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ABSTRACT

To operate effectively in the real world, robots should integrate multimodal rea-
soning with precise action generation. However, existing vision-language-action
(VLA) models often sacrifice one for the other, narrow their abilities to task-specific
manipulation data, and suffer catastrophic forgetting of pre-trained vision-language
capabilities. To bridge this gap, we introduce InstructVLA, an end-to-end VLA
model that preserves the flexible reasoning of large vision-language models (VLMs)
while delivering leading manipulation performance with the help of embodied rea-
soning. InstructVLA introduces a novel training paradigm, Vision-Language-Action
Instruction Tuning (VLA-IT), which employs multimodal training with mixture-of-
experts adaptation to jointly optimize embodied reasoning and action generation
on both standard VLM corpora and a curated 650K-sample VLA-IT dataset. On
in-domain SimplerEnv tasks, InstructVLA achieves 33.3% improvement over Spa-
tialVLA. To evaluate generalization, we introduce SimplerEnv-Instruct, an 80-task
benchmark requiring closed-loop control and high-level instruction understanding,
where it outperforms a fine-tuned OpenVLA by 96% and an action expert aided by
GPT-4o by 29%. Additionally, InstructVLA surpasses baseline VLMs on multi-
modal tasks and exhibits inference-time scaling by leveraging textual reasoning to
boost manipulation performance in both simulated and real-world settings. These
results demonstrate InstructVLA’s potential for bridging intuitive and steerable
human-robot interaction with efficient policy learning.

1 INTRODUCTION

Large-scale pretraining has produced versatile foundation models in computer vision (CV) (Oquab
et al., 2023; Radford et al., 2021) and natural language processing (NLP) (Bai et al., 2023; Touvron
et al., 2023). Building on this progress, recent Vision-Language-Action (VLA) models (Black et al.,
2024; Kim et al., 2024) adapt large vision-language models (VLMs) (Karamcheti et al., 2024; Beyer
et al., 2024) and finetune them on embodied datasets to achieve generalizable manipulation. While
the integration of multimodal reasoning has led to significant advances in VLMs (Wei et al., 2022;
Liu et al., 2024a), such reasoning remains largely unexplored in VLA settings. Fully leveraging
VLMs for reasoning-guided manipulation beyond VLA initialization remains an open challenge.
Current attempts to incorporate the reasoning capabilities of VLMs into action learning face three
main obstacles: (1) task interference, catastrophic forgetting (French, 1999) of multimodal ability
during action training; (2) data scarcity, particularly the limited availability of manipulation datasets
with rich multimodal supervision; and (3) methodological gaps, specifically the lack of effective
mechanisms and training paradigm to translate multimodal reasoning into action generation.

To address these challenges and utilize VLMs more effectively, prior work has primarily adopted
two strategies. The first aims to retain general multimodal capabilities while learning manipulation
skills through unified auto-regressive modeling. Models such as RT-2 (Brohan et al., 2023) and
Magma (Yang et al., 2025) follow this approach by co-training on vision-language and manipulation
data. Yet, this paradigm often overlooks complex embodied reasoning, and our ablations reveal that
the general VLM corpus exhibits a domain gap in embodied scenarios. The second strategy tightly
integrates embodied reasoning into manipulation datasets to transfer VLM capabilities. Methods
such as ECoT (Zawalski et al., 2024) and Emma-X (Sun et al., 2024) embed chain-of-thought (CoT)
reasoning into manipulation datasets. While promising, these methods rely on action-pretrained
architectures (Kim et al., 2024) and structured reasoning formats (e.g., plans, subtasks, grounding),
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Figure 1: Method overview. InstructVLA integrates vision-language understanding with precise
robotic control to achieve reasoning-guided manipulation. Its core training strategy, vision-language-
action instruction tuning, enhances manipulation by unifying general multimodal knowledge, embod-
ied reasoning, and atomic instruction-based manipulation into a coherent chain of thought.

which limit expressiveness, suffer from catastrophic forgetting, and fail to recover general multimodal
capabilities-even with additional finetuning. Consequently, the extent to which VLM capabilities can
be effectively translated into action generation in embodied contexts remains largely unexplored.

Building on these observations, we propose InstructVLA, a generalist VLA model that extends
pretrained VLMs for accurate action generation while preserving strong multimodal understanding.
Building on this unified modeling, we conduct extensive experiments to investigate how multimodal
capabilities contribute to manipulation. Motivated by these insights, we design a training paradigm
specifically tailored to bridge vision-language knowledge with action generation, treating language-
conditioned action generation as an integral component of instruction following, as illustrated
in Figure 1. To support this paradigm, we curate the Vision-Language-Action Instruction Tuning
(VLA-IT) dataset, consisting of 650K human-robot interactions annotated with diverse instructions,
scene captions, and question-answer pairs grounded in high-quality manipulation tasks (Ebert et al.,
2021; Brohan et al., 2022). The training process follows a two-stage paradigm: (1) Action Pretraining,
which trains a VLM-driven action expert using latent action representations distilled from language-
based motion descriptions, while preserving the VLM backbone’s multimodal capabilities; and (2)
Vision-Language-Action Instruction Tuning, which unifies language and latent action generation
through a trainable mixture-of-experts(MoE) adaptation framework. This framework is jointly trained
on multimodal datasets (He et al., 2024), manipulation datasets, and the curated VLA-IT corpus,
enabling the automatic switch between textual reasoning and action generation, thereby effectively
leveraging vision-language understanding and reasoning for action generation.

To validate the performance of InstructVLA, we introduce the SimplerEnv-Instruct benchmark,
a manually designed evaluation suite featuring 80 zero-shot manipulation tasks. It encompasses
both closed-loop manipulation tasks and high-level instruction reasoning, involving either situated
understanding or decomposition into actionable subtasks. With its thinking ability during manip-
ulation, InstructVLA outperforms the fine-tuned OpenVLA baseline by 96% and achieves a 29%
improvement over an action expert model assisted by GPT-4o on SimplerEnv-Instruct, demonstrating
its effectiveness in instruction following and task decomposition. Furthermore, InstructVLA surpasses
similarly sized VLMs in multimodal performance and shows a 33.3% improvement over SpatialVLA
in closed-loop manipulation (Li et al., 2024d). Our contributions can be summarized as follows:

• Model. We propose InstructVLA, a VLA architecture and training pipeline that supports studying
language capability in VLAs by efficiently preserving pretrained vision-language knowledge from
VLMs while integrating manipulation as a component of instruction following.

• Dataset & Benchmark. We design a practical data and evaluation pipeline for vision-language-
action instruction following, supported by 650K tailored VLA-IT annotations and a manually
curated benchmark suite, enabling evaluation of VLAs’ instruction generalization capabilities.

• Validation. InstructVLA achieves leading performance across robotic manipulation tasks, multi-
modal benchmarks, and real-world deployments, enabling intuitive and controllable manipulation.
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2 RELATED WORKS

Policy learning at scale. Following the success of CV (Oquab et al., 2023; Zhai et al., 2023)and
NLP (Touvron et al., 2023), recent research (Wang et al., 2024a; Brohan et al., 2022; 2023; Zheng
et al., 2025; Wang et al., 2024b; Niu et al., 2025) shows that robot policies improve when trained
in large heterogeneous datasets. RT-1 (Brohan et al., 2022) and RT-2 (Brohan et al., 2023), trained
in large-scale real-world demonstrations, achieve strong in-domain accuracy and zero-shot transfer.
Works such as Octo (Octo Model Team et al., 2024) and RT-X (Collaboration et al., 2023) extend this
approach by aggregating the largest open-source manipulation datasets (Collaboration et al., 2023).
Some methods, such as LAPA (Ye et al., 2024), Seer (Tian et al., 2024), and Moto (Chen et al., 2024b),
use video generation and inverse dynamics to learn scalable motor representations. In the VLA
domain, models are typically initialized from pretrained vision-language models (Kim et al., 2024;
Qu et al., 2025; Brohan et al., 2023) leveraging prior visual-linguistic alignment instead of learning
from scratch. Further, methods such as RT-Trajectory (Gu et al., 2023) and GraspVLA (Deng et al.,
2025b) jointly train intermediate manipulation representations such as trajectories or bounding boxes
using a combination of real and simulated data to guide action generation and enhance generalization.

Vision-language-action models. Recent foundation models (Brohan et al., 2023; Kim et al., 2024;
Qu et al., 2025; Black et al., 2024; Chen et al., 2024b; Bjorck et al., 2025; Pertsch et al., 2025; Niu
et al., 2024) integrate perception, language, and robot manipulation into a single network, using two
main architectures. Autoregressive models such as RT-2 (Brohan et al., 2023), OpenVLA (Kim et al.,
2024) and SpatialVLA (Qu et al., 2025) treat actions as discrete tokens. LLARVA (Niu et al., 2024)
introduces 2D trace for pretraining. FAST tokenization (Pertsch et al., 2025) further compresses
motion sequences. In contrast, flow-based VLAs avoid discretization; for example, π0 (Black et al.,
2024) and GR00T (Bjorck et al., 2025) generate actions through continuous flow matching (Lipman
et al., 2022), while CogACT (Li et al., 2024a) and CronusVLA (Li et al., 2025a) use diffusion (Peebles
& Xie, 2023). Hybrid approaches, like RoboDual (Bu et al., 2024), combine generalist action models
with specialist action experts. Although flow-based methods (Black et al., 2024; Bjorck et al., 2025;
Li et al., 2025a; 2024a) often achieve superior performance, they typically neglect the integration
of autoregressive text reasoning (Brohan et al., 2023), which is crucial for leveraging the VLM’s
semantic capabilities. In contrast, our model unifies autoregressive VLM language generation with
the flow-based action generation, demonstrating efficient co-training of language and action.

Bringing reasoning ability to manipulation. Bridging pre-trained world knowledge to enhance the
generalization of robot policies is a promising direction. One line of work standardizes intermediate
representations, such as primitive (Chen et al., 2024c), trajectories (Gu et al., 2023; Li et al., 2025b),
keypoints (Li et al., 2024b) and masks (Huang et al., 2025). However, these approaches often rely
on rule-based decomposition and hand-crafted planning heuristics, whose rigid separation from
low-level control limits scalability and hinders end-to-end policy learning. More recently, unified
modeling of perception, reasoning, and manipulation (Brohan et al., 2023; Intelligence et al.; AI,
2024; Shentu et al., 2024; Belkhale et al., 2024), along with other generative formulations (Pan et al.,
2025; Zhou et al., 2024), has demonstrated the potential of leveraging pre-trained VLMs and LLMs
for reasoning-guided generation, revealing emerging capabilities (Deng et al., 2025a). Yet, many
prior studies depend on closed-source data (Intelligence et al.) or restrict evaluation to real-world
settings (Brohan et al., 2023; Belkhale et al., 2024; Zhou et al., 2025), limiting reproducibility
and large-scale assessment. Our work provides an initial exploration, supported by open data and
benchmarks, to study reasoning-guided manipulation through the integration of reasoning and action.

3 INSTRUCTVLA

We propose InstructVLA (Figure 2), a unified model for joint language-action generation that
also mitigates task interference and catastrophic forgetting. Section 3.1 describes the architecture,
including dynamic switching between reasoning and execution modes, as well as inference strategies.
Section 3.2 presents the training paradigm for VLA instruction following.

3.1 ARCHITECTURE

Embodied VLM for textual and latent action generation. We propose a unified framework that
enables simultaneous multimodal reasoning and language-steered latent action planning using a single
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I will place the pot on the burner.
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Noisy ActionsHigh-level Prompt

Manipulation

Pre-trained VLM Action Expert

SigLIP DinoV2

(1) Language Response
Conditions

(2) Latent Action

MoE Adaptation

Δx
Δθ

ΔGrip
× 𝑁𝑁

(3) Action

VL Understanding

Optional 
Proprioception

FiLM Concatenate

Figure 2: Overview of the InstructVLA. InstructVLA integrates the multimodal reasoning capa-
bilities of a vision-language model with robotic manipulation. Generation consists of three steps:
(1) asynchronous auto-regressive reasoning by the VLM, (2) latent action generation, and (3) action
decoding. A MoE adaptation enables the VLM to alternate between reasoning and latent action
prediction. The flow matching action expert decodes the final actions, conditioned on latent actions.

VLM (Figure 2 (1) and (2)). The model produces textual outputs to preserve the strong language
understanding and multimodal inference capabilities of the pretrained VLM, while subsequently
generating latent action representations for downstream manipulation. To support action planning,
we introduce N learnable action queries Q ∈ RN×D, which attend to the VLM’s hidden states
and extract task-relevant latent action C ∈ RN×D, where D is the VLM hidden dimension. Our
implementation builds on the compact and efficient Eagle2-2B backbone (Li et al., 2025c), with a
tailored training strategy described in Section 3.2. The VLM is supervised with cross-entropy on
language output with loss LLM .

MoE adaptation to harmonize reasoning and action. A key challenge is enabling the model
to seamlessly alternate between reasoning and manipulation. To this end, we adopt a Mixture-of-
Experts (MoE) design (Zhou et al., 2022), which allows adaptive reweighting of expert modules
based on input context and reasoning mode, thereby integrating multimodal reasoning with language-
steered latent action. Specifically, LoRA (Hu et al., 2022) modules are employed as experts within
the LLM backbone, preserving pretrained capabilities while ensuring efficient inference. A scale
head (E.L. Buehler, 2024) predicts gating coefficients λi for each expert by classifying the hidden
state, enabling the model to adaptively blend their outputs. The resulting hidden states for K experts
are computed as h = W0x+

∑K
i=0 BiAix ·αi · λi, where W0 is the original weight, x denotes input,

Ai ∈ Rr×d and Bi ∈ Rd×r are the LoRA parameters, αi is the LoRA scaling factor.

