,a

(N)
νN ]]

)]
where each embedding a

(n)
in

is the in-th row of the matrix A(n). The expectation term can be
explicited:

E
ν2,...,νN∼PN

[
log σ

(
− [[a

(1)
i1
,a(2)
ν2 , . . . ,a

(N)
νN ]

)]
=

∑
j2,...,jN

PN (j2, . . . , jN ) log σ
(
− [[a

(1)
i1
,a

(2)
j2
, . . . ,a

(N)
jN

]]
)

Weighting the loss error for each tuple (i1, i2, . . . , iN ) with their empirical probability
PD(i1, i2, . . . , iN ) = #(i1,i2,...,iN )

|D| , and defining [[a
(1)
i1
,a

(2)
i2
, . . . ,a

(N)
iN

]] ≡ mi1i2...iN , we obtain
the global objective with the sum over all combinations of vocabulary elements:

L = −
∑

i1,i2,...,iN

PD(i1, i2, . . . , iN )
[
log σ(mi1i2...iN ) + κ

∑
j2,...,jN

PN (j2, . . . , jN ) log σ(−mi1j2...jN )
]

= −
∑

i1,i2,...,iN

PD(i1, i2, . . . , iN ) log σ(mi1i2...iN ) +

− κ
∑

i1,i2,...,iN

PD(i1, i2, . . . , iN )
∑

j2,...,jN

PN (j2, . . . , jN ) log σ(−mi1j2...jN )
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In the second term we can notice that only PD(i1, i2, . . . , iN ) depends on the N − 1 indices
(i2, . . . , iN ), so performing the sum over that subset of indices we obtain the marginal distribu-
tion

∑
i2...iN

PD(i1, i2, . . . , iN ) = PD(i1). Finally renaming indices {jh} → {ih} and observing
that PD(i1)PN (i2, . . . , iN ) ≡ PN (i1, i2, . . . , iN ), we obtain the final loss:

LHOSGNS = −
∑

i1,...,iN

[
PD(i1, . . . , iN ) log σ(mi1...iN ) + κ · PN (i1, . . . , iN ) log σ(−mi1...iN )

]
(A.10)

In particular for the 3rd-order and 4th-order cases, with vocabularies V1 = W, V2 = C, V3 =
T , V4 = S and embedding matrices A(1) = W, A(2) = C, A(3) = T, A(4) = S, we have the
loss functions minimized by our time-varying graph embedding model:

L(3rd) = −
∑
i,j,k

[
PD(i, j, k) log σ

(
[[wi, cj , tk]]

)
+ κ PN (i, j, k) log σ

(
− [[wi, cj , tk]]

)]

L(4th) = −
∑
i,j,k,l

[
PD(i, j, k, l) log σ

(
[[wi, cj ,tk, sl]]

)
+ κ PN (i, j, k, l) log σ

(
− [[wi, cj , tk, sl]]

)]

A.4 HOSGNS AS IMPLICIT TENSOR FACTORIZATION

Here we show the equivalence of HOSGNS to low-rank tensor factorization of the shifted PMI tensor
into factor matrices, which is a straightforward generalization of previous proofs done for SGNS.

Theorem. Let D = {(i1, i2, . . . , iN ), i1 ∈ V1, i2 ∈ V2, . . . , iN ∈ VN} a training set of
higher-order co-occurrences and PMI(i1, . . . , iN ) = log

(
PD(i1,...,iN )
PN (i1,...,iN )

)
the entries of the pointwise

mutual information tensor computed from D. Let A(1) ∈ R|V1|×d, . . . ,A(N) ∈ R|VN |×d embedding
matrices of HOSGNS. For d sufficiently large, HOSGNS has the same global optimum as the
canonical polyadic decomposition of SPMIκ, the PMI tensor shifted by log κ.

Proof. We consider each relation [[a
(1)
i1
, . . . ,a

(N)
iN

]] ≡ mi1...in as a mapping from combinations
of embedding vectors to elements of a tensor M ∈ R|V1|×···×|VN |. The global loss L =∑
i1...iN

L(i1, . . . , iN ) in Eq. (A.10) is the sum of local losses computed from elements of M:

L(i1, . . . , iN ) = −
[
PD(i1, . . . , iN ) log σ(mi1...iN ) + κ PN (i1, . . . , iN ) log σ(−mi1...iN )

]
For sufficiently large d (i.e. allowing for a perfect reconstruction of SPMIκ), each mi1...iN can
assume a value independently of the others, and we can treat the loss function L as a sum of
independent addends, restricting the optimization problem to looking at the local objective and its
derivative respect to mi1...iN :

∂L(i1, . . . , iN )

∂mi1...iN

= κ PN (i1, . . . , iN )σ(mi1...iN )− PD(i1, . . . , iN )
[
1− σ(mi1...iN )

]
=
[
PD(i1, . . . , iN ) + κ PN (i1, . . . , iN )

]
σ(mi1...iN )− PD(i1, . . . , iN )

where we have used dσ
dx = σ(x)(1−σ(x)). To compare the derivative with zero, we use the identities

PD = (PD + κ PN )(1 +
κ PN
PD

)−1 and (1 + x)−1 = σ(log x−1):

∂L(i1, . . . , iN )

∂mi1...iN

= [PD(i1, . . . , iN ) + κ PN (i1, . . . , iN )]

[
σ(mi1...iN )− σ

(
log

PD(i1, . . . , iN )

κ PN (i1, . . . , iN )

)]
from which it follows that the derivative is 0 when elements mi1...iN are equal to the shifted PMI
tensor entries:

∂L(i1, . . . , iN )

∂mi1...iN

= 0 ⇔
d∑
r=1

A
(1)
i1r

. . .A
(N)
iN r

= log

(
PD(i1, . . . , iN )

κ PN (i1, . . . , iN )

)
= SPMIκ(i1, . . . , iN )

(A.11)
Since we have assumed that d is large enough to ensure an exact reconstruction of SPMIκ, and this is
true if d ≈ R = rank(SPMIκ), Eq. (A.11) is consistent with the canonical polyadic decomposition
of the shifted PMI tensor.
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Figure 1: Impact of additional warm-up steps in the decrease of HOSGNS(dyn) loss function L(bce)

respect to the number of training iterations, for LYONSCHOOL dataset and with different negative
sampling sizes κ. The loss function is normalized with a factor (κ+ 1) for accounting the different
contribute of the negative sampling parameter in L(bce).

Remark. In the typical case when d � R, the tensor reconstruction of Eq. (A.11) is not exact,
since the tensor is compressed into lower-dimensional factor matrices, but it still holds as a low-rank
approximation:

d�R∑
r=1

A
(1)
i1r
. . .A

(N)
iNr
≈ SPMIκ(i1, . . . , iN )

A.5 DESCRIPTION OF THE WARM-UP PROCEDURE

Warm-up is usually referred as the sequence of weights updates, at the beginning of training, performed
in order to reduce over-fitting at early stages, and especially it is useful when data samples are highly
differentiated (Goyal et al., 2017; Devlin et al., 2018). Here we designed the warm-up strategy
with a different aim, i.e. finding an advantageous configuration of model parameters to initialize
trainable weights. In particular we show that we can preliminarily optimize embedding vectors in
order to ensure that all higher-order products mijk... = [[wi, cj , tk . . . ]] return the same quantity m,
regardless of the indices combination (i, j, k . . . ). The value m can be chosen in order to make the
cross entropy error as minimum as possible before passing empirical data samples to the model.
We start with a random initialization where embedding weights are realizations of random variables
i.i.d. according to a normal distribution:

Wir,Cjr,Tkr · · · ∼ N (0, d−2) , r = 1 . . . d

Once chosen m we can fix Hadamard products optimizing a squared error loss function:

L(warmup) =
∑
ijk...

