
A.1 RL in Spark Streaming

PPO Implementation. In Figure A1, we show the high-level pseudocode of our port of the PPO
algorithm to Spark Streaming. Similar to our port of RLlib to RLlib Flow, we only changed the
parts of the PPO algorithm in RLlib that affect distributed execution, keeping the core algorithm
implementation (e.g., numerical definition of policy loss and neural networks in TensorFlow) as
similar as possible for fair comparison. We made a best attempt at working around aforementioned
limitations (e.g., using a binaryRecordsStream input source to efficiently handle looping, defining
efficient serializers for neural network state, and adjusting the microbatching to emulate the RLlib
configuration).

Spark

1 # RL on Spark Streaming:

2 # Iterate by saving/detecting states file in a folder:

3 # 1) Replicate the states to workers

4 # 2) Sample in parallel (map)

5 # 3) Collect the samples (reduce)

6 # 4) Train on sampled batch

7 # 5) Save the states and trigger next iteration

8

9 # Set up the Spark cluster

10 sc = SparkContext(master_addr)

11 # Spark detects new states file in path

12 states = sc.binaryRecordsStream(path)

13 rep = states.flatMap(replicate_fn)

14 split = rep.repartion(NUM_WORKERS)

15 # Restore actor from states and sample

16 sample = splits.map(actor_sample_fn)

17 # Collect all samples from actors

18 reduced = sample.reduce(merge_fn)

19 # Restore trainer from states and train

20 new_states = reduced.map(train_fn)

21 # Save sampling/training states to path

22 new_states.foreachRDD(save_states_fn)

Figure A1: Example of Spark Streaming for Distributed RL.

Experiment Setup. We conduct comparisons between the performance of both implementations. In
the experiment, we adopt the PPO algorithm for the CartPole-v0 environment with a fixed sampling
batch size B of 100K. Each worker samples (B/# workers) samples each iteration, and for simplicity,
the learner updates the model on CPU using a minibatch with 128 samples from the sampled batch.
Experiments here are conducted on AWS m4.10xlarge instances.

Data Framework Limitations: Spark Streaming is a data streaming framework designed for general
purpose data processing. We note several challenges we encountered attempting to port RL algorithms
to Spark Streaming:

1. Support for asynchronous operations. Data processing systems like Spark Streaming do not support
asynchronous or non-deterministic operations that are needed for asynchronous RL algorithms.

2. Looping operations are not well supported. While many dataflow models in principle support
iterative algorithms, we found it necessary to work around them due to lack of language APIs (i.e.,
no Python API).

3. Support for non-serializable state. In the dataflow model, there is no way to persist arbitrary state
(i.e., environments, neural network models on the GPU). While necessary for fault-tolerance, the
requirement for serializability impacts the performance and feasibility of many RL workloads.

4. Lack of control over batching. We found that certain constructs such as the data batch size for
on-policy algorithms are difficult to control in traditional streaming frameworks, since they are
not part of the relational data processing model.

For a single machine (the left three pairs), the breakdown of the running time indicates that the
initialization and I/O overheads slow down the training process for Spark comparing to our RLlib
Flow. The former overheads come from the nature of Spark that the transformation functions do
not persist variables. We have to serialize both the sampling and training states and re-initialize
the variables in the next iteration to have a continuous running process. On the other hand, the I/O
overheads come from looping back the states back to the input. As an event-time driven streaming
system, the stream engine detects changes for the saved states from the source directory and starts
new stream processing. The disk I/O leads to high overheads compared to RLlib Flow.

13

For distributed situation (the right three pairs), the improvement of RLlib Flow becomes more
significant against Spark, up to 2.9×. As the number of workers scales up, the sampling time
decreases for both the dataflow model. Still, the initialization and I/O overheads stay unchanged,
leading to lesser scalability for Spark.

A.2 Implementation Examples

A.2.1 Example: MAML

Figure A2b concisely expresses MAML’s dataflow (also shown in Figure A2a) [10]. The MAML
dataflow involves nested optimization loops; workers collect pre-adaptation data, perform inner
adaptation (i.e., individual optimization calls to an ensemble of models spread across the workers),
and collect post-adaptation data. Once inner adaptation is complete, the accumulated data is batched
together to compute the meta-update step, which is broadcast to all workers.

