
Published as a conference paper at ICLR 2024

QUICK-TUNE: QUICKLY LEARNING WHICH PRE-
TRAINED MODEL TO FINETUNE AND HOW

Sebastian Pineda Arango, Fabio Ferreira, Arlind Kadra, Frank Hutter & Josif Grabocka
Department of Computer Science
University of Freiburg
pineda@cs.uni-freiburg.de

ABSTRACT

With the ever-increasing number of pretrained models, machine learning practi-
tioners are continuously faced with the decision of which pretrained model to use,
and how to finetune it for a new dataset. In this paper, we propose a methodology
that jointly searches for the optimal pretrained model and the hyperparameters for
finetuning it. Our method transfers knowledge about the performance of many pre-
trained models with multiple hyperparameter configurations on a series of datasets.
To this aim, we evaluated over 20k hyperparameter configurations for finetuning
24 pretrained image classification models on 87 datasets to generate a large-scale
meta-dataset. We meta-learn a gray-box performance predictor on the learning
curves of this meta-dataset and use it for fast hyperparameter optimization on
new datasets. We empirically demonstrate that our resulting approach can quickly
select an accurate pretrained model for a new dataset together with its optimal
hyperparameters. To facilitate reproducibility, we open-source our code and release
our meta-dataset.1.

1 INTRODUCTION

Transfer learning has been a game-changer in the machine learning community, as finetuning pre-
trained deep models on a new task often requires much fewer data instances and less optimization
time than training from scratch (Liu et al., 2021; You et al., 2020). Researchers and practitioners are
constantly releasing pretrained models of different scales and types, making them accessible to the
public through model hubs (a.k.a. model zoos or model portfolios) (Schürholt et al., 2022; Ramesh &
Chaudhari, 2022). This raises a new challenge, as practitioners must select which pretrained model
to use and how to set its hyperparameters (You et al., 2021b), but doing so via trial-and-error is
time-consuming and suboptimal.

In this paper, we address the resulting problem of quickly identifying the optimal pretrained model
for a new dataset and its optimal finetuning hyperparameters. Concretely, we present Quick-Tune, a
Combined Algorithm Selection and Hyperparameter Optimization (CASH) (Thornton et al., 2013)
technique for finetuning, which jointly searches for the optimal model and its hyperparameters in a
Bayesian optimization setup. Our technical novelty is based on three primary pillars: i) gray-box
hyperparameter optimization (HPO) for exploring learning curves partially by few epochs and
effectively investing more time into the most promising ones, ii) meta-learning for transferring the
information of previous evaluations on related tasks, and iii) cost-awareness for trading off time
and performance when exploring the search space. By utilizing these three pillars, our approach
can efficiently uncover top-performing Deep Learning pipelines (i.e., combinations of model and
hyperparameters).

In summary, we make the following contributions:

• We present an effective methodology for quickly selecting models from hubs and jointly
tuning their hyperparameters.

1https://github.com/releaunifreiburg/QuickTune

1

https://github.com/releaunifreiburg/QuickTune

Published as a conference paper at ICLR 2024

• We design an extensive search space that covers common finetuning strategies. In this space,
we train and evaluate 20k model and dataset combinations to arrive at a large meta-dataset
in order to meta-learn a gray-box performance predictor and benchmark our approach.

• We compare against multiple baselines, such as common finetuning strategies and state-of-
the-art HPO methods, and show the efficacy of our approach by outperforming all of the
competitor baselines.

2 RELATED WORK

Finetuning Strategies Finetuning resumes the training on a new task from the pretrained weights.
Even if the architecture is fixed, the user still needs to specify various details, such as learning rate
and weight decay, because they are sensitive to the difference between the downstream and upstream
tasks, or distribution shifts (Li et al., 2020; Lee et al., 2022). A common choice is to finetune only
the top layers can improve performance, especially when the data is scarce (Yosinski et al., 2014).
Nevertheless, recent work proposes to finetune the last layer only for some epochs and subsequently
unfreeze the rest of the network (Chen et al., 2019a; Wang et al., 2023), to avoid the distortion
of the pretrained information. To reduce overfitting, some techniques introduce different types of
regularization that operate activation-wise (Kou et al., 2020; Li et al., 2020; Chen et al., 2019b),
parameter-wise (Li et al., 2018), or directly using data from the upstream task while finetuning (You
et al., 2020; Zhong et al., 2020). No previous work studies the problem of jointly selecting the model
to finetune and its optimal hyperparameters. Moreover, there exists no consensus on what is the best
strategy to use or whether many strategies should be considered jointly as part of a search space.

Model Hubs It has been a common practice in the ML community to make large sets of pretrained
models publicly available. They are often referred to as model hubs, zoos, or portfolios. In computer
vision, in the advent of the success of large language models, a more recent trend is to release all-
purpose models (Oquab et al., 2023; Radford et al., 2021; Kirillov et al., 2023) which aim to perform
well in a broad range of computer vision tasks. Previous work has argued that a large pretrained
model can be sufficient for many tasks and may only need little hyperparameter tuning (Kolesnikov
et al., 2020). However, recent studies also show strong evidence that scaling the model size does
not lead to a one-model-fits-all solution in computer vision (Abnar et al., 2022). Besides presenting
more diversity and flexible model sizes for adapting to variable tasks and hardware, model hubs
can be used for regularized finetuning (You et al., 2021a), learning hyper-networks for generating
the weights (Schürholt et al., 2022), learning to ensemble different architectures (Shu et al., 2022),
ensembling the weights of similar architectures (Wortsman et al., 2022b; Shu et al., 2021; Wortsman
et al., 2022a), or selecting a suitable model from the pool (Cui et al., 2018; Bao et al., 2019; Tran
et al., 2019a; Nguyen et al., 2020; You et al., 2021b; Bolya et al., 2021). Previous work using model
hubs does not analyze the interactions between the used model(s) and the hyperparameters and how
to set them eficiently.

HPO, Transfer HPO, and Zero-Shot HPO Several methods for Hyperparameter Optimization
(HPO) have been proposed ranging from simple random search (Bergstra & Bengio, 2012a) to
fitting surrogate models of true response, such as Gaussian processes (Rasmussen & Williams,
2006), random forests (Hutter et al., 2011), neural networks (Springenberg et al., 2016), hybrid
techniques (Snoek et al., 2015), and selecting configurations that optimize predefined acquisition
functions (Wilson et al., 2018). There also exist multi-fidelity methods that further reduce the
wall-clock time necessary to arrive at optimal configurations (Li et al., 2017; Falkner et al., 2018a;
Awad et al., 2021a; Shala et al., 2023a; Kadra et al., 2023). Transfer HPO can leverage knowledge
from previous experiments to yield a strong surrogate model with few observations on the target
dataset (Wistuba & Grabocka, 2021a; Pineda Arango & Grabocka, 2023; Shala et al., 2023b; Salinas
et al., 2020). Methods that use meta-features, i.e., dataset characteristics that can be either engi-
neered (Feurer et al., 2015; Wistuba et al., 2016) or learned (Jomaa et al., 2021), have also been
proposed to warm-start HPO. Zero-shot HPO has emerged as an efficient approach that does not
require any observations of the response on the target dataset, e.g. approaches that are model-free and
use the average performance of hyperparameter configurations over datasets (Wistuba et al., 2015) or
approaches that meta-learn surrogate models with a ranking loss (Khazi et al., 2023; Winkelmolen
et al., 2020; Öztürk et al., 2022). In contrast to previous work, we propose to not only use the final

2

Published as a conference paper at ICLR 2024

performance of configurations but to learn a Gaussian Process-based to predict the performance of
partial learning curves as formulated by gray-box HPO approaches (Hutter et al., 2019).

3 MOTIVATION

0 10 20
Dataset index

0

5

10

15

20

M
od

el
 in

de
x

10 20

Figure 1: Ranks of model perfor-
mances across datasets.

Before introducing our method, we want to remind the reader
about the importance of searching for the optimal pretrained
neural network from a pool of models. Our main premise is that
there is no silver bullet model that fits all the finetuning tasks.
To illustrate this fact, we computed the error rates of a group
of 24 efficient models (detailed in Section 5.1) from the timm
library (Wightman, 2019) on all the 26 datasets of the Extended
split of MetaAlbum (Ullah et al., 2022) (details in Section 5).
For every model, we use its best per-dataset hyperparameter
configuration found by a comprehensive HPO. Figure 1 shows
the ranks of the 24 models for the 26 datasets, demonstrating
that there is very little regularity. In particular, there exists
no single model that ranks optimally on all datasets, even if
we optimize its hyperparameters for each dataset. Since there
exists no silver bullet model, and considering that there is a
large number of pretrained models available in recent hubs, then
how can we quickly select the best model for a new dataset?

