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A EXPERIMENTAL SETUP

A.1 PROBLEM STATEMENT

We have systematically classified various multi-agent observation scenarios, as outlined in table 6,
to position our work within the broader research domain. In our paper, we delve into a particularly
challenging scenario, dealing with unobservable agents due to inherent sensing and observation
constraints, leading to a system with fewer independent degrees of freedom than its intrinsic dimen-
sion. This problem, while seemingly specific, represents a critical and complex challenge within the
realm of multi-agent systems. Most prior research in this domain, as summarized in our classifica-
tion, assumes full observability of agents, whether the sampling is sparse or continuous. Our work,
however, tackles a more intricate scenario where some agents are inherently unobservable.

A.2 DATASET

Simulated Datasets: In our particle simulation experiments, we consider N particles, with N taking
values from the set {5, 40}, placed within a 2D box. In the springs model, we randomly estab-
lish connections between pairs of particles with a 50% probability and these particles interact via
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Scenario Description of Problem References
Complete observability with
known interaction topology

Multi-agent systems where
all agents are observable at all
times, with a known
interaction topology,
facilitating the modeling
process.

Watters et al. (2017)

Complete observability with
unknown interaction topology

All agents are observable at
all times; however, the
interaction topology is not
predefined and must be
inferred from observational
data.

Alahi et al. (2016b)
Banijamali (2022) Graber &
Schwing (2020) Kipf et al.
(2018) Alet et al. (2019) van
Steenkiste et al. (2018)
Santoro et al. (2017b)

Irregular sampling of
observations or temporally
sparse data

All agents are observable but
the observation events are
sporadic or irregular, leading
to temporal data sparsity.

Rubanova et al. (2019a) Zhu
et al. (2021) Huang et al.
(2020)Marisca et al. (2022)
Sun et al. (2019)

Only few agents observable
with sparse temporal
sampling and unknown
interaction topology

Not all agents are observable,
with some never being
observed, coupled with sparse
temporal data collection.

(Ours)

Table 6: Systematic classification of observation scenarios in multi-agent systems.

Hooke’s law, where the force Fij acting on particle vi due to particle vj follows Hooke’s law:
Fij = −k(ri − rj), with k as the spring constant and ri representing the 2D position vector of par-
ticle vi. We sample initial positions from a Gaussian distribution (N(0, 0.5)), and initial velocities
are assigned as random vectors with a norm of 0.5. Trajectories are simulated by numerically solv-
ing Newton’s equations of motion using a leapfrog integration method similar to Kipf et al. (2018)
with a fixed step size of 0.001, and we subsample the trajectories by selecting every 100th step for
training and testing.

In contrast, for the charged particle model, we equip each particle with positive or negative charges,
qi, sampled uniformly from ±q. The interaction between these charged particles is governed by
Coulomb forces, defined as Fij = C · sign(qi · qj) · (ri−rj)

|ri−rj |3 , where C is a constant. Unlike the
springs model, all pairs of charged particles interact, potentially resulting in attraction or repulsion,
depending on their relative distances. For each of the simulated datasets, 10,000 training samples
and 2,000 testing samples are generated. To incorporate hidden agents within the simulation, we
randomly select M agents from the system to hide after the completion of all simulations while only
preserving the edges with visible agents.

CMU Motion Capture Dataset: The Carnegie Mellon University (CMU) Motion Capture dataset
(cmu), a comprehensive and widely recognized collection of motion capture data, was utilized in this
study. This dataset embodies a diverse array of human movements, encompassing activities from
walking and running to more intricate motions such as dancing, recorded from various subjects. Our
empirical focus was on Subject 35 and their walking trajectories. The dataset extracted for our study
consists of 8,063 frames, each documenting 31 specific points. All attributes, including position
and velocity, were normalized to have a maximum absolute value of 1. We trained our models
on 30-timestep sequences and subsequently assessed their performance on sequences of equivalent
length.

Basket Ball Dataset: In the basketball dataset, each trajectory provides detailed information about
the 2D positions and velocities of the offensive team, consisting of 5 players. Initially, these trajec-
tories are divided into 49 frames, which collectively capture approximately 8 seconds of gameplay.
During the training phase, all models undergo training using the initial 30 frames extracted from the
training trajectories. When it comes to evaluation, the models are presented with input data com-
prised of sampled trajectories from the first 30 frames, and this sampling strategy is adjusted based
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on temporal sparsity. Specifically, for a temporal sparsity of 10%, we select 27 observations from
the initial 30 observations for each individual player, and subsequently, the models are tasked with
predicting the subsequent 19 frames.