(a) MAML dataflow includes a number of nested inner
adaptation steps (optimization calls to the source actors)
prior to update of the meta-policy. The meta-policy up-
date and inner adaptation steps integrate cleanly into the
dataflow, their ordering guaranteed by the synchronous
data dependency barrier between the inner adaptation
and meta update steps.

MAML

1 # type: List[RolloutActor]

2 workers = create_rollout_workers()

3 # type: Iter[List[Rollouts]]

4 rollouts = ParallelRollouts(workers).gather_sync()

5 # MAML Algo:

6 # Loop until inner adaptation done:

7 # 1) Aggregate Data from Workers

8 # 2) Perform Inner Adaption on Data

9 adapt_op = rollouts.combine(InnerAdapt(workers, steps=5))

10 # Meta-update Step

11 train_op = adapt_op.for_each(MetaUpdate(workers))

12 # type: Iter[Metrics]

13 return ReportMetrics(train_op, workers)

A3C origin

1 # update models on workers

2 weights = local_worker.get_weights()

3 weights = ray.put(weights)

4 # issue gradients computation tasks

5 pending_gradients = dict()

6 for worker in remote_workers:

7 worker.set_weights.remote(weights)

8 future = worker.compute_gradients

9 .remote(worker.sample.remote())

10 pending_gradients[future] = worker

11 # asynchronously gather gradients and apply

12 while pending_gradients:

13 wait_results = ray.wait(

14 pending_gradients.keys(),

15 num_returns=1)

16 ready_list = wait_results[0]

17 future = ready_list[0]

18

19 gradient, info = ray.get(future)

20 worker = pending_gradients.pop(future)

21 # apply gradients

22 local_worker.apply_gradients(gradient)

(b) Implementation in RLlib Flow.

Figure A2: Dataflow and implementation of the MAML algorithm.

A.3 Comparison of Implementations in RLlib Flow and RLlib

In this section we report the detailed code comparison of our RLlib Flow and the original RLlib.
Listing A1 and Listing A2 are the detailed implementation of A3C in RLlib Flow and RLlib,
respectively. Note that the detailed implementation in Listing A1 is exactly the same as we shown
before in Figure 9a, but RLlib implementation is much more complicated as the intermixing of the
control and data flow. In Listing A3 and Listing A4, we also show the detailed implementation
of Ape-X algorithm in our RLlib Flow and RLlib respectively, which also indicates the simplicity,
readability and flexibility of our RLlib Flow.

Listing A1: Detailed A3C in RLlib Flow.

1 # type: List[RolloutActor]
2 workers = create_rollout_workers()
3 # type: Iter[Gradients]
4 grads = ParallelRollouts(workers)
5 .par_for_each(ComputeGradients())
6 .gather_async()
7 # type: Iter[TrainStats]
8 apply_op = grads
9 .for_each(ApplyGradients(workers))

10 # type: Iter[Metrics]
11 return ReportMetrics(apply_op, workers)

Listing A2: Detailed A3C in original RLlib.

14

1 # Create timers
2 apply_timer = TimerStat()
3 wait_timer = TimerStat()
4 dispatch_timer = TimerStat()
5

6 # Create training information
7 num_steps_sampled = 0
8

9 # type: List[RolloutActor]
10 workers = create_rollout_workers()
11

12 # Get weights from the local rollout actor
13 local_worker = workers.local_worker()
14 weights = local_worker.get_weights()
15

16 # Put weights in raylet (distributed storage)
17 weights = ray.put(weights)
18

19 # type: Dict[obj_id, RolloutActor]
20 pending_gradients = dict()
21

22 # Get the remote rollout actors
23 remote_worker = workers.remote_workers()
24

25 # Issue gradient computation tasks
26 for worker in remote_worker:
27 # Set weight on remote rollout actor
28 worker.set_weights.remote(weights)
29 # Collect samples from the remote rollout actor
30 samples = worker.sample.remote()
31

32 # Kick off gradient computation
33 future = worker.compute_gradients.remote(samples)
34

35 # Map the object id to rollout actor
36 pending_gradients[future] = worker
37

38 # Start training loop
39 while pending_gradients:
40 # Record the time to wait gradient
41 with wait_timer:
42 # Get the list of the futures
43 futures = list(pending_gradients.keys())
44

45 # Wait for one actor to complete
46 wait_results = ray.wait(futures,
47 num_returns=1)
48

49 # Get the ready future
50 ready_list = wait_results[0]
51 future = ready_list[0]
52