(
[[wi, cj , tk . . . ]]−m

)2
The optimal value of m is stated by the following theorem:

Theorem. Assuming the same value for each higher-order inner product in the set:
S = {mijk..., i ∈ W, j ∈ C, k ∈ T , . . . }

the cross entropy error of HOSGNS (Equation (3.8) of the main paper) is minimum when every
mijk... ≡ m = − log κ.

Proof. Given the hypothesis, the objective function to minimize takes the form:

L(bce) = − 1

B

[ B∑
(ijk... )∼PD

log σ(m) + κ

B∑
(ijk... )∼PN

log σ(−m)
]

= −[ log σ(m) + κ log σ(−m)] ≡ `(m)

where m is the returned value for each mijk... ∈ S. Solving the equation dl
dm = 0 we get:

1

σ(m)

dσ

dx

∣∣∣
x=m

− κ 1

σ(−m)

dσ

dx

∣∣∣
x=−m

= 0⇒ κ =
σ(−m)

σ(m)
= e−m ⇒ m = − log κ

In Figure 1 is shown the effectiveness of the addition of extra warm-up steps in loss optimization.
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Table 1: Number of class components for each label in LYONSCHOOL dataset.

Class name Number of children
or teachers

CP-A 23
CP-B 25
CE1-A 23
CE1-B 26
CE2-A 23
CE2-B 22
CM1-A 21
CM1-B 23
CM2-A 22
CM2-B 24
Teachers 10

A.6 DESCRIPTION OF PARAMETER SETTINGS

Unless otherwise declared, all the embeddings are trained with a dimension d of 128 for node
classification and 192 for temporal event reconstruction.

HOSGNS variants were optimized with Adam (Kingma & Ba, 2014) fixing the negative samples
weight κ = 5, the sample size B = 50000 and linearly decaying the learning rate from a starting
value of 0.05 for 4000 iterations. For A(dyn) we set the random walks context window T = 10.
Before training we apply 100 warm-up steps with uniform sampling of 105 terms per iteration in the
squared loss. Models are implemented in Tensorflow1.

For DYANE , as in the original paper, we optimized NODE2VEC2 with default hyperparameters (p =
q = 1, the same value κ=5 for negative samples and the same context window size T = 10 that we
chose for HOSGNS). The number of SGD epochs is 1 since we did not observe any improvement in
downstream tasks by increasing the number of epochs.

For DYNGEM, with the code made available online by the authors3, we trained the model with SGD
with momentum (learning rate 10−3 and momentum coefficient 0.99) for 100 iterations in the first
time-step and 30 for the others. We set the internal layer sizes of the autoencoder to [400, 250, d].

DYNAMICTRIAD is trained with Adagrad (learning rate 10−1) with 100 epochs and negative/positive
samples ratio set to 5. Coefficients β0 and β1 related to social homofily and temporal smoothness are
seto to 0.1. We used the reference implementation available in the official repository4.

We tested a few combinations of other hyperparameters, and reported the results with the ones
described above, since we observed that the improvement is minimal and does not invalidate the
results. Due to the stochastic nature of the training, each of the above embedding models is trained 5
times for more robust performance estimates in downstream tasks.

All the experiments are executed on a 64 bit Ubuntu 18.04.4 LTS system with Intel(R) Core(TM)
i7-5930K CPU, 6 cores, 3.50GHz clock frequency, 64 GB RAM, and two Nvidia GeForce GTX Titan
X, each with 12 GB memory.

A.7 EMBEDDING SPACE VISUALIZATION

One of the main advantages of HOSGNS is that it able to disentangle the role of nodes and time
by learning representations of nodes and time intervals separately. In this section, we include plots
with two-dimensional projections of these embeddings, made with UMAP (McInnes et al., 2018)
for manifold learning and non-linear dimensionality reduction. With these plots, we show that the
embedding matrices learned by HOSGNS(stat) and HOSGNS(dyn) approaches successfully capture
both the structure and the dynamics of the time-varying graph.

1https://github.com/tensorflow/tensorflow
2https://github.com/snap-stanford/snap/tree/master/examples/node2vec
3http://www-scf.usc.edu/~nkamra/
4https://github.com/luckiezhou/DynamicTriad
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Temporal information can be represented by associating each embedding vector to its corresponding
k ∈ T , while graph structure can be represented by associating each embedding vector to a community
membership. While community membership can be estimated by different community detection
methods, we choose to use a dataset with ground truth data containing node membership information.
We consider in this section the LYONSCHOOL dataset as a case study, widely investigated in literature
respect to structural and spreading properties (Stehlé et al., 2011; Barrat & Cattuto, 2013; Starnini
et al., 2012; Panisson et al., 2013; Sapienza et al., 2018; Galimberti et al., 2018). This dataset includes
metadata (Table 1) concerning the class of each participant of the school (10 different labels for
children and 1 label for teachers), and we identify the community membership of each individual
according to these labels (class labels). Moreover we also assign time labels according to activation of
individual nodes in temporal snapshots. To show how disentangled representations capture different
aspects of the evolving graph, in Figure 2 we plot individual representations of nodes i ∈ V and
time slices k ∈ T labeled according to the class membership and the time snapshot respectively.
In Figure 3 we visualize representations of temporal nodes i(k) ∈ V(T ), computed as Hadamard
products of nodes and time embeddings, in order to highlight both structural and dynamical aspects
captured by the same set of embedding vectors. In Figure 4 we see dynamic node embeddings
computed with baseline methods without dissociating structure and time.

A.8 INTRINSIC AND EXTRINSIC EVALUATION OF EMBEDDING REPRESENTATIONS

Here we report results on empirical datasets about intrinsic evaluation of the quality of embedding
learned with HOSGNS, besides to completing the extrinsic evaluation in downstream tasks already
reported (partially) in the main paper.

As intrinsic evaluation, in Figure 5 we probe the capability of the model to reconstruct the shifted
PMI tensor entries computing the higher order product of embedding vectors, operation optimized
during the training phase to classify non-zero elements of the tensor itself. We verify the goodness of
fit estimating the square of the Pearson coefficient between the distribution of actual PMI values and
the estimated ones, having fixed the model κ = 5 during training.

In Tables 3, 4 and 5 we report Macro-F1 scores in downstream tasks, as extrinsic evaluation,
with different operations used to construct embeddings for the logistic regression. For both node
classification and temporal event reconstruction, in Table 2 we present definitions of different
operators employed (Hadamard included, the only one displayed in the paper). For node classification,
we show in Tables 3 and 4 results related to all tested combinations of epidemic parameters (β, µ)
used to simulate SIR processes.