4 QUICK-TUNE: COST-EFFICIENT FINETUNING

Following our motivation, we aim to find the best pipeline x = {m,λ}, x ∈ X , within a search space
X :=M× Λ comprising a model hub m ∈M and a set of hyperparameters λ ∈ Λ. In this section,
we detail how we solve this problem efficiently in order to yield competitive anytime performance.

4.1 QUICK-TUNE

We follow an efficient Bayesian Optimization strategy to search for the optimal pipelines, in a similar
style to recent state-of-the-art approaches in HPO (Wistuba & Grabocka, 2021b; Wistuba et al.,
2022). At every iteration, our method Quick-Tune fits estimators that predict the performance of
pipelines and their cost (for details, see Section 4.2). Then it uses an acquisition function (detailed in
Section 4.3) to select the next pipeline to continue finetuning for an incremental number of epochs.
Finally, our method evaluates the loss and the runtime cost and adds it to the history. This procedure
is repeated until a time budget is reached. We formalize these steps in Algorithm 1, where we use
the validation loss as a performance metric. The entire procedure is sped up by starting from a
meta-learned surrogate as described in Section 4.4.

Algorithm 1: Quick-Tune Algorithm
Input: Search space of pipelines x ∈ X , Epoch step ∆t
Output: Pipeline with the smallest observed loss

1 Select randomly a pipeline x′ ∈ X and evaluate it for ∆t epochs ;
2 Initialize the historyH ← {(x′,∆t, ℓ(x′,∆t), c(x′,∆t))}
3 while budget do
4 Update the performance predictor ℓ̂ fromH using Equation 1;
5 Update the cost estimator ĉ fromH using Equation 2;
6 Select the next pipeline x∗ using Equation 3;
7 Evaluate the performance ℓ (x∗, τ(x∗)) and measure the cost c (x∗, τ(x∗)) ;
8 Update the historyH ← H∪ {(x∗, τ(x∗), ℓ (x∗, τ(x∗)) , c (x∗, τ(x∗)))} ;
9 end

10 return argminx∈X {ℓ(x, t) | (x, t, ℓ(x, t), ·) ∈ H};

3

Published as a conference paper at ICLR 2024

4.2 PERFORMANCE AND COST ESTIMATORS

Learning curves record the performance of Deep Learning pipelines at different time steps, such
as the validation loss versus the number of epochs. The performance of the pipeline x at step t is
denoted as ℓ (x, t), and the runtime cost for training the pipeline x until step t is c (x, t). The history
of all observed learning curves for n pipelines is denoted asH := {(xi, ti, ℓ (xi, ti) , c (xi, ti))}ni=1.

Our method learns a probabilistic performance estimator (a.k.a. surrogate) defined as ℓ̂ (x, t; θ) and
parameterized with θ. We train the surrogate ℓ̂ to estimate the true performance ℓ fromH as:

θ∗ := argmin
θ

E(x,t,ℓ(x,t),·)∼H

[
− log p

(
ℓ(x, t) | x, t, ℓ̂(x, t; θ)

)]
. (1)

Concretely, the surrogate ℓ̂ is implemented as a deep-kernel Gaussian Process regressor (Wistuba
& Grabocka, 2021a). In addition, we train a cost estimator ĉ(x, t; γ) in the form of a Multilayer
Perceptron with parameters γ to predict the ground truth costs as:

γ∗ := argmin
γ

E(x,t,·,c(x,t))∼H

[
c(x, t)− ĉ (x, t; γ)

]2
. (2)

4.3 COST-SENSITIVE ACQUISITION FUNCTION

We propose a cost-sensitive variant of the Expected Improvement (Jones et al., 1998) (EI) acquisition
to select the next pipeline to evaluate within a Bayesian Optimization framework, defined as:

x∗ := argmax
x∈X

EI
(
x,H, ℓ̂(x, τ(x))

)
ĉ
(
x, τ(x)

)
−c

(
x, τ(x)−∆t

) = argmax
x∈X

Eℓ̂(x,τ(x))

[
max

(
ℓmin
τ(x) − ℓ̂(x, τ(x)), 0

)]
ĉ
(
x, τ(x)

)
−c

(
x, τ(x)−∆t

)
(3)

The numerator of Equation 3 introduces a mechanism that selects the pipeline x that has the largest
likelihood to improve the lowest observed validation error at the next unobserved epoch τ(x) of
pipeline x. The denominator balances out the cost of actually finetuning pipeline x for ∆t epochs.
τ(x) is defined for pipeline x as τ(x) := max{t′|(x, t′, ·, ·) ∈ H} + ∆t, where ∆t denotes the
number of epochs to finetune from the last observed epoch in the history. If the pipeline is not in
the history, the query epoch is τ(x) = ∆t. Simply put, if the validation loss of x is evaluated after
every training epoch/step (∆t = 1) and has been evaluated for k epochs/steps, then τ(x) = k + 1.
As a result, we select the configuration with the highest chance of improving the best-measured loss
at the next epoch, while trading off the cost of finetuning it. Concretely, the best observed loss is
ℓmin
τ(x) := min ({ℓ(x, τ(x))|(x, τ(x), ℓ (x, τ(x)) , ·) ∈ H}). If no pipeline has been evaluated until
τ(x), i.e. (x, τ(x), ·, ·) /∈ H, then ℓmin

τ(x) := min ({ℓ(x, t)|(x, t, ℓ (x, t) , ·) ∈ H, t < τ(x)}).

4.4 META-LEARNING THE PERFORMANCE AND COST ESTIMATORS

A crucial novelty of our paper is to meta-learn BO surrogates from existing pipeline evaluations on
other datasets. Assume we have access to a set of curves for the validation errors ℓ and the runtimes c
of pipelines over a pool of datasets, for a series of N epochs. We call the collection of such quadruple
evaluations a meta-datasetH(M) :=

⋃
x∈X

⋃
d∈D

⋃
t∈[1,N] {(x, t, ℓ (x, t, d) , c (x, t, d))}, where we

explicitly included the dependency of the performance and cost curves to the dataset. To contextualize
the predictions on the characteristics of each dataset, we use descriptive features d ∈ D to represent
each dataset (a.k.a. meta-features).

We meta-learn a probabilistic validation error estimator ℓ̂ (x, t, d; θ), and a point-estimate cost
predictor ĉ (x, t, d; γ) from the meta-datasetH(M) by solving the following objective functions:

4

Published as a conference paper at ICLR 2024

θ(M) := argmin
θ

E(x,t,ℓ(x,t,d),c(x,t,d))∼H(M)

[
− log p

(
ℓ(x, t, d) | x, t, d, ℓ̂(x, t, d; θ)

)]
(4)

γ(M) := argmin
γ

E(x,t,ℓ(x,t,d),c(x,t,d))∼H(M)

(
c(x, t, d)− ĉ (x, t, d; γ)

)2

(5)

After meta-learning, we use the learned weights to initialize the performance and cost predictors
θ ← θ(M) and γ ← γ(M) before running Algorithm 1. As a result, our method starts with a strong
prior for the performance of pipelines and their runtime costs, based on the collected historyH(M)

from evaluations on prior datasets. We provide details about the meta-learning procedure in Algorithm
2 (Appendix A.3).

5 QUICK-TUNE META-DATASET

5.1 QUICK-TUNE SEARCH SPACE

100 101 102 103

No. of Parameters (Millions)

65

70

75

80

85

90

To
p-

1
Ac

cu
ra

cy

Non Pareto-optimal
Pareto optimal

Figure 2: The subset of Pareto optimal pre-
trained models with respect to the predictive
accuracy and model size.

