
Please see our project website at https://view-invariant-policy.github.io/ for videos422

and additional visualizations.423

A Details of Model Implementations424

All novel view synthesis methods that we consider generate novel views at a resolution of 256×256425

given RGB images at a resolution of 256× 256. The synthesized images are later downsampled for426

policy training.427

A.1 ZeroNVS428

We use the implementation and pretrained checkpoint provided by Sargent et al. [8]. As mentioned429

in Section A, although ZeroNVS largely produces reasonable views even zero-shot, it can sometimes430

produce images with significant visual artifacts. To filter these out, we reject and resample images431

that have a LPIPS [35] distance larger than a hyperparameter η from the input image. We set η = 0.5432

for all simulated experiments and η = 0.7 for real experiments. We do not extensively tune this433

hyperparameter. If the model fails to produce an image with distance < η after 5 tries, the original434

image is returned.435

ZeroNVS also requires as input a scene scale parameter. To determine the value of the scene436

scale for simulated experiments, we perform view synthesis using the pretrained ZeroNVS check-437

point on a set of 100 test trajectories for the lift and threading environments, and compute the438

LPIPS score between the ZeroNVS rendered images and ground truth simulator renders for values439

{0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}. We find that the lowest error across440

the tasks is achieved at 0.6 and thus use 0.6 for all environments, including the real robot experi-441

ments.442

While the behavior of the ZeroNVS model is somewhat sensitive to scene scale, we believe this443

may be alleviated by selecting a wider viewpoint randomization radius at training time, which is444

corroborated by our real robot experiments.445

When sampling, we perform 250 DDIM steps and use a DDIM η of 1.0. We use a field of view446

(FOV) of 45 degrees for simulated experiments (obtained from the simulator camera parameters)447

and FOV of 70 degrees for the real world experiments (obtained from the Zed 2 camera datasheet).448

It takes on average 8.7 seconds to generate a single 256 × 256 image with ZeroNVS using these449

settings on a single NVIDIA RTX 3090 GPU.450

A.2 Depth estimation + Reprojection baseline451

This baseline represents a geometry-based approach that leverages depth estimation models trained452

on large-scale, diverse data.453

First, we use ZoeDepth (ZoeD NK) [40], an off-the-shelf model, to perform metric depth esti-454

mation on the input RGB image. Next, we deproject the images into pointclouds using a pin-455

hole camera model. We rasterize an image from the points using the Pytorch3D point raster-456

izer [43], setting each point to have a radius of 0.007 and 8 points per pixel. Finally, we use457

a publicly available Stable Diffusion inpainting model (https://huggingface.co/runwayml/458

stable-diffusion-inpainting) to inpaint regions that are empty after rasterization. We use 50459

denoising steps as per the defaults.460

It takes on average 2.8 seconds to generate a single 256 × 256 image with this baseline on a single461

NVIDIA RTX 3090 GPU.462

A.3 PixelNeRF463

For PixelNeRF [22], we use the implementation from the original authors at https://github.464

com/sxyu/pixel-nerf. We use a pretrained model trained on the same datasets as ZeroNVS [8].465

12

https://view-invariant-policy.github.io/
https://huggingface.co/runwayml/stable-diffusion-inpainting
https://huggingface.co/runwayml/stable-diffusion-inpainting
https://huggingface.co/runwayml/stable-diffusion-inpainting
https://github.com/sxyu/pixel-nerf
https://github.com/sxyu/pixel-nerf
https://github.com/sxyu/pixel-nerf

Original View

Figure 7: Example ground truth viewpoints from the “perturbation” distribution for the Lift task, rendered by
the simulator.

It takes on average 5.8 seconds to generate a single 256× 256 with PixelNeRF on a single NVIDIA466

RTX 3090 GPU.467

B Simulated Experimental Details468

Here we provide details regarding the simulated experimental setup. As a high level goal, we aim469

to minimize differences from our setup from existing robotic learning pipelines to demonstrate how470

this augmentation technique can be generally and easily applied across setups.471

B.1 Simulation Environments and Datasets472

Our simulated experiments use environments created in the MuJoCo simulator and packaged by the473

robosuite [44] and MimicGen [39] frameworks.474

For the Lift, PickPlaceCan, and Nut Assembly tasks, the training datasets are the Proficient-Human475

datasets for those tasks from robomimic [36] and consist of 200 expert demonstrations each. For476

all MimicGen tasks (Threading, Hammer Cleanup, Coffee, Stack) the datasets consist of the first477

200 expert trajectories for the “core” MimicGen-generated datasets, downloaded from https://478

github.com/NVlabs/mimicgen_environments.479

B.2 Details for Training and Test Viewpoints480

We use the same distribution of viewpoints at training time for augmenting the dataset and when481

testing the policies. Note, however, that images generated by novel view synthesis models are not482

guaranteed to actually be from the target viewpoint – only the oracle that uses the simulator to render483

the scene satisfies this.484

B.2.1 Perturbations485

This set of viewpoints are representative of incremental changes, for instance, that of a physical cam-486

era drifting over time or subject to unintentional physical disturbance. Specifically, this distribution487

is parameterized by a random translation ∆t ∼ N (0, diag(σ2
t)) and rotation around a uniformly488

randomly sampled 3D axis, where the magnitude is sampled from N (0, σr
2). Specifically, we set489

σt = 0.03 m and σr = 0.075 rad. Samples of observations taken from viewpoints drawn from this490

distribution are shown in Figure 7.491

13

https://github.com/NVlabs/mimicgen_environments
https://github.com/NVlabs/mimicgen_environments
https://github.com/NVlabs/mimicgen_environments

Original View

Figure 8: Example ground truth viewpoints from the “quarter circle arc” distribution for the Lift task, rendered
by the simulator.