Flow model as an efficient action expert. To further decouple low-level control from high-level
understanding, the action expert is designed to generate actions from image observations conditioned
on VLM-derived intentions. It takes image features from DINOv2 (Oquab et al., 2023) vision encoder,
latent actions, noisy action embeddings and optional information such as proprioception, and fuses
these with a simple transformer architecture (Touvron et al., 2023) with block-wise causal attention.
Specifically, non-causal attention is applied within each input, and causal attention between input
types. The vision encoder, further enhanced with feature-wise linear modulation (FiLM) (Perez et al.,
2018), plays a crucial role in directing actions to spatial and contextual input. The flow matching
objective (Black et al., 2024) is used to supervise action learning, as detailed in Section F.2.

Inference. InstructVLA integrates language and action generation in a single model with the follow-
ing techniques to improve speed. (1) Decoding strategies. To mitigate the latency of autoregressive
decoding, textual responses are generated via greedy search until the first action query token appears.
The remaining action queries are then decoded in parallel within a single forward pass of the VLM.
(2) Language response and latent action caching. We decouple language response from action
generation by caching textual outputs across multiple action steps, leveraging their temporal stability.
InstructVLA also supports cache latent actions, which reduces the number of VLM forward with
minimal performance impact compared with ECoT (Zawalski et al., 2024) (see Section A.1).

3.2 TRAINING RECIPE

Direct co-training of vision, language, and action often leads to unstable optimization and slow
convergence. We therefore adopt a principled two-stage training paradigm: first, action pretraining to
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Pick coke can from middle drawer and place on counter

Put knife on cutting board
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food items, a cup, and utensils. 
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I'm about to prepare a sandwich. 
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cutting board?
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board.

What surface is the cutting 
board placed on?
The stove.

A table with a cloth, a spoon, 
and various kitchen items 
including a microwave and 
cans

Place the tool made of metal 
and plastic onto the fabric.
I will put the spoon on the cloth.

After you are done with washing 
the spoon, please dry it on the cloth.
I will place the spoon on the cloth

What is the utensil made of that 
is on the table?
The spoon is made of metal and 
plastic.

A drawer is open, revealing a 
Coke can inside, while other 
items are placed nearby on the 
table.

Retrieve the red can from the 
drawer and set it on the counter.
I will get the soda can from the 
drawer.

Please open the middle drawer, take 
the Coke, and place it on the table.
The middle drawer is open. I will take 
the Coke out of the drawer and set it 
on the table.

What beverage is in the middle 
drawer?
A Coke can.
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Original Dataset Embodied Scene Understanding Instruction Understanding and Planning

Figure 3: Vision-language-action instruction tuning data examples. Annotations focus on:
(1) improving scene understanding and (2) learning instruction following and planning.

align with the VLM’s latent action embeddings; second, vision-language-action instruction tuning to
integrate multimodal reasoning with manipulation.

Stage 1: Action pre-training. InstructVLA is pre-trained using heterogeneous manipulation
data (Brohan et al., 2022; Ebert et al., 2021). To distill the knowledge from the VLM for ma-
nipulation, the model is trained to predict both actions and language motion (Section 4.1), with the
latter supervised via cross-entropy loss. Due to the stability of flow matching and the next token
prediction, the final loss is the direct sum of both losses as L = LLM + LFM . During this stage,
only the input and output embedding of the action queries and action LoRA adapter on the LLM
backbone are tuned, consisting of 650M parameters. The model trained is named the “Expert”.

Stage 2: Vision-language-action instruction tuning. We extend the concept of visual instruction
tuning (Liu et al., 2023) with a simple approach to train InstructVLA. Our observation is that once
the action expert is pretrained to follow the latent actions from the VLM, further adapting the LLM
backbone enables the model to handle manipulation tasks with more complex instructions and
generate appropriate responses. In this stage, the action expert remains frozen; a new language LoRA
adapter and scale head of the MoE-adaptation are added. The MoE module is the only trainable parts,
comprising 220M parameters. We detail the data pipeline for vision-language-action instruction
tuning in Section 4.1; this data bridges pretrained vision-language capabilities with embodied task
scenarios. We further co-train the model using multimodal datasets (He et al., 2024) to bootstrap
multimodal understanding. The resulting model is referred to as the “Generalist”, reflecting its
combined vision-language and manipulation capabilities.

4 VLA DATASET AND BENCHMARK

4.1 INSTRUCTVLA TUNING DATASET

We curate diverse hierarchical language annotations from large-scale manipulation datasets (Brohan
et al., 2022; Ebert et al., 2021), including language motion (Belkhale et al., 2024) as detailed
in Section D.1, along with the VLA-IT dataset for instruction tuning and reasoning transferring.

Vision-language-action instruction tuning data. To enable language-steerable VLA models, it
is essential to curate diverse instructions, model responses, and reasoning patterns. We categorize
our data into four types as illustrated in Figure 3. For embodied scene understanding: (1) Scenario
captioning provides descriptions of the robot’s environment (2) Question answering targets scene
understanding through consistent QA pairs across an episode. Together, they bridge vision-language
annotations with embodied scenes. For instruction understanding and latent action planning: (3)
Command rewriting introduces instructional diversity through paraphrasing, attribute-based references
and varied vocabulary. (4) Context creation generates implicit user goals or progress cues in multi-step
tasks, requiring the robot to infer intent. These annotations support joint VLA reasoning.

We use GPT-4o (OpenAI, 2023) to annotate data with three frames from each episode, along with the
corresponding instruction. Ground-truth instruction is crucial for annotation accuracy, emphasizing
that even state-of-the-art VLMs can make errors in embodied tasks, leading to a performance gap
when using GPT-4o as an instruction interpreter for such tasks. Additional details of the dataset
analysis and prompt templates are provided in Section D.
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Tool-use Understanding

Negative Task

I want to clean the table. Pick a suitable tool for me.
I will select the sponge for cleaning.

I am thirsty but I do not want drinks. Please grab something for me.
I will pick up the orange.

Subtask End
Pick the orange from the top drawer, then close it.
The orange is on the table. I will close the drawer

Subtask Start

Grab the Coke into the top drawer, then close it.
The Coke is on the table. I will place it in into the drawer

Situated Reasoning
Complex Object Refer

Multi-linguistic Refer

After I finish my drink, can you place the fruit near it 
for a snack?
I will move the apple near Coke can.

Veuillez récupérer le fruit en forme de goutte verte de 
la surface.
I will pick up the green pear.

Task Aggregation

(In-domain)
(Out-of-domain)

(Generalization)

+31.7
Performance

Figure 4: Simpler-Instruct. Six representative test cases with instructions and InstructVLA responses.
Prior VLAs exhibit limited generalization compared to InstructVLA.

4.2 SIMPLERENV-INSTRUCT

Building upon the SimplerEnv platform, we introduce SimplerEnv-Instruct, a benchmark specifi-
cally designed to evaluate the instruction-following and reasoning capabilities of vision-language-
action (VLA) models in a zero-shot setting. Unlike prior manipulation benchmarks that primarily
focus on atomic actions or low-level control, SimplerEnv-Instruct captures two essential yet un-
derexplored abilities: (1) policy generalization to linguistic and visual diversity, and (2) contextual
reasoning in situated environments, evaluated in the situated reasoning suite.

Task creation. We remove trivial cases and design novel tasks requiring genuine generalization
rather than memorization. Novel objects and instructions are strictly out-of-distribution from the
originals, and all tasks are cross-validated by three annotators for clarity and consistency. In total, we
curated 80 tasks with 1.1K trials, about one third the size of SimplerEnv, keeping evaluation practical.

• Task aggregation. (50 tasks; examples shown in Figure 4, left). This suite assesses a model’s
ability to consistently interpret and execute core tasks based on both instructions and environmental
context, despite variations in visual or linguistic forms. Tasks cover phenomena such as novel
verbs, multilingual expressions, diverse object references, sentence rephrasings, and OOD objects.

• Situated reasoning. (30 tasks; examples shown in Figure 4, right). Beyond task aggregation,
this suite evaluates a model’s ability to reason over contextual cues or indirect instructions and to
decompose commands into sub-goals. For example, “I want to clean the table. Pick a suitable tool
for me.” requires selecting the correct object (e.g., a sponge) from context.

Together, by leveraging the large-scale real-world training dataset, SimplerEnv-Instruct provides a
reproducible benchmark that evaluates VLA generalization to unseen tasks. It achieves an affordable
evaluation cost while systematically probing both task generalization and reasoning, filling a critical
gap in VLA evaluation with a diagnostic, human-interpretable, and standardized benchmark.

5 EXPERIMENT

Benchmarks. (a) Multimodal: We adopt automatic evaluation from VLMEvalKit (Duan et al., 2024),
as detailed in Section E.1. (b) SimplerEnv: This benchmark (Li et al., 2024d) provides real-to-sim
evaluation on large-scale manipulation datasets, incorporating visual matching and variance aggrega-
tion to assess generalization. (c) SimplerEnv-Instruct: As described in Section 4.2, this extension of
SimplerEnv introduces novel objects, tasks, and instructions, offering a broader testbed for evaluating
instruction generalization in VLAs. In addition, we assess embodied understanding in Section A.2
and manipulation performance on the LIBERO (Liu et al., 2024b) benchmark in Section A.3.

Training details. The VLM is trained with a resolution of 448 × 448 following Li et al. (2025c),
while the action expert operates at 224× 224 as in (Kim et al., 2024), using a fixed learning rate of
5e-5 without warm-up. The action expert employs a 12-layer transformer backbone with a hidden
size of 768. Following Black et al. (2024), a β distribution is used to enhance accuracy on the noisier
time steps. During Stage 2 finetuning, manipulation and multimodal understanding are trained in an
interleaved manner. Owing to InstructVLA’s training paradigm, multimodal capabilities are preserved
easily. We adopt a 1:7 ratio, twice the imbalance of ECoT and ChatVLA (1:3), reducing the additional
computation needed to maintain multimodal ability. Further details are provided in Section F.
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Table 1: Multimodal understanding. #Params is the size of LLM backbone. S. denotes robot state.

Methods #Params Multi-modal Understanding Benchmarks VQA Benchmarks

MMMUVal MM-Vet MMStar MMEP OCRBench HallB MMB TextVQA DocVQA InfoVQA AI2D ChartQA RWQA

Bunny (He et al., 2024) 8B 43.4 39.1 45.4 1987.7 444 37.7 72.9 - - - 69.4 30.1 60.4
PaliGemma (Beyer et al., 2024) 2B 34.9 33.1 48.3 1686.1 614 32.2 65.6 68.1 74.0 34.0 68.3 33.1 55.2
Eagle2 (Li et al., 2025c) 1.5B 43.1 53.8 56.4 1572.1 818 45.8 74.9 79.1 88.0 65.8 79.3 82.3 63.1
Qwen2-VL (Wang et al., 2024c) 1.5B 41.1 51.5 48.0 1872.0 809 41.7 74.9 74.9 88.6 61.4 74.7 73.5 62.9

OpenVLA (Kim et al., 2024) 7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OpenVLA (FT) 7B 26.0 9.1 28.2 87.6 2.5 8.4 18.9 2.5 29.2 43.4 35.8 1.4 47.2
ECoT (Zawalski et al., 2024) 7B 16.2 0.0 19.1 0.0 0.0 3.1 0.9 0.0 2.2 0.0 0.0 0.0 29.8
ChatVLA Zhou et al. (2025) 1.5B 37.4 - 47.2 1435.2 729 39.9 69.0 71.2 83.3 53.3 67.6 59.9 57.0
Magma (Yang et al., 2025) 8B 38.8 34.1 41.3 1496.5 518 38.0 69.7 66.5 65.4 45.2 66.1 61.8 56.5

InstructVLA-Generalist 1.5B 44.2 51.7 56.2 1529.6 814 45.6 76.1 77.7 85.8 63.7 79.1 81.7 63.1
InstructVLA-Generalist(S.) 1.5B 43.8 54.0 56.0 1548.0 829 42.8 76.3 78.2 86.0 63.7 78.9 82.9 63.5

Table 2: Robotic manipulation. Google and WidowX Robot denote two embodiments in SimplerEnv.
For SimplerEnv-Instruct, we focus on two reasoning levels instead of embodiments. Magma† denotes
evaluation with sampling. The results of InstructVLA are averaged over three random seeds.