While our proposed method is agnostic to the ap-
plication domain, the set of pretrained models and
hyperparameter space to choose from, we need to
instantiate these choices for our experiments. In this
paper, we focus on image classification and base our
study on the timm library (Wightman, 2019), given
its popularity and wide adoption in the community. It
contains a large set of hyperparameters and pretrained
models on ImageNet (more than 700). Concerning
the space of potential finetuning hyperparameters, we
select a subset of optimizers and schedulers that are
well-known and used by researchers and practition-
ers. We also include regularization techniques, such
as data augmentation and drop-out, since finetuning
is typically applied in low data regimes where large
architectures easily overfit. Additionally, we mod-
ified the framework to include common finetuning
strategies, such as methods to select the percentage of layers to finetune (Yosinski et al., 2014),
linear probing (Wang et al., 2023), stochastic norm (Kou et al., 2020), Co-Tuning (You et al., 2020),
DELTA (Li et al., 2019), BSS (Chen et al., 2019b) and SP-regularization (Li et al., 2018). The last
five methods are taken from the transfer learning library (Junguang Jiang & Long, 2020). Although
we consider these well-known and stable finetuning strategies, we foresee the widespread adoption of
new approaches such as LoRA (Hu et al., 2021). They are complementary to our method and can be
easily interpreted as an extension of the pipeline search space. We list all the hyperparameters of our
search space in Table 1, indicating explicitly the conditional hyperparameters with a "*". For a more
detailed description of our search space, including the hyperparameter ranges and dependencies, we
point the reader to Table 7 of Appendix B. As we are interested in time efficiency and accuracy, we
select the Pareto optimal models from the large set of ca. 700 pretrained architectures in the timm
library. Specifically, given a model m ∈MTimm with Top-1 ImageNet accuracy fImageNet(m) and
S(m) number of parameters, we build our final model hub based on the multi-objective optimization
among the predictive accuracy and model size by solving Equation 6. Subsequently, we obtain a set
of 24 Pareto-optimal models as shown in Figure 2 and listed in Table 8 of Appendix B.

M =

{
m∗ |m∗ ∈ argmax

m∈MTimm

[fImageNet(m), −S(m)]

}
(6)

5.2 META-DATASET GENERATION

We created a large meta-dataset of evaluated learning curves based on the aforementioned search
space. Overall, we finetuned the 24 Pareto-optimal pretrained models on 86 datasets for different
hyperparameter configurations (details in Table 6, Appendix B.1). For every dataset, we sample
hyperparameter configurations and models uniformly at random from the search space of Table 7.

5

Published as a conference paper at ICLR 2024

Table 1: Search Space Summary.

Hyperparameter Group Hyperparameters

Finetuning Strategies
Percentage of the Model to Freeze, Layer Decay,
Linear Probing, Stochastic Norm, SP-Regularization,
DELTA Regularization, BSS Regularization, Co-Tuning

Regularization Techniques MixUp, MixUp Probability*, CutMix, Drop-Out,
Label Smoothing, Gradient Clipping

Data Augmentation
Data Augmentation Type (Trivial Augment,
Random Augment, Auto-Augment), Auto-Augment Policy*,
Number of operations*, Magnitude*

Optimization
Optimizer type (SGD, SGD+Momentum,
Adam, AdamW, Adamp), Beta-s*, Momentum*, Learning Rate,
Warm-up Learning Rate, Weight Decay, Batch Size

Learning Rate Scheduling Scheduler Type (Cosine, Step, Multi-Step, Plateau), Patience*,
Decay Rate*, Decay Epochs*

Model 24 Models on the Pareto front (see Appendix 8)

In our experiments, we use the tasks contained in the Meta-Album benchmark (Ullah et al., 2022)
since it contains a diverse set of computer vision datasets. The benchmark is released in three variants
with an increasing number of images per dataset: micro, mini, and extended. Concretely, micro
has computer vision tasks with fewer classes and fewer images per class than extended. When
generating the learning curves, we limited each run to 50 training epochs. As setting a limit is
challenging when considering a pool of models and tasks with different sizes, we decided to constrain
the finetuning procedure using a global time limit. The configurations trained on the tasks from micro,
mini, extended are finetuned for 1, 4, and 16 hours respectively, using a single NVIDIA GeForce
RTX 2080 Ti GPU per finetuning task, amounting to a total compute time of 32 GPU months. We
summarize the main characteristics of our generated data in Table 6 in the Appendix.

6 EXPERIMENTS AND RESULTS

6.1 QUICK-TUNE PROTOCOL

While Quick-Tune finds the best-pretrained models and their hyperparameters, it also has hyperpa-
rameters of its own: the architecture, the optimizer for the predictors, and the acquisition function.
Before running the experiments, we aimed to design a single setup that easily applies to all the tasks.
Given that we meta-train the cost and the performance predictor, we split the tasks per Meta-Album
version into five folds D = {D1, ...,D5} containing an equal number of tasks. When searching for a
pipeline on datasets of a given fold Di, we consider one of the remaining folds for meta-validation
and the remaining ones for meta-training. We used the meta-validation for early stopping when
meta-training the predictors.

We tune the hyperparameters of Quick-Tune’s architecture and the learning rate using the mini ver-
sion’s meta-validation folds. For the sake of computational efficiency, we apply the same discovered
hyperparameters in the experiments involving the other Meta-Album versions. The chosen setup
uses an MLP with 2 hidden layers and 32 neurons per layer, for both predictors. We use the Adam
optimizer with a learning rate of 10−4 for fitting the estimators during the BO steps. We update their
parameters for 100 epochs for every iteration from Algorithm 1. Further details on the set-up are
specified in Appendix A.2. The inputs to the cost and performance estimators are the dataset metafea-
tures (Appendix A.4) and a pipeline encoding that concatenates a categorical embedding of the model
m, an embedding of the observed curve τ(x) and the hyperparameters λ (details in Appendix A.5).
Finally, for the acquisition function, we use ∆t = 1 epoch as in previous work (Wistuba et al., 2022),
since this allows us to discard bad configurations quickly during finetuning.

6

Published as a conference paper at ICLR 2024

Table 2: Performance comparison for Hypothesis 1. Normalized regret, ranks and standard deviations
are calculated across all respective Meta-Album (Ullah et al., 2022) subset datasets.

Normalized Regret Rank
Micro Mini Extended Micro Mini Extended

BEiT+Default HP 0.229±0.081 0.281±0.108 0.225±0.059 2.583±0.829 2.611±0.465 3.136±0.215

XCiT+Default HP 0.223±0.075 0.290±0.107 0.199±0.057 2.500±0.751 2.694±0.264 2.522±0.344

DLA+Default HP 0.261±0.074 0.325±0.111 0.219±0.076 3.062±0.770 3.138±0.248 2.977±0.284

Quick-Tune 0.153±0.054 0.139±0.112 0.052±0.031 1.854±1.281 1.555±0.531 1.363±0.376

0 1000 2000 3000
Wallclock Time (s)

10 1

100

N
or

m
al

iz
ed

 R
eg

re
t

Micro

0 5000 10000 15000
Wallclock Time (s)

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Mini

0 20000 40000
Wallclock Time (s)

10 1

100
Extended

Quick-Tune ASHA DEHB BOHB DyHPO RandomQuick-Tune ASHA DEHB BOHB DyHPO RandomQuick-Tune ASHA DEHB BOHB DyHPO Random

Figure 3: Comparison against state-of-the-art HPO methods.

6.2 RESEARCH HYPOTHESES AND ASSOCIATED EXPERIMENTS

HYPOTHESIS 1: QUICK-TUNE IS BETTER THAN FINETUNING MODELS WITHOUT
HYPERPARAMETER OPTIMIZATION.

We argue that ML practitioners need to carefully tune the hyperparameters of pretrained models to
obtain state-of-the-art performance. However, due to computational and time limitations, a common
choice is to use default hyperparameters. To simulate the simplest practical use case, we select three
different models from the subset of Pareto-optimal pretrained models (see Fig. 2), i.e. the largest
model with the best acccuracy (beit_large_patch16_512 (Bao et al., 2022); 305M parameters, 90.69%
acc.), the middle model with a competitive accuracy (xcit_small_12_p8_384_dist (Ali et al., 2021);
26M and 89.52%), as well as the smallest model with the lowest accuracy among the Pareto front
models (dla46x_c (Yu et al., 2018); 1.3M and 72.61%). On each dataset in Meta-Album (Ullah et al.,
2022), we finetune these models with their default hyperparameters and compare their performance
against Quick-Tune. The default configuration is specified in Appendix B.2. To measure the
performance, we calculate the average normalized regret (Arango et al., 2021), computed as detailed
in Appendix A.1. For all Meta-Album datasets in a given category, we use the same finetuning
time budget, i.e. 1 (micro), 4 (mini), and 16 (extended) hours. As reported in Table 2, Quick-Tune
outperforms the default setups in terms of both normalized regret and rank across all respective subset
datasets, demonstrating that HPO tuning is not only important to obtain high performance, but also
achievable in low time budget conditions.

HYPOTHESIS 2: QUICK-TUNE OUTPERFORMS STATE-OF-THE-ART HPO OPTIMIZERS.