In Figures 6 and 7 we report a sensitivity analysis with the effect of the embedding size d, the negative
sampling constant κ and the number of training steps E on prediction performances in downstream
tasks.
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(a) HOSGNS(stat)

0

1

2

3

4

5

6

7

8

9

10

11

cla
ss

 la
be

l

0

20

40

60

80

100

tim
e 

la
be

l

(b) HOSGNS(dyn)

Figure 2: Two-dimensional projections of the 128-dim embedding manifold spanned by embedding
matrices W (left of each panel) and T (right of each panel), trained on LYONSCHOOL data, of HOSGNS
model trained on: (a) P(stat) and (b) P(dyn). These plots show how the community structure and
the evolution of time is captured by individual node embeddings {wi}i∈V and time embeddings
{tk}k∈T .
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(a) HOSGNS(stat)
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(b) HOSGNS(dyn)

Figure 3: Two-dimensional projections of the 128-dim embedding manifold spanned by dynamic node
embeddings, trained on LYONSCHOOL data and obtained with Hadamard products {wi ◦ tk}(i,k)∈V(T )

between rows of W (node embeddings) and T (time embeddings), from HOSGNS model trained
on: (a) P(stat) and (b) P(dyn). We highlight the temporal participation to communities (left of each
panel) and the time interval of activation (right of each panel).
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(a) DYANE
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(b) DYNGEM
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(c) DYNAMICTRIAD

Figure 4: Two-dimensional projections of the 128-dim embedding manifold spanned by dynamic node
embeddings for LYONSCHOOL data learned with: (a) DYANE, (b) DYNGEM and (c) DYNAMICTRIAD.
As in Figure 3 we highlight the temporal participation to communities (left of each panel) and the
time interval of activation (right of each panel).
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Figure 5: 2D histograms of shifted PMI values SPMI5(i, j, k . . . ) (whereas are greater than −∞)
versus embedding reconstruction from higher-order inner products [[wi, cj , tk, . . . ]], with HOSGNS
models trained on: (a) P(stat), (b) P(dyn) and (c) P(stat|dyn). The histograms were built by
uniformly sampling 107 entries from the SPMI5 tensors.

Table 2: Operators and their definitions used to combine different embeddings learned with HOSGNS
for tensors of order 3 (HOSGNS(stat)) and 4 (HOSGNS(dyn) and HOSGNS(stat|dyn)), applied to
temporal node i(k) in node classification and to link (i, j, k) in temporal event reconstruction. All
operations, except Concat, are described element-wise.

Operator SGNS order Node Classification Temp. Event Reconstruction

Average 3rd, 4th 1
2 (wi + tk)

1
3 (wi + cj + tk)

Hadamard 3rd
wi ◦ tk

wi ◦ cj ◦ tk
4th wi ◦ cj ◦ tk ◦ sk

Weighted-L1 3rd, 4th |wi − tk| 1
3 (|wi − tk|+ |wi − cj |+ |cj − tk|)

Weighted-L2 3rd, 4th (wi − tk)
2 1

3 [(wi − tk)
2 + (wi − cj)

2 + (cj − tk)
2]

Concat 3rd, 4th [wi, tk] [wi, cj , tk]
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Figure 6: Macro-F1 scores related to classification of nodes in SIR states from simulations with
epidemic parameters (β, µ) = (0.125, 0.001), computed (a) varying the negative sampling parameter
κ, (b) varying the embedding dimension and (c) varying the number of training iterations E. In each
panel remaining parameters are fixed to d = 128, κ = 5 and E = 4000. Time-resolved embedding
vectors of nodes are computed with Hadamard product as explained in Table 2.
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Figure 7: Macro-F1 scores related to temporal event reconstruction, computed (a) varying the negative
sampling parameter κ, (b) varying the embedding dimension and (c) varying the number of training
iterations E. In each panel remaining parameters are fixed to d = 128, κ = 5 and E = 4000.
Time-resolved embedding vectors of edges are computed with Hadamard product as explained in
Table 2.
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Table 3: Macro-F1 scores for classification of nodes in epidemic states according to a SIR process
with parameters (β, µ) previously shown in the paper. Here for each HOSGNS variant we tested
different operators to produce node-time representations, all with a dimension d = 128, used as input
to a Logistic Regression. For each (β, µ) we highlight the two highest scores and underline the best
one.

(β, µ) Model Operator Dataset
LYONSCHOOL SFHH LH10 THIERS13 INVS15

(0.25, 0.002)

DYANE
-

78.1± 0.5 67.0± 1.2 52.5± 1.7 71.9± 0.6 64.3± 0.8
DYNGEM 58.7± 2.8 35.9± 1.1 34.5± 0.7 35.5± 1.2 58.8± 1.1
DYNAMICTRIAD 31.0± 0.4 28.8± 0.4 29.9± 0.3 30.3± 0.2 30.4± 0.2

HOSGNS(stat)

Average 56.3± 0.9 55.5± 1.3 51.1± 1.1 58.0± 0.5 53.0± 0.8
Hadamard 55.5± 0.8 57.3± 1.1 45.9± 0.9 46.9± 0.7 44.5± 0.7
Weighted-L1 53.9± 0.9 49.2± 0.9 49.5± 1.2 46.7± 0.6 45.5± 0.8
Weighted-L2 53.2± 0.7 47.5± 0.9 48.8± 1.0 46.8± 0.6 45.0± 0.7
Concat 69.4± 0.9 59.8± 1.4 54.4± 1.2 61.2± 0.8 56.6± 0.8

HOSGNS(dyn)

Average 73.1± 0.5 66.5± 1.1 62.5± 1.5 69.5± 0.9 62.4± 0.8
Hadamard 79.2± 0.5 69.1± 1.1 59.6± 1.5 71.8± 1.2 64.6± 0.7
Weighted-L1 75.7± 0.5 66.2± 1.2 59.0± 1.0 70.8± 0.7 61.9± 0.8
Weighted-L2 74.9± 0.6 67.0± 1.1 60.5± 1.2 72.2± 0.5 62.5± 0.6
Concat 77.1± 0.5 68.8± 1.0 63.5± 1.5 72.9± 0.6 63.1± 0.8

HOSGNS(stat|dyn)

Average 72.3± 0.5 65.2± 0.9 61.0± 1.3 69.5± 0.7 62.5± 1.0
Hadamard 77.4± 0.6 67.4± 1.2 59.7± 1.2 72.5± 0.7 64.2± 1.0
Weighted-L1 73.4± 0.8 66.7± 1.1 57.2± 1.3 70.1± 0.8 63.1± 0.9
Weighted-L2 73.4± 0.6 65.0± 1.2 57.8± 1.2 70.0± 0.7 63.5± 0.9
Concat 76.1± 0.6 67.9± 1.1 62.6± 1.5 70.9± 0.6 62.0± 0.8

(0.125, 0.001)

DYANE
-

75.3± 0.4 71.6± 1.9 59.0± 1.8 72.4± 0.3 65.8± 0.6
DYNGEM 58.9± 2.9 37.0± 4.1 41.0± 1.4 32.5± 1.2 59.0± 1.2
DYNAMICTRIAD 31.2± 0.5 35.0± 3.3 30.5± 0.7 27.4± 0.3 29.5± 0.2