Methods
Google Robot WidowX Robot

Avg
SimplerEnv-Instruct

Open/Close
Drawer

Put in
Drawer

Pick
Coke Can

Move
Near

Put
Spoon

Put
Carrot

Stack
Blocks Task

Aggregation
Situated

Reasoning Avg
VM VA VM VA VM VA VM VA VM

RT-1-X (Collaboration et al., 2023) 59.7 29.4 21.3 10.1 56.7 49.0 31.7 32.3 0.0 4.2 0.0 26.8 - - -
RT-2-X (Collaboration et al., 2023) 25.0 35.5 3.7 20.6 78.7 82.3 77.9 79.2 - - - - - - -
RoboVLMs-2B (Li et al., 2024c) 43.5 10.6 27.8 0.0 77.3 75.6 61.7 60.0 45.8 20.8 4.2 38.8 - - -
OpenVLA-7B (Kim et al., 2024) 63.0 28.8 0.0 0.0 18.0 60.8 56.3 67.7 4.2 0.0 0.0 27.2 14.8 13.6 14.2
SpatialVLA-3B (Qu et al., 2025) 57.4 41.8 0.9 9.1 86.0 88.0 77.9 72.7 16.7 25.0 29.2 45.9 23.6 9.8 16.5
GR00T-N1.5-3B (Bjorck et al., 2025) 27.8 13.2 7.4 2.2 51.7 63.6 51.0 54.0 62.5 45.8 16.7 36.0 - - -
π0-3B (Black et al., 2024) 64.8 48.4 13.9 15.4 70.3 44.7 41.0 35.5 37.5 50.0 37.5 41.7 12.1 11.8 12.0
InstructVLA-Expert 52.3 61.7 50.3 33.1 79.6 92.3 68.3 71.9 43.1 40.4 9.7 50.9 21.6± 1.4 12.9± 0.4 17.3
InstructVLA-Expert(S.) 46.8 54.1 45.7 70.0 96.0 95.9 79.7 82.4 61.1 54.2 36.1 61.2 20.9± 0.3 20.5± 1.0 20.7
Magma-8B (Yang et al., 2025) 9.7 5.8 0.0 0.0 46.0 46.4 60.0 82.0 45.8 33.3 8.3 30.5 15.5 9.9 12.7
Magma-8B† (Yang et al., 2025) 56.0 53.4 6.4 18.5 83.7 68.8 65.4 65.7 35.5 31.0 12.7 43.6 26.2 21.4 23.8
OpenVLA (FT) 7B 63.9 42.6 3.7 6.9 62.3 88.7 65.8 67.7 12.5 33.3 4.2 39.0 28.3 19.5 23.9
OpenVLA (FT&GPT) - - - - - - - - - - - - 38.8 32.4 35.6

InstructVLA-Generalist 64.5 61.7 38.3 27.5 81.7 91.8 55.8 69.7 31.9 34.7 12.5 49.7 43.6± 1.4 48.8± 0.8 46.2
InstructVLA-Generalist(S.) 39.8 51.1 45.7 57.3 91.0 93.0 71.7 78.3 62.4 48.6 15.3 54.9 48.2± 1.3 45.6± 0.5 46.9

Baselines. We categorize the baselines into three groups: (1) Multimodal VLMs, including Bunny(He
et al., 2024), PaliGemma (Beyer et al., 2024), Eagle2 (Li et al., 2025c), and Qwen2-VL (Wang et al.,
2024c); (2) VLA models, including RT-1-X and RT-2-X (Collaboration et al., 2023), RoboVLMs (Li
et al., 2024c), SpatialVLA (Qu et al., 2025), π0 (Black et al., 2024), GR00T-N1.5 (Bjorck et al.,
2025), and OpenVLA (Kim et al., 2024); (3) Generalist VLA models, including Magma (Yang et al.,
2025), OpenVLA fine-tuned (FT) from generalist pretrained model on both robotic and multimodal
data, and ECoT(Bridge) (Zawalski et al., 2024). During evaluation, InstructVLA and other baselines
use a temperature of 0 without sampling to expedite generation. We re-evaluate Magma with official
checkpoint1. For ECoT, we report only its multimodal results due to its real-to-sim domain gap.

5.1 MAIN RESULTS

We present our main results in Tables 1 and 2. In Table 1, using the same generalist model InstructVLA
(generalist), it not only outperforms the co-trained baseline Magma, but is also comparable to its
base model Eagle2 and Bunny (VLM data corpus). InstructVLA further demonstrates stronger
embodied understanding as detailed in Section A.2. In Table 2, InstructVLA (expert) outperforms
the expert baseline SpatialVLA by 33.3% on SimplerEnv. Meanwhile, InstructVLA (generalist) not
only maintains strong performance on SimplerEnv’s atomic instructions but also achieves a 31.7%
improvement on SimplerEnv-Instruct over the state-of-the-art baseline (OpenVLA with GPT-4o).

However, we observe that finetuning OpenVLA on multimodal and manipulation datasets does not
fully restore its original multimodal capabilities, although it does improve task performance. Its
performance can be further enhanced by integrating GPT-4o as an API-based system-2 module
to rephrase instructions (OpenVLA (FT&GPT)). However, GPT-4o faces the same challenges in
accurate instruction rewriting as noted in Section 4.1, and fails to outperform InstructVLA (Generalist).
Methods such as Magma, which co-train both abilities of the VLM, better preserve multimodal ability,
but still fail to match the performance of our approach. Although it also adapts two-stage training,
ECoT relies solely on textual chain-of-thought reasoning over manipulation datasets and lacks the
capability for multimodal question answering. We observe that it consistently generates manipulation-
style CoT responses, without demonstrating effective instruction-following ability.

1We observe a notable performance gain for Magma when using sampling. Accordingly, we report its official
score on SimplerEnv and re-evaluate its performance on SimplerEnv-Instruct under the sampling setting.
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pick up the writing tool I want to feed a baby. 
what tool can I use? Pick it 
up.

I will grab the marker I will pick up the spoon.

Pick the cube with the second letter 
of the alphabet on it and place it on 
the plate.

Put the cube on Van Gogh

Put the cup on the plate

Put the blue cube and place 
it on the plate

Atomic Common-Sense Reasoning
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

InstructVLA
w/o mm

InstructVLA
with mm

π0

In domain OOD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average Atomic Few-shot
Reasoning

Zero-shot
Reasoning

InstructVLA OpenVLA π0

The problem is 52/2 =. The 
correct answer is 26, the 
options are 12, 26, 18. So I 
will pick there yellow cube

The problem is 52/2 =. The 
correct answer is 26, the 
options are 26, 12, 18. So I 
will pick there red cube

Math Reasoning

Figure 5: Real-world experiments. “Atomic” refers to atomic instructions. For the Kitchen and
math settings, InstructVLA’s responses are presented.

Experts WidowX Bot Google Bot Ave.

w/o DINO 4.2 32.4 23.0
w/o FiLM 25.0 56.3 45.9
w/o Lang. 15.3 65.0 48.4

InstructVLA 29.1 64.8 52.9

Table 3: Ablation of action expert
vision design and language motion.
“w/o Lang.” denotes without using lan-
guage motion. “w/o FiLM” denotes us-
ing only DINO. “w/o DINO” denotes
action expert without the vision input.
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Finetuning Action Expert
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FFT(OpenVLA-OFT) AR(Magma) InstructVLA-MoE InstructVLA

Manip MM-vet

Figure 6: Finetuning strategies. (a) Freezing or finetun-
ing the action head during VLA-IT training. (b) Training
strategies when multimodal and manipulation tasks co-exist.
“FFT” denotes full finetuning. “AR” denotes auto-regressive.

5.2 REAL-WORLD EXPERIMENTS

To evaluate InstructVLA in real-world scenarios, we conduct zero-shot experiments on the WidowX-
250 Arm and few-shot experiments on the Franka Research 3 robot, as shown in Figure 5. The
few-shot tasks involve spatial pick-and-place from a rack and cluttered tabletop setting and math-
centric tasks detailed in Section A.5 to demonstrate the role of multimodal data. The zero-shot tasks
are set in a kitchen environment following the Bridge dataset. InstructVLA is fine-tuned using the
proposed training recipe, while OpenVLA is jointly trained on atomic skill and VLA-IT datasets with
extra language supervision. The π0 is finetuned using the official repository.

Each scenario includes both atomic and reasoning instructions. Atomic tasks emphasize in-domain
objects and instructions with a focus on spatial generalization to assess baseline VLA capabilities.
Both models perform comparably on direct in-domain instructions, but InstructVLA achieves a 23.3%
improvement over OpenVLA. For reasoning tasks such as celebrity recognition, OCR, and tool-use
inference, OpenVLA shows a substantial performance drop, whereas InstructVLA outperforms it
by 41.7% in few-shot and 46.7% in zero-shot settings. On reasoning and math tasks, InstructVLA
achieves a 2.5× improvement over π0, which behaves close to random guessing. Additional ablations
and experimental setups are provided in Sections A.5 and H.

5.3 ABLATION STUDIES

We conduct ablation studies guided by two central questions: (1) Section 5.3.1. How can manipulation
and multimodal understanding be effectively integrated into a single model through architectural
design and training strategies? (2) Section 5.3.2. To what extent does vision-language comprehension
enhance manipulation performance in complex scenarios? Through targeted ablations, we examine
the impact of key architectural and training decisions on these capabilities.

5.3.1 MULTIMODAL AND MANIPULATION CO-TRAINING

Strategies for multimodal and manipulation co-training. As shown in Figure 6 (b), four paradigms
are compared. (1) Following OpenVLA-OFT, FFT denotes full finetuning of the model with latent
actions but without MoE adaptation and multi-stage training. With comparable computational
resources, this setting yields suboptimal performance on both manipulation and understanding
tasks. (2) The AR paradigm (Magma, RT-2) supports co-training but has limited performance. (3)
Removing the MoE design while keeping the training paradigm preserves multimodal performance
but reduces manipulation capability. (4) In contrast, InstructVLA leverages our proposed architecture
and two-stage training strategy, achieving a 12.5% improvement over Magma on SimplerEnv.
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QA & Cap. T.A. S.R. Ave.

✗ 40.7 42.7 41.7
✓ 43.6 48.8 46.2

Table 4: Effect of QA and
caption data. “T.A.” denotes
task aggregation. and “S.R.”
denotes situated reasoning on
SimplerEnv-Instruct.
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Figure 7: Data scaling and multimodal training. Impact of scaling
and training strategies on manipulation with multimodal reasoning.

Effects of language motion data for pre-training. As shown in Table 3, introducing “language
motion” (auxiliary textual descriptions of low-level actions) enhances the VLM’s ability to associate
visual cues with manipulation primitives, leading to a 9.3% improvement in overall success rate.

Action expert perception design. Incorporating richer perception into the action expert is efficient
due to its compact design compared to the VLM backbone. As shown in Table 3, while the base VLM
offers general visual understanding, fine-grained perception for manipulation tasks demands richer
representations. Removing the DINOv2-based ViT encoder from the action expert results in a 50.0%
performance drop, highlighting its critical role in capturing task-relevant visual cues. Incorporating
FiLM to the ViT encoder yields a further 15.3% improvement by modulating visual features with
latent actions. As shown in Table 2 the expert model with robot state generally performs better.

5.3.2 MULTIMODAL ABILITY TRANSFERS TO MANIPULATION

Ablation on VL-to-action learning. As shown in Figure 6(a), we examine the effect of VLA
instruction tuning by comparing two configurations: (1) finetuning only the VLM, and (2) jointly
finetuning both the VLM and the action expert. Freezing the action expert achieves performance
comparable to joint finetuning while substantially reducing the number of trainable parameters. This
suggests that InstructVLA can effectively adapt to complex textual inputs by fine-tuning only the
VLM, without altering the pretrained action expert.

Effects of VLA-IT data. As shown in Figure 7(a), we evaluate the scaling behavior of VLA-
IT annotations on the SimplerEnv-Instruct benchmark. Situated reasoning tasks, which require
grounding objects and goals in context, benefit most from larger annotation sets, highlighting the
bootstrapped reasoning abilities inherited from VLMs. In contrast, pretrained OpenVLA fine-tuned
on VLA-IT gains primarily from increased instruction diversity but shows limited improvement on
situated reasoning tasks due to catastrophic forgetting of VL capabilities. These findings suggest that
two-stage methods such as ECoT may be insufficient for fully leveraging the multimodal capacity of
VLMs. We also examine the effect of annotation diversity, as shown in Table 4, where adding QA
and captioning improves generalization by 10.8%. Additional ablations are provided in Section A.4.

Training and inference strategies for reasoning-guided manipulation. As shown in Figure 7 (b),
(1) Simply combining manipulation and general multimodal ability through co-training does not
yield significant benefits. Magma, despite co-training on multimodal datasets, shows limited transfer
of vision-language capability to reasoning tasks on SimplerEnv-Instruct. Although OpenVLA suffers
from catastrophic forgetting when finetuned with VLA-IT corpus, it still achieves better performance
than Magma. (2) Multimodal ability can implicitly benefit manipulation when preserved through
embodied reasoning annotation. Our generalist model, trained on the VLA-IT corpus, surpasses
fine-tuned OpenVLA and Magma on the SimplerEnv-Instruct benchmark, even without explicit
textual reasoning (Think). (3) Explicit textual reasoning further enhances manipulation. Enabling
thinking in the generalist model brings a 36.1% performance gain over direct instruction execution
and even outperforms InstructVLA-expert paired with GPT-4o as an external interpreter.

6 CONCLUSION

We present InstructVLA, a unified VLA model that integrates multimodal reasoning and action
generation. We further demonstrate how the embodied understanding ability can directly benefit the
maipulation tasks. Our data and training pipeline enables leading performance across manipulation
tasks, multimodal benchmarks, and real-world deployments, paving the way for more generalizable,
interpretable, and interactive robots.
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The supplementary material is organized as follows:

• Section A presents: (1) extended analysis of InstructVLA, (2) additional benchmarks on embodied
understanding, (3) extra simulation benchmark and ablation study, (4) finetuning of OpenVLA
under the same settings as InstructVLA, and (5) extra real-world ablation study.