Gray-box approaches are considered very practical, especially for optimizing expensive architec-
tures. We compare Quick-Tune against four popular gray-box optimizers, ASHA (Li et al., 2018),
BOHB (Falkner et al., 2018b), DEHB (Awad et al., 2021b) and DyHPO (Wistuba et al., 2022). We
additionally include Random Search (Bergstra & Bengio, 2012b) as a baseline for a sanity check.
The normalized regret is computed for the three Meta-album versions on budgets of 1, 4 and 16 hours.
The results of Figure 3 show that our proposed method has the best any-time performance compared
to the baselines. In an additional experiment, presented in Figure 4, we show that both meta-training
and cost-awareness aspects contribute to this goal by ablating each individual component. This

7

Published as a conference paper at ICLR 2024

0 1000 2000 3000
Wallclock Time (s)

10 1

100

N
or

m
al

iz
ed

 R
eg

re
t

Micro

0 5000 10000 15000
Wallclock Time (s)

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Mini

0 20000 40000
Wallclock Time (s)

10 1

100
Extended

QT:+M,+C,+G QT:-M,-C,+G QT:-M,+C,+G QT:+M,-C,+G GP:-M,-C,-GQT:+M,+C,+G QT:-M,-C,+G QT:-M,+C,+G QT:+M,-C,+G GP:-M,-C,-GQT:+M,+C,+G QT:-M,-C,+G QT:-M,+C,+G QT:+M,-C,+G GP:-M,-C,-G

Figure 4: Comparing Quick-Tune with (+) and without (-) (M)eta-learning and (C)ost-Awareness,
and (G)ray-box optimization. We also compare against DyHPO (=QT:-M,-C,+G) and a GP.

0 1000 2000 3000
Wallclock Time (s)

10 1

100

N
or

m
al

iz
ed

 R
eg

re
t

Micro

0 5000 10000 15000
Wallclock Time (s)

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Mini

0 20000 40000
Wallclock Time (s)

10 1

100
Extended

24-M 15-M 10-M 5-M XCiT DLA EfficientNet24-M 15-M 10-M 5-M XCiT DLA EfficientNet24-M 15-M 10-M 5-M XCiT DLA EfficientNet

Figure 5: Varying the model hub size.

behavior is consistent among datasets of different sizes and present in all three meta-dataset versions.
We attribute the search efficiency to our careful search space design, which includes both large
and small models, as well as regularization techniques that reduce overfitting in low-data settings
such as in the tasks of the micro version. In large datasets, our method finds good configurations
even faster compared to the baselines, highlighting the importance of cost-awareness in optimizing
hyperparameters for large datasets. We additionally compare against a Gaussian Process (GP) that
observes the whole learning curve (∆t = 50), to highlight the necessity of a gray-box approach. In
an additional experiment in Appendix C, we evaluate our method on the well-known Inaturalist (Horn
et al., 2021) and Imagenette (Howard, 2019) datasets that are not contained in Meta-Album; there,
our method still consistently outperforms the competitor baselines.

HYPOTHESIS 3: CASH ON DIVERSE MODEL HUBS IS BETTER THAN HPO ON A SINGLE MODEL.

A reasonable question is whether we actually need to consider a hub of models at all, or whether
perhaps using a single, expressive, and well-tuned architecture is sufficient for most datasets. We
hypothesize that the optimal model is dataset-specific because the complexities of datasets vary.
Therefore, using a single model for all the datasets is a sub-optimal practice, and it is better to include
a diverse model hub. Moreover, using a model hub allows us to explore cheap models first and gain
information about the interactions between the hyperparameters. The information can in turn be
leveraged by the predictors when considering larger and more accurate models.

To validate our hypothesis, we select EfficientNet (Tan & Le, 2019), X-Cit (Ali et al., 2021) and
DLA (Yu et al., 2018). These correspond to models with at least 10 evaluated curves in all the datasets
and are located on the top, middle, and bottom regions in the Pareto front. Subsequently, we optimize
their hyperparameters independently using our Quick-Tune algorithm. We also run Quick-Tune on
subsets of 5, 10, and 15 models out of the model hubM with 24 models. The subset of models was
created randomly for every dataset before running BO. We execute the optimization on the three

8

Published as a conference paper at ICLR 2024

Table 3: Comparison against efficient-finetuning of a single large model.

4 Hours 24 Hours
Micro Mini Extended Micro Mini Extended

Dinov2 + LoRA 0.541±0.093 0.049±0.018 0.055±0.004 0.332±0.095 0.014±0.021 0.004±0.012

Dinov2 + Linear Probing 0.081±0.041 0.067±0.021 0.081±0.012 0.067±0.038 0.017±0.019 0.042±0.011

QuickTune 0.072±0.024 0.039±0.014 0.042±0.016 0.018±0.012 0.012±0.008 0.003±0.008

0 1000 2000 3000
Wallclock Time (s)

10 1

100

N
or

m
al

iz
ed

 R
eg

re
t

Micro

0 5000 10000 15000
Wallclock Time (s)

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Mini

0 20000 40000
Wallclock Time (s)

10 1

100
Extended

Quick-Tune LogME + HPO LEEP + HPO NCE + HPOQuick-Tune LogME + HPO LEEP + HPO NCE + HPOQuick-Tune LogME + HPO LEEP + HPO NCE + HPO

Figure 6: Comparison with a two-stage search for models and hyperparameters.

meta-dataset versions for 1, 2 and 4 hours of total budget. Figure 5 demonstrates that, in general, it is
better to have a pool of diverse models such as 24 models (24-M) or 15 models (15-M), than tuning a
small set of models or even a unique model. Interestingly, we note the larger the dataset is, the larger
the model hub we need.

Quick-Tune vs. Efficient Finetuning of a Single Large Model. Although we propose to use
model hubs, practitioners also have the alternative of choosing a large pretrained model from outside
or inside the hub. We argue that a large pretrained model still demands HPO (Oquab et al., 2023), and
imposes a higher load on computing capabilities. To demonstrate that Quick-Tune still outperforms
the aforementioned approach, we compare our method against efficient finetuning approaches of
Dinov2 which features 1B parameters by; i) finetuning only the last layer of Dino v2, which represents
a common practice in the community, and ii) finetuning with LoRA (Hu et al., 2021), a parameter-
efficient finetuning method. Our results in Table 3 demonstrate that CASH on model hubs via
QuickTune attains better results for the different dataset versions.

Quick-Tune vs. Separated Model and Hyperparameter Optimization. We compare Quick-Tune
with a two-stage alternative approach where, we first select a model with its default hyperparameters
using state-of-the-art model selection methods, such as LogME (You et al., 2021a), LEEP (Nguyen
et al., 2020) and NCE (Tran et al., 2019b). Then, we conduct a second search for the optimal
hyperparameters of the model selected in the first stage. The results reported in Figure 6 show that
Quick-Tune outperforms this two-stage approach, thus highlighting the importance of performing
combined HPO and model selection.

7 CONCLUSION

We tackle the practical problem of selecting a model and its hyperparameters given a pool of
models. Our method QuickTune leverages gray-box optimization together with meta-learned cost
and performance predictors in a Bayesian optimization setup. We demonstrate that QuickTune
outperforms common strategies for selecting pretrained models, such as using single models, large
feature extractors, or conventional HPO tuning methods. In addition, we present empirical evidence
that our method outperforms large-scale and state-of-the-art transformer backbones for computer
vision. As a consequence, QuickTune offers a practical and efficient alternative for selecting and
tuning pretrained models for image classification.

9

Published as a conference paper at ICLR 2024

8 ACKNOWLEDGEMENT

Robert Bosch GmbH is acknowledged for financial support. We also acknowledge funding by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under SFB 1597 (Small-
Data), grant number 499552394, the support of the BrainLinks- BrainTools Center of Excellence,
and the funding of the Carl Zeiss foundation through the ReScaLe project. This research was also
partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under grant number 417962828, by the state of Baden-Württemberg through bwHPC, and the German
Research Foundation (DFG) through grant no INST 39/963-1 FUGG, by TAILOR, a project funded
by the EU Horizon 2020 research, and innovation program under GA No 952215, and by European
Research Council (ERC) Consolidator Grant “Deep Learning 2.0” (grant no. 101045765). Funded by
the European Union. Views and opinions expressed are however those of the authors only and do
not necessarily reflect those of the European Union or the ERC. Neither the European Union nor the
ERC can be held responsible for them.

10

Published as a conference paper at ICLR 2024

REFERENCES

S. Abnar, M. Dehghani, B. Neyshabur, and H. Sedghi. Exploring the limits of large scale pre-training.
In Proc. of ICLR’22, 2022.

Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand Joulin,
Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit: Cross-covariance
image transformers. Advances in neural information processing systems, 34:20014–20027, 2021.

Sebastian Pineda Arango, Hadi S. Jomaa, Martin Wistuba, and Josif Grabocka. Hpo-b: A large-scale
reproducible benchmark for black-box hpo based on openml, 2021.

