422
423

424

425
426
427

428

429

431
432
433
434

436
437
438

440
441
442

443
444
445

446
447
448

449
450

451

452
453

454
455

457
458
459
460

461
462

463

464
465

Please see our project website at https://view-invariant-policy.github.io/ for videos
and additional visualizations.

A Details of Model Implementations

All novel view synthesis methods that we consider generate novel views at a resolution of 256 x 256
given RGB images at a resolution of 256 x 256. The synthesized images are later downsampled for
policy training.

A.1 ZeroNVS

We use the implementation and pretrained checkpoint provided by Sargent et al. [8]. As mentioned
in Section A, although ZeroNVS largely produces reasonable views even zero-shot, it can sometimes
produce images with significant visual artifacts. To filter these out, we reject and resample images
that have a LPIPS [35] distance larger than a hyperparameter 7 from the input image. We setn = 0.5
for all simulated experiments and n = 0.7 for real experiments. We do not extensively tune this
hyperparameter. If the model fails to produce an image with distance < 7 after 5 tries, the original
image is returned.

ZeroNVS also requires as input a scene scale parameter. To determine the value of the scene
scale for simulated experiments, we perform view synthesis using the pretrained ZeroNVS check-
point on a set of 100 test trajectories for the 1ift and threading environments, and compute the
LPIPS score between the ZeroNVS rendered images and ground truth simulator renders for values
{0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95}. We find that the lowest error across
the tasks is achieved at 0.6 and thus use 0.6 for all environments, including the real robot experi-
ments.

While the behavior of the ZeroNVS model is somewhat sensitive to scene scale, we believe this
may be alleviated by selecting a wider viewpoint randomization radius at training time, which is
corroborated by our real robot experiments.

When sampling, we perform 250 DDIM steps and use a DDIM 7 of 1.0. We use a field of view
(FOV) of 45 degrees for simulated experiments (obtained from the simulator camera parameters)
and FOV of 70 degrees for the real world experiments (obtained from the Zed 2 camera datasheet).

It takes on average 8.7 seconds to generate a single 256 x 256 image with ZeroNVS using these
settings on a single NVIDIA RTX 3090 GPU.

A.2 Depth estimation + Reprojection baseline

This baseline represents a geometry-based approach that leverages depth estimation models trained
on large-scale, diverse data.

First, we use ZoeDepth (ZoeD_NK) [40], an off-the-shelf model, to perform metric depth esti-
mation on the input RGB image. Next, we deproject the images into pointclouds using a pin-
hole camera model. We rasterize an image from the points using the Pytorch3D point raster-
izer [43], setting each point to have a radius of 0.007 and 8 points per pixel. Finally, we use
a publicly available Stable Diffusion inpainting model (https://huggingface.co/runwayml/
stable-diffusion-inpainting) to inpaint regions that are empty after rasterization. We use 50
denoising steps as per the defaults.

It takes on average 2.8 seconds to generate a single 256 x 256 image with this baseline on a single
NVIDIA RTX 3090 GPU.

A.3 PixelNeRF

For PixelNeRF [22], we use the implementation from the original authors at https://github.
com/sxyu/pixel-nerf. We use a pretrained model trained on the same datasets as ZeroNVS [8].

12

https://view-invariant-policy.github.io/
https://huggingface.co/runwayml/stable-diffusion-inpainting
https://huggingface.co/runwayml/stable-diffusion-inpainting
https://huggingface.co/runwayml/stable-diffusion-inpainting
https://github.com/sxyu/pixel-nerf
https://github.com/sxyu/pixel-nerf
https://github.com/sxyu/pixel-nerf

466
467

468

469
470
471

472

473
474

475
476
477
478
479

481
482
483
484

485

486
487
488
489
490
491

Original View
D

Figure 7: Example ground truth viewpoints from the “perturbation” distribution for the Lift task, rendered by
the simulator.