A.3 BASELINES

Recurrent Neural Networks We implement two recurrent baselines: Single RNN and Joint RNN.
The first RNN baseline utilizes separate LSTMs (with shared weights) for each object. The second
baseline, labeled as ”joint,” combines all state vectors by concatenation and feeds them into a single
LSTM, which is trained to predict all future states simultaneously.

Fully Convolutional Graph Messaging(Watters et al. (2017)) We implement a message-passing
network decoder similar to Kipf et al. (2018) operating over a fully connected graph of visible agents
with only one edge type.

DNRI(Graber & Schwing (2020)) DNRI combines the power of graph neural networks and varia-
tional inference to model the interactions and dependencies between entities over time. It introduces
a latent variable model that captures the temporal evolution of the system by incorporating a recur-
rent neural network (RNN) component. It allows for inferring the latent variables that represent the
hidden states and interactions between the entities at different time steps. By using variational infer-
ence, DNRI provides a probabilistic framework that can capture uncertainty and make predictions
about future interactions.

Table 7 presents the hyperparameters used for the evaluation of the baselines across all three datasets.

Table 7: List and description of hyperparameters for baselines

Hyperparameter Value Description

Encoder latent 128 Latent size of encoder.
Decoder latent 128 Latent size of Decoder decoder.
Batch size 128 The number of samples processed in a single pass.
lr 5× 10−4 The learning rate for training the model.
Optimizer Adam Model optimization algorithm.
Teacher forcing steps 30 Number of steps for which teacher forcing is applied.
Val teacher forcing steps 30 Whether to apply teacher forcing during validation.
Edge types 2 Number of types of edges in the graph.
Encoder layers 2 Number of layers in the encoder’s MLP.

A.4 ADDITIONAL MODEL DETAILS AND HYPERPARAMETERS

All components of the Stage Net are illustrated in Figure 7. The hyperparameters utilized to assess
Stage Net on all the datasets are listed in Table 8.

Neural ODE for Generative Modelling In systems involving continuous multi-variable dynam-
ics, the state’s dynamic nature is depicted through continuous values of t over a collection of depen-
dent variables, and it progresses according to a sequence of first-order ordinary differential equations
(ODEs):

żit :=
dzit
dt

= gi(z
1
t , z

2
t , . . . , z

N
t )

These equations advance the states of the system in tiny steps over time. With the latent initial states
z00 , z

1
0 , . . . , z

N
0 ∈ Rd for every object, zit is the resolution to an ODE initial-value problem (IVP)

and can be computed at any required times using numerical ODE solvers like Runge-Kutta:

ziT = zi0 +

∫ T

0

gi(z
1
t , z

2
t , . . . , z

N
t )dt

The function gi outlines the dynamics of the latent state, and it has been proposed to be parameter-
ized with a neural network in recent research, allowing for data-driven learning.
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Figure 7: Design framework for encoder and decoder in STAGE Net (Best viewed in color.)

By generalizing to continuous scenarios, where Ni denotes the set of immediate neighbors of object
oi, we reformulate it as:
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dzit
dt
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
Here, the || is the concatenation operations, and fO, fR are two neural networks to capture the
interaction of the latent system. The ODE function and the latent initial state zi0 will define the
complete trajectories for each object. For the ode solver, we use the fourth-order Runge-Kutta
method based on Chen et al. (2018) using the torchdiffeq python package (Chen (2018)).

A.5 COMPUTATIONAL COMPLEXITY

In Figure 8, we present the computational complexity of our encoder’s temporal graph. For eval-
uation, a spring system comprising 10 agents was simulated, generating simulations with varying
distributions of visible and hidden agents. We observe the number of edges in the visible graph and
temporal graph. For example, a model trained on data with 7 visible and 3 hidden agents yields an
average of 10.5 edges for the visible agents. In contrast, our encoder’s temporal graph, constructed
over 30 timesteps, encompasses 13,048 edges. As the count of visible agents escalates, there’s a
corresponding increase in the temporal graph’s edges, scaling at O((E + N)T 2), where E and N
denote the edges and nodes of the initial interaction graph, excluding hidden agents. This relation-
ship is illustrated in Figure 8a, which plots the average temporal edges against the average visible
edges in the interaction graph. Additionally, Figure 8b showcases the GFLOPs of the Stage net’s
encoder in relation to the increment in visible agents.
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Hyperparameter Value Description
Scheduler Cosine Schedulerused to adjust the learning rate during training.
Test Data Size 2000 The number of samples in the test dataset.
Observation Std. Dev. 0.01 The standard deviation of the observation noise.
Number of Epochs 100 The number of times the learning algorithm will work through the entire