N. Awad, N. Mallik, and F. Hutter. DEHB: Evolutionary hyberband for scalable, robust and efficient
Hyperparameter Optimization. In Proc. of IJCAI’21, pp. 2147–2153, 2021a.

Noor H. Awad, Neeratyoy Mallik, and Frank Hutter. DEHB: evolutionary hyberband for scalable,
robust and efficient hyperparameter optimization. CoRR, abs/2105.09821, 2021b.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: BERT pre-training of image transformers.
In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
p-BhZSz59o4.

Y. Bao, Y. Li, S.-L. Huang, L. Zhang, L. Zheng, A. Zamir, and L. J. Guibas. An information-theoretic
approach to transferability in task transfer learning. In 2019 IEEE International Conference on
Image Processing, ICIP 2019, Taipei, Taiwan, September 22-25, 2019, pp. 2309–2313. IEEE,
2019.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. 13:281–305, 2012a.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13:281–305, 2012b.

D. Bolya, R. Mittapalli, and J. Hoffman. Scalable diverse model selection for accessible transfer
learning. In Proc. of NeurIPS’21, pp. 19301–19312, 2021.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look
at few-shot classification. arXiv preprint arXiv:1904.04232, 2019a.

X. Chen, S. Wang, B. F., M. Long, and J. Wang. Catastrophic forgetting meets negative transfer:
Batch spectral shrinkage for safe transfer learning. In Proc. of NeurIPS’19, pp. 1906–1916, 2019b.

Y. Cui, Y. Song, C. Sun, A. Howard, and S. J. Belongie. Large scale fine-grained categorization and
domain-specific transfer learning. In Proc. of CVPR’18, pp. 4109–4118, 2018.

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient Hyperparameter Optimization at
scale. In Proc. of ICML’18, pp. 1437–1446, 2018a.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperparameter optimiza-
tion at scale. In Proceedings of the 35th International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 1436–1445, 2018b.

M. Feurer, J. Springenberg, and F. Hutter. Initializing Bayesian Hyperparameter Optimization via
meta-learning. In Proc. of AAAI’15, pp. 1128–1135, 2015.

Grant Van Horn, Oisin Mac Aodha, and Serge Belongie. inaturalist competition datasets. https:
//github.com/visipedia/inat_comp, 2021.

Jermey Howard. Imagenette. https://github.com/fastai/imagenette, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685, 2021. URL
https://arxiv.org/abs/2106.09685.

11

https://openreview.net/forum?id=p-BhZSz59o4
https://openreview.net/forum?id=p-BhZSz59o4
https://github.com/visipedia/inat_comp
https://github.com/visipedia/inat_comp
https://github.com/fastai/imagenette
https://arxiv.org/abs/2106.09685

Published as a conference paper at ICLR 2024

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In Proc. of LION’11, pp. 507–523, 2011.

F. Hutter, L. Kotthoff, and J. Vanschoren (eds.). Automated Machine Learning: Methods, Systems,
Challenges. Springer, 2019. Available for free at http://automl.org/book.

H. Jomaa, L. Schmidth-Thieme, and J. Grabocka. Dataset2vec: Learning dataset meta-features. Data
Mining and Knowledge Discovery, 35:964–985, 2021.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive
black-box functions. J. of Global Optimization, 13(4):455–492, dec 1998. ISSN 0925-5001.

Bo Fu Junguang Jiang, Baixu Chen and Mingsheng Long. Transfer-learning-library. https:
//github.com/thuml/Transfer-Learning-Library, 2020.

Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Scaling laws for hyperparameter
optimization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=ghzEUGfRMD.

A. S. Khazi, S. Pineda Arango, and J. Grabocka. Deep ranking ensembles for hyperparameter
optimization. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=_ruvo2KCL2x.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.

A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big transfer (bit):
General visual representation learning. In Proc. of ECCV’20, pp. 491–507, 2020.

Z. Kou, K. You, M. Long, and J. Wang. Stochastic normalization. In Proc. of NeurIPS’20, 2020.

Y. Lee, A. S. Chen, F. Tajwar, A. Kumar, H. Yao, P. Liang, and C. Finn. Surgical fine-tuning improves
adaptation to distribution shifts. CoRR, abs/2210.11466, 2022. URL https://doi.org/10.
48550/arXiv.2210.11466.

H. Li, P. Chaudhari, H. Yang, M. Lam, A. Ravichandran, R. Bhotika, and S. Soatto. Rethinking the
hyperparameters for fine-tuning. In Proc. of ICLR’20, 2020.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based
configuration evaluation for Hyperparameter Optimization. In Proc. of ICLR’17, 2017.

X. Li, Y. Grandvalet, and F. Davoine. Explicit inductive bias for transfer learning with convolutional
networks. In Proc. of ICML’18, pp. 2830–2839, 2018.

Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, and Jun Huan. Delta: Deep
learning transfer using feature map with attention for convolutional networks. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=rkgbwsAcYm.

B. Liu, Y. Cai, Y. Guo, and X. Chen. Transtailor: Pruning the pre-trained model for improved transfer
learning. In Proc. of AAAI’21, pp. 8627–8634, 2021.

C. V. Nguyen, T. Hassner, M. W. Seeger, and Cédric Archambeau. LEEP: A new measure to evaluate
transferability of learned representations. In Proc. of ICML’20, volume 119, pp. 7294–7305, 2020.

M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, R. Howes, P.-Y. Huang, H. Xu, V. Sharma, S.-W. Li, W. Galuba, M. Rabbat,
M. Assran, N. Ballas, G. Synnaeve, I. Misra, H. Jegou, J. Mairal, P. Labatut, A. Joulin, and
P. Bojanowski. Dinov2: Learning robust visual features without supervision, 2023.

E. Öztürk, F. Ferreira, H. S. Jomaa, L. Scmidth-Thieme, J. Grabocka, and F. Hutter. Zero-shot automl
with pretrained models. In Proc. of ICML’22, pp. 1128–1135, 2022.

12

https://github.com/thuml/Transfer-Learning-Library
https://github.com/thuml/Transfer-Learning-Library
https://openreview.net/forum?id=ghzEUGfRMD
https://openreview.net/forum?id=_ruvo2KCL2x
https://doi.org/10.48550/arXiv.2210.11466
https://doi.org/10.48550/arXiv.2210.11466
https://openreview.net/forum?id=rkgbwsAcYm

Published as a conference paper at ICLR 2024

Sebastian Pineda Arango and Josif Grabocka. Deep pipeline embeddings for automl. In Pro-
ceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD ’23, pp. 1907–1919, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701030. doi: 10.1145/3580305.3599303. URL https://doi.org/10.1145/
3580305.3599303.

A. Radford, J. Wook Kim, C. Hallacy, Aditya Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural
language supervision, 2021.

R. Ramesh and P. Chaudhari. Model zoo: A growing brain that learns continually. In Proc. of
ICLR’22, 2022.

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006.

D. Salinas, H. Shen, and V. Perrone. A quantile-based approach for hyperparameter transfer learning.
In Proc. of ICML’20, pp. 8438–8448, 2020.

David Salinas, Matthias Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, and Cedric Ar-
chambeau. Syne tune: A library for large scale hyperparameter tuning and reproducible re-
search. In International Conference on Automated Machine Learning, AutoML 2022, 2022. URL
https://proceedings.mlr.press/v188/salinas22a.html.

K. Schürholt, B. Knyazev, X. Giró-i-Nieto, and D. Borth. Hyper-representations for pre-training and
transfer learning. CoRR, abs/2207.10951, 2022.

K. Schürholt, D. Taskiran, B. Knyazev, X. Giró-i Nieto, and D. Borth. Model zoos: A dataset of
diverse populations of neural network models. In Thirty-Sixth Conference on Neural Information
Processing Systems (NeurIPS) Track on Datasets and Benchmarks, 2022.

G. Shala, A. Biedenkapp, F. Hutter, and J. Grabocka. Gray-box gaussian processes for automated
reinforcement learning. In ICLR 2023, 2023a. URL https://openreview.net/forum?
id=rmoMvptXK7M.

G. Shala, T. Elsken, F. Hutter, and J. Grabocka. Transfer NAS with meta-learned bayesian surrogates.
In ICLR 2023, 2023b. URL https://openreview.net/forum?id=paGvsrl4Ntr.

Y. Shu, Z. Kou, Z. Cao, J. Wang, and M. Long. Zoo-tuning: Adaptive transfer from A zoo of models.
In Proc. of ICML’21, volume 139, pp. 9626–9637, 2021.