• Section B discusses related concepts to InstructVLA and the proposed vision-language-action
instruction tuning methods.

• Section C provides additional case analysis for InstructVLA, OpenVLA, and GPT-4o System2.
• Section D lists data annotation details, including GPT-4o prompt and dataset statistics. We further

analyse the distribution of the instructions from two dimensions: task diversity and language
diversity.

• Section E visualizes the SimplerEnv-Instruct benchmark and the acknowledgements of 3D assets.
• Section F details the model architecture, training configurations, inference speeds under different

settings, and compute resources used.
• Section G shows several multimodal question answering examples.
• Section H describes the real-world experimental setup and provides example executions.
• Section I discusses the broader impacts, limitations, and outlines future directions for InstructVLA.
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A MORE EXPERIMENTS AND ANALYSIS

A.1 FURTHER DISCUSSIONS

Our further analysis is threefold. First, we present visualizations and scaling curves to examine
the MoE and latent action designs. Second, we provide a detailed analysis of reasoning gains in
manipulation tasks and case studies. Finally, we demonstrate that InstructVLA supports zero-shot
dual-frequency generation to accelerate inference and compare the dataset scales used across different
studies.

A.1.1 EXTRA MODEL DESIGN ANALYSIS

The MoE and latent action are our key design components. We present an example illustrating the
role of MoE under different task settings, including simple and reasoning instructions, with and
without model reasoning. For latent action, we analyze its scaling behavior to guide future tuning.

System Prompt Image Tokens Language Tokens Latent Action

𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆
𝑔𝑔 𝑙𝑙
𝑙𝑙𝑙𝑙

𝑙𝑙𝑙𝑙
𝑙𝑙𝑙𝑙
−
𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆
𝑔𝑔 𝑎𝑎

𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎
𝑎𝑎

(a)  Executing simple instruction without reasoning

(b)  Executing simple instruction with reasoning

(c)  Executing complex instruction without reasoning

(d)  Executing complex instruction with reasoning

Reasoning Results

Reasoning Results

Figure 8: Activation visualization. We evaluate a WidowX zero-shot example across four settings.
Red indicates stronger activation in the language adapter, while blue indicates stronger activation in
the action adapter. The horizontal axis lists each language token. The generated tokens are marked.

Analysis of MoE gating. From the example in Figure 8, we draw the following intuitive conclusions:

• System prompts are primarily processed by the language adapter, reflecting its close connection
to pretraining.

• Visual information is processed by both the language and action adapters, indicating that both
semantic understanding and manipulation decision-making require visual inputs.

• During language generation, the model engages not only in multimodal reasoning but also in
manipulation planning, as evidenced by the activation of the action expert. Notably, the action
expert attends more strongly to nouns and verbs in the generated tokens, highlighting its role in
instruction following.

• During latent action generation, the language expert plays a less prominent role. Instead, with
multimodal reasoning, the model concentrates more effectively on action generation, as shown
by the stronger activation of the action expert (deeper blue).

To conclude, the MoE has demonstrated its effectiveness in improving efficiency and handling
heterogeneous datasets (Mu & Lin, 2025; E.L. Buehler, 2024; Zhou et al., 2022; Team et al., 2025;
Liu et al., 2024a). In InstructVLA, we further investigate how the MoE facilitates interleaved
multimodal reasoning and manipulation decision making.

Effects of latent action. Latent action tokens are a key design component for decoupling high-level
VLM planning from low-level action generation. As shown in Figure 9, we vary the number of tokens
from 16 to 128. Too few tokens limit behavioral diversity, while too many reduce training efficiency.
A setting of 64 offers a good trade-off under our current configuration.
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Figure 9: Impact of latent action token quantity on robot performance.
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Figure 10: Performance visualization of 30 situated reasoning tasks with and without reasoning
enabled. Activating reasoning in our generalist model generally improves performance. For clarity,
tasks are grouped into three categories: Subtask, involving subtask identification; Commonsense
Reasoning, requiring broad world knowledge; and Commonsense for Tool Use, focusing on tool-
related reasoning.

A.1.2 EXTRA REASONING-MANIPULATION ANALYSIS

In this section, we discuss the efficiency and design choices of VLA-IT training. We then analyze
how multimodal reasoning benefits manipulation through fine-grained evaluation, examine its role
in cross-embodiment generalization, and present a case study illustrating how a unique multimodal
capability addresses challenging tasks.

Effect of VLA-IT on Scaling and Reasoning. As shown in Table 2, although the InstructVLA-expert
model does not outperform the OpenVLA(OXE) on Situated Reasoning of SimplerEnv-Instruct, which
benefits from direct full fine-tuning of the VLM backbone, InstructVLA-expert shows promising
scaling ability in understanding complex instructions and performing test-time thinking after stage-2
VLA-IT training. This result reflects a deliberate design choice in InstructVLA, where latent action
learning during pretraining focuses on querying from visual and simple instruction features rather
than relying on the full semantic space of the VLM too early. This design offers two significant
advantages. First, it preserves the original semantic space of the pretrained VLM, maintaining its
vision-language capabilities. Second, it enables the model to integrate diverse reasoning contexts
during VLA-IT training. These properties contribute to the strong performance gains achieved by our
generalist model and demonstrate the effectiveness of this training paradigm.

Embodied reasoning helps manipulation. Allowing the model to perform test-time thinking by
generating textual analysis of the given instruction can improve performance, particularly on situated
reasoning tasks, as shown in Figure 11 (left). Notably, while the model with access to robot state
outperforms the one without state when no instruction response is required, it provides limited
performance gains when instruction following is involved. We hypothesize that state information
helps the model retain manipulation skills but compromises its generalization to OOD environments
and instructions.

Fine-grained analysis of reasoning gains in manipulation tasks. We compare the performance
of the generalist model on SimplerEnv-Instruct with and without vision language reasoning, as
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shown in Figure 10. A clear performance gap emerges in tasks involving commonsense tool use
and interaction with articulated objects. This may result from instructions that do not explicitly state
the intended actions and objects. For example, retrieving a cleaning tool from a drawer requires the
robot to infer whether the prerequisite of an open drawer is satisfied, and to identify the sponge as
the appropriate tool among several options. In addition to these cases, the reasoning process also
improves performance on other situated reasoning tasks by grounding unfamiliar instructions using
the pretrained in-domain knowledge of the vision language model.
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Figure 11: Test-time tinking and dual-frequency evaluation. “Expert” refers to the model after
action pretraining, while “Generalist” denotes the model after VLA-IT tuning. For dual-frequency
evaluation, the horizontal axis represents the ratio of VLM executions to expert model executions.

VLA instruction tuning for cross-embodiment understanding. To assess whether InstructVLA
retains this capability, we evaluate three variants on SimplerEnv-Instruct (see Table 5): InstructVLA-
Expert, trained solely on atomic instructions without test-time thinking; InstructVLA Generalist
(Bridge), trained with the VLA-IT dataset on Bridge and the original Fractal dataset; and InstructVLA
Generalist, trained with the full VLA-IT datasets across both environments. Adding the Bridge dataset
results in a 139.4% improvement in Situated Reasoning performance for Generalist (Bridge) over the
expert baseline, while task aggregation performance remains comparable. This discrepancy reflects
differing generalization requirements: task aggregation emphasizes linguistic robustness, whereas
Situated Reasoning demands vision-language grounding prior to action. The latter particularly
benefits from the preserved reasoning capabilities of the pretrained VLM. As illustrated in Figure 12,
the zero-shot model generates more diverse and accurate outputs than its fine-tuned counterpart.

Table 5: Instruction tuning data ablation. We evaluate three settings: without VLA-IT data, with
data only on Bridge, and with VLA-IT data on both Fractal and Bridge. This ablation examines
the contribution of the VLA-IT dataset and the cross-embodiment generalization of InstructVLA on
SimplerEnv-Instruct.

Instruction Tuning Data Name Task Aggregation Situated Reasoning OverallBridge Fractal

✗ ✗ Expert 20.8 10.4 15.6
✓ ✗ Generalist (Bridge) 18.4 24.9 21.7
✓ ✓ Generalist 43.3 48.8 46.0

Case study on multimodal capability transfer. As shown in Figure 13, we compare InstructVLA
with OpenVLA (Kim et al., 2024), Magma (Yang et al., 2025), and CogACT (Li et al., 2024a), all
using the same input (language instruction and a single image). InstructVLA-Expert, though trained
without multimodal datasets, retains the OCR capability of the underlying VLM and achieves the best
performance among baselines trained solely on manipulation data. Finetuning InstructVLA-Expert
into InstructVLA-Generalist with multimodal and VLA-IT datasets further enhances performance.
For autoregressive models such as OpenVLA and Magma, multimodal finetuning improves OCR
ability. In contrast, CogACT, when fine-tuned from OpenVLA(OXE) only on manipulation data with
an action head, shows improved in-domain performance (on SimplerEnv) but suffers in generalization.

A.1.3 EXTRA INFERENCE AND TRAINING ANALYSIS

Dual frequency inference. To further analyze the relationship between latent actions generated by
the VLM and the final decoded actions, we decouple the inference frequencies of the VLM and the
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I need you to retrieve some utensils from the bottom drawer

I will open the bottom drawer to get the utensils. 
I will start by opening the bottom drawer. 
I will open the drawer to find the utensils. 
I will start by opening the bottom drawer. 
I will start by opening the bottom drawer to access the utensils. 
I will open the drawer to access the utensils. 

I need you to retrieve some utensils from the bottom drawer

The bottom drawer is currently closed. Therefore, I will open the bottom drawer. 
The bottom drawer is currently closed, so I will open the bottom drawer. 
The bottom drawer is currently closed. I will open the bottom drawer to access the utensils. 

Zero-shot Fine-tuned

Question: I need something cold to drink, can you open the fridge?
Answer: Opening the fridge now to find something refreshing.
Question: Please check inside the fridge for any snacks.
Answer: I will open the fridge to see what snacks are available.

Question: I need to check if the food is ready in the oven. Please open it for me.
Answer: I'll open the oven door.
Question: I want to take out the food from the oven. Please open it for me.
Answer: I'll open the oven door.SimplerEnv-Instruct Rollout On Google Robot Bridge Instructions

Figure 12: Case study on cross-embodiment. Top left: rollouts on SimplerEnv-Instruct. Top right:
similar scenarios from the Bridge dataset with corresponding instructions. Bottom left: zero-shot
results trained only on Bridge instructions. Bottom right: rollouts from the fine-tuned model.
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Figure 13: Case study on multimodal capabilities. OCR represents a unique multimodal skill
of VLMs that is absent from typical manipulation datasets. We evaluate two tasks from the task
aggregation set in SimplerEnv-Instruct, involving moving one letter to another (see Figure 18(1)).
By comparing different finetuning paradigms, we assess how effectively multimodal capabilities are
integrated into VLA models.

action expert, as illustrated in Figure 11 right. The results show that performance remains stable at a
1:2 ratio (VLM:expert), but begins to degrade at higher ratios. This suggests that latent actions offer
relatively stable guidance to the action expert, reducing the need for frequent VLM queries.

Training at scale. A generalist VLA model with vision-language capabilities should be scalable
across both manipulation and multimodal datasets. In this context, we compare datasets used by
models claiming generalist abilities, as shown in Table 6. RoboMamba (Liu et al., 2024c) utilizes a
limited manipulation dataset compared to other methods, while the dataset for ChatVLA (Zhou et al.,
2025) is not reported. π0.5 (Intelligence et al.) employs a significantly larger multimodal dataset
than other approaches, though its multimodal performance is not disclosed. Magma uses more robot
and multimodal data but achieves slightly worse performance on both multimodal and manipulation
benchmarks compared to InstructVLA.

Table 6: Data comparison of different methods. “Trans.” denotes transitions.

Magma(Yang et al., 2025) ChatVLA(Zhou et al., 2025) RoboMamba(Liu et al., 2024c) π0.5(Intelligence et al.) InstructVLA

Manipulation Data 9.4M Trans. - 10K Trans. 400 Hours 469 Hours/ 5.9M Trans.
Multimodal Data 1.2M Images + 4M Videos 54K 1.5M >7M 2M
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A.2 EMBODIED UNDERSTANDING EVALUATION

Table 7: VLA-IT captioning evaluation. “Sentence-BERT” and “SimCSE” represent learning-based
evaluation methods, while the remaining metrics are traditional n-gram-based evaluations focused on
word distribution.

Methods # Params Sentence-BERT SimCSE BLEU-1 BLEU-4 METEOR CIDER

Qwen2-VL (Wang et al., 2024c) 1.5B 61.3 67.5 16.8 1.5 12.4 0.30
GPT4o (OpenAI, 2023) - 60.7 67.1 16.3 1.8 16.2 0.09

OpenVLA(VLA-IT) (Kim et al., 2024) 7B 0.0 0.0 0.0 0.0 0.0 0.00
Magma (Yang et al., 2025) 8B 59.8 66.7 12.4 1.2 12.3 0.12

InstructVLA(Generalist) 1.5B 72.0 77.0 44.3 8.2 18.7 0.84

Table 8: VLA-IT question-answering evaluation.