training dataset.
Learning Rate 5× 10−4 The step size at each iteration while moving toward a minimum of the

loss function.
Batch Size (Simulated) 128 The number of training examples utilized in one iteration.
Random Seed 1991 The seed used by the random number generator.
Dropout Rate 0.2 The probability of setting a neuron to zero during training.
Latent Size 16 The dimensionality of the latent space.
GNN Dimension 64 The dimensionality of the Graph Neural Network.
ODE Func Dimension 128 The dimensionality of the ODE Function.
GNN Layers 2 The number of layers in the Graph Neural Network.
Number of Heads in z0 Encoder 1 The number of attention heads in the initial encoder.
ODE Func Layers 1 The number of layers in the ODE Function.
ODE Solver RK4 The method used to solve the Ordinary Differential Equation, Runge-

Kutta of order 4 in this case.
Gradient Norm Clipping 10 The maximum allowed value for the gradient norm, used to prevent

exploding gradients.
Number of Edge Types 2 The number of different types of edges in the graph.
L2 Regularization 1× 10−3 The weight decay parameter to prevent overfitting.
Optimizer AdamW The optimization algorithm used to minimize the loss function.

Table 8: List and description of hyperparameters used in STAGE Net

(a) (b)

Figure 8: a.) A comparative representation of the average visible edges and average temporal graph
edges against the number of visible agents. b.) Representation of Encoder GFLOPS against the
Number of Visible Agents. Each bar signifies the computational complexity in GFLOPS of the
encoder for the corresponding number of visible agents, highlighting the proportional increase in
computational demand with the increase in visible agents

B ADDITIONAL EMPIRICAL RESULTS

B.1 ANALYZING THE IMPACT OF HIDDEN AGENT INTERACTION STRENGTH ON MODEL
PREDICTION

In this study, we study the influence of hidden agents by modifying the interaction strength amongst
hidden agents in a spring system, with the interaction (coupling) strength systematically adjusted
between 0.5 to 5.0. Concurrently, the interaction strength for visible agents is statically maintained
at 1. For the spring dataset, interaction strength, symbolized as Fi,j , is quantified by the equation
Fi,j = −k(xi − xj), where k represents the interaction strength between the entities i and j.

The models were trained on a spring dataset with 50% observability consisting of 10,000 samples
for each specified level of coupling and were subsequently evaluated on a separate test dataset,
comprising 2,000 samples.

Figure 9 shows the 30th-step prediction error for all the baselines. A prominent observation from our
experimental results is the exceptional and consistent performance of the StageNet model across all
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Figure 9: Mean Squared Error (MSE) values for the models as the interaction (coupling) strength is
increased for the hidden agents.

degrees of coupling coefficients. StageNet not only exhibited a lower mean prediction error and low
variance compared to the baseline models but also demonstrated remarkable stability, with its error
rate not exhibiting a swift increase with the enhancement in interaction strength for hidden agents.
This contrasts markedly with the other models, which showed a discernible upward error trend with
increasing interaction strength. This empirical evidence underscores the resilience and dependability
of StageNet in scenarios with varied interaction strengths, especially where the influence of hidden
agents is pronounced in the system.

B.2 DECIPHERING TEMPORAL CONTEXT FEATURE ATTENTION MAPS: THE INTERPLAY
BETWEEN HIDDEN AGENTS, INFORMATION DENSITY, AND PREDICTION ACCURACY

(a) 10 agents with 5 observable (b) 20 agents with 15 observable

(c) 30 agents with 25 observable (d) 40 agents with 35 observable

Figure 10: Temporal Context Feature Attention Maps: Visualization of temporal context feature
attention across various configurations each with 50% observability

(a) Observation timesteps = 10 (b) Observation timesteps = 15

(c) Observation timesteps = 20 (d) Observation timesteps = 30

Figure 11: Temporal Context Feature Attention Maps: Feature attention maps applied to a system
with 10 agents, including 50% unobservable agents, with variations in observation time.
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Figure 10 visually illustrates temporal context feature attention maps for spring systems, each with
a distinct proportion of hidden agents, ranging from 50% to 87.5%, while maintaining a constant
count of five visible agents. The y-axis represents the index of the agent, and the x-axis plots the
timesteps, with each row in the attention map representing the temporal attention values at different
timesteps.