Y. Shu, Z. Cao, Z. Zhang, J. Wang, and M. Long. Hub-pathway: Transfer learning from A hub of
pre-trained models. 2022.

J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, Prabhat, and
R. Adams. Scalable Bayesian optimization using deep neural networks. In Proc. of ICML’15, pp.
2171–2180, 2015.

J. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust Bayesian
neural networks. In D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett (eds.), Proc.
of NeurIPS’16, 2016.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114. PMLR, 2019.
URL http://proceedings.mlr.press/v97/tan19a.html.

C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection and
Hyperparameter Optimization of classification algorithms. In Proc. of KDD’13, pp. 847–855,
2013.

A. T. Tran, C. V. Nguyen, and T. Hassner. Transferability and hardness of supervised classification
tasks. In Proc. of ICCV’19, pp. 1395–1405. IEEE, 2019a.

13

https://doi.org/10.1145/3580305.3599303
https://doi.org/10.1145/3580305.3599303
https://proceedings.mlr.press/v188/salinas22a.html
https://openreview.net/forum?id=rmoMvptXK7M
https://openreview.net/forum?id=rmoMvptXK7M
https://openreview.net/forum?id=paGvsrl4Ntr
http://proceedings.mlr.press/v97/tan19a.html

Published as a conference paper at ICLR 2024

Anh T Tran, Cuong V Nguyen, and Tal Hassner. Transferability and hardness of supervised classifi-
cation tasks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
1395–1405, 2019b.

Ihsan Ullah, Dustin Carrion, Sergio Escalera, Isabelle M Guyon, Mike Huisman, Felix Mohr, Jan N
van Rijn, Haozhe Sun, Joaquin Vanschoren, and Phan Anh Vu. Meta-album: Multi-domain
meta-dataset for few-shot image classification. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022. URL https://meta-album.
github.io/.

H. Wang, T. Yue, X. Ye, Z. He, B. Li, and Y. Li. Revisit finetuning strategy for few-shot learning to
transfer the emdeddings. In The Eleventh International Conference on Learning Representations,
2023.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

J. Wilson, F. Hutter, and M. Deisenroth. Maximizing acquisition functions for Bayesian optimization.
In Proc. of NeurIPS’18, pp. 741–749, 2018.

F. Winkelmolen, N. Ivkin, H. Bozkurt, and Z. Karnin. Practical and sample efficient zero-shot HPO.
arXiv:2007.13382 [stat.ML], 2020.

M. Wistuba and J. Grabocka. Few-shot bayesian optimization with deep kernel surrogates. In Proc.
of ICLR’21, 2021a.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Sequential Model-free Hyperparameter Tuning.
In Proc. of ICDM ’15, pp. 1033–1038, 2015.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Two-stage transfer surrogate model for automatic
Hyperparameter Optimization. In Proc. of ECML/PKDD’16, pp. 199–214, 2016.

M. Wistuba, A. Kadra, and J. Grabocka. Supervising the multi-fidelity race of hyperparameter
configurations. In Proc. of NeurIPS’22, 2022.

Martin Wistuba and Josif Grabocka. Few-shot bayesian optimization with deep kernel surrogates.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021, 2021b.

M. Wortsman, G. Ilharco, S.r Yitzhak Gadre, R. Roelofs, R. Gontijo Lopes, A. S. Morcos,
H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, and L. Schmidt. Model soups: averag-
ing weights of multiple fine-tuned models improves accuracy without increasing inference time. In
Proc. of ICML’22, volume 162, pp. 23965–23998, 2022a.

M. Wortsman, G. Ilharco, J. W. Kim, M. Li, S. Kornblith, R. Roelofs, R. G. Lopes, H. Hajishirzi,
A. Farhadi, H. Namkoong, and L. Schmidt. Robust fine-tuning of zero-shot models. In Proc. of
CVPR’22, pp. 7949–7961, 2022b.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural
networks? In Proc. of NeurIPS’14, pp. 3320–3328, 2014.

K. You, Z. Kou, M. Long, and J. Wang. Co-tuning for transfer learning. In Proc. of NeurIPS’20, pp.
17236–17246, 2020.

K. You, Y. Liu, J. Wang, M. I. Jordan, and M. Long. Ranking and tuning pre-trained models:
A new paradigm of exploiting model hubs. CoRR, abs/2110.10545, 2021a. URL https:
//arxiv.org/abs/2110.10545.

K. You, Y. Liu, J. Wang, and M. Long. Logme: Practical assessment of pre-trained models for
transfer learning. In Proc. of ICML’21, pp. 12133–12143, 2021b.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 2403–2412,
2018.

J. Zhong, X. Wang, Z. Kou, J. Wang, and M. Long. Bi-tuning of pre-trained representations. arXiv
preprint arXiv:2011.06182, 2020.

14

https://meta-album.github.io/
https://meta-album.github.io/
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://arxiv.org/abs/2110.10545
https://arxiv.org/abs/2110.10545

Published as a conference paper at ICLR 2024

A ALGORITHMIC DETAILS

A.1 NORMALIZED REGRET

Given an observed performance y, the normalized regret is computed per datasets as follows:

ynorm =
ymax − y

ymax − ymin
(7)

where ymax, ymin in Equation 7 are respectively the maximum and minimum performances in the
meta-dataset.

A.2 ADDITIONAL SET-UP DETAILS

The categorical encoder of the model is a linear layer with 4 output neurons, while the learning curve
embedding is generated from a convolutional neural network with two layers. For the rest of the
hyperparameters of the deep-kernel Gaussian process surrogate and the acquisition function, we
followed the settings described in the respective publication (Wistuba et al., 2022) and always used
the setup suggested from the authors unless specified otherwise. We use the Synetune library (Salinas
et al., 2022) for the implementation of the baselines.

A.3 META-TRAINING ALGORITHMS

We present the procedure for meta-training the cost and loss predictors in Algorithm 2. Initially,
we sample random batches after choosing a dataset randomly within our meta-dataset, and then we
update the parameters of each predictor so that it minimizes their respective losses. The same strategy
is used when updating during BO but with fewer iterations. We meta-train for 10000 iterations using
the Adam Optimizer with a learning rate of 0.0001.

Algorithm 2: Meta-training Algorithm

Input: Metadata with precomputed losses and costH(M) with datasets D = {d1, ..., dN},
learning rate µ, Epochs E

Output: Meta-learned parameters θ, γ
1 Random initialize parameters θ, γ for loss predictor ℓ̂(·) and cost predictor ĉ(·);
2 for i ∈ {1...E} do
3 Sample dataset index i ∼ U [1, |D|] and its metafeatures di;
4 Define the subset of history associated to di: Hi ⊂ H(M) : {(x, t, ℓ(x, t, di), c(x, t, di))} ;

5 Compute δθ = −∇θ

∑
(x,t,ℓ(x,t,di),·)∼Hi

[
log p

(
ℓ(x, t, di) | x, t, d, ℓ̂(x, t, di; θ)

)]
;

6 Compute δγ = ∇γ

∑
(x,t,·,c(x,t,di))∼Hi

[
c(x, t, di)− ĉ (x, t, di; γ)

]2
;

7 Update parameters θ = θ − µ · δθ, γ = γ − µ · δγ
8 end
9 θ(M) ← θ, γ(M) ← γ;

10 return θ(M), γ(M)

A.4 META-FEATURES

Similar to previous work (Öztürk et al., 2022), we use descriptive meta-features of the dataset: number
of samples, image resolution, number of channels, and number of classes. Any other technique for
embedding datasets is compatible and orthogonal with our approach.

A.5 PIPELINE ENCODING

Our pipeline encoding is the concatenation of the hyperparameters λi, the embedding of the model
name Emodel(mi), and the embedding of the learning curves. Given the performance curve τ(xi, t),

15

Published as a conference paper at ICLR 2024

we obtain the respective embedding Eperf(τ(xi, t)) using a 2-layer convolutional networks following
a similar setup from previous work (Wistuba et al., 2022). For obtaining the model embedding, we
transform the model names into one-hot-encoding and feed this representation into a linear layer
(Pineda Arango & Grabocka, 2023). The pipeline encoding is finally defined as:

Pipeline Encodig(xi) = [λi, Emodel(mi), Eperf(τ(x, t))] (8)

The parameters of the encoders Emodel(·), Eperf(·) are jointly updated during meta-training and while
fitting the predictors during BO.