HOSGNS(stat)

Average 54.9± 0.9 59.4± 2.6 50.4± 2.1 59.8± 0.5 55.5± 0.6
Hadamard 56.8± 0.9 61.8± 2.4 49.1± 1.9 47.3± 0.6 45.9± 0.7
Weighted-L1 55.5± 0.7 54.5± 2.9 49.7± 2.0 49.8± 0.6 46.8± 0.6
Weighted-L2 52.6± 0.8 53.0± 3.0 47.9± 2.1 47.7± 0.5 45.3± 0.6
Concat 66.6± 1.2 65.9± 2.2 52.2± 1.9 63.8± 0.5 58.4± 0.6

HOSGNS(dyn)

Average 68.0± 1.2 68.5± 2.1 59.0± 2.1 71.0± 0.7 65.2± 0.7
Hadamard 76.0± 0.4 71.5± 2.0 59.6± 2.0 74.2± 0.4 65.9± 0.6
Weighted-L1 73.2± 0.5 69.2± 2.0 58.7± 1.7 72.6± 0.5 65.6± 0.5
Weighted-L2 71.2± 0.7 69.4± 2.0 59.1± 2.2 73.2± 0.4 65.2± 0.5
Concat 73.1± 0.5 71.3± 1.9 57.3± 2.0 72.7± 0.5 65.5± 0.6

HOSGNS(stat|dyn)

Average 68.0± 0.7 68.5± 2.1 58.8± 2.0 70.7± 0.5 64.6± 0.4
Hadamard 74.6± 0.4 70.2± 1.9 59.9± 2.3 74.8± 0.4 66.0± 0.6
Weighted-L1 71.8± 0.5 69.7± 2.1 58.8± 2.3 72.2± 0.5 64.8± 0.5
Weighted-L2 70.8± 0.6 69.9± 2.0 58.4± 2.2 72.6± 0.5 64.7± 0.5
Concat 71.8± 0.6 70.7± 1.9 59.7± 2.3 72.1± 0.5 65.2± 0.7

(0.0625, 0.002)

DYANE
-

72.2± 0.6 64.9± 1.7 59.0± 1.2 68.0± 0.5 60.2± 0.5
DYNGEM 56.4± 2.7 35.9± 4.1 35.8± 1.2 32.9± 1.2 55.0± 0.6
DYNAMICTRIAD 29.5± 0.5 33.1± 2.5 29.6± 0.4 27.4± 0.3 28.4± 0.2

HOSGNS(stat)

Average 54.7± 0.8 59.0± 2.6 51.2± 1.1 56.7± 0.5 52.1± 0.5
Hadamard 55.5± 0.7 57.6± 2.2 49.4± 0.8 45.5± 0.4 43.6± 0.5
Weighted-L1 53.7± 0.7 52.7± 2.9 49.7± 1.1 46.2± 0.5 43.9± 0.5
Weighted-L2 54.0± 0.8 51.4± 3.0 48.0± 0.9 45.5± 0.4 43.0± 0.5
Concat 65.5± 0.7 61.3± 2.6 55.3± 1.4 61.9± 0.5 53.3± 0.6

HOSGNS(dyn)

Average 67.8± 0.7 66.6± 2.1 63.0± 1.2 67.6± 0.4 59.1± 0.6
Hadamard 73.5± 0.5 65.7± 1.6 61.1± 1.2 69.5± 0.3 59.6± 0.5
Weighted-L1 70.8± 0.6 65.9± 1.9 62.4± 1.3 67.5± 0.4 58.0± 0.6
Weighted-L2 71.4± 0.5 66.5± 2.2 59.0± 1.1 68.5± 0.5 57.5± 0.7
Concat 72.0± 0.7 68.3± 2.1 64.0± 1.5 68.2± 0.4 59.9± 0.6

HOSGNS(stat|dyn)

Average 67.8± 0.5 64.3± 1.9 60.1± 1.2 66.7± 0.4 60.2± 0.5
Hadamard 72.9± 0.6 66.3± 1.9 58.2± 1.1 68.5± 0.4 59.0± 0.7
Weighted-L1 70.3± 0.5 67.2± 2.2 59.2± 1.2 67.2± 0.5 58.0± 0.5
Weighted-L2 70.0± 0.5 66.6± 2.2 59.5± 1.3 66.7± 0.5 57.6± 0.6
Concat 71.3± 0.6 66.8± 2.2 62.8± 1.6 68.3± 0.3 59.2± 0.6
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Table 4: Macro-F1 scores for classification of nodes in epidemic states according to a SIR process
with other combinations (β, µ) not shown in the paper. Here for each HOSGNS variant we tested
different operators to produce node-time representations, all with a dimension d = 128, used as input
to a Logistic Regression. For each (β, µ) we highlight the two highest scores and underline the best
one. In the case (β, µ) = (0.125, 0.004) results for datasets LH10 and INVS15 are discarded since
the SIR simulation does not meet the condition |I|T |/2| ≥ 1, as explained in DYANE.

(β, µ) Model Operator Dataset
LYONSCHOOL SFHH LH10 THIERS13 INVS15

(0.125, 0.002)

DYANE
-

77.1± 0.4 68.4± 0.9 54.8± 1.5 71.6± 0.4 62.4± 0.5
DYNGEM 57.1± 2.7 32.8± 1.3 35.0± 0.8 34.4± 1.0 57.1± 0.7
DYNAMICTRIAD 30.4± 0.4 29.3± 0.4 30.1± 0.3 29.0± 0.3 29.4± 0.2

HOSGNS(stat)

Average 57.5± 0.8 54.0± 0.9 48.9± 1.0 58.0± 0.7 53.7± 0.6
Hadamard 55.4± 0.9 55.9± 0.8 44.9± 1.0 46.3± 0.4 44.8± 0.6
Weighted-L1 53.8± 0.8 48.5± 0.8 48.2± 1.0 46.9± 0.5 45.8± 0.6
Weighted-L2 52.6± 0.8 46.5± 0.8 46.9± 1.0 45.2± 0.5 44.0± 0.7
Concat 69.5± 0.5 59.0± 1.0 53.8± 1.3 62.1± 0.8 56.2± 0.6

HOSGNS(dyn)

Average 72.1± 0.6 66.0± 0.9 60.8± 1.2 70.1± 0.5 61.2± 0.7
Hadamard 77.5± 0.5 68.8± 0.8 58.7± 1.1 72.6± 0.5 63.3± 0.6
Weighted-L1 73.5± 0.6 66.4± 0.8 59.6± 1.5 70.7± 0.5 60.2± 0.5
Weighted-L2 73.8± 0.5 66.1± 1.0 58.6± 1.2 71.0± 0.4 61.0± 0.7
Concat 74.8± 0.5 67.5± 0.8 62.2± 1.5 71.0± 0.4 62.9± 0.5

HOSGNS(stat|dyn)

