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A APPENDIX

In the appendix, we provide supplementary materials to comple-
ment the main manuscript, including more detailed descriptions
of training strategies, experiments, visualizations, and theoretical
analyses.

B TRAINING STRATEGIES

For fairness, we follow the training strategies of our baseline, Point-
Next [11]. For semantic segmentation on S3DIS [1], we train for
100 epochs, and the training set is repeated 30 times. The number
of input points is set to 24k, where the criterion is CrossEntropy.
The initial learning rate is 0.01 with a weight decay of 0.0004. For
ScanNet [2], the number of input points is set to 64k, and the crite-
rion is similar to S3DIS. The number of training epochs is set to 100,
and the training set is repeated six times. The initial learning rate
is set to 0.01, and a multi-step learning rate decay strategy with a
drop rate of 0.1 is used at 60 to 90 epochs. For ShapeNetPart [16],
the number of input points is set to 2,048. MBSE is trained for 400
epochs and takes FocalLoss as a criterion. Similar to ScanNet, the
strategy of multi-step learning rate decay is used with a 0.1 decay
rate but at 210 to 270 epochs.

C ENCLAVE PHENOMENON

B window wall [l chair boundary
Figure 1: The illustration of the enclave phenomenon. The

yellow points indicate boundary points queried by KNN.

Here, we provide a supplementary explanation of the enclave
phenomenon mentioned in subsection 3.1.1 of the manuscript and
analyze the reasons for the poor performance of query boundaries
with KNN. In sparse regions, KNN queries may lead to wrong
boundary queries, resulting in enclave phenomena, where distant
points may be grouped into the same boundary neighbor due to
the absence of spatial distance constraints. As depicted by the red
dashed circle in Figure 1, some wall points, despite being closer to
the window and chair, respectively, are divided into the same bound-
ary neighbor. Their features are imposed similarity constraints in
the neighbor. Although they have the same segmentation category,

these features should not exhibit similar semantics due to the dif-
ferent surrounding environments. It is the main reason for the
decreased accuracy of the multi-fineness boundary feature con-
straints with KNN queries in MBC, as shown in Table 4 in the main
manuscript.

D 3D OBJECT CLASSIFICATION

We further demonstrate the effectiveness of our method on Mod-
elNet40 [13]. ModelNet40 is a commonly used point cloud dataset
for 3D object classification. It contains 40 categories, 9,843 models
in the training set, and 2,468 models in the validation set. Because
there is no boundary for object classification, we apply SEP on Point-
Next [11]. Following the baseline, MBSE is trained with an initial
learning rate of 0.001 and weight decay of 0.05 for 600 epochs. The
number of input points is set to 1,024. The criterion used for classi-
fication is SmoothCrossEntropy. The sampled sub-point clouds are
equally divided into (2, 2, 2, 2) ensembles, respectively. The results
are shown in Table 1. The model can better perceive objects’ spatial
and contextual structure in large receptive fields through long-
range correlation capture. SEP improves OA and mAcc by 0.3% and
0.6% over the baseline, respectively, and achieves state-of-the-art
performance.

Table 1: The comparison results on ModelNet40 for 3D object
classification.

Method ‘ OA mAcc
PointNet [9] 89.2  86.2
PointCNN [7] 922  88.1
DGCNN [12] 929 902
DeepGCN [6] 93.6  90.9
ASSANet [10] 929 -
SimpleView [4] 93.0 905
Point Cloud Transformer [5] | 93.2 -
GDANet [15] 938 -
CurveNet [14] 93.8 -
PointMLP [8] 94.1 -
PointVector [3] 93.7 915
PointNext 940 91.1
+SEP | 94.3 91.7

E LONG-RANGE CORRELATIONS

The SEP significantly improves the performance of baselines with
minimal computational cost. We visualize the long-range correla-
tions within SEP to explore it further, as shown in Figure 2. SEP

59

60

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

171
172
173
174

ACM MM, 2024, Melbourne, Australia

(@

Anonymous Authors

® (b)

Figure 2: The visualization of long-range correlations in our SEP. We take a randomly selected scene from S3DIS Area 5 as the
input of the trained MBSE model. Due to typographic space limitations, the figure displays eight long-range correlation maps
of its sub-point cloud downsampled three times. Without intermediate processing that may cause feature blur or loss, such as
feature aggregation, the long-range correlations captured by SEP contain direct point-to-point relationship information, which

is beneficial for point cloud semantic segmentation.

can independently capture direct point-to-point long-range corre-
lations in the point cloud from various aspects, which is difficult to
achieve with traditional local neighborhood feature aggregation.
The values in the figure’s i-th row and j-th column represent the
degree of long-range correlation between the i-th and j-th points
in the ensemble. In the complex space of point clouds, long-range
correlations depend not only on the segmentation categories and
the positions of points but also on their surrounding environments.
The semantic associations are bidirectional and inconsistent, so the
visualizations of the long-range correlation do not exhibit diagonal
symmetry. The larger the value, the stronger the one-way correla-
tion between the two points. The direct information interactions
between distant points assist the model in better comprehending
the overall structure and semantics of the point cloud, leading to
more accurate feature representations, which is one of the main
reasons for the effectiveness of SEP.

F QUALITATIVE RESULTS

In order to show the effectiveness and the superiority of our method
more intuitively, we visualize the multi-fineness boundary queries
and semantic segmentation results, respectively.

F.1 Multi-fineness Boundary Query

We conduct boundary queries at three different fineness degrees.
Figure 3 illustrates that boundary queries at different fineness de-
grees yield distinct sets of boundary points. Querying with a higher
fineness degree can yield more precise boundaries but may result
in the omission of boundary points. Conversely, querying at a

lower fineness degree can produce more comprehensive bound-
aries but may misclassify some non-boundary points as bound-
ary points. Multi-fineness boundary queries strike a good balance
between boundary accuracy and its integrity, which can provide
higher-quality boundary information support for boundary fea-
ture constraints, thereby achieving better boundary segmentation
performance for point clouds.

F.2 Semantic Segmentation Results

As depicted in Figure 4, MBSE has a more precise segmentation
of objects with high boundary proportions, such as photo frames
(belonging to the clutter), beams, and columns, due to its excel-
lent multi-fineness boundary feature constraints and the capabil-
ity to capture long-range correlations. MBSE exhibits outstanding
semantic segmentation performance on both boundaries and non-
boundaries.
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