B META-DATASET DETAILS

B.1 META-DATASET COMPOSITION DETAILS

While generating the meta-dataset, we take into account the dependencies of the conditional hy-
perparameters. Every triple (model, dataset, hyperparameter configuration) resulted in a finetuning
optimization run that produced a validation error and cost curves. A few of the combinations are
infeasible to evaluate due to the model size, thus some triples can have fewer evaluations. For
instance, some pipelines failed due to the GPU requirements demanded by the number of parameters
of the model and the number of classes of the datasets. In that case, we decreased the batch size
iteratively, halving the value, until it fits to the GPU. In some cases, this strategy was not enough,
thus some models have more evaluations than others. In Table 4, we present the list of datasets per
set and indicate the heavy datasets with a (*), i.e. with a lot of classes or a lot of samples in the
extended version. The majority of the datasets are present in all three versions of Meta-Album, except
the underlined ones, which are not present in the extended version. The OpenML Ids associated
to the datasets are listed in Table 5. Table 6 provides descriptive statistics regarding the generated
meta-dataset for every corresponding Meta-Album version.

Table 4: Datasets per Set in Meta-Album

Set Dataset Names

0 BCT, BRD*, CRS, FLW, MD_MIX, PLK*, PLT_VIL*, RESISC, SPT, TEX
1 ACT_40, APL, DOG, INS_2*, MD_5_BIS, MED_LF, PLT_NET*, PNU, RSICB, TEX_DTD
2 ACT_410, AWA*, BTS*, FNG, INS*, MD_6, PLT_DOC, PRT, RSD*, TEX_ALOT*

Table 5: OpenML IDs for Datasets per Split and Version

Version Set 0 Set 1 Set 2

Micro
44241, 44238, 44239, 44242,
44237, 44246, 44245, 44244,
44240, 44243

44313, 44248, 44249, 44314,
44312, 44315, 44251, 44250,
44247, 44252

44275, 44276, 44272, 44273,
44278, 44277, 44279, 44274,
44271, 44280

Mini
44285, 44282, 44283, 44286,
44281, 44290, 44289, 44288,
44284, 44287

44298, 44292, 44293, 44299,
44297, 44300, 44295, 44294,
44291, 44296

44305, 44306, 44302, 44303,
44308, 44307, 44309, 44304,
44301, 44310

Extended
44320, 44317, 44318, 44321,
44316, 44324, 44323, 44322,
44319

44331, 44326, 44327, 44332,
44330, 44333, 44329, 44328,
44325

44338, 44340, 44335, 44336,
44342, 44341, 44343, 44337,
44334

Table 6: Quick-Tune Composition

Meta-Dataset Number of Tasks Number of Curves Total Epochs Total Run Time
Micro 30 8.712 371.538 2.076 GPU Hours
Mini 30 6.731 266.384 6.049 GPU Hours

Extended 26 4.665 105.722 15.866 GPU Hours

16

Published as a conference paper at ICLR 2024

B.2 HYPERPARAMETER SEARCH SPACE

Table 7: Detailed Search Space for Curve Generation. Bold font indicates the default configuration.

Hyperparameter
Group Name Options Conditional

Fine-Tuning
Strategies

Percentage to freeze 0, 0.2, 0.4, 0.6, 0.8, 1
Layer Decay None, 0.65, 0.75 -
Linear Probing True, False -
Stochastic Norm True, False -
SP-Regularization 0, 0.0001, 0.001, 0.01, 0.1 -
DELTA Regularization 0, 0.0001, 0.001, 0.01, 0.1 -
BSS Regularization 0, 0.0001, 0.001, 0.01, 0.1 -
Co-Tuning 0, 0.5, 1, 2, 4 -

Regularization
Techniques

MixUp 0, 0.2, 0.4, 1, 2, 4, 8
MixUp Probability 0, 0.25, 0.5, 0.75, 1 -
CutMix 0, 0.1, 0.25, 0.5, 1,2,4 -
DropOut 0, 0.1, 0.2, 0.3, 0.4 -
Label Smoothing 0, 0.05, 0.1 -
Gradient Clipping None, 1, 10 -

Data
Augmentation

Data Augmentation
None, trivial_augment,
random_augment,
auto_augment

-

Auto Augment None, v0, original -

Number of Operations 2,3 Data Augmentation
(Random Augment)

Magnitude 9, 17 Data Augmentation
(Random Augment)

Optimizer Related

Optimizer Type
SGD, SGD+Momentum,
Adam, AdamW,
Adamp

-

Betas (0.9, 0.999), (0, 0.99),
(0.9, 0.99), (0, 0.999)

Scheduler Type
(Adam, Adamw,
Adamp)

Learning Rate 0.1,0.01, 0.005, 0.001, 0.0005,
0.0001, 0.00005, 0.00001 -

Warm-Up Learning Rate 0, 0.000001, 0.00001 -

Weight Decay 0, 0.00001, 0.0001,
0.001, 0.01,0.1 -

Batch Size 2,4,8,16,32,64,128,256,512 -

Momeutm 0, 0.8, 0.9, 0.95, 0.99 Optimizer Type
(SGD+Momentum)

Scheduler Related

Scheduler Type None, Cosine, Step, Multistep,
Plateau -

Patience 2,5 Scheduler Type
(Plateau)

Decay Rate 0.1, 0.5 Scheduler Type
(Step, Multistep)

Decay Epochs 10, 20 Scheduler Type
(Step, Multistep)

Model Model See Table 8

Table 7 shows the complete search space of hyperparameters. During the curve generation, we sample
uniformly among these discrete values. Some hyperparameters are conditional, i.e. their are only

17

Published as a conference paper at ICLR 2024

present when another hyperparameter gets a specific set of values. Thus, we also list explicitly which
are the conditions for such hyperparameters.

We report the hyperparameters for the default configuration in Experiment 1 by using a bold font in
Table 7.

B.3 MODEL HUB

We list all the models on the Pareto Front from Timm’s library as provided on version 0.7.0dev0.
Moreover, we report their size (number of parameters) and the top-1 accuracy in ImageNet.

Table 8: Models on the pareto front

Model Name No. of Param. Top-1 Acc.
beit_large_patch16_512 305.67 90.691

volo_d5_512 296.09 90.610
volo_d5_448 295.91 90.584
volo_d4_448 193.41 90.507

swinv2_base_window12to24_192to384_22kft1k 87.92 90.401
beit_base_patch16_384 86.74 90.371

volo_d3_448 86.63 90.168
tf_efficientnet_b7_ns 66.35 90.093

convnext_small_384_in22ft1k 50.22 89.803
tf_efficientnet_b6_ns 43.04 89.784

volo_d1_384 26.78 89.698
xcit_small_12_p8_384_dist 26.21 89.515

deit3_small_patch16_384_in21ft1k 22.21 89.367
tf_efficientnet_b4_ns 19.34 89.303

xcit_tiny_24_p8_384_dist 12.11 88.778
xcit_tiny_12_p8_384_dist 6.71 88.101

edgenext_small 5.59 87.504
xcit_nano_12_p8_384_dist 3.05 85.025

mobilevitv2_075 2.87 82.806
edgenext_x_small 2.34 81.897

mobilevit_xs 2.32 81.574
edgenext_xx_small 1.33 78.698

mobilevit_xxs 1.27 76.602
dla46x_c 1.07 73.632

C ADDITIONAL EXPERIMENT: QUICK-TUNE ON DATASETS OUTSIDE
META-ALBUM

Meta-album contains a broad set of datasets, ranging from small-size datasets with 20 samples per
class and 20 classes, to more than 700 classes with up to 1000 samples per class. Moreover, it offers a
diverse set of domains that foster a strong benchmarking of image classification methods. To further
verify the generalization outside the curated datasets present in Meta-Album, we run experiments
on two well-known datasets that are not present in Meta-Album. Initially, we run Quick-Tune on
Imagenette (Howard, 2019) by using a time budget of 4 hours. Additionally, we run Quick-Tune it
on Inaturalist (Horn et al., 2021) with a time budget of 16 hours. Finally, we transfer the estimators
meta-learned on the mini and extended splits respectively. We compare the results to the same
gray-box HPO baselines as Hypothesis 2. The selection of the budget and the transferred estimators
is based on the similarity of each dataset size to the corresponding Meta-Album super-set.

18

Published as a conference paper at ICLR 2024

0 5000 10000 15000
Wallclock Time (s)

10 3

10 2

10 1

100

N
or

m
al

iz
ed

 R
eg

re
t

imagenette2-320

0 20000 40000
Wallclock Time (s)

10 1

100
inaturalist

QuickTune DyHPO ASHA DEHB BOHB

Figure 7: Evaluation of Quick-Tune on Datasets outside Meta-Album.