The attention values are scaled between 0 and 1, with yellow cells indicating a value of 0, and pro-
gressively darker shades of blue signifying attention values nearing 1. A critical observation is that
as the proportion of hidden agents increases, the attention maps become densely populated with
values of 1. This suggests that the network is utilizing every available timestep in the sequence to
refine the precision of its future predictions. This transition to denser attention maps underscores a
pivotal implication: the network, when faced with denser maps, is signaling a potential insufficiency
in the available information. It is indicative of the network’s increasing demand for more compre-
hensive data to optimize its predictive accuracy. Therefore, this density in attention values implies
a heightened necessity to augment the number of timesteps observed. By extending the observa-
tion timesteps, we can cater to the network’s increasing information needs, thereby enhancing the
model’s predictive accuracy and precision.

In essence, the densification of attention values in the maps is a clear indicator of the network’s
struggle with the available information, emphasizing the potential requirement to increase the obser-
vation timesteps to fulfill the network’s information needs and, consequently, improve the accuracy
of predictions.

Figure 11 provides further insight into this phenomenon by showcasing attention maps of four dis-
tinct models of a system, each consisting of 10 agents, 5 of which are hidden, across varied ob-
servation time periods, extending from 10 to 30 timesteps. A prominent observation from these
maps is the progressive sparsification of the attention maps and a concurrent increase in predictive
accuracy as the number of timesteps is increased. This is depicted in figure 12 where we plot the
average MSE error for systems as their encoder’s observation time is increased. This sparsifica-
tion and enhanced accuracy suggest that the determination of an optimal observation period can be
strategically made, contingent upon the number of hidden agents within the system. This analysis
uncovers a crucial correlation: the higher the proportion of hidden agents in a system, the more
extensive the observation period required to achieve accurate predictions. This denotes that systems
with a greater number of hidden agents demand a more comprehensive observation framework to
accurately capture the intricacies of the system dynamics and produce precise predictions.

In conclusion, the decrease in the density of attention maps and the corresponding enhancement
in accuracy with extended timesteps emphasize the importance of selecting an optimal observation
period, particularly in systems with a significant number of hidden agents. The insights derived
from these attention maps serve as a valuable guide in the strategic selection of observation periods,
facilitating the development of robust models capable of delivering precise predictions in a variety
of scenarios.

B.3 PERFORMANCE OF STAGE NET IN VARIED TOPOLOGICAL CONDITIONS WITH FIXED
NUMBER OF VISIBLE AGENTS

In this experiment, we fix the quantity of visible agents within the system, while the number of
hidden agents is subjected to variation. Figure 13 graphically represents the efficacy of the model,
which has been trained on a spring system with 10 total agents out of which 5 are hidden agents.
This is evaluated against systems with a diverse range of hidden agents, all the while maintaining
the count of visible agents at 5.

The STAGE models consistently demonstrate superior performance over the baselines, regardless
of the variations in the ratio of hidden to visible agents. This superiority of STAGE models is
indicative of their robustness and adaptability across different scenarios, showcasing their ability to
yield reliable results with different proportions of hidden and visible agents.
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Figure 12: Prediction accuracy for two spring system with 50% and 75% unobservable agents as the
observation time for encoder is increased

Figure 13: Mean Squared Error (MSE) values (×10−2) for the model trained on a 10-5 configura-
tion, while altering the total number of agents in the system, while keeping the visible agents fixed
at 5.
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B.4 MODEL ABLATION: IMPACT OF ODE LATENT DIMENSION ON MODEL PREDICTIVE
ACCURACY

For this experiment, we chose the spring system system with 50% unobservability and systematically
varied the latent dimension of the ODE function. Our findings indicate that the optimal performance
is achieved when the ODE latent size is set to 64, and performance deteriorates as the latent size
deviates from this value. This phenomenon can be attributed to the following factors: When the
latent size is kept small (e.g., 16 or 32), the model exhibits underfitting, meaning it struggles to
capture the crucial characteristics and relationships within the multi-agent observations. Conversely,
when the latent size is significantly increased (e.g., 512), it gives rise to the curse of dimensionality.
In high-dimensional spaces, generalization becomes challenging as the model requires an extensive
amount of data to effectively cover the feature space, leading to potentially poorer performance on
the task at hand.