Methods # Params Sentence-BERT SimCSE BLEU-1 BLEU-4 METEOR CIDER

Qwen2-VL (Wang et al., 2024c) 1.5B 51.9 53.4 15.3 2.8 17.9 0.82
GPT4o (OpenAI, 2023) - 63.6 63.6 29.6 19.9 9.8 1.16

OpenVLA(VLA-IT) (Kim et al., 2024) 7B 0.0 0.0 0.0 0.0 0.0 0.00
Magma (Yang et al., 2025) 8B 53.5 54.5 23.7 5.7 21.6 1.04

InstructVLA(Generalist) 1.5B 64.9 65.9 44.6 17.4 23.5 1.85

Table 9: VLA-IT instruction response evaluation. We use “context creation” annotations, as they
present a more challenging and diverse set of instructions.

Methods # Params Sentence-BERT SimCSE BLEU-1 BLEU-4 METEOR CIDER

Qwen2-VL (Wang et al., 2024c) 1.5B 52.3 54.0 5.6 1.5 11.6 0.09
GPT4o (OpenAI, 2023) - 52.8 54.1 17.8 4.2 20.6 1.02

OpenVLA(VLA-IT) (Kim et al., 2024) 7B 0.0 0.0 0.0 0.0 0.0 0.00
Magma (Yang et al., 2025) 8B 10.9 13.6 3.7 0.8 1.6 0.00

InstructVLA(Generalist) 1.5B 71.6 73.1 50.2 24.1 25.8 2.26

In addition to the multimodal and closed-loop evaluations presented in the main results, we conduct
supplementary language evaluations on the proposed VLA-IT dataset. This evaluation uses manually
verified VLA-IT annotations on the Bridge dataset (Ebert et al., 2021), chosen for its diversity
and distinct validation split. We generate 1,000 annotations following the method described in
the VLA-IT dataset generation section. Two evaluation metrics are employed: (1) learning-based
methods (Reimers, 2019; Gao et al., 2021), and (2) traditional metrics (Papineni et al., 2002; Young
et al., 2023; Banerjee & Lavie, 2005).

The captioning, question-answering and instruction-following results are presented in Tables 7 to 9.
We select Qwen2-VL (Wang et al., 2024c) and GPT-4o (OpenAI, 2023) as zero-shot VLM baselines,
and include Magma (Yang et al., 2025) (zero-shot) and OpenVLA (Kim et al., 2024) fine-tuned on
the VLA-IT dataset as baselines for VLA models.

Although OpenVLA is fine-tuned on the VLA-IT dataset, it fails to generate complete sentences under
the same evaluation setting as InstructVLA, despite the performance on multiple-choice benchmarks
reported in our main results. This suggests a significant loss of its free-form dialogue capability.
Magma performs well on question answering and captioning tasks. However, it struggles with
instruction response (Figure 14), often generating outputs misaligned with the given image. We
hypothesize that this failure stems from the similarity between these instructions and the atomic
commands used in finetuning manipulation datasets, which disrupts the coherence of the language
latent space near the action latent space. This suggests a limited capacity to interpret and generalize
free-form instructions, hindering effective transfer of vision-language capabilities.

InstructVLA achieves state-of-the-art performance, while GPT4o demonstrates competitive results.
We visualize three episodes in Figure 15. GPT-4o generates more detailed captions but occasionally
exhibits minor hallucinations. In the instruction response task, InstructVLA produces clearer and
more grounded responses compared to GPT-4o, benefiting from the integration of ground-truth atomic
instructions during the data annotation process, as discussed in Section D.4.
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Which fruit is curved and yellow?
Banana

Make sure the banana is accessible by the gripper for the next task.
\u0e38\u0e29\u0e22\u093e\u0928\u0938 
\u0411\u0438\ufee4\u03bb\u03b1\u03bd \u6d59\u6c5f\u0e38\u0e29\u0e22

Check the contents of the brown box by opening its flap.

When you open the flap of the brown box, you will find a set of kitchen utensils inside. The utensils 
may include items such as a spatula, a ladle, a grater, and other tools designed for cooking or food 
preparation. These utensils are typically made of materials like stainless steel, silicone, or plastic, 
and they are often used together to perform specific tasks in the kitchen. The presence of these 
utensils in the box suggests that it is a set designed for easy access and organization of commonly 
used kitchen tools.

What color are the handles of the screwdriver?
The handles of the screwdriver are red.

Organize the tools by picking up the rainbow Allen key set first.
\u0446\u0456\u0439\u043d\u0430 diren\u65cf\u81ea\u6cbb diren\u8083 
diren\u0e38\u0e29\u0e22

QA

Instruction

Instruction

QA

Instruction

Figure 14: Magma results. Magma’s responses collapse when given instructions resembling those in
its manipulation tasks, possibly due to learned actions interfering with its language latent space.

A laundry area with a white basket containing colorful clothes, positioned next 
to a washing machine.

Please prepare the laundry for washing by putting it in the machine. 
I will place the clothes into the washing machine.

What container is used for holding the cloth pieces on the ground?
The basket.

A red toolbox filled with various tools, including screwdrivers and wrenches, 
with a focus on a red and yellow screwdriver.

We need to clear the toolbox. Begin by picking up the colorful hex keys set. 
I will start by picking up the rainbow Allen key set.

What color are the handles of the screwdriver?
The screwdriver handles are red and yellow.

A wooden table with a yellow sponge, a metal pot, a container of spices, and a 
small cone-shaped object.

Before we cook, can you ensure the pot is spotless by using the sponge?
I will wipe the pot with the sponge.

What object is used for cleaning in the scene?
The yellow sponge.

The table is covered with various tools, including screwdrivers with different handles, hex keys, drill 
bits, and other assorted hand tools. The tools are organized in sections within a red drawer, 
suggesting it's part of a tool chest or storage unit.

Pick up the rainbow Allen key set and arrange it neatly on one side of the drawer, then organize the 
remaining tools by type and size.

The handles of the screwdrivers are yellow with red accents.

On the table, there is a metal pot placed upside down, a yellow sponge with a green scrubbing 
side, a red-capped spice container, a waffle-textured ice cream cone, and a mounted metal clamp 
extending over the edge of the table. The surface is a wooden countertop, and the background has 
dark purple and white tiled walls.

Yes, you can clean the dirty pot using the yellow sponge.

A yellow sponge is used for cleaning in the scene.

On the table, there is a washing machine with its door open. Inside the door, there is a visible drum. 
In front of the washing machine, there is a white basket containing various cloth items. The basket is 
filled with different colored fabrics, including blue, green, and red. A red cloth piece is draped over 
the edge of the basket.

Place all the clothes from the basket into the washing machine.

The container used for holding the cloth pieces on the ground is typically a basket.

(a) InstructVLA (b) GPT4o

Figure 15: Comparison with GPT-4o. We visualize three examples from the VLA-IT language
validation set. Each example includes a scenario caption (top), instruction response (middle), and
question answering (bottom). The GPT-4o column displays responses only, as the instructions are
identical across models.
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A.3 EXTRA MANIPULATION BENCHMARK

Table 10: LIBERO benchmark results. We present the success rate and standard error for each
method across four task suites, which are averaged over three random seeds with 500 trials. “KI”
denotes knowledge insulating from(Driess et al., 2025).

Spatial Object Goal 10 (Long) Average

OpenVLA-7B (Kim et al., 2024) 84.7± 0.9 88.4± 0.8 79.2± 1.0 53.7± 1.3 76.5± 0.6
OpenVLA-OFT-7B (Kim et al., 2025) 97.6± 0.9 98.4± 0.8 97.9± 1.0 94.5± 1.3 97.1± 0.6
SpatialVLA-2B (Qu et al., 2025) 88.2± 0.5 89.9± 0.7 78.6± 0.6 55.5± 1.0 78.1± 0.7
π0-2B (Black et al., 2024) 96.8± 0.8 98.8± 0.9 95.8± 1.1 85.2± 1.2 94.2± 0.9
π0-FAST-2B (Pertsch et al., 2025) 96.4± 0.7 96.8± 0.7 88.6± 1.0 60.2± 1.4 85.5± 1.0

GR00T-N1-1.34B (Bjorck et al., 2025) 94.4± 0.9 97.6± 1.0 93.0± 1.2 90.6± 1.0 93.9± 1.1
π0.5 + KI (from scratch) (Intelligence et al.) 96.6 97.2 94.6 84.8 93.3
π0.5 + KI (from generalist model) (Intelligence et al.) 98.0 97.8 95.6 85.8 94.3
DexVLA-1.5B Wen et al. (2025) 97.2 99.1 95.6 - -

InstructVLA (w/o wrist view) 92.4 95.6 92.0 76.6 89.2
InstructVLA-1.5B 97.3± 0.5 99.6± 0.0 96.5± 0.5 89.8± 1.6 95.8± 0.4

Benchmarks and baselines. We evaluate InstructVLA on the LIBERO simulation benchmark (Liu
et al., 2024b), which includes diverse robotic manipulation tasks in simulated environments. Follow-
ing OpenVLA (Kim et al., 2024), we conduct experiments on four task suites, each containing 10
tasks with 50 human-teleoperated demonstrations. These suites assess spatial reasoning (LIBERO-
Spatial), object type understanding (LIBERO-Object), task-oriented behaviors (LIBERO-Goal), and
generalization to long-horizon tasks involving diverse objects, layouts, and goals (LIBERO-Long).

Our baselines fall into two categories: (i) generalist manipulation policies, including OpenVLA (Kim
et al., 2024), OpenVLA-OFT (Kim et al., 2025), SpatialVLA (Qu et al., 2025), π0(Black et al.,
2024), and π0-FAST(Pertsch et al., 2025); and (ii) manipulation policies with multimodal ability,
including GR00T-N1 (Bjorck et al., 2025), DexVLA Wen et al. (2025) and π0.5(Intelligence et al.)
with knowledge insulation(Driess et al., 2025).

Training details. We augment InstructVLA with wrist-view images from the LIBERO training
set (Liu et al., 2024b). Specifically, both the main and wrist-view images are provided to the VLM
and the action expert. To reduce the tokenized input length, the two images are concatenated and
resized into a single frame for VLM. Training follows the same hyperparameters as the Simpler-Env
experiments and is performed on a single A800 node with 8 GPUs using a global batch size of 256,
with evaluation every 1.5K steps.

Results. As shown in Table 10, InstructVLA achieves competitive performance despite not being
pretrained on large-scale manipulation datasets like π0.5(Intelligence et al.; Driess et al., 2025) and
using a much smaller VLM backbone than OpenVLA-OFT(Kim et al., 2025). Compared with
recent VLAs such as DexVLA Wen et al. (2025), InstructVLA attains higher performance with a
substantially smaller action model (134M versus 1B).

A.4 DATA ABLATION ON OPENVLA

Table 11: Data ablation on OpenVLA. “+VL” indicates finetuning OpenVLA with the same
multimodal dataset used by InstructVLA. “+VLA-IT” refers to finetuning OpenVLA with the same
VLA-IT dataset as InstructVLA. “+GPT4o” denotes using GPT4o as system 2 to translate free-form
instructions into atomic ones.

OpenVLA (OXE) OpenVLA + VL OpenVLA + VL + VLA-IT OpenVLA + VL + GPT4o InstructVLA

task aggregation 14.8 28.3 30.5 38.8 43.3
Situated Reasoning 13.6 19.5 17.4 32.4 48.8
Average 14.2 23.9 24.0 35.6 46.0

To investigate whether the performance gain of VLA-IT arises solely from the dataset itself, we
reimplement the training procedure of the InstructVLA on OpenVLA (Kim et al., 2024), which
represents a class of models trained under the action-only paradigm. As shown in Table 11, OpenVLA
benefits from both vision-language and VLA instruction tuning data, with the latter showing greater
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improvement in the task aggregation setting. This is attributed to exposure to more diverse instructions.
However, performance on the situated reasoning setting remains unchanged, likely due to catastrophic
forgetting caused by the action-only training paradigm, which limits OpenVLA’s ability to leverage
the VLM’s reasoning ability through simple finetuning.

The greatest performance gain is observed when GPT-4o is introduced as an auxiliary System 2 in
both evaluation settings. However, overall performance remains inferior to InstructVLA, as GPT-4o
cannot fully ground free-form instructions to the atomic skills on which OpenVLA is pretrained.

A.5 REAL-WORLD ABLATION

The problem is 52/2=. The correct 
answer is 26, the options are 12, 18, 
26, So I will pick the green cube.

Answer the question step by step

Beyond Collection Range Written-out Numbers Matchstick Numbers Hard Case 1 Hard Case 2

Figure 16: Real-world ablation study. The first row depicts the reasoning responses and the rolled-
out actions, while the second row illustrates five categories of generalization.

The problem is 4 - 1 =. The correct answer is 
3, the options are 12, 02, 03. So I will pick 
the green cube.

The problem is 4 - 1 =. The correct answer is 3, 
the options are one, three, two. So I will pick 
the yellow cube.

The problem is 4 + 4 =. The correct answer is 
8, the options are 18, 17, 6. So I will pick the 
red cube.

The problem is 8 + 9 =. The correct answer is 
17, the options are 18, 17, 6. So I will pick the 
yellow cube.

w/o multimodal data co-training

w multimodal data co-training

Success

Failure

Reasoning Failed

Grasp Failed

Figure 17: Reasoning examples. Two evaluation cases are presented to illustrate the role of
multimodal datasets. We further summarize the results of InstructVLA in a Sankey diagram.