D DETAILS ON DINOV2 EXPERIMENT

D.1 FINETUNING LAST LAYER IN DINOV2

A common practice is to use large feature extractors as the backbone and just train a linear output
layer. We argue that selecting the model from a pool and optimizing its hyperparameters jointly is a
more effective approach. Firstly, large backbones are often all-purpose models that may be inferior to
model hubs when downstream tasks deviate largely from the backbone pretraining and may require
non-trivial finetuning hyperparameter adaptations. As such, individual large models may violate the
diversity property observed in our third hypothesis above. Secondly, due to their large number of
parameters, they are expensive to optimize.

103 105

Wallclock Time (s)

10 2

10 1

100

N
or

m
al

iz
ed

 R
eg

re
t

Micro

103 105

Wallclock Time (s)

10 3

10 2

10 1

100
Mini

103 105

Wallclock Time (s)

10 3

10 2

10 1

100
Extended

QuickTune DINOv2QuickTune DINOv2QuickTune DINOv2

Figure 8: Results for finetuning the last layer of DINOv2. We relax the efficiency conditions by
allowing a bigger time budget but still limited to 1 GPU.

To verify that selecting a model from a model hub with Quick-Tune is a more effective approach
than using an all-purpose model, we compare to DINOv2 (Oquab et al., 2023) According to the
method’s linear evaluation protocol, the procedure to classify downstream tasks with pretrained
DINOv2 involves performing a small grid search over a subset of its finetuning hyperparameters
(104 configurations in total including learning rate, number of feature extraction layers, etc.). We
adopt this grid search in our comparison, evaluating all the hyperparameter configurations on the grid.
For each meta-album version, we then compare the normalized regret against the wall-clock time
between DINOv2 and Quick-Tune. For the experiment, we increase Quick-Tune’s budget to match
DINOv2’s budget requirements since the evaluation of the full grid of DINOv2 requires more time
than our previous experiments. In Figure 8, we present the results of our comparison, where, our
method manages to outperform DINOv2 in all the considered benchmarks, highlighting the benefits
of our designed search space.

19

Published as a conference paper at ICLR 2024

While performing our comparison, a small minority of the DINOv2 runs failed due to GPU memory
limitations, and for a few runs, we had to minimally adjust the DINOv2 default hyperparameter
configurations "n_last_blocks" to adapt to our GPU memory limitation. Tables 9, 10, 11 depict for
which of the datasets we ran with the default hyperparameter configurations according to (Oquab
et al., 2023) and which we adapted due to the single-GPU constraint (RTX2080). Runs indicated
with "*" failed due to GPU memory limitations and for runs indicated by "n_last_blocks = 1" we
ran with the default hyperparameters except for the "n_last_blocks" argument that had to be changed
from 4 to 1 to fit on the GPU.

Table 9: Subset Micro

Dataset Linear Eval. Hyp.
micro_set0_BCT DINOv2 default
micro_set0_BRD DINOv2 default
micro_set0_CRS DINOv2 default
micro_set0_FLW DINOv2 default

micro_set0_MD_MIX DINOv2 default
micro_set0_PLK DINOv2 default

micro_set0_PLT_VIL DINOv2 default
micro_set0_RESISC DINOv2 default

micro_set0_SPT DINOv2 default
micro_set0_TEX DINOv2 default

micro_set1_ACT_40 DINOv2 default
micro_set1_APL DINOv2 default
micro_set1_DOG DINOv2 default
micro_set1_INS_2 DINOv2 default

micro_set1_MD_5_BIS DINOv2 default
micro_set1_MED_LF DINOv2 default
micro_set1_PLT_NET DINOv2 default

micro_set1_PNU DINOv2 default
micro_set1_RSICB DINOv2 default

micro_set1_TEX_DTD DINOv2 default
micro_set2_ACT_410 DINOv2 default

micro_set2_AWA DINOv2 default
micro_set2_BTS DINOv2 default
micro_set2_FNG DINOv2 default
micro_set2_INS DINOv2 default

micro_set2_MD_6 DINOv2 default
micro_set2_PLT_DOC DINOv2 default

micro_set2_PRT DINOv2 default
micro_set2_RSD DINOv2 default

micro_set2_TEX_ALOT DINOv2 default

Table 10: Subset Mini

Dataset Linear Eval. Hyp.
mini_set0_BCT DINOv2 default
mini_set0_BRD n_last_blocks=1
mini_set0_CRS n_last_blocks=1
mini_set0_FLW DINOv2 default

mini_set0_MD_MIX n_last_blocks=1
mini_set0_PLK DINOv2 default

mini_set0_PLT_VIL DINOv2 default
mini_set0_RESISC DINOv2 default

mini_set0_SPT DINOv2 default
mini_set0_TEX DINOv2 default

mini_set1_ACT_40 DINOv2 default
mini_set1_APL DINOv2 default
mini_set1_DOG n_last_blocks=1
mini_set1_INS_2 n_last_blocks=1

mini_set1_MD_5_BIS n_last_blocks=1
mini_set1_MED_LF DINOv2 default
mini_set1_PLT_NET DINOv2 default

mini_set1_PNU DINOv2 default
mini_set1_RSICB DINOv2 default

mini_set1_TEX_DTD DINOv2 default
mini_set2_ACT_410 DINOv2 default

mini_set2_AWA DINOv2 default
mini_set2_BTS DINOv2 default
mini_set2_FNG DINOv2 default
mini_set2_INS n_last_blocks=1

mini_set2_MD_6 n_last_blocks=1
mini_set2_PLT_DOC DINOv2 default

mini_set2_PRT DINOv2 default
mini_set2_RSD DINOv2 default

mini_set2_TEX_ALOT n_last_blocks=1

Table 11: Subset Extended

Dataset Linear Eval. Hyp.
extended_set0_BCT n_last_blocks=1
extended_set0_CRS n_last_blocks=1
extended_set0_FLW n_last_blocks=1

extended_set0_RESISC n_last_blocks=1
extended_set0_SPT n_last_blocks=1
extended_set0_TEX n_last_blocks=1

extended_set1_ACT_40 DINOv2 default
extended_set1_APL n_last_blocks=1
extended_set1_DOG n_last_blocks=1

extended_set2_ACT_410 DINOv2 default
extended_set2_PLT_DOC DINOv2 default

extended_set0_BRD *
extended_set0_PLK *

extended_set0_PLT_VIL *
extended_set1_INS_2 *

extended_set1_MED_LF n_last_blocks=1
extended_set1_PLT_NET *

extended_set1_PNU n_last_blocks=1
extended_set1_RSICB *

extended_set1_TEX_DTD n_last_blocks=1
extended_set2_AWA *
extended_set2_BTS *
extended_set2_FNG n_last_blocks=1
extended_set2_PRT n_last_blocks=1
extended_set2_RSD *

extended_set2_TEX_ALOT n_last_blocks=1
extended_set2_INS *

D.2 DINOV2 EFFICIENT FINETUNING WITH LORA

As an alternative, instead of the infeasible full finetuning, we finetune DINOv2 with LoRA [2], which
is a state-of-the-art method for finetuning transformer models (such as DINOv2). LoRA demands ca.
1% of the parameters of the full finetuning strategy and fits into our GPU restrictions for most of the
datasets. Furthermore, LoRA is reported to achieve similar or better performance compared to full
finetuning [2].

We stress that even with LoRA, the large DINOv2 model (1B params) exceeds our GPU memory
capacity in some datasets. Thus, we present the results of the experiments in Table 3 with the datasets
that DINOv2 were successfully trained, namely: 30 datasets for micro, 20 datasets for mini, and 4
datasets for extended. We report results for 4 Hours (4H) and 24 Hours (24H) of total budget where
QuickTune outperforms both alternatives of finetuning DINOv2.

20

	Introduction
	Related Work
	Motivation
	Quick-Tune: Cost-Efficient Finetuning
	Quick-Tune
	Performance and Cost Estimators
	Cost-sensitive Acquisition Function
	Meta-learning the Performance and Cost Estimators

	Quick-Tune Meta-Dataset
	 Quick-Tune Search Space
	Meta-Dataset Generation

	Experiments and Results
	Quick-Tune Protocol
	Research Hypotheses and Associated Experiments

	Conclusion
	Acknowledgement
	Algorithmic Details
	Normalized Regret
	Additional Set-Up Details
	Meta-training Algorithms
	Meta-Features
	Pipeline Encoding

	Meta-Dataset Details
	Meta-Dataset Composition Details
	Hyperparameter Search Space
	Model Hub

	Additional Experiment: Quick-Tune on Datasets outside Meta-Album
	Details on DinoV2 Experiment
	Finetuning last layer in DinoV2
	DinoV2 Efficient Finetuning with LoRA