Table 9: Average MSE Error for different ODE latent dimension

Size of ODE Latent Average MSE Error

16 0.0053
32 0.0041
64 0.0030

128 0.0037
256 0.0034
512 0.0041

B.5 EVALUATION OF STAGENET WITH SENSOR FAILURES FOR VISIBLE AGENTS

In this study, we address scenarios where observations for visible agents are intermittently unavail-
able due to random sensor failures. We consider two types of sensor failures: a) Asynchronous
Sensor Failure, and b) Synchronous Sensor Failure. In the case of Synchronous Sensor Failure,
all sensors for the visible agents fail simultaneously, leading to observations being available only
at certain timesteps. Specifically, we randomly select 20 out of 30 timesteps, and the model re-
ceives observations only for these selected steps. Figure 14 illustrates the MSE error for a spring
system with 10 agents, varying the percentage of unobservable agents. In contrast, during Asyn-
chronous Sensor Failure, each agent’s sensor fails independently, and we have observations for only
20 timesteps per agent. Figure 15 displays the MSE error for asynchronous sensor failure across
the model. Compared to other models, StageNet demonstrates significantly lower error rates in both
asynchronous and synchronous sensor failure scenarios.

B.6 ROBUSTNESS OF STAGENET AGAINST NOISY DATA

This study further explores StageNet’s resilience to noisy observations by training the model on
noise-free data and evaluating it under Gaussian noise conditions (mean = 0) with varying standard
deviations (0.001 to 0.1). In our investigation, we normalized the data before introducing noise to
simulate real-world scenarios. We observed the model’s performance in a spring system with 10
agents, particularly focusing on scenarios with different percentages of unobservable agents. Figure
16 depicts the Mean Squared Error (MSE) under Gaussian noise with a standard deviation of 0.1,
highlighting StageNet’s robustness even with high noise levels. Additionally, Figure 17 examines
the MSE in a scenario where 50% of the agents are unobservable across different noise intensities,
further illustrating the model’s substantial resilience to noise. These results underscore StageNet’s
superior performance against noise, especially in comparison to baseline models.
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Figure 14: MSE error for synchronous sensor failure. Observations are randomly sampled for 20
steps out of 30 for all agents and provided to the model for evaluation.

Figure 15: MSE error for asynchronous sensor failure. Observations are randomly sampled for 20
steps out of 30 for each agent and provided to the model for evaluation.

B.7 EXPLORING SYSTEMS WITH HETEROGENEOUS AGENT CHARACTERISTICS

Our previous analysis primarily addressed systems with homogeneous agents, characterized by uni-
form dynamics across all entities. This section ventures into the realm of heterogeneous agents,
introducing variability in agent dynamics. Specifically, we explore a spring system setup where
each agent, as a heterogeneous entity, possesses distinct and unknown coupling parameters. In
contrast to our earlier homogeneous agent experiments, which operated under a single coupling pa-

22



Under review as a conference paper at ICLR 2024

Figure 16: MSE Performance under Gaussian Noise (SD = 0.1) in a Spring System with 10 Agents,
demonstrating StageNet’s effective noise handling capabilities.

rameter setting for all agents, this study delves into varied configurations. We examine three distinct
scenarios:

1. Visible Heterogeneity, Hidden Homogeneity: Only the visible agents exhibit heterogeneity,
while hidden agents maintain homogeneous characteristics.

2. Universal Heterogeneity: Every agent in the system, both visible and hidden, is heteroge-
neous, with their coupling parameters randomly assigned.

3. Hidden Heterogeneity, Visible Homogeneity: This scenario reverses the first, with only
hidden agents being heterogeneous.

Coupling Parameter Configurations: For the heterogeneous agents, we define three coupling param-
eter sets: a.) 3 types of agents: {0, 0.5, 1}, b.) 4 types of agents {0, 0.5, 1, 1.5}, and c.) 5 types of
agents {0, 0.5, 1, 1.5, 2}.
During simulations, each heterogeneous agent’s coupling parameter is randomly selected from these
sets with uniform probability. Table 10 presents the error metrics for baseline models across differ-
ent heterogeneous agent configurations, particularly when all agents are considered heterogeneous.
We observe that baseline models struggle to capture the intricate dynamics of this setup, resulting
in significantly higher error rates compared to our proposed model. Additional configurations and
their outcomes are depicted in Figure 18, where similar trends are noted.

Table 10: Performance Metrics for Different Models for Heterogeneous Agents.

Stage Net DNRI FC SingleRNN JointRNN
Number of
Het. Types

Mean Std Mean Std Mean Std Mean Std Mean Std

3 0.0104 0.0096 7.12 0.4076 2.28 0.39 2.92 0.26 3.55 0.31
4 0.0081 0.0077 7.16 0.38 2.26 0.377 2.91 0.2639 3.53 0.288
5 0.0089 0.0079 7.27 0.37 2.28 0.377 2.9 0.2454 3.5 0.27
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Figure 17: MSE Trends for a System with 50% Unobservable Agents across Various Noise Levels,
showcasing the robustness of StageNet in complex, partially observable environments.