Average 71.2± 0.8 65.8± 0.8 59.4± 1.0 69.6± 0.5 62.0± 0.6
Hadamard 75.2± 0.6 68.1± 0.8 59.7± 1.1 72.0± 0.5 63.4± 0.6
Weighted-L1 73.0± 0.5 64.7± 0.8 57.3± 1.2 70.0± 0.5 61.0± 0.6
Weighted-L2 72.0± 0.6 63.8± 0.9 57.0± 0.9 70.1± 0.6 62.4± 0.6
Concat 73.7± 0.6 66.5± 0.8 60.1± 1.3 70.3± 0.5 61.6± 0.8

(0.1875, 0.001)

DYANE
-

74.7± 0.7 67.7± 1.2 63.4± 1.8 72.7± 0.4 68.6± 0.4
DYNGEM 57.4± 2.8 36.2± 2.6 41.4± 1.3 34.8± 1.3 61.2± 0.9
DYNAMICTRIAD 32.3± 0.5 31.5± 0.8 30.5± 0.4 27.9± 0.3 30.0± 0.2

HOSGNS(stat)

Average 56.4± 0.8 57.6± 1.7 50.5± 1.4 58.4± 0.8 56.9± 0.8
Hadamard 56.9± 0.8 59.4± 1.7 48.5± 1.1 49.0± 0.6 46.2± 0.8
Weighted-L1 53.5± 0.9 51.3± 1.8 47.3± 0.8 48.2± 0.5 47.7± 0.6
Weighted-L2 52.4± 0.9 48.9± 1.9 47.1± 1.1 48.5± 0.6 47.2± 0.7
Concat 67.3± 0.7 62.7± 1.5 51.6± 1.6 63.7± 0.8 59.5± 0.8

HOSGNS(dyn)

Average 69.9± 0.5 66.3± 1.5 62.6± 1.9 71.0± 0.7 65.4± 0.8
Hadamard 76.5± 0.4 68.6± 1.1 62.4± 1.7 74.8± 0.5 67.9± 0.7
Weighted-L1 72.1± 0.5 68.3± 1.5 62.4± 1.9 72.5± 0.6 64.9± 0.7
Weighted-L2 71.5± 0.5 67.7± 1.4 60.7± 1.9 72.5± 0.6 66.4± 0.7
Concat 73.0± 0.5 69.1± 1.4 59.6± 2.1 72.9± 0.6 65.1± 0.7

HOSGNS(stat|dyn)

Average 69.6± 0.7 66.2± 1.4 61.6± 1.8 69.6± 0.7 66.1± 0.6
Hadamard 74.5± 0.4 69.4± 1.4 62.5± 2.0 73.6± 0.6 67.3± 0.5
Weighted-L1 71.1± 0.6 68.5± 1.4 58.6± 1.8 71.0± 0.6 66.0± 0.8
Weighted-L2 71.0± 0.6 67.1± 1.5 59.0± 1.6 71.0± 0.7 65.8± 0.5
Concat 73.0± 0.6 68.2± 1.4 60.1± 1.8 72.1± 0.7 65.1± 0.8

(0.125, 0.004)

DYANE
-

76.0± 0.5 63.0± 0.9
-

67.7± 0.6
-DYNGEM 57.9± 2.5 34.0± 0.8 35.0± 1.1

DYNAMICTRIAD 31.2± 0.3 29.7± 0.4 29.5± 0.2

HOSGNS(stat)

Average 56.5± 0.6 52.6± 0.8

-

54.2± 0.7

-
Hadamard 54.5± 0.8 54.2± 0.8 44.3± 0.5
Weighted-L1 54.0± 0.8 46.9± 0.8 44.7± 0.6
Weighted-L2 52.0± 0.9 45.6± 0.7 44.2± 0.6
Concat 68.2± 1.2 57.4± 1.1 58.1± 0.9

HOSGNS(dyn)

Average 73.3± 0.6 62.9± 0.9

-

66.0± 0.7

-
Hadamard 77.2± 0.4 63.5± 1.0 68.6± 0.6
Weighted-L1 75.0± 0.6 62.6± 0.8 67.1± 0.5
Weighted-L2 73.2± 1.2 62.3± 0.9 67.2± 0.5
Concat 77.0± 0.4 64.8± 0.8 67.8± 0.7

HOSGNS(stat|dyn)

Average 72.0± 0.6 60.3± 0.8

-

65.6± 0.6

-
Hadamard 74.4± 0.7 64.5± 1.0 68.1± 0.6
Weighted-L1 72.3± 0.7 61.1± 0.9 65.4± 0.4
Weighted-L2 72.8± 0.6 60.3± 0.8 66.6± 0.5
Concat 75.2± 0.4 63.1± 1.0 67.4± 0.6
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Table 5: Macro-F1 scores for temporal event reconstruction. Here for each HOSGNS variant we
tested different operators to produce link-time representations, all with a dimension d = 192, used as
input to a Logistic Regression. We highlight in bold the best two overall scores for each dataset. For
baseline models we underline their highest score.

Model Operator Dataset
LYONSCHOOL SFHH LH10 THIERS13 INVS15

DYANE

Average 56.4± 0.4 52.9± 0.5 52.3± 0.6 51.0± 0.4 52.7± 0.4
Hadamard 89.7± 0.3 86.5± 0.3 74.6± 0.6 94.7± 0.1 94.1± 0.1
Weighted-L1 90.2± 0.2 83.3± 0.5 73.3± 0.7 94.7± 0.1 94.4± 0.2
Weighted-L2 90.6± 0.2 84.5± 0.5 72.0± 0.5 95.0± 0.1 94.8± 0.2
Concat 65.7± 0.4 53.8± 0.4 56.2± 0.6 57.0± 0.4 50.9± 0.4

DYNGEM

Average 57.7± 0.5 56.8± 0.7 54.8± 1.5 40.4± 1.5 42.8± 0.9
Hadamard 62.2± 0.4 55.1± 1.0 52.5± 1.6 40.8± 1.5 43.7± 1.0
Weighted-L1 58.4± 0.6 52.3± 0.7 50.9± 1.2 41.3± 1.6 44.8± 0.9
Weighted-L2 53.7± 0.6 47.0± 0.8 47.0± 1.3 39.2± 1.2 43.6± 0.6
Concat 60.4± 0.4 57.8± 0.3 48.9± 1.7 36.9± 1.3 45.7± 1.0

DYNAMICTRIAD

Average 51.7± 0.2 56.9± 0.4 60.2± 0.6 58.1± 0.2 56.1± 0.3
Hadamard 60.3± 0.3 58.9± 0.4 59.5± 0.5 62.2± 0.3 64.7± 0.3
Weighted-L1 79.1± 0.4 72.3± 0.4 75.5± 0.6 70.8± 0.3 78.1± 0.2
Weighted-L2 77.4± 0.4 73.4± 0.4 77.4± 0.5 72.4± 0.2 78.9± 0.3
Concat 52.2± 0.2 53.4± 0.3 55.9± 0.7 55.1± 0.2 53.2± 0.3

HOSGNS(stat)

Average 61.2± 0.4 53.2± 0.4 53.0± 0.6 56.0± 0.4 51.3± 0.4
Hadamard 98.5± 0.1 98.8± 0.1 99.8± 0.1 99.6± 0.1 99.1± 0.1
Weighted-L1 67.2± 0.4 60.6± 0.5 57.4± 0.6 66.7± 0.6 59.7± 0.4
Weighted-L2 68.5± 0.3 60.6± 0.5 55.6± 0.6 68.0± 0.4 58.8± 0.5
Concat 63.3± 0.5 54.5± 0.4 52.2± 1.0 58.7± 0.7 50.5± 0.5