53 # Get and free the gradient and training infos

15

54 # from the raylet (maybe on the remote worker)
55 gradient, info = ray_get_and_free(future)
56

57 # Pop the used gradient from the map
58 worker = pending_gradients.pop(future)
59

60 # Check the validation of the gradient
61 if gradient is not None:
62 # Record the time for gradient apply
63 with apply_timer:
64 # Apply the gradient on the local worker
65 local_worker = workers.local_worker()
66 local_worker.apply_gradients(gradient)
67

68 # Record the metrics from the worker
69 num_steps_sampled += info["batch_count"]
70

71 # Record the time to set new weight on the worker
72 # and launch gradient computation task
73 with dispatch_timer:
74 # Get the weight on local rollout actor
75 local_worker = workers.local_worker()
76 weights = local_worker.get_weights()
77

78 # Set weight on the rollout actor
79 worker.set_weights.remote(weights)
80

81 # Sample rollouts on the rollout actor
82 samples = worker.sample.remote()
83 # Launch gradient computation task on the worker
84 future = worker.compute_gradients.remote(samples)
85

86 # Map the new object id to the corresponding worker
87 pending_gradients[future] = worker

Listing A3: Detailed Ape-X in RLlib Flow.

1 # type: List[RolloutActor]
2 workers = create_rollout_workers()
3

4 # Create a number of replay buffer actors.
5 replay_actors = create_colocated(ReplayActor)
6

7 # Start the learner thread.
8 learner_thread = LearnerThread(workers.local_worker())
9 learner_thread.start()

10

11 # We execute the following steps concurrently:
12 # (1) Generate rollouts and store them in our replay buffer actors. Update
13 # the weights of the worker that generated the batch.
14 rollouts = ParallelRollouts(workers, mode="async", num_async=2)
15 store_op = rollouts \

16

16 .for_each(StoreToReplayBuffer(actors=replay_actors))
17

18 # Only need to update workers if there are remote workers.
19 store_op = store_op.zip_with_source_actor() \
20 .for_each(UpdateWorkerWeights(workers))
21

22 # (2) Read experiences from the replay buffer actors and send to the
23 # learner thread via its in-queue.
24 replay_op = Replay(actors=replay_actors, num_async=4) \
25 .zip_with_source_actor() \
26 .for_each(Enqueue(learner_thread.inqueue))
27

28 # (3) Get priorities back from learner thread and apply them to the
29 # replay buffer actors.
30 update_op = Dequeue(learner_thread.outqueue) \
31 .for_each(UpdateReplayPriorities()) \
32 .for_each(TrainOneStep(workers))
33

34 # Execute (1), (2), (3) asynchronously as fast as possible. Only output
35 # items from (3) since metrics aren't available before then.
36 merged_op = Concurrently(
37 [store_op, replay_op, update_op], mode="async", output_indexes=[2])
38

39 return ReportMetrics(merged_op, workers)

Listing A4: Detailed Ape-X in original RLlib. We leave out some of the configurable argument for
simplicity.

1 # type: List[RolloutActor]
2 workers = create_rollout_workers()
3

4 # Create a learner thread in the main driver to handle
5 # the asynchronous training
6 local_worker = workers.local_worker()
7 learner = LearnerThread(local_worker)
8

9 # Start the learner thread and wait for the input
10 learner.start()
11

12 # Create replay actor handling the replay buffer
13 # create_located: create multiple colocated replay actor
14 # in the same machine as main driver
15 replay_actors = create_colocated(ReplayActor)
16

17 # Create timers
18 timers = {
19 k: TimerStat()
20 for k in [
21 "put_weights", "get_samples", "sample_processing",
22 "replay_processing", "update_priorities", "train", "sample"
23]
24 }

17

25

26 # Create training information
27 num_weight_syncs = 0
28 num_samples_dropped = 0
29 learning_started = False
30

31 # Number of worker steps since the last weight update
32 steps_since_update = dict()
33

34 # Create manager for replay
35 replay_tasks = TaskPool()
36 # Kick off replay tasks for local gradient updates
37 for actor in replay_actors:
38 # Start replay task on remote replay actors
39 for _ in range(REPLAY_QUEUE_DEPTH):
40 replay_task = actor.replay.remote()
41 # add replay task into the manager
42 replay_tasks.add(actor, replay_task)
43