Setup. This case study evaluates the role of multimodal datasets in manipulation tasks. The robot
setup follows our few-shot Frank evaluation. As shown in Figures 16 and 17, the model must first
perform OCR to recognize the formula on the board and its answer options, then compute the result,
and finally control the robot to grasp the correct object. This task mirrors a shopping scenario where
robots often need to read prices and perform simple calculations to satisfy a requirement. The study
jointly assesses OCR and calculation abilities, which are expected to benefit from multimodal data.
To reduce bias, each case is evaluated three times with different target objects. In total, 250 training
cases are collected but excluded from evaluation.

The in-domain tasks are defined as calculations within the range of the training data and written
in a similar format. Generalization tasks are divided into five types: (1) Beyond Collection Range,
(2) Written-out Numbers, (3) Matchstick Numbers, (4) Hard Case 1 (digits partially occluded with
superimposed lines), and (5) Hard Case 2 (involving more complex calculations).
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Analysis. By co-training with a general multimodal dataset, we observe that InstructVLA performs
better on the tasks of Written-out Numbers, Matchstick Numbers, and Hard Case 1. We attribute
this improvement to the inclusion of general OCR data within the multimodal dataset. Although the
multimodal dataset is unfiltered (i.e., identical to the corpus used for training a VLM such as Bunny),
it nonetheless enhances the instruction generalization for these specific tasks.

The SOTA VLA π0 (Black et al., 2024), although pretrained on DROID Khazatsky et al. (2024),
however, produces near-random results: although each grasp is executed precisely, the model
frequently selects the wrong target object. Interestingly, when the third-view camera, which capturing
the board with expressions and options, is masked, π0 still behaves similarly. This suggests that π0

largely ignores reasoning cues and overfits to the wrist view. While it performs precise grasping, the
overall outcomes remain unsatisfactory.

B EXTRA RELATED WORKS

In this section, we delineate the distinctions between InstructVLA and several similarly named
methods that differ substantially in their conceptual foundations and objectives.

B.1 EMBODIED INSTRUCTION TUNING

Vision-Action Instruction Tuning. The concept of Vision-Action Instruction Tuning is introduced
in LLARVA Niu et al. (2024), which unifies robotic tasks through structured prompts and 2D trace
supervision for cross-embodiment pretraining. In contrast, InstructVLA extends this idea by focusing
on preserving the multimodal knowledge of VLMs and bridging high-level human instructions with
low-level manipulation skills, enabling generalization to diverse tasks that require common-sense
reasoning.

Visuomotor Instruction Tuning. The concept of Visuomotor Instruction Tuning is purposed in
LLaRA Li et al. (2024b). This approach formulates robot policies as visuo-textual conversations and
produces 2D keypoints and rotations for manipulation. However, it functions primarily as a high-level
planner, and its outputs require additional adaptation before being directly executed on robots.

B.2 MULTI-STAGE TRAINING

OpenVLA-OFT. OpenVLA-OFT (Kim et al., 2025) extends OpenVLA (Kim et al., 2024) by
incorporating FiLM layers, Parallel decoding, MLP action head, and has been applied to fine-tuning
on smaller simulation datasets such as LIBERO Liu et al. (2024b). This approach demonstrates
the effectiveness of architectural enhancements for improving manipulation performance in specific
domains. However, while these techniques improve in-domain performance, they fall short in
reasoning-centric settings such as SimplerEnv-Instruct, as shown in Figure 6 (b). In contrast, our
work moves beyond architectural modifications by emphasizing generalizable manipulation with
textual reasoning through MoE adaptation, latent action methods, and a comprehensive data and
evaluation pipeline. With the proposed VLA-IT training paradigm, our generalist model achieves
nearly a 2× improvement over models that rely solely on architectural designs.

Embodied Chain-of-Thought. ECoT (Zawalski et al., 2024) introduces chain-of-thought (CoT)
supervision to link reasoning with manipulation and follows a standard “pretrain-then-instruction-tune”
paradigm. However, it relies on full-model pretraining fine-tuning, as in OpenVLA (Kim et al., 2024),
which leads to catastrophic forgetting of vision-language capabilities. In contrast, InstructVLA adopts
a two-stage design: the first stage injects action-generation ability while deliberately preserving
the multimodal knowledge of the pretrained VLM. This approach ensures that the model retains
open-world understanding and general multimodal reasoning, both of which are largely lost in ECoT.
The second stage then strengthens multimodal reasoning and manipulation alignment. Consequently,
InstructVLA supports broader inference modes (reasoning + manipulation, direct manipulation, and
multimodal VQA) and achieves stronger performance with substantially fewer trainable parameters.
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C CASE STUDY

C.1 REASONING CASES IN SIMPLERENV-INSTRUCT

I am thirsty but I do not want drinks. Please grab something for me.

Can you place the sourest fruit to the less sour one?

Please move the 'L' to 'A'

InstructVLA: SR 56.3%

OpenVLA: SR 6.3%

InstructVLA: SR 33.3%

OpenVLA: SR 0.0%

InstructVLA: SR 58.3%

OpenVLA: SR 37.5%

Figure 18: Reasoning cases in SimplerEnv-Instruct. Three cases of the VL fine-tuned OpenVLA
and InstructVLA-Generalist. “SR” denotes success rate.

We present three representative reasoning cases in Figure 18. In the first example, OpenVLA fails to
associate the letters “V” and “L” with their corresponding shapes in the image, resulting in consistent
failure to grasp in all similar scenarios. In the second case, OpenVLA does not correctly associate
the concept of “sour” with the corresponding fruit. As a result, its action is influenced by both the
pear and lemon, leading to a grasp attempt between them that strikes the table. In the final example,
OpenVLA fails to interpret the negation in the instruction and incorrectly grasps Coke instead of
orange.
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C.2 FAILURE CASES

123

Figure 19: Failure case 1 of InstructVLA. The model receives only a third-person view image
as visual input, making it difficult to estimate depth or the gripper’s relative position to the object.
Consequently, it fails to grasp the object accurately, despite the gripper appearing aligned with the
target in the image.

123

Figure 20: Failure case 2 of InstructVLA. The model fails to accurately estimate depth due to the
real-to-sim gap, specifically the absence of arm reflection on the table, which causes the robot to
become stuck in an out-of-distribution position.

We illustrate two representative failure cases of InstructVLA in Figures 19 and 20. While some
failures may result from the real-to-sim gap, incorporating additional sensory inputs such as depth
information and robot state may enhance performance. We leave this exploration for future work.
Additionally, we observe that the model achieves higher success rates in language responses than
in action execution, suggesting that multimodal understanding is more readily transferable than
manipulation skills. This highlights a fundamental challenge in the development of embodied models.
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C.3 GPT4O AS THE AUXILIARY SYSTEM 2

Instruction: Can you place the sourest fruit to the less sour one?

Based on the instruction and the image, write a concise and 

direct prompt describing what to do next. 

You should directly give the prompt.

Place the lemon on the left, the pear in the center, and the sponge 
on the right.

Instruction: Pick the apple from the middle drawer, then close the 

middle drawer 

Based on the instruction and the image, write a concise and direct 

prompt describing what to do next. 

You should directly give the prompt.

Close the middle drawer.

Figure 21: GPT-4o as the auxiliary system 2. We prompt GPT-4o with the first image from the
environment along with the instruction, asking it to rewrite the prompt in a simple and clear format.

A strong baseline for InstructVLA integrates an expert model capable of executing atomic instructions
with GPT-4o as an instruction parser to decompose complex, free-form commands for decision-
making (Shi et al., 2025; Gao et al., 2025). The prompt used is listed in Prompt 1, and it was evaluated
and refined on 20 test cases from the task aggregation to ensure reliable performance. Results on
additional test cases are presented in Figure 21. GPT-4o successfully identified the atomic instruction
in the second case but failed in the first.

During evaluation, GPT-4o is invoked only in the initial step to ensure an unobstructed view of
the scene and to generate a free-form instruction. We do not provide a closed set of task-relevant
instructions for selection, as the training set (Figure 22) lacks sufficient diversity in instructions and
objects, and therefore does not adequately cover the evaluation settings. Across 80 evaluation cases,
GPT-4o frequently fails in physical grounding, maintaining coherence, and accurately interpreting
the scene.

GPT-4o System-2 Prompt

Instruction: Can you place the sourest fruit to the least sour one?
Based on the instruction and the image, write a concise and direct prompt to describe what to do next.
You should directly give the prompt.
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D DATA ANNOTATION DETAILS AND ANALYSIS

The data analysis and GPT4o prompt are listed as follows (Figure 22 and Prompt 2).

D.1 LANGUAGE MOTION PRE-TRAINING DATA

Language motion (Belkhale et al., 2024) provides intuitive linguistic descriptions of basic end-effector
movements, which can be distilled into latent actions. We compute the relative movement of the
end-effector between the t-th and (t +W )-th steps, using a window size W . The final labels are
formatted, such as “move right and open the gripper”.

D.2 TASK DIVERSITY ANALYSIS

We categorize tasks into two broad classes: Command Rewriting / Context Creation and Question
Answering. Each class includes several common task types:

COMMAND REWRITING / CONTEXT CREATION

• Complex Object Referencing: Uses attributes, pronouns, or relational terms to reference an
object.
Example: “Place the red item next to the box.”

• Novel Action Referencing: Rephrases a previously known action using a different verb or
motion.
Example: “Shut the drawer” (instead of “Close the drawer”).

• Negative Task Specification: Specifies the correct action by negating incorrect alternatives.
Example: “I’m thirsty, but I don’t want sparkling water—bring me something else.”

• Subtask Identification: Isolates a step from a multi-step instruction with a clear sequential order.
Example: From “Take the spoon out of the top drawer,” execute only the first step.

• Situated Task Identification: Infers the required action based on contextual cues or situational
conditions.
Example: “I want to clean the table. What should I use?”

• Direct Instruction: Provides an explicit and unambiguous command.
Example: “Organize the drinks by putting the green can next to the Coke can.”

• Tool-Use Understanding: Refers to an object by its utility or function rather than its name.
Example: “Hand me something to cut with” (instead of “Use the knife”).

QUESTION ANSWERING

• Quantitative Identification: Requires determining the number or quantity of items.
Example: “How many apples are on the table?”

• Spatial Identification: Involves spatial relationships between objects or with the user.
Example: “Is the cup on the left or the right of the plate?”

• Visual Identification: Focuses on appearance-based attributes such as color or shape.
Example: “Which one is the metallic silver object?”

• Commonsense Answering: Requires everyday reasoning or world knowledge.
Example: “Which of these would you use to cut paper?”

• State Identification: Determines the current condition or status of an object.
Example: “Is the drawer currently open or closed?”

The data examples for VIA-IT are provided in Figures 23 and 24.

D.3 PROMPTING

The Prompt 2, along with three images captured at the beginning, middle, and end of each episode, is
packaged and sent to GPT-4o. Episodes from the Bridge dataset (Ebert et al., 2021) that lack valid
instructions are excluded from annotation.
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Figure 22: Data analysis. Left: We manually identify common task categories and
calculate the distribution. The proportion of direct prompts is reduced in favor of more
diverse, free-form expressions. Right: Word cloud and verb-noun analyses compare the
original Fractal instructions with the VLA-IT corpus.

Make sure the bottom drawer is not open.

I will shut the bottom drawer.

Please finalize the setup by securing all open compartments at the workstation.

I will close the bottom drawer.

Organize the drinks by putting the green can next to the Coke can.

I will position the green can near the Coke can.

Please clear the table and group the cans together, starting by moving the green one.

Sure, I will move the green can next to the Coke can.

We need the blue bottle for the next experiment. 

I will retrieve the blue bottle and place it on the counter for the experiment.

Organize the workspace by putting the blue bottle from the upper drawer onto the counter.

Okay, I will take the blue bottle and position it on the counter.

I'm preparing a smoothie and need a banana, please grab one.

I will pick a banana from the white bowl.

We need to set up bananas for a display, could you help with handling them?

Sure, I'll pick a banana from the white bowl." Novel Action Refer

Direct Instruction

Situated Task Identification

Direct Instruction

Spatial Identification

Direct Instruction

Novel Action Refer

Negative Task

Figure 23: More VLA instructions on Fractal dataset.

Spread out the folded green fabric from the upper right to the lower left.

I will unfold the cloth in that direction.

Open the triangular-shaped green textile by pulling it downwards to the left.

Okay, I will start unfolding it now.

Novel Action Refer

Complex Object Refer

After boiling water in the pot, please put the lid on to simmer the contents.

I'm ready to place the lid on the pot.

 

Once you finish washing the dishes, can you cover the pot already on the stovetop?

Sure, I will cover the pot.

Subtask Identification

Subtask Identification

Grab the cutting tool and place it in the drawer.

I will take the box cutter and put it away.

Retrieve the sharp tool and store it in the compartment.

I will find the box cutter and store it.

Tool-use Understanding

Complex Object Refer

After you're done washing the dishes, can you place the blue spoon on the red washcloth?

I will place the blue spoon on the orange cloth, as there is no red cloth.

Place the blue utensil on the red fabric.

I will set the blue spoon on the orange cloth.

Counterfactual

Complex Object Refer

Figure 24: More VLA instructions on Bridge dataset.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Data Annotation Prompt

Imagine a robot assistant operating in a laboratory or household environment. The robot is expected to follow diverse commands
based on realistic tasks and human interactions. Your task is to:

1. Write a caption to describe the visual scene shown in the first image. You should NOT include the robot itself here.

2. Based on the given robot task description and the images, generate new user instructions and corresponding robot responses
with QA pairs.