B.2.2 Quarter Circle Arc492

This is a more challenging distribution of camera poses with a real-world analogue to constructing493

another view of a given scene. We first compute a sphere centered at the robot base and containing494

the initial camera pose. We then sample camera poses on the sphere at the same z height and495

within a 90◦ azimuthal angle of the starting viewpoint. The radius of the sphere is further randomly496

perturbed with Gaussian noise with variance σ2
r . Specifically, the radius of the sphere is 0.7106 m497

for all simulated environments, which is the distance between the camera and the robot base in the498

Lift task, and σr = 0.05 m.499

B.3 Finetuning ZeroNVS on MimicGen Datasets500

We finetune the ZeroNVS model on datasets from the MimicGen data of 8 tasks: stack three,501

square, three piece assembly, mug cleanup, pick place can, nut assembly, kitchen,502

and coffee prep. For each environment, we take the first 200 trajectories of the “core” MimicGen503

dataset for that task with the maximum initialization diversity (e.g. if Square is available in variants504

D0, D1, and D2, we take D2) and simulate 10 random viewpoints from the quarter circle arc distri-505

bution for each image in the dataset. We supply this as training data to ZeroNVS, using the training506

settings from the original ZeroNVS paper but changing the optimizer from AdamW to Adam and507

decreasing the learning rate to 2.5e-5, and decreasing the batch size to 512 due to computational508

constraints. We finetune the model for 5000 steps using four NVIDIA L40S GPUs.509

B.4 Policy Learning510

We use the same policy training settings for all simulated experiments, taken from the behavior511

cloning implementation in robomimic. The output of the policy network is a Gaussian mixture512

model. A brief overview of hyperparameters, corresponding directly to robomimic configuration513

file keys, are listed in Table 4. Note that we do not tune these hyperparameters and simply use them514

as sensible defaults. We train each policy using a single NVIDIA TITAN RTX GPU.515

14

Hyperparameter Value

Batch size 16
Optimizer steps per epoch 500
Training epochs 600
Input image resolution 84× 84
Augmentation Random crop (84× 84 → 76× 76)
Optimizer Adam
Learning rate 1e-4
Actor layer dimensions 1024, 1024
GMM num modes 5
GMM min std 0.0001
GMM std activation softplus
Visual encoder backbone Resnet18
Visual encoder feature dim 64
Visual encoder pooling Spatial softmax
Spatial softmax num kp 32
Spatial softmax temperature 1.0

Table 4: Behavior cloning hyperparameters for simulated experiments.

C Real World Experimental Details516

Next we provide details regarding the real world experimental setup. As a high level goal, we517

aim to minimize the differences from existing robotic learning pipelines to demonstrate how this518

augmentation technique can be generally and easily applied across setups.519

C.1 Real World Robot Setup520

We use a Franka Research 3 (FR3) robot in our real world experiments. The hardware setup is521

otherwise a replica of that introduced by Khazatsky et al. [7]. Specifically, the robot is mounted to522

a mobile desk base (although we keep it fixed in our experiments) and two ZED 2 stereo cameras523

provide observations for the robot. An overview of the real-world robot setup is shown in Figure 9.524

Original
camera view

Novel view
Camera 5

Figure 9: Experimental setup for real robot
evaluation. Here we show the testing setup
for one particular novel camera view, camera
5. The original camera view that data was
collected using is shown by the orange arrow.
We use the left camera of each stereo pair.

We use a Meta Quest 2 controller (also as per the525

DROID hardware setup) to collect teleoperated ex-526

pert demonstrations. We collect 150 human expert527

demonstrations of the place cup on saucer task,528

randomizing the position of the cup and saucer after529

each task. Each demonstration trajectory lasts ap-530

proximately 15 seconds of wall clock time.531

When performing evaluations, we score task com-532

pletion based on two stages: 1) Reaching the cup533

in a grasp attempt based on determination by a hu-534

man rater and 2) Completing the task, which means535

that the cup is above and touching the surface of the536

saucer at some point during the trajectory.537

C.2 Finetuning538

ZeroNVS on the DROID Dataset539

To finetune ZeroNVS on the DROID dataset, we first540

collect a random subset of 3000 trajectories from the541

DROID dataset. Then, for each trajectory, we uni-542

formly randomly sample 10 timestamps from the du-543

15

ration of the video, and consider the trajectory frozen544

at each of those times as a “scene”. Thus, we effectively have 30000 scenes. For each scene, we545

extract 4 views, which correspond to stereo images from the two external cameras. Although the546