It takes on average 5.8 seconds to generate a single 256 x 256 with PixeINeRF on a single NVIDIA
RTX 3090 GPU.

B Simulated Experimental Details

Here we provide details regarding the simulated experimental setup. As a high level goal, we aim
to minimize differences from our setup from existing robotic learning pipelines to demonstrate how
this augmentation technique can be generally and easily applied across setups.

B.1 Simulation Environments and Datasets

Our simulated experiments use environments created in the MuJoCo simulator and packaged by the
robosuite [44] and MimicGen [39] frameworks.

For the Lift, PickPlaceCan, and Nut Assembly tasks, the training datasets are the Proficient-Human
datasets for those tasks from robomimic [36] and consist of 200 expert demonstrations each. For
all MimicGen tasks (Threading, Hammer Cleanup, Coffee, Stack) the datasets consist of the first
200 expert trajectories for the “core” MimicGen-generated datasets, downloaded from https://
github.com/NVlabs/mimicgen_environments.

B.2 Details for Training and Test Viewpoints

We use the same distribution of viewpoints at training time for augmenting the dataset and when
testing the policies. Note, however, that images generated by novel view synthesis models are not
guaranteed to actually be from the target viewpoint — only the oracle that uses the simulator to render
the scene satisfies this.

B.2.1 Perturbations

This set of viewpoints are representative of incremental changes, for instance, that of a physical cam-
era drifting over time or subject to unintentional physical disturbance. Specifically, this distribution
is parameterized by a random translation At ~ N(0,diag(o?)) and rotation around a uniformly
randomly sampled 3D axis, where the magnitude is sampled from N(0, 0,.2). Specifically, we set
oy = 0.03 m and o, = 0.075 rad. Samples of observations taken from viewpoints drawn from this
distribution are shown in Figure 7.

13

https://github.com/NVlabs/mimicgen_environments
https://github.com/NVlabs/mimicgen_environments
https://github.com/NVlabs/mimicgen_environments

492

493
494
495
496
497
498
499

500

501
502
503
504
505
506
507
508
509

510

511
512
513
514
515

Original View

Figure 8: Example ground truth viewpoints from the “quarter circle arc” distribution for the Lift task, rendered
by the simulator.

B.2.2 Quarter Circle Arc

This is a more challenging distribution of camera poses with a real-world analogue to constructing
another view of a given scene. We first compute a sphere centered at the robot base and containing
the initial camera pose. We then sample camera poses on the sphere at the same z height and
within a 90° azimuthal angle of the starting viewpoint. The radius of the sphere is further randomly
perturbed with Gaussian noise with variance o2. Specifically, the radius of the sphere is 0.7106 m
for all simulated environments, which is the distance between the camera and the robot base in the
Lift task, and o,- = 0.05 m.

B.3 Finetuning ZeroNVS on MimicGen Datasets

We finetune the ZeroNVS model on datasets from the MimicGen data of 8 tasks: stack three,
square, three piece assembly, mug cleanup, pick place can, nut assembly, kitchen,
and coffee prep. For each environment, we take the first 200 trajectories of the “core” MimicGen
dataset for that task with the maximum initialization diversity (e.g. if Square is available in variants
D0, D1, and D2, we take D2) and simulate 10 random viewpoints from the quarter circle arc distri-
bution for each image in the dataset. We supply this as training data to ZeroNVS, using the training
settings from the original ZeroNVS paper but changing the optimizer from AdamW to Adam and
decreasing the learning rate to 2.5e-5, and decreasing the batch size to 512 due to computational
constraints. We finetune the model for 5000 steps using four NVIDIA L40S GPUs.

B.4 Policy Learning

We use the same policy training settings for all simulated experiments, taken from the behavior
cloning implementation in robomimic. The output of the policy network is a Gaussian mixture
model. A brief overview of hyperparameters, corresponding directly to robomimic configuration
file keys, are listed in Table 4. Note that we do not tune these hyperparameters and simply use them
as sensible defaults. We train each policy using a single NVIDIA TITAN RTX GPU.