44 # Create manager for sampling
45 sample_tasks = TaskPool()
46

47 # Get weights of local worker
48 local_worker = workers.local_worker()
49 weights = local_worker.get_weights()
50

51 # Kick off async background sampling and set the weights
52 # on remote rollout actors
53 remote_workers = workers.remote_workers()
54 for worker in remote_workers:
55 # Set weights
56 worker.set_weights.remote(weights)
57 # Initialize training info for the rollout actor
58 steps_since_update[worker] = 0
59 for _ in range(SAMPLE_QUEUE_DEPTH):
60 # Start sample_with_count task on remote worker
61 sample_with_count_task = worker.sample_with_count.remote()
62 # Add task in to the sample task manager
63 sample_tasks.add(worker, sample_with_count_task)
64

65 # Optimize the model for one step
66 def step(self):
67 # Check the availability of the asynchronous learner thread
68 # and the remote rollout actors
69 assert self.learner.is_alive()
70 assert len(self.workers.remote_workers()) > 0
71

72 # Record the start time for training info
73 start = time.time()
74

75 # Create variables for training
76 sample_timesteps, train_timesteps = 0, 0
77 weights = None
78

18

79 # Record the sampling and processing step
80 with timers["sample_processing"]:
81 # Check the completed sampling task in the sampling manager (TaskPool)
82 completed = list(sample_tasks.completed())
83

84 # Gather the train info, counts of samples
85 counts = ray_get_and_free([c[1][1] for c in completed])
86

87 # Update training information and weights
88 for i, (worker, (sample_batch, count)) in enumerate(completed):
89 # Update training information
90 sample_timesteps += counts[i]
91

92 # Randomly choose one replay actor and send data to it
93 random_replay_actor = random.choice(replay_actors)
94 random_replay_actor.add_batch.remote(sample_batch)
95

96 # Update train info
97 steps_since_update[worker] += counts[i]
98

99 # Update weights on remote rollout worker if needed
100 if steps_since_update[worker] >= MAX_WEIGHT_SYNC_DELAY:
101 # Note that it's important to pull new weights once
102 # updated to avoid excessive correlation between actors
103 if weights is None or learner.weights_updated:
104 learner.weights_updated = False
105

106 # Record time for putting weights
107 with timers["put_weights"]:
108 # Put local weights in raylet
109 local_worker = workers.local_worker()
110 local_weights = local_worker.get_weights()
111 weights = ray.put(local_weights)
112

113 # Set weights on the remote rollout worker
114 worker.set_weights.remote(weights)
115

116 # Update train info
117 num_weight_syncs += 1
118 steps_since_update[worker] = 0
119

120 # Kick off another sample request
121 sample_with_count = worker.sample_with_count.remote()
122 # Add the task into the sample manager
123 sample_tasks.add(worker, sample_with_count)
124

125 # Record the time for replay and processing
126 with self.timers["replay_processing"]:
127 for actor, replay in replay_tasks.completed():
128 # Start another replay task for each completed one
129 replay_task = actor.replay.remote()
130 replay_tasks.add(actor, replay_task)
131

19

132 # Check the input queue of the learner
133 if learner.inqueue.full():
134 num_samples_dropped += 1
135 else:
136 # Record the get sample time
137 with self.timers["get_samples"]:
138 samples = ray_get_and_free(replay)
139

140 # Defensive copy against plasma crashes
141 learner.inqueue.put((actor, samples.copy()))
142

143 # Record the time for priorities update
144 with timers["update_priorities"]:
145 # Get output from the leaner to update replay priorities on
146 # the remote rollout actors and training info
147 while not learner.outqueue.empty():
148 # Fetch output from the asynchronous learner
149 output = learner.outqueue.get()
150 actor, priority_dict, count = output
151

152 # Update the priorities on the remote actors
153 actor.update_priorities.remote(priority_dict)
154 train_timesteps += count
155

156 # Calculate the time information
157 time_delta = time.time() - start
158

159 # Collect metrics for training
160 timers["sample"].push(time_delta)
161 timers["sample"].push_units_processed(sample_timesteps)
162 if train_timesteps > 0:
163 learning_started = True
164 if learning_started:
165 timers["train"].push(time_delta)
166 timers["train"].push_units_processed(train_timesteps)
167

168 # Update training info
169 num_steps_sampled += sample_timesteps
170 num_steps_trained += train_timesteps

20