DROID dataset does contain wrist camera data, we do not use it, as the wrist camera poses are much547

more challenging for synthesizing novel views.548

We then perform depth estimation for each image using a stereo depth model. We then center crop549

all images to be square, and resize them to 256×256 to fit the existing ZeroNVS models. We obtain550

camera extrinisics from the DROID dataset, and use simplified intrinsics assuming a camera FOV551

of 68 degrees for all cameras, which we obtained from a single randomly sampled camera in the552

dataset. In reality, the FOV differs slightly for each camera due to hardware differences, and slightly553

better results may be obtained by using per-camera intrinsics.554

As in the simulated finetuning experiments, we again use the training settings from the original555

ZeroNVS paper but change the optimizer from AdamW to Adam and decrease the learning rate to556

2.5e-5, and decrease the batch size to 512 due to computational constraints. We use 29000 scenes557

for training and 1000 for validation. As an attempt to reduce overfitting, we mix in a single shard558

of 50 scenes each from the CO3D and ACID datasets which are sampled for each training sample559

with probability 0.025 each. DROID data is sampled with probability 0.95. We did not extensively560

validate the effect of this data mixing due to computational cost of finetuning the model repeatedly,561

and it is likely unnecessary. We finetune the model for 14500 steps using four NVIDIA L40S GPUs.562

C.3 Policy Learning563

Training augmentation viewpoints. For the real world experiments, we do not have access to564

the test viewpoint distribution. To sample viewpoints for ZeroNVS data augmentations for these565

experiments, we sample from a distribution parameterized in the same way as the “perturbation”566

range in the simulated experiments, but with a vastly increased variance in translation and rotation567

magnitude intending to cover a wide range of possible test viewpoints.568

This distribution is parameterized by a random translation ∆t ∼ N (0, diag(σ2
t)) and rotation around569

a uniformly randomly sampled 3D axis, where the magnitude is sampled from N (0, σr
2). Specifi-570

cally, we set σt = 0.15 m and σr = 0.375 rad.571

1 2 3 4 5

augmented transitions per original transition

0

20

40

60

80

100

S
u
cc

es
s

R
at

e

Effect of Additional Augmented Trajectories:
 Threading Quarter Circle Arc

Simulator (oracle)

ZeroNVS (MimicGen FT)

Figure 10: Results for ablation of number
of augmented transitions per original dataset
transitions. Overall, we see modest per-
formance improvements from increasing the
amount of augmented data, across both the
oracle and learned NVS model.

Policy learning. For policy learning on the real572

robot, we train diffusion policies [37]. Specifically,573

we use the implementation from the evaluation in574

the DROID paper [7] with language conditioning re-575

moved. The input images are of size 128 × 128,576

and both random color jitter and random crops (to577

116×116) are applied to the images during training.578

We train all policies for 100 epochs (50000 gradient579

steps), using 2 NVIDIA RTX 3090 or RTX A5000580

GPUs.581

D Additional Experiment582

D.1 Increasing583

Number of Augmented Transitions584

In the experiments presented in Section 5, we per-585

form data augmentation via novel view synthesis by586

doing offline preprocessing of the dataset, augment-587

ing and replacing each transition with a single augmented transition. However, many random data588

augmentation strategies for neural network training perform augmentation “on-the-fly”, applying589

augmentations to each particular batch. This increases the effective dataset size. Augmentation with590

16

novel view synthesis methods is too computationally expensive to apply per batch with our compu-591

tational budget, but we are still interested in understanding how the performance of trained policies592

is affected by increasing the number of augmented trajectories for each original dataset trajectory.593

For the threading task with viewpoints sampled from the “quarter circle arc” distribution, we594

trained policies on dataset containing 1, 2, 3, 4, and 5 augmented transitions per dataset transition595

for the simulator (oracle) and ZeroNVS (MimicGen finetuned) models.596

The results are shown in Figure 10. We find that increasing the number of augmented transitions597

per original dataset transition yields modest improvements with both models, although there is a598

surprising dip in performance when using 5 augmented transitions for the ZeroNVS (MimicGen599

finetuned) model.600

17

	Introduction
	Related Work
	Preliminaries
	Problem Statement
	Zero-Shot Novel View Synthesis from a Single Image

	Learning View Invariance with Zero-Shot Novel View Synthesis Models
	Experimental Analysis
	Conclusion and Limitations
	Details of Model Implementations
	ZeroNVS
	Depth estimation + Reprojection baseline
	PixelNeRF

	Simulated Experimental Details
	Simulation Environments and Datasets
	Details for Training and Test Viewpoints
	Perturbations
	Quarter Circle Arc

	Finetuning ZeroNVS on MimicGen Datasets
	Policy Learning

	Real World Experimental Details
	Real World Robot Setup
	Finetuning ZeroNVS on the DROID Dataset
	Policy Learning

	Additional Experiment
	Increasing Number of Augmented Transitions