14

Hyperparameter Value

Batch size 16
Optimizer steps per epoch 500
Training epochs 600
Input image resolution 84 x 84
Augmentation Random crop (84 x 84 — 76 x 76)
Optimizer Adam
Learning rate le-4
Actor layer dimensions 1024, 1024
GMM num modes 5
GMM min std 0.0001
GMM std activation softplus
Visual encoder backbone Resnet18
Visual encoder feature dim 64
Visual encoder pooling Spatial softmax
Spatial softmax num kp 32
Spatial softmax temperature 1.0

Table 4: Behavior cloning hyperparameters for simulated experiments.

st C Real World Experimental Details

517 Next we provide details regarding the real world experimental setup. As a high level goal, we
518 aim to minimize the differences from existing robotic learning pipelines to demonstrate how this
519 augmentation technique can be generally and easily applied across setups.

520 C.1 Real World Robot Setup

521 We use a Franka Research 3 (FR3) robot in our real world experiments. The hardware setup is
s22 otherwise a replica of that introduced by Khazatsky et al. [7]. Specifically, the robot is mounted to
523 a mobile desk base (although we keep it fixed in our experiments) and two ZED 2 stereo cameras
s24 provide observations for the robot. An overview of the real-world robot setup is shown in Figure 9.

525 We use a Meta Quest 2 controller (also as per the
s26 DROID hardware setup) to collect teleoperated ex- Novel view Original

527 pert demonstrations. We collect 150 human expert Camera 5, camera view
528 demonstrations of the place cup on saucer task, __
520 randomizing the position of the cup and saucer after
s30 each task. Each demonstration trajectory lasts ap-
531 proximately 15 seconds of wall clock time.

532 When performing evaluations, we score task com-
533 pletion based on two stages: 1) Reaching the cup
534 in a grasp attempt based on determination by a hu-
535 man rater and 2) Completing the task, which means
536 that the cup is above and touching the surface of the
537 saucer at some point during the trajectory.

s38 C.2 Finetuning

sas ZeroNVS on the DROID Dataset Figure 9: Experimental setup for real robot
evaluation. Here we show the testing setup

ss0 To finetune ZeroNVS on the DROID dataset, we first for one particular novel camera view, camera
541 collect a random subset of 3000 trajectories from the 5. The original camera view that data was
s2 DROID dataset. Then, for each trajectory, we uni- collected using is shown by the orange arrow.
543 formly randomly sample 10 timestamps from the du- We use the left camera of each stereo pair.

15

544
545
546
547
548

549
550

552
553
554

555
556
557
558
559

561
562

563

564
565
566
567
568

569
570
571

572
573
574
575

577
578
579
580

582

583
584

585
586
587
588
589
590

ration of the video, and consider the trajectory frozen

at each of those times as a “scene”. Thus, we effectively have 30000 scenes. For each scene, we
extract 4 views, which correspond to stereo images from the two external cameras. Although the
DROID dataset does contain wrist camera data, we do not use it, as the wrist camera poses are much
more challenging for synthesizing novel views.

We then perform depth estimation for each image using a stereo depth model. We then center crop
all images to be square, and resize them to 256 x 256 to fit the existing ZeroNVS models. We obtain
camera extrinisics from the DROID dataset, and use simplified intrinsics assuming a camera FOV
of 68 degrees for all cameras, which we obtained from a single randomly sampled camera in the
dataset. In reality, the FOV differs slightly for each camera due to hardware differences, and slightly
better results may be obtained by using per-camera intrinsics.