HOSGNS(dyn)

Average 63.4± 0.4 53.9± 0.4 50.3± 0.9 57.2± 0.5 50.7± 0.5
Hadamard 90.3± 0.2 80.9± 0.4 68.1± 0.7 93.5± 0.2 87.2± 0.2
Weighted-L1 80.5± 0.4 63.2± 0.4 56.6± 0.9 82.1± 0.4 66.5± 0.4
Weighted-L2 80.4± 0.4 63.7± 0.4 56.4± 0.6 82.1± 0.3 62.9± 0.4
Concat 64.1± 0.4 53.9± 0.4 50.9± 0.9 58.2± 0.7 50.9± 0.5

HOSGNS(stat|dyn)

Average 63.4± 0.4 54.2± 0.5 52.6± 0.8 56.8± 0.6 50.4± 0.5
Hadamard 91.8± 0.2 86.7± 0.4 73.6± 0.6 94.3± 0.1 89.0± 0.2
Weighted-L1 81.5± 0.3 64.0± 0.4 58.1± 0.8 83.7± 0.3 66.8± 0.5
Weighted-L2 81.2± 0.3 64.6± 0.5 55.4± 0.6 82.7± 0.4 63.5± 0.3
Concat 61.5± 0.4 53.0± 0.4 52.9± 0.9 58.3± 0.6 49.5± 0.6

A.9 ABLATION STUDY ON DOWNSTREAM TASKS

We performed additional ablation analysis in order to quantify the different contribute of structural
and temporal representations learned by the proposed model in downstream tasks. With this aim, we
executed node classification and event reconstruction in the same experimental setting used to evaluate
prediction scores showed in Tables 3,4 and 5, but using as predictors node or time embeddings alone.

For node features, we assigned in node classification embedding vectors wi to each active node i(k)
and embedding vectors wi ◦ cj to a given temporal link (i, j, k) for event reconstruction. For time
features, we used tk in node classification and tk ◦ sk in event reconstruction with HOSGNS(dyn)

and HOSGNS(stat|dyn); for HOSGNS(stat) we used embedding tk as well.

We compared results with two baselines respectively for node-related and time-related tasks:

• Node embedding learned with DEEPWALK (Perozzi et al., 2014) applied to the static network
obtained joining all temporal snapshots in a single graph.

• Time embedding computed using Positional Encoding (Vaswani et al., 2017) to obtain sets
of representations aware of temporal order.

In Tables 6 and 7 we report performance scores related to the two downstream tasks for different sets
of features used as predictors. Results for node classification of epidemic states show that HOSGNS
node features have almost always better performances respect to DEEPWALK static features, moreover
when HOSGNS time features are compared with Positional Encoding we observe comparable or
better results with the latter method. Scores for temporal event reconstruction display a similar
tendency.
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Table 6: Macro-F1 scores deriving from the ablation study for classification of nodes in epidemic
states according to a SIR process with parameters (β, µ). Node and time representations, all with
a dimension d = 128, are separately used as input to a Logistic Regression. For each (β, µ) we
highlight the highest score for the two types of predictors.

(β, µ) Predictors Model Dataset
LYONSCHOOL SFHH LH10 THIERS13 INVS15

(0.25, 0.002)

Node Embeddings

DEEPWALK 32.2± 0.5 32.6± 0.5 31.1± 1.2 31.8± 0.3 32.8± 0.5

HOSGNS(stat) 32.9± 0.5 36.1± 0.5 46.7± 1.9 33.1± 0.3 33.2± 0.5

HOSGNS(dyn) 32.7± 0.5 36.4± 0.5 50.3± 1.9 32.9± 0.4 34.5± 0.6

HOSGNS(stat|dyn) 32.6± 0.5 36.2± 0.6 49.0± 1.8 32.9± 0.3 34.4± 0.5

Time Embeddings

Positional Encoding 73.1± 1.1 69.6± 1.6 52.6± 1.9 67.2± 1.1 62.1± 1.4

HOSGNS(stat) 65.3± 1.2 57.3± 1.9 47.8± 1.3 57.3± 1.3 57.0± 1.0

HOSGNS(dyn) 72.2± 1.1 64.7± 1.8 52.1± 1.3 63.0± 1.3 60.5± 1.1

HOSGNS(stat|dyn) 71.4± 0.7 64.7± 1.7 53.0± 1.3 61.2± 1.5 61.5± 1.1

(0.125, 0.001)

Node Embeddings

DEEPWALK 31.0± 0.4 38.5± 3.1 31.5± 1.0 32.1± 0.4 32.5± 0.4

HOSGNS(stat) 32.7± 0.5 42.6± 3.6 43.8± 2.5 34.9± 0.4 33.3± 0.4

HOSGNS(dyn) 32.2± 0.4 44.5± 3.4 42.5± 1.4 34.1± 0.4 34.6± 0.3

HOSGNS(stat|dyn) 33.4± 0.4 43.5± 3.5 43.0± 2.4 33.7± 0.4 34.5± 0.4

Time Embeddings

Positional Encoding 72.2± 0.8 72.8± 1.8 60.3± 1.9 67.8± 0.7 61.3± 0.9

HOSGNS(stat) 67.8± 1.7 63.0± 2.6 52.3± 2.1 59.4± 1.1 57.1± 0.9

HOSGNS(dyn) 70.5± 1.4 71.3± 2.0 57.5± 2.1 64.3± 1.0 60.0± 1.0

HOSGNS(stat|dyn) 71.6± 1.1 70.9± 2.1 57.6± 1.8 65.4± 0.8 61.3± 0.9

(0.0625, 0.002)

Node Embeddings

DEEPWALK 31.7± 0.6 40.4± 3.6 32.1± 1.2 34.3± 0.4 33.4± 0.4

HOSGNS(stat) 33.4± 0.4 44.7± 3.4 46.1± 1.3 35.3± 0.3 33.7± 0.4

HOSGNS(dyn) 33.7± 0.4 44.9± 3.4 45.6± 1.5 36.4± 0.4 36.1± 0.4

HOSGNS(stat|dyn) 33.2± 0.5 42.9± 2.9 43.0± 1.1 36.1± 0.5 35.7± 0.3

Time Embeddings

Positional Encoding 69.5± 1.3 67.0± 2.4 60.3± 1.9 58.4± 0.6 54.6± 0.7

HOSGNS(stat) 64.0± 1.2 58.9± 2.7 47.0± 1.2 55.4± 0.7 54.7± 0.6

HOSGNS(dyn) 68.4± 0.7 66.3± 2.3 57.4± 1.6 58.8± 0.7 55.8± 0.6

HOSGNS(stat|dyn) 67.7± 0.9 63.4± 2.5 54.9± 1.1 59.3± 0.6 56.6± 0.7

(0.125, 0.002)