(a) Only visible agents are het-
erogeneous and hidden agents
are homogeneous

(b) All agents are heterogeneous
and randomly sampled

(c) Visible agents are homoge-
neous and hidden agents are het-
erogeneous

Figure 18: Different configurations of heterogeneous agents in our study

C ANALYTICAL PROOFS

C.1 DEFINITIONS

Multisets and kernels for multisets A multiset is a generalized notion of a set of a set, which
accommodates multiple instances of its elements. We deliberate on multisets of features in Rd,
represented as:

X d =
{
x | x = {x1, . . . ,xn}, with each xi ∈ Rd for some n ≥ 1

}
The cardinality of a multiset symbolized as | · |, is determined by summing the multiplicities of its
elements.

In this context, we assume the existence of a kernel on the space of multisets, represented as Kms :
X d ×X d → Rand its either an exact or an approximate embedding, ψms : X d → Rp, such that
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Kms(x,x
′) ≈ ⟨ψms(x), ψms(x

′)⟩

Temporal Graph Let G(V (t), E(t)) be the graph with nodes V (t) and edges E(t) at time t.
Let G′ be a subgraph of G with observed nodes x1(t), x2(t), . . . , xN (t). The Temporal Graph
T ′ can be defined as a multiset of the states of graph G′ at different time points, represented as:
T ′ = {G′(t1), G

′(t2), . . . , G
′(tr)} where each G′(ti) is a member of the multiset representing the

state of graph G′ at time ti, and additional temporal edges are added between nodes in G′(ti) and
G′(ti+1) for all i = 1, 2, . . . , r−1 to represent the temporal connections between the different states
of a graph G′.

In the derivation of all our analytical results, we base our arguments on the subsequent assumptions:

Assumptions:

1. We assume the embedding of each individual node, xi(t), to conform to a multivariate
Gaussian distribution, parametrized by θ = {µ,Σ}.

2. The embedding of the multiset, Xi, is hypothesized to adhere to a Gaussian Mixture Model
(GMM) with K components, described by parameters ϕ = {π, µ,Σ}. Here, π signifies
the mixture weights, µ represents the means, and Σ defines the covariance matrices of the
components.

3. I(θ;N) represent the Fisher Information Matrix (FIM) as a function of the parameter θ and
the number of observed nodes N .

4. The Fisher Information is a differentiable function with respect to the number of observed
nodes.

C.2 ANALYSIS OF FISHER INFORMATION IN MULTISET EMBEDDINGS FOR TEMPORAL
GRAPH

Theorem 1 The Fisher information of the embedding of the multiset Xi is greater than the Fisher
information of the embedding of each individual element xi(t) i.e., det(J(ϕ) > det(I(θ))

Proof: Let the probability density function representing the embedding of node xi at time t be
f(xi(t); θ), parameterized by θ. Similarly, let the probability density function representing the
embedding of the multiset Xi be g(Xi;ϕ), parameterized by ϕ. Each individual node embedding
xi(t) is assumed to follow a Gaussian distribution:

f(xi(t);µ, σ
2) =

1√
2πσ2

exp

(
− (xi(t)− µ)2

2σ2

)
(9)

The multiset embedding Xi is assumed to follow a Gaussian Mixture Model with K components:

g(Xi;π, µ,Σ) =

K∑
k=1

πkN (Xi;µk,Σk) (10)

If the Fisher information for an individual node is given by T (θ) and the Fisher information of the
multiset Xi is given as J(ϕ), then:

I(θ) = E

[(
d

dθ
log f(xi(t); θ)

)2
]
⇒ J(ϕ) = E

[(
d

dϕ
log g(Xi;ϕ)

)2
]

(11)

Let’s assume that the covariate distribution between any two nodes xi(t) and xj(t) is Gaussian, with
parameters θ = {µij , σ

2
ij}, where µij is mean and σ2

ij is the variance of the Gaussian distribution
representing the covariate between nodes i and j. Given the Gaussian covariate distribution between
the nodes, the Fisher Information for the covariate distribution between nodes i and j is given by:

I(θ) =

[
1

σ2
ij

Cov(µ, σ2)

Cov(µ, σ2) 1
2σ4

ij

]
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For a Gaussian Mixture Model, the Fisher information matrix J(ϕ) where ϕ = {π, µ,Σ} depends
on the derivatives of the log-likelihood with respect to the parameters. The elements of the Fisher
information matrix are given by the expected second derivatives of the log-likelihood, which can
be computed using the Expectation-Maximization (EM) algorithm. Assume that the embedding of
node xi(t) follows a Gaussian distribution with mean µ and variance σ2, both parameterized by θ.
The Fisher information, I(θ), for this node is derived as follows:

I(θ) = E

[(
d

dθ
log f(xi(t);µ, σ

2)

)2
]

(12)

Assume that the embedding of the multiset Xi follows a Gaussian mixture model with K compo-
nents, each with its own mean µk and variance σ2

k, all parameterized by ϕ. The Fisher information,
J(ϕ), for this multiset is derived as follows:

J(ϕ) = E

[(
d

dϕ
log g(Xi; {µk, σ

2
k}Kk=1)

)2
]

(13)

To compare J(ϕ) and I(θ), we need to compare the respective Fisher information matrices.

Since these matrices are of different dimensions, a direct comparison is not straightforward. How-
ever, we can compare the determinant of the Fisher information matrices as a scalar representation
of the information contained in the embeddings. We aim to compare the determinant of the Fisher
Information Matrix for a Gaussian Mixture Model (GMM) with that of a Gaussian distribution. We
will symbolically represent the Fisher Information Matrix for a GMM and derive its determinant to
compare with the determinant of the Fisher Information Matrix for a Gaussian distribution. Let’s
consider a GMM with K components, each with parameters ϕk = {πk, µk,Σk}, where πk is the
weight, µk is the mean, and Σk is the covariance matrix of the k-th component. The log-likelihood
for the GMM is given by:

logL(ϕ) =

N∑
i=1

log

(
K∑

k=1

πkN (xi;µk,Σk)

)
(14)

The Fisher Information Matrix, J(ϕ), for the GMM is a block-diagonal matrix, where each block
corresponds to the Fisher Information Matrix for the parameters of component k, J(ϕk). Each
block, J(ϕk), can be represented symbolically as:

[J(ϕk)]mn = E
[
∂2 logL(ϕ)

∂ϕkm∂ϕkn

]
(15)

Now, considering Gaussian covariance between the components, we need to consider the interaction
between the components of the Gaussian Mixture Model (GMM) and derive the Fisher Information
Matrix accordingly. When the components are not independent, the blocks of the Fisher Information
Matrix are not necessarily diagonal, and the off-diagonal elements represent the covariance between
the components. Let’s denote the covariance between component k and component l as Σkl. The
Fisher Information Matrix, J(ϕ), for the GMM with covariance can be represented as:

[J(ϕ)]mn = E
[
∂2 logL(ϕ)

∂ϕkm∂ϕln

]
+Σkl

The Fisher Information for the GMM can be expressed as a weighted sum of the Fisher Information
of the individual components:

JXi(ϕ) =

K∑
k=1

πkIxi(θk;Nk)

where πk are the mixture weights, θk are the parameters for each component, and Nk is the number
of observations assigned to the k-th component.

Let J(ϕ) denote the Fisher Information Matrix with covariance, represented as a block matrix:

J(ϕ) =

[
J(ϕk) Σkl

Σlk J(ϕl)

]
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where J(ϕk) and J(ϕl) are the Fisher Information Matrices for individual components, and Σkl and
Σlk are the covariance matrices between the components.

There can be two cases that arise here.

Case I: Σkl = Σlk = 0 Then, the determinant of J(ϕ) is strictly greater than the product of the
determinants of the individual Fisher Information Matrices, i.e.,

det(J(ϕ)) > det(J(ϕk)) · det(J(ϕl))

i.e the determinant of the Fisher Information Matrix with covariance for two components is greater
than the determinant of the Fisher Information Matrix when they are independent. Given that the
determinant of the Fisher Information Matrix for the GMM with covariance is greater than the
determinant of the Fisher Information Matrix, it is evident that the multiset embedding Xi will
contain more information about the parameters than the individual node embedding xi(t) when
considering Gaussian covariance between the components. Thus, since the determinant of J(ϕ) is
greater than the determinant of I(θ), then it can be concluded that the multiset embedding contains
more information about the parameters than the individual node embedding.