As in the simulated finetuning experiments, we again use the training settings from the original
ZeroNVS paper but change the optimizer from AdamW to Adam and decrease the learning rate to
2.5e-5, and decrease the batch size to 512 due to computational constraints. We use 29000 scenes
for training and 1000 for validation. As an attempt to reduce overfitting, we mix in a single shard
of 50 scenes each from the CO3D and ACID datasets which are sampled for each training sample
with probability 0.025 each. DROID data is sampled with probability 0.95. We did not extensively
validate the effect of this data mixing due to computational cost of finetuning the model repeatedly,
and it is likely unnecessary. We finetune the model for 14500 steps using four NVIDIA L40S GPUs.

C.3 Policy Learning

Training augmentation viewpoints. For the real world experiments, we do not have access to
the test viewpoint distribution. To sample viewpoints for ZeroNVS data augmentations for these
experiments, we sample from a distribution parameterized in the same way as the “perturbation”
range in the simulated experiments, but with a vastly increased variance in translation and rotation
magnitude intending to cover a wide range of possible test viewpoints.

This distribution is parameterized by a random translation At ~ A/(0, diag(c?)) and rotation around
a uniformly randomly sampled 3D axis, where the magnitude is sampled from N(0, 0,.2). Specifi-
cally, we set 0y = 0.15 m and o, = 0.375 rad.

Effect of Additional Augmented Trajectories:

Policy learning. For policy learning on the real Threading Quarter Circle Arc

robot, we train diffusion policies [37]. Specifically, "

we use the implementation from the evaluation in —F— Simulator (oracle)

the DROID paper [7] with language conditioning re- ZeroNVS (MimicGen FT)
moved. The input images are of size 128 x 128,

and both random color jitter and random crops (to M
116 x 116) are applied to the images during training.
We train all policies for 100 epochs (50000 gradient

steps), using 2 NVIDIA RTX 3090 or RTX A5000
GPUs.

Success Rate

D Additional Experiment # augmented transitions per original transition

Figure 10: Results for ablation of number
of augmented transitions per original dataset
transitions. Overall, we see modest per-

In th . din Section 5 formance improvements from increasing the
n the experiments p resegte mn e_Ctlon ’ we.per- amount of augmented data, across both the
form data augmentation via novel view synthesis by rscle and learned NVS model.

doing offline preprocessing of the dataset, augment-

ing and replacing each transition with a single augmented transition. However, many random data
augmentation strategies for neural network training perform augmentation “on-the-fly”, applying
augmentations to each particular batch. This increases the effective dataset size. Augmentation with

D.1 Increasing
Number of Augmented Transitions

16

591
592
593

594
595
596

598
599
600

novel view synthesis methods is too computationally expensive to apply per batch with our compu-
tational budget, but we are still interested in understanding how the performance of trained policies
is affected by increasing the number of augmented trajectories for each original dataset trajectory.

For the threading task with viewpoints sampled from the “quarter circle arc” distribution, we
trained policies on dataset containing 1, 2, 3, 4, and 5 augmented transitions per dataset transition
for the simulator (oracle) and ZeroNVS (MimicGen finetuned) models.

The results are shown in Figure 10. We find that increasing the number of augmented transitions
per original dataset transition yields modest improvements with both models, although there is a
surprising dip in performance when using 5 augmented transitions for the ZeroNVS (MimicGen
finetuned) model.

17

	Introduction
	Related Work
	Preliminaries
	Problem Statement
	Zero-Shot Novel View Synthesis from a Single Image

	Learning View Invariance with Zero-Shot Novel View Synthesis Models
	Experimental Analysis
	Conclusion and Limitations
	Details of Model Implementations
	ZeroNVS
	Depth estimation + Reprojection baseline
	PixelNeRF

	Simulated Experimental Details
	Simulation Environments and Datasets
	Details for Training and Test Viewpoints
	Perturbations
	Quarter Circle Arc

	Finetuning ZeroNVS on MimicGen Datasets
	Policy Learning

	Real World Experimental Details
	Real World Robot Setup
	Finetuning ZeroNVS on the DROID Dataset
	Policy Learning

	Additional Experiment
	Increasing Number of Augmented Transitions