Node Embeddings

DEEPWALK 31.0± 0.5 32.9± 0.5 31.8± 1.2 32.6± 0.4 33.2± 0.4

HOSGNS(stat) 33.2± 0.5 36.5± 0.4 43.6± 1.4 33.2± 0.5 33.5± 0.5

HOSGNS(dyn) 32.8± 0.5 37.8± 0.5 46.5± 1.5 34.4± 0.4 35.1± 0.4

HOSGNS(stat|dyn) 33.0± 0.5 38.1± 0.7 46.9± 1.5 34.6± 0.5 35.4± 0.4

Time Embeddings

Positional Encoding 71.6± 0.9 66.6± 1.5 53.0± 1.7 61.5± 0.8 56.8± 0.7

HOSGNS(stat) 63.3± 1.4 58.9± 1.2 45.2± 0.7 56.3± 0.9 56.0± 0.6

HOSGNS(dyn) 69.6± 0.8 62.8± 1.4 51.3± 1.4 63.3± 1.2 58.6± 0.7

HOSGNS(stat|dyn) 71.0± 1.0 62.4± 1.1 52.7± 1.5 63.0± 0.8 58.2± 0.8

(0.1875, 0.001)

Node Embeddings

DEEPWALK 31.7± 0.5 35.7± 2.2 31.3± 1.0 31.8± 0.4 32.4± 0.3

HOSGNS(stat) 33.4± 0.5 38.1± 2.2 37.2± 1.2 33.4± 0.4 33.0± 0.4

HOSGNS(dyn) 32.4± 0.5 38.3± 2.2 38.0± 1.1 34.3± 0.4 34.8± 0.4

HOSGNS(stat|dyn) 34.0± 0.5 38.2± 2.2 39.7± 1.4 33.8± 0.4 34.4± 0.4

Time Embeddings

Positional Encoding 73.3± 0.6 72.0± 1.6 66.9± 1.9 71.3± 0.7 63.1± 1.1

HOSGNS(stat) 65.8± 1.0 60.9± 2.0 51.3± 1.7 59.9± 1.2 57.2± 0.9

HOSGNS(dyn) 71.7± 0.6 68.6± 1.7 63.3± 1.9 67.4± 0.9 63.6± 0.8

HOSGNS(stat|dyn) 73.5± 0.6 69.4± 1.8 60.3± 2.2 66.8± 0.9 62.4± 0.9

(0.125, 0.004)

Node Embeddings

DEEPWALK 30.7± 0.3 32.0± 0.4

-

32.3± 0.4

-HOSGNS(stat) 32.5± 0.4 35.3± 0.5 34.4± 0.4

HOSGNS(dyn) 32.2± 0.4 37.9± 0.6 34.6± 0.3

HOSGNS(stat|dyn) 32.7± 0.5 36.9± 0.4 34.4± 0.4

Time Embeddings

Positional Encoding 68.4± 1.1 61.3± 1.2

-

58.2± 0.6

-HOSGNS(stat) 62.6± 1.4 53.6± 1.4 53.5± 1.2

HOSGNS(dyn) 67.1± 1.1 57.8± 0.9 58.3± 1.1

HOSGNS(stat|dyn) 70.2± 1.1 59.0± 1.1 58.7± 0.8

Table 7: Macro-F1 scores deriving from the ablation study for temporal event reconstruction. Link
and time representations, all with a dimension d = 192, are separately used as input to a Logistic
Regression. We highlight in bold the best score, according to the type of predictor, for each dataset.

Predictors Model Dataset
LYONSCHOOL SFHH LH10 THIERS13 INVS15

Node Embeddings

DEEPWALK 82.9± 0.3 68.7± 0.5 53.8± 1.0 90.2± 0.2 79.1± 0.4

HOSGNS(stat) 83.5± 0.3 72.8± 0.4 61.9± 1.0 89.9± 0.2 79.5± 0.4

HOSGNS(dyn) 84.7± 0.3 68.4± 0.4 57.7± 1.0 90.1± 0.2 78.5± 0.5

HOSGNS(stat|dyn) 84.8± 0.4 69.9± 0.5 58.1± 1.0 90.1± 0.2 77.9± 0.4

Time Embeddings

Positional Encoding 56.0± 0.4 51.9± 0.5 51.3± 0.7 53.6± 0.2 53.1± 0.4

HOSGNS(stat) 57.0± 0.4 50.5± 0.6 49.5± 0.5 52.7± 0.3 52.8± 0.3

HOSGNS(dyn) 55.3± 0.5 52.6± 0.6 50.5± 0.5 51.9± 0.3 52.9± 0.3

HOSGNS(stat|dyn) 56.8± 0.4 51.4± 0.4 50.0± 0.6 51.6± 0.3 52.7± 0.3
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A.10 EMPIRICAL COMPARISON WITH CLASSICAL TENSOR FACTORIZATION AND RELATIONAL
LEARNING ALGORITHMS

Here we report in Tables 8 and 9 results about node classification of epidemic states and temporal
event reconstruction comparing HOSGNS(stat) performances with HOLE (Nickel et al., 2015)5, a
3-order relational learning algorithm, and HOSGNS(dyn) with 4-order CP decomposition (Kolda
& Bader, 2009)6. Accounting LYONSCHOOL dataset, we trained HOLE with 30 epochs noticing a
training time of 545s, and 10 iterations of tensor decomposition (4-CPTF) with a training time of
65305s. In displayed tables we show that HOSGNS performs better in both tasks compared with the
corresponding baseline.

Table 8: Macro-F1 scores for classification of nodes in epidemic states according to different SIR
epidemic processes for LYONSCHOOL dataset. Here HOSGNS variants are compared with tensor
factorization and relational learning baselines, and tested with different operators to produce node-
time representations used as input to a Logistic Regression. We highlight in bold the best scores
between HOSGNS and baselines.

Operator
(β, µ) = (0.25, 0.002) (β, µ) = (0.125, 0.001)

d=128 d=64
HOLE HOSGNS(stat) 4-CPTF HOSGNS(dyn)

Average 37.6± 1.4 56.3± 0.9 70.1± 1.1 73.7± 0.6
Hadamard 46.4± 1.0 55.5± 0.8 59.9± 0.9 75.6± 0.4
Weighted-L1 40.1± 1.5 53.9± 0.9 70.6± 1.1 73.8± 0.5
Weighted-L2 38.7± 1.1 53.2± 0.7 62.3± 1.6 74.3± 0.5
Concat 43.1± 1.8 69.4± 0.9 69.2± 0.6 73.3± 0.6

Table 9: Macro-F1 scores for temporal event reconstruction for LYONSCHOOL dataset. Here HOSGNS
variants are compared with tensor factorization and relational learning baselines, and tested with
different operators to produce link-time representations used as input to a Logistic Regression. We
highlight in bold the best scores between HOSGNS and baselines.