The new user instructions should align with the actions performed by the robot in the images and with the environment shown in the
images. You are required to produce three categories of instructions:

1. Command Rewriting (CR): Rephrase the task description using diverse language styles and vocabulary. You may refer to
objects by their utility, color, shape, or other attributes, but ensure the attribute you use is unique to each object.

2. Context Creation (CC): Generate detailed scenarios where the robot needs to perform the given instruction. The situation
should involve realistic surroundings or tasks where this instruction would be necessary. You may also simulate a long-horizon
task based on the context provided by the image. Your generated question should NOT include the answer itself.

3. Scene-related Commonsense QA (QA): Generate some other QA pairs that are related to the scene. The answer should be
concise and consistent among the three images.

For each instruction, provide a concise robot response that clearly (use simple words) communicates the next action the robot will
take. Do not chain multiple actions together using phrases like "and then." If necessary, the response may include a brief
explanation of the reasoning. Avoid repeating the instruction in the response.
Response Format: You MUST respond in JSON format. You should include "Caption", "CR", "CC", and "QA" in your response.
You should create 1-3 entries for each of CR, CC, and QA.
Example 1: For the instruction “Close middle drawer":
(Corresponding three images omitted)
Caption: “A table with a Coke and chips on top, with its middle drawer open.”

{
"Caption": "A table with a Coke and chips on top, with its middle drawer open.",
"CR": [ { "question": "Push the middle drawer closed.",

"answer": "Ok, I will close it." },
{ "question": "Ensure the center drawer is closed.",

"answer": "I will close the drawer." } ],
"CC": [ { "question": "I want you to take out the Coke from the middle drawer and closing it.",

"answer": "The Coke is on the table, and the middle drawer is empty. So, I should close the middle drawer." },
{ "question": "Please push the middle drawer shut so we can clear the workspace.",

"answer": "Okay, I will close the middle drawer." } ],
"QA": [ { "question": "What is in the middle drawer?",

"answer": "The middle drawer is empty." },
{ "question": "How many Coke cans are on the table?",

"answer": "One." } ]
}

Example 2: For the instruction “move the apple near the Coke":
(Corresponding three images omitted)
Caption: “A table with Coke, apple, and soap on it.”

{
"Caption": "A table with Coke, apple, and soap on it.",
"CR": [ { "question": "Move the healthy food near the Coke.",

"answer": "The healthy food refers to the apple, and I will move the apple to the Coke." },
{ "question": "Move the apple to the cylindrical−shaped object.",

"answer": "Of course!" } ],
"CC": [ { "question": "Gather all objects near the Coke, except the soap.",

"answer": "I will move the apple to the Coke." } ],
"QA": [ { "question": "I'm thirsty, what can I have?",

"answer": "The Coke is on the table." },
{ "question": "What is the healthy food on the table?",

"answer": "The apple." } ]
}

Your task description is “<placeholder>”.
Now give your response in JSON format.

D.4 GROUND TRUTH INSTRUCTION FOR DATA ANNOTATION

During data generation, we observe that GPT-4o often struggles to accurately interpret robot behavior
using only the three provided images, performing noticeably worse than humans. To quantify this, we
randomly sample 100 examples and prompt GPT-4o to generate our four types of annotations using
a similar prompt (excluding the ground truth instruction from a human expert). We then manually
evaluate the correctness of the results: a sample is scored as 1 if no obvious errors are found, 0.5 if
minor errors are present, and 0 if completely incorrect.

The results are summarized in Tables 12 and 13, with two representative cases illustrated in Figures 26
and 27. In the first case, GPT-4o hallucinates the robotic arm as a bread roll, leading to an incorrect
caption and instruction. In the second, it reverses the temporal order of actions, resulting in an
inaccurate annotation.
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We attribute this performance gap to GPT-4o’s lack of temporal grounding and the low visual quality
of images in manipulation datasets. In contrast, human-provided instructions inherently encode
temporal links across the image sequence by grounding the task in context, identifying target objects,
and specifying corresponding robot actions. This finding underscores that, despite their impressive
capabilities, even state-of-the-art VLMs lack embodied experience and temporal grounding, limiting
their ability to infer fine-grained actions in robot manipulation tasks.

Table 12: Data annotation success rate. GPT-
4o shows a significant performance drop without
ground truth instructions during data annotation.

Method Success Rate

With GT Instruction 95.4%
Without GT Instruction 45.0%

Table 13: Distribution of common error types.
Error analysis of GPT-4o annotations generated
without access to ground truth instructions, with
long-tail errors omitted.

Error Type Percentage
Ignore Vision Context 32.5%
Reverse Temporal Order 10.2%
Minor Object Hallucination 5.7%

D.5 LANGUAGE MOTION EXAMPLES

Language motion (Belkhale et al., 2024) describes end-effector movements using natural language,
enhancing the VLM’s understanding of robotic manipulation. To generate such annotations, we
leverage proprioceptive data that captures the end-effector’s position and orientation relative to the
robot base. While the Bridge dataset (Ebert et al., 2021) adopts annotations from ECoT (Zawalski
et al., 2024), we additionally annotate the Fractal dataset (Brohan et al., 2022) using a similar
approach. The examples on the Fractal dataset are presented in Figure 25.

Move down, rotate clockwise Move down

rotate clockwise Move Up Close gripper

Move down, tilt up, rotate clockwise Move forward left, tilt up, rotate clockwise

Move backward, rotate counterclockwise

Figure 25: Language motion examples
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Caption:
  A table with a bowl containing a bread roll and tomatoes.

CR:
  Question: Move the bread roll out of the bowl.
  Answer: Sure, I will lift the bread roll out.

  Question: Remove the beige roll from the dish.
  Answer: Alright, I will pick up the beige roll.

  Question: Take the round brown bread out of the bowl.
  Answer: Okay, I'll remove the round brown bread.

CC:
  Question: I need the bread roll for a sandwich. Can you retrieve it from the bowl?
  Answer: I will lift the bread roll out of the bowl.

  Question: Please take the bread roll out of the bowl so we can start dinner.
  Answer: I will take the bread roll out of the bowl.

  Question: Could you remove the bread roll from the bowl in order to clean the table?
  Answer: Sure, I will remove the bread roll.

QA:
  Question: What is inside the bowl?
  Answer: A bread roll and tomatoes.

  Question: Where can I find the bread roll?
  Answer: In the bowl on the table.

  Question: What is the color of the bread roll?
  Answer: It is beige.

Caption:
A square table with a white bowl containing an apple and two red fruits.

CR:
Question: Grab the apple from the serving container.
Answer: I will pick up the apple from the bowl.

Question: Could you take the round fruit from the white dish?
Answer: I will grab the apple from the dish.

CC:
Question: I need you to prepare the apple for cutting, please remove it from that dish.
Answer: I will take the apple out of the bowl.

Question: Can you put the apple on the counter so we can slice it for the salad?
Answer: I will take the apple out of the bowl.

QA:
Question: How many fruits are in the bowl?
Answer: Three.

Question: What is the color of the bowl on the table?
Answer: White.

Question: What is the shape of the table?
Answer: Square.

Ground Truth
Instruction

Ground Truth
Instruction

pick apple from white bowl

Figure 26: Comparison of GPT annotations with and without ground truth instruction. Errors
are highlighted in red.

Caption:
  A vending machine with multiple trays containing various drink cans, including Coke, 
Sprite, and Pepsi.

CR:
  Question: Grab the cylindrical silver container and place it in the empty tray below.
  Answer: I'll pick up the silver can and place it in the tray below.

  Question: Transfer the green can to the bottom shelf.
  Answer: I will move the green can to the bottom shelf.

  Question: Put the Pepsi can in the lowest compartment.
  Answer: I'll put the Pepsi can in the bottom compartment.

CC:
  Question: Organize the refrigerator by placing the Pepsi can from the third shelf to the 
bottom shelf.
  Answer: I'll place the Pepsi can from the third to the bottom shelf to organize.

  Question: Move the lemon-lime soda down to the last rack to make space for new items.
  Answer: I will move the lemon-lime soda to the last rack.

  Question: You're restocking the vending machine and need to place drinks in the bottom 
section. Begin with the Pepsi can.
  Answer: I'll place the Pepsi can in the bottom section.

QA:
  Question: How many Cola cans are in the refrigerator?
  Answer: One.

  Question: Which drinks are placed on the bottom shelf?
  Answer: Pepsi and Sprite.

  Question: Where is the Sprite can located?
  Answer: On the third and bottom shelves.

Caption:
  A fridge with several empty trays and a few cans stored on the shelves.

CR:
  Question: Retrieve the tangerine-colored can from the lower rack.
  Answer: Okay, I will pick up the orange can from the bottom shelf.

  Question: Remove the copper-hued can from the fridge's lowest compartment.
  Answer: I will take out the orange can from the bottom shelf.

CC:
  Question: I need you to collect the orange can from the fridge for the party.
  Answer: I will pick the orange can from the bottom shelf.

  Question: Get the beverage from the fridge so we can serve it to the guests.
  Answer: I'll grab the orange can from the bottom shelf.

QA:
  Question: How many cans are located on the bottom shelf?
  Answer: Two cans are on the bottom shelf.

  Question: What is the unique color can on the bottom shelf?
  Answer: Orange.

Ground Truth
Instruction

Ground Truth
Instruction

pick orange can from bottom shelf of fridge

Figure 27: Comparison of GPT annotations with and without ground truth instruction. Errors
are highlighted in red. In this case, GPT-4o incorrectly infers the temporal sequence of actions
without access to the instruction.
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E BENCHMARK DETAILS

E.1 MULTIMODAL

We use the automatic evaluation from VLMEvalKit (Duan et al., 2024) including MMMU(Val) (Yue
et al., 2024), MMStar (Chen et al., 2024a), MME (Fu et al., 2024), OCRBench (Liu et al., 2024e),
HallB(Avg) (Guan et al., 2024), MMB(Dev En V1.1) (Liu et al., 2024d), TextVQA (Singh et al.,
2019), DoCVQA (Mathew et al., 2021), InfoVQA (Mathew et al., 2022), AI2D (Kembhavi et al.,
2016), ChartQA (Masry et al., 2022) and RWQA (Team, 2024). These benchmarks collectively
evaluate diverse multimodal capabilities, including general visual question answering, document,
infographic and chart understanding, OCR reasoning, and hallucination robustness.

E.2 SIMPLERENV-INSTRUCT

As shown in Table 14, although SimplerEnv-Instruct is primarily designed for instruction generaliza-
tion, we incorporate diverse out-of-distribution objects, environments, and distractors to prevent VLA
models from exploiting the benchmark by disregarding the instructions.

Table 14: Task distribution

Attr. with OOD Obj. with OOD Env. with Distract Obj. Only Language OOD

Percentage(%) 50.0 62.5 35.0 5.0

We select 10 task scenes with InstructVLA rollout actions and responses, as shown in Figures 28
and 29, to illustrate its performance on both task aggregation and Situated Reasoning tasks.

Acknowledgements of 3D assets. We gratefully acknowledge the creators of the following 3D assets
used in SimplerEnv-Instruct. All assets are licensed under the Creative Commons Attribution license:

• Fruit Bowl Collection
https://sketchfab.com/3d-models/fruit-bowl-collection-d89f6311cb0c4c37b0bf9cdd1e5abcb3

• Coffee Mug
https://sketchfab.com/3d-models/coffee-mug-school-project-5f5ccee1514c440887c072fae8e0d699

• Copper Tea Pot
https://sketchfab.com/3d-models/copper-tea-pot-27f2ac58f7614f2796630bdc6f18ee2f

• Game Boy Classic
https://sketchfab.com/3d-models/game-boy-classic-0ae80019e6f046168923286d7e628f6f

All other assets are created using Blender or modified from SimplerEnv (Li et al., 2024d).
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"Pick up the yellow fruit on the table

saisis la banane
I will pick up the banana. 

Please retrieve the green teardrop-shaped fruit from the surface.

Veuillez récupérer le fruit en forme de goutte verte de la surface.
I will pick up the pear. 

Pick up the small round purple fruit I will pick up the grape. 

Grab the green and white fizzy drink can from the workspace.

toma la lata verde y blanca
I will pick up the 7up can. 

Please move the 'L' to 'V' I will move the 'L' next to the 'V'. 

pick the plastic bottle and then place it near the orange. I will pick up the bottle and move it to the orange. 

I will put the lemon next to the pear. Can you place the sourest fruit to the less sour 
one?

pick the mug and then place it near the play station. I will pick the mug and move it closer to the play station. 

Pull the center drawer open I will open the middle drawer now. 

Pull the top drawer out

place the apple into the drawer you just opened

I will open the top drawer now.

I will open the top drawer and place the apple inside.  

Rollout Video Instruction Model Response

Figure 28: Examples of task aggregation in SimplerEnv-Instruct. We list ten examples with
corresponding instructions and responses. Notably, InstructVLA shows the strong zero-shot ability
to interpret multilingual instructions, recognize novel objects, and leverage OCR capabilities.
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Rollout Video Instruction Model Response

Please check if there are any items in the bottom drawer
The bottom drawer is currently closed, so I will open it to check 
for items. 
The bottom drawer is already open, so I will check its contents. 

Please move the water bottle to wet the sponge. I will pick up the water bottle to help you. 

I want a health vegetable. Grab it for me. I will pick up the eggplant. 