Case II: Σkl,Σlk ̸= 0

When there is covariance between two Gaussian components in a GMM, the elements in J(ϕ) rep-
resenting the covariance between these components would be non-zero, symbolizing the interaction
between the components. To prove the inequality |J(ϕ)| > |I(θ)|, let us elaborate that the deter-
minant of the Fisher Information Matrix, |J(ϕ)|, for the GMM with covariance, will typically be
greater due to the additional terms representing the interaction between the components along with
the individual components’ information. Let us assume there are K Gaussian components in the
GMM, each with its mean and variance, and let’s denote the covariance between the i-th and j-th
components as cov(i, j). The determinant of J(ϕ) would be the sum of the determinants of the indi-
vidual components plus the terms representing the covariance interaction between the components:

|J(ϕ)| ≈
K∑
i=1

|Ii|+
∑
i ̸=j

cov(i, j)

Since the covariance terms represent additional information not present in a single Gaussian com-
ponent, it would generally contribute to a greater determinant of J(ϕ) as compared to |I(θ)|:

|J(ϕ)| > |I(θ)|

Hence, for both cases, we proved that the Fisher information of the embedding of the multiset Xi is
greater than the Fisher information of the embedding of each individual element xi(t).

Theorem 2 Given the reduced temporal graph T ′ , the corresponding reduced spatial graph G′,
and the static spatial graph G, if the Fisher information of the embedding of T ′ exceeds the Fisher
information of the embedding of G′, i.e.,

I(T ′) > I(G′)

then it follows that the covariance of the reduced temporal graph, Cov(T ′), is less than the covari-
ance of the reduced spatial graph, Cov(G′), represented as:

Cov(T ′) < Cov(G′)

Proof: Let I(T ′) and I(G′) denote the Fisher Information in the reduced temporal graph T ′ and
the reduced spatial graph G′ respectively, both of which are derived from a complete graph G.
The Fisher Information Matrix for each graph is computed based on the observed nodes and their
relationships within the respective graphs.

From definition, the temporal graph T ′ is the multiset representation of a sequence of spa-
tial graphs G′ at different time points. According to Cramér–Rao Lower Bound (CRLB), i
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X = (X1, X2, . . . , Xn) be a random vector with probability density function f(x;θ), where
θ = (θ1, θ2, . . . , θk) is a vector of parameters of interest. Let T(X) = (T1(X), T2(X), . . . , Tk(X))
be an unbiased estimator of θ, i.e., E[T(X)] = θ. Then, for any unbiased estimator T(X), the
covariance matrix of T(X) satisfies:

Cov(T(X),θ) ≥ I(θ)−1,

where I(θ) is the Fisher Information matrix of the random vector X with respect to the parameter
vector θ Thus, we can conclude that the Fisher information of the embedding of the T ′ is greater
than the Fisher information on the embedding of each spatial graph G′ at any timestep.

I(T ′) > I(G′)

Thus, it is concluded that based on the construction and inherent properties of the temporal graph T ′

and the spatial graph G′, the reduced temporal graph T ′ retains more information than the reduced
spatial graph G′.

The Fisher information of the embedding of the T ′ is greater than the Fisher information of the
embedding of G′:

I(T ′) > I(G′)

Consequently, due to the inverse relationship between Fisher Information and covariance:

I(T ′)−1 < I(G′)−1

Applying the Cramér-Rao Bound, we relate the inverses of the Fisher Information to the covariances
of the estimators:

Cov(T ′) ≤ I(T ′)−1 < I(G′)−1 ≤ Cov(G′)

⇒ Cov(T ′) < Cov(G′)

Thus, it is concluded that the covariance of the reduced temporal graph T ′ serves as a more accurate
estimator for the complete graph G compared to the covariance of the reduced spatial graph G′.

D BROADER IMPACT

Many often we do not operate in complete information settings for these complex co-evolving sys-
tems and addressing the practical challenges of measuring the entire system, our work provides
valuable insights into the analysis of subgraphs in various domains. This has implications for fields
such as protein-protein interactions, metabolic networks, planetary systems, and robotic systems,
where complete agent measurements are often unattainable. Additionally, our framework is benefi-
cial for large-scale networks that are either computationally intensive to handle, as it enables deliber-
ate sampling of smaller subnetworks for analysis or have sensor failures thereby having incomplete
knowledge of the system’s degrees of freedom. This has practical implications for researchers and
practitioners working with complex networks, allowing them to focus their analysis on representa-
tive subgraphs while maintaining reasonable accuracy.

E ADDITIONAL VISUALIZATIONS
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Figure 19: Visualizations depicting predictive trajectories for basketball dataset involving 5 players.
Dotted lines represent predicted trajectories, while solid lines represent observed trajectories.
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Figure 20: Visualizations depicting predictive trajectories for spring systems involving varying de-
grees of hidden agents. In the top row, a system with 10 agents and 50% hidden agents is shown,
while the bottom row displays a system with 20 agents and 75% hidden agents. We also plot corre-
lation and phase plots for both the systems as correlation plots for variables X and Y across different
lags help in determining the time lag between predictions and observations, enabling a better under-
standing of the temporal dynamics in the data.
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