Operator d=128 d=64
HOLE HOSGNS(stat) 4-CPTF HOSGNS(dyn)

Average 49.6± 0.4 61.2± 0.4 57.8± 0.6 67.1± 0.4
Hadamard 70.9± 0.4 98.5± 0.1 71.3± 0.6 89.6± 0.2
Weighted-L1 54.2± 0.5 67.2± 0.4 56.5± 0.6 79.4± 0.3
Weighted-L2 50.1± 0.6 68.5± 0.3 56.7± 0.4 78.9± 0.5
Concat 62.9± 0.4 63.3± 0.5 63.1± 0.6 64.7± 0.5

A.11 MODEL PERFORMANCE ON SYNTHETIC DATA

Here we report in Tables 10 and 11 results about node classification of epidemic states and temporal
event reconstruction on synthetic datasets. Contrary to what previously declared, in this section
HOSGNS is trained directly sampling random walks from {G(k)}k∈T and GH for HOSGNS(stat)

and HOSGNS(dyn) respectively with window sizes T = 1, 10. The batch size of positive examples is
fixed to 20000, and for each element in the batch κ = 5 negative tuples are sampled from the corpus.
Embedding parameters are initialized with 1000 warm-up steps. These results are line with the ones
previously shown in the main paper on empirical datasets.

5https://github.com/mnick/scikit-kge
6https://github.com/tensorly/tensorly
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Table 10: Macro-F1 scores for classification of nodes in epidemic states according to different
SIR epidemic processes for synthetic datasets. Here for each HOSGNS variant we tested different
operators to produce node-time representations, all with a dimension d = 128, used as input to a
Logistic Regression. For each (β, µ) we highlight the two highest scores and underline the best one.

(β, µ) Model Operator Dataset
OPENABM-COVID19-2k-100 OPENABM-COVID19-5k-20

(0.25, 0.002)

DYANE - 57.9± 1.8 59.6± 1.7

HOSGNS(stat)

Average 31.2± 0.1 27.9± 0.5
Hadamard 31.2± 0.1 27.8± 0.6
Weighted-L1 31.1± 0.1 28.1± 0.9
Weighted-L2 31.3± 0.2 27.6± 0.6
Concat 32.4± 1.1 27.8± 0.9

HOSGNS(dyn)

Average 61.3± 1.3 60.6± 1.3
Hadamard 57.5± 1.8 61.0± 1.1
Weighted-L1 56.5± 1.8 56.5± 1.9
Weighted-L2 60.3± 1.3 55.8± 2.3
Concat 49.2± 2.0 56.7± 1.8

(0.125, 0.001)

DYANE - 61.6± 1.2 60.6± 0.7

HOSGNS(stat)

Average 31.5± 0.2 24.6± 1.3
Hadamard 31.5± 0.2 24.8± 1.3
Weighted-L1 31.5± 0.2 25.1± 1.1
Weighted-L2 31.4± 0.2 23.8± 1.3
Concat 30.9± 1.0 27.6± 1.7

HOSGNS(dyn)

Average 60.3± 1.5 60.3± 0.8
Hadamard 61.3± 1.0 60.1± 1.1
Weighted-L1 62.9± 0.3 55.1± 2.3
Weighted-L2 60.0± 1.4 55.3± 2.2
Concat 60.0± 1.1 60.4± 1.1

(0.0625, 0.002)

DYANE - 61.8± 0.4 53.8± 1.3

HOSGNS(stat)

Average 29.9± 0.2 30.1± 1.4
Hadamard 29.8± 0.2 29.4± 1.4
Weighted-L1 29.8± 0.3 29.6± 0.9
Weighted-L2 30.0± 0.2 30.3± 1.1
Concat 30.8± 1.0 32.1± 1.9

HOSGNS(dyn)

Average 61.4± 0.5 57.4± 1.9
Hadamard 59.5± 0.9 54.5± 1.4
Weighted-L1 60.2± 1.0 51.5± 2.4
Weighted-L2 61.3± 0.3 46.4± 1.9
Concat 60.7± 0.5 54.3± 2.1

(0.125, 0.002)

DYANE - 60.7± 1.1 61.3± 0.6

HOSGNS(stat)

Average 30.8± 0.2 26.6± 1.2
Hadamard 30.8± 0.1 27.4± 1.2
Weighted-L1 30.5± 0.2 25.1± 1.3
Weighted-L2 31.0± 0.2 24.6± 1.2
Concat 31.3± 1.1 27.1± 1.8

HOSGNS(dyn)

Average 61.3± 0.9 61.7± 0.7
Hadamard 58.9± 1.4 60.7± 0.6
Weighted-L1 62.1± 0.5 56.2± 2.4
Weighted-L2 61.7± 0.5 54.3± 2.1
Concat 58.7± 0.9 59.4± 1.3

(0.1875, 0.001)

DYANE - 60.3± 1.4 59.6± 1.5

HOSGNS(stat)

Average 32.0± 0.2 25.2± 1.0
Hadamard 31.9± 0.2 27.4± 0.7
Weighted-L1 31.9± 0.2 26.6± 0.8
Weighted-L2 31.9± 0.2 26.0± 0.7
Concat 30.2± 0.4 30.8± 1.4

HOSGNS(dyn)

Average 58.8± 1.6 61.6± 1.2
Hadamard 60.5± 1.1 60.9± 1.0
Weighted-L1 59.5± 1.7 57.4± 1.9
Weighted-L2 59.3± 1.7 56.5± 2.2
Concat 54.5± 1.8 59.9± 1.0

(0.125, 0.004)

DYANE - 60.0± 1.1 60.8± 0.6

HOSGNS(stat)

Average 29.7± 0.2 25.8± 1.1
Hadamard 29.5± 0.2 27.0± 1.2
Weighted-L1 29.6± 0.2 26.0± 0.8
Weighted-L2 29.9± 0.2 23.7± 1.2
Concat 30.8± 0.7 30.0± 1.6

HOSGNS(dyn)

Average 58.6± 1.6 59.5± 1.1
Hadamard 58.4± 1.2 60.1± 0.7
Weighted-L1 60.8± 1.0 56.2± 1.9
Weighted-L2 59.2± 1.2 52.1± 2.6
Concat 58.0± 1.3 59.2± 1.1
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Table 11: Macro-F1 scores for temporal event reconstruction for synthetic datasets. Here for each
HOSGNS variant we tested different operators to produce link-time representations, all with a
dimension d = 192, used as input to a Logistic Regression. We highlight in bold the best two overall
scores for each dataset. For baseline models we underline their highest score.

Model Operator Dataset
OPENABM-COVID19-2k-100 OPENABM-COVID19-5k-20

DYANE

Average 52.2± 0.1 51.9± 0.1
Hadamard 76.4± 0.1 90.5± 0.3
Weighted-L1 70.3± 0.1 78.2± 0.7
Weighted-L2 70.3± 0.1 78.8± 0.5
Concat 53.8± 0.1 52.5± 0.1

HOSGNS(stat)

Average 54.6± 0.1 55.1± 0.2
Hadamard 91.1± 0.1 98.7± 0.1
Weighted-L1 69.8± 0.1 72.7± 0.1
Weighted-L2 72.7± 0.1 76.6± 0.1
Concat 56.5± 0.1 57.4± 0.1

HOSGNS(dyn)

Average 54.0± 0.2 54.7± 0.1
Hadamard 78.7± 0.1 82.8± 0.3
Weighted-L1 71.5± 0.3 78.5± 0.1
Weighted-L2 73.1± 0.2 80.5± 0.1
Concat 57.1± 0.1 57.5± 0.1
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