Can you grab the fruit before preparing the salad? I will pick up the orange first. 

I want to clean the table. Pick a suitable tool for me. I will select the sponge for cleaning. 

Open the top drawer and place coke can into it. I will pick up the bottle and move it to the orange. 

The coffee mug is already on the table, so I will now 
close the top drawer. 

Pick the mug from the top drawer, then close the 
top drawer

put the tool that can be used to feed a baby on the plate I will place the spoon on the plate.

After I finish my drink, can you place the fruit near it for a snack? Sure, I will place the apple near the Pepsi can. 

I am thirsty but I do not want drinks. Please grab something 

for me.
I will pick up the orange from the table. 

Figure 29: Examples of Situated Reasoning in SimplerEnv-Instruct. The second example’s
responses is recorded before and after the drawer is open.
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F MODEL DESIGN AND TRAINING DETAILS

F.1 INSTRUCTION FORMAT

To train captioning, question answering, and instruction-following capabilities, we integrate all tasks
into a unified dialogue format. For captioning and question answering, we adopt the template shown
in Prompt 3, where the captioning instruction is sampled from Prompt 4. For free-form instructions,
we append the postfix “First answer my question.” to elicit a direct response from the model, as
illustrated in Prompt 5.

Dialogue Format

[
{

"role": "system", "content": DEFAULT_SYSTEM_MESSAGE
},
{

"role": "user",
"content": "[Question]",
"image": image

},
{

"role": "assistant",
"content": "[Answer]"

},
{

"role": "user",
"content": "What action should the robot take to [Instruction]?"

},
{

"role": "assistant",
"content": "[Latent Action Queries]"

}
]

Caption Prompts

• Describe what’s on the table. Don’t mention the robot arm.

• What objects are in the scene? Ignore the robot arm.

• Tell me what you see on the table, not the robot.

• Describe the items and their positions, but skip the robot.

• Look at the table and describe it. Don’t include the arm.

• Only talk about the objects, not the machine.

• Give a short description of the scene, without the robot.

• Describe the setup on the table. Leave out the robotic arm.

• Focus on the objects and environment. Ignore the robot.

• Describe the environment and tabletop contents, excluding any robotic hardware.

Instruction Format

[
{

"role": "system", "content": DEFAULT_SYSTEM_MESSAGE
},
{

"role": "user",
"content": "What action should the robot take to [Instruction]? First answer my question.",
"image": image

},
{

"role": "assistant",
"content": "[Response] [Latent Action Queries]"

}
]
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Table 15: Model parameters. “Adaptor” and “Scale Head” are used for MoE adaptation. Specifically,
two LoRA adaptors are used to learn latent action generation and assistant response during VLA-IT.

Component Parameter Value

Adaptor Rank 128
Alpha 256
Dropout 0.05
Target Attn. Q/K/V/O

MLP Up/Down

Scale Head Depth 4
Size 128

Action Backbone Depth 12
Head 12
Hidden Size 768
RoPE Theta 1000

Proprioception Encoder(Optional) Hidden Size 8 → 768 → 768
Activation SiLU

Action Encoder with Time Embedding Hidden Size 7+768 → 1536 → 768
Activation SiLU

Table 16: Flow matching parameters. The time steps is sampled from p(τ) = β( s−τ
s ; 1.5, 1) (Black

et al., 2024)

Component Parameter Value

Flow Sampling s 0.999
Inference Steps 10

Sinusoidal Time Embed Max Period 100

F.2 LEARNING OBJECTIVE AND INFERENCE PROCEDURE

We adopt flow matching (Black et al., 2024; Lipman et al., 2022) to learn the action chunk A ∈
RH×7 (Zhao et al., 2023) over a horizon H . The training objective is defined as the flow matching
loss:

LFM = E
[
∥V θ(Aτ , qt)− (ϵ−A)∥2

]
, (1)

where τ ∈ [0, 1) denotes the flow step, and Vθ(A
τ , qt) is the network output conditioned on qt, which

encodes information from DINOv2 (Oquab et al., 2023) and a latent action C. The interpolated noisy
action is given by Aτ = τA+ (1− τ)ϵ, with ϵ ∼ N (0, I).

During inference, we generate the action chunk using forward Euler integration:

Aτ+1/N = Aτ +
1

N
Vθ(A

τ , qt), (2)

starting from A0 ∼ N (0, I), with N = 10 denoising steps.

F.3 MODEL PARAMETERS

Additional model parameters are provided in Table 15, with flow-matching sampling settings detailed
in Table 16. All projectors—including those aligning latent actions and DINO-ViT visual features to
the action expert’s dimension—use a simple two-layer MLP with SiLU activation. The action head,
also a shallow MLP with SiLU, maps the action expert’s hidden states to RN×7, where N = 16 is
the prediction horizon and 7 denotes the action dimension, including the gripper.
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F.4 INFERENCE SPEED

We evaluate the inference speed of InstructVLA on a single A100 GPU with BF16 precision, as
shown in Table 17. To support language feedback during evaluation (i.e., CoT inference), in the
“Thinking” setting, we enable VLM auto-regressive generation every 20 action expert steps. The
“Action Only” setting bypasses language generation and directly decodes latent actions via a single
VLM forward pass. In the “Latent Action Caching”, latent actions are generated every two expert
steps; this introduces minimal performance impact. All settings are tested without action chunking.
Note that although the model predicts 16-step action sequences, only one step is executed.

Table 17: Inference speed. Inference speed is evaluated under three settings without using action
chunking. Each evaluation includes a 50-step warm-up followed by 200 steps for stable measurement.

With Language Action Only Latent Action Caching

Inference Frequency(Hz) 2.51 3.50 4.96

F.5 EXPERIMENTS COMPUTE RESOURCES

The action pretraining phase requires approximately 27 hours on 64 A100 GPUs, with each node
equipped with 1 TB of CPU memory. The VLA-IT phase takes about 12 hours under the same
GPU configuration. Simulator-based evaluations are conducted with 8 A100 GPUs, while real-world
experiments involve 4 hours of training on 32 A100 GPUs and deployment on a single A100 GPU.

To assess minimal training resources, we further reproduce pretraining results using 8 A800 GPUs in
2.5 days as shown in Table 18.

Table 18: Evaluation results under different training settings. We report mean success rates (%±
standard error) across tasks, with Overall denoting the average over all tasks. “Main” corresponds to
the results reported in the main table.

Google Robot (VA) Google Robot (VM) WidowX Robot Overall

Setting Pick Coke Move Near Drawer Apple In Pick Coke Move Near Drawer Apple In Put Spoon Put Carrot Stack Cube Put Eggplant

Main (8 epochs) 92.3±0.7 71.9±1.3 61.7±0.8 33.1±2.5 79.6±1.9 68.3±3.1 52.3±3.8 50.3±3.8 43.1±6.4 40.3±14.6 9.7±9.6 94.4±2.4 56.2±2.9
8 GPUs (4 epochs) 94.0±0.2 76.9±0.5 62.8±1.6 39.3±4.3 88.7±1.7 67.4±2.1 61.8±2.5 31.7±1.9 62.5±11.0 48.6±2.4 8.3±4.2 95.8±4.1 61.5±1.3
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G MULTIMODAL EXAMPLES

Figure 30 illustrates InstructVLA’s multimodal and embodied commonsense reasoning across diverse
scenarios. The model demonstrates accurate visual inference (e.g., recognizing a dog via reflection,
identifying synthetic images), basic scene text recognition, and reliable grounding of objects and
colors. In manipulation tasks, it interprets high-level goals, predicts appropriate next actions, and
verifies task completion. These capabilities showcase its integration of perception, language, and
manipulation, enabling effective performance in complex daily-life scenarios.

How many dogs in this image? Explain why.

This image appears to be a digital creation rather than a real photograph. The 
reasons include the unrealistic proportions of the tree, the smooth and 
uniform texture of the tree's bark, and the perfect symmetry of the branches. 
Additionally, the background is a solid, unvarying blue, which is not typical of 
natural landscapes.

Is this a real image? Explain why

Can you help me recognize the words on the advertising board where a bus on it?

The advertising boards have words like "midnight", "7", "12"

What is on the top of the shelf

The current goal is: open drawer, take out snacks, place on table, close 
drawer. what is the immediate next step based on the image?

There is one dog in the image. This conclusion is based on the single reflection 
visible in the mirror, which shows only one dog's face. The dog's reflection is 
clear and distinct, indicating that there is only one dog present in the scene.

drop the  orange sachet in the drawer. is it satisfied?

The immediate next step is to pick the brown chip bag from the top 
drawer and place it on the counter.

There is a yellow block and a red block.

Yes, the drawer is now open.

The unusual aspect of this image is that a man is ironing clothes on a makeshift 
ironing board attached to the back of a yellow taxi. This is not a common sight, 
as ironing is typically done indoors or in a designated space, and it is not 
practical to iron clothes while driving.

What is unusual about this image

You've already washed the vegetables and are in the process of preparing your 
lunch. The next step would be to heat the cooked vegetables in the microwave, 
then assemble your lunch with any additional ingredients you have.

I'm preparing my lunch. What did I just do, and what should I do next based 
on the current environment?

Figure 30: Zero-shot multimodal question answering. Four commonsense and four embodied
examples are selected.
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H REAL-WORLD EXPERIMENTS SETUP AND ANALYSIS

We collect data exclusively for few-shot settings as shown in Figure 31. In the first setting, which
focuses on grasping objects in a clustered arrangement, the robot is instructed to classify objects
within a 20× 40 cm region on the table—placing all cubic objects into a plate and all others into a
box. This setting includes 70 complete episodes, totaling 677 pick-and-place actions. In the second
setting, which emphasizes spatial actions, the robot is instructed to randomly grasp three objects
from the top of a rack and place them into a plate. We collect 60 complete episodes for this setting,
comprising 180 pick-and-place actions. The experimental setups are depicted in Figure 35.

123

Figure 31: Real-world dataset examples. Four examples from the few-shot training set, illustrating
cluster classification tasks (left) and rack pick-and-place tasks (right).

123

Pick up the blue cube and place it on Einstein.

Pick up the blue cube and place it on Einstein.

Figure 32: Zero-shot grounding. In a clustered pick-and-place setting, InstructVLA accurately
places the blue cube by semantically grounding the reference to the celebrity.

123

Figure 33: Light distraction. Stable visual features from DINO and SigLIP enable the model to
operate robustly under extreme out-of-distribution lighting conditions.
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pick up the writing tool

I will grab the marker

I want to drink water, give me a suitable tool

I will provide you with a cup for drinking.

I want to feed a baby. What tool can I use? Pick it up.

I will pick up the spoon for feeding the baby.

Figure 34: Zero-shot evaluation. We perform zero-shot evaluation in the Bridge kitchen environment
with augmented background and novel objects. The instruction and model response are visualized in
the first image.

To assess semantic grounding in novel contexts, we replace the plate and box in the cluster classifica-
tion setting with images of celebrities. As illustrated in Figure 32, the model accurately interprets
instructions and places the blue cube correctly by leveraging object and celebrity recognition.

Figure 33 shows that InstructVLA remains robust under extreme lighting conditions, supported
by stable visual features from DINO and SigLIP. Finally, we evaluate zero-shot generalization in
the Bridge kitchen environment with augmented backgrounds and unfamiliar objects. As shown
in Figure 34, the model successfully follows novel instructions and completes the tasks.
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Figure 35: Real-world settings. A third-person view is captured using an Intel D435i camera for the
Franka (few-shot) and WidowX (zero-shot) settings.
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I BROADER IMPACTS AND FUTURE WORK

I.1 LIMITATION

InstructVLA integrates world knowledge into manipulation tasks by performing multimodal reasoning
prior to action generation. Recent VLMs also excel at long-context processing and multi-turn dialogue.
This motivates curating interleaved manipulation and reasoning with multi-turn interaction to support
long-horizon tasks involving user intervention or reasoning-action alternation (Yao et al., 2023).
Furthermore, existing tasks remain limited to basic primitives such as open/close and pick/place
by the datasets we use (Brohan et al., 2022; Ebert et al., 2021). Extending InstructVLA to more
dexterous skills is essential for real-world deployment.

I.2 LLM USAGE STATEMENT

We employed large language models (LLMs) solely for grammar refinement and minor linguistic
polishing. All LLM-assisted edits were carefully reviewed and verified by the authors to ensure
that no fabricated content or unintended alterations to the original meaning were introduced. The
research ideas, experimental design, data analysis, and conclusions presented in this work were
entirely conceived and executed by the authors without LLM assistance.

I.3 BROADER IMPACTS

InstructVLA contributes to the advancement of general-purpose embodied agents by integrating
vision-language understanding with action generation. Its ability to follow free-form instructions and
generalize to novel tasks supports applications in assistive robotics and human-robot collaboration.
Nonetheless, as with other large pretrained models, careful attention must be given to potential
limitations such as dataset bias and safety in real-world deployment. Ensuring responsible use and
reliable performance across diverse environments is essential.

I.4 FUTURE WORK

We plan to incorporate additional sensory modalities, such as depth and tactile feedback, to enhance
safety and reliability in physical interactions. Leveraging recent advances in digital twins and
simulation technologies, we aim to reduce reliance on real-world data by utilizing large-scale
synthetic datasets. Finally, we will extend the evaluation and deployment of InstructVLA to a broader
range of environments to further assess its generalization capabilities.
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