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ABSTRACT

Real-world sequential decision-making tasks often require balancing trade-offs
between multiple conflicting objectives, making Multi-Objective Reinforcement
Learning (MORL) an increasingly prominent field of research. Despite recent ad-
vances, existing MORL literature has narrowly focused on performance within
static environments, neglecting the importance of generalizing across diverse
settings. Conversely, existing research on generalization in RL has always as-
sumed scalar rewards, overlooking the inherent multi-objectivity of real-world
problems. Generalization in the multi-objective context is fundamentally more
challenging, as it requires learning a Pareto set of policies addressing varying
preferences across multiple objectives. In this paper, we formalize the con-
cept of generalization in MORL and how it can be evaluated. We then con-
tribute a novel benchmark featuring diverse multi-objective domains with pa-
rameterized environment configurations to facilitate future studies in this area.
Our baseline evaluations of state-of-the-art MORL algorithms on this bench-
mark reveals limited generalization capabilities, suggesting significant room for
improvement. Our empirical findings also expose limitations in the expressiv-
ity of scalar rewards, emphasizing the need for multi-objective specifications to
achieve effective generalization. We further analyzed the algorithmic complex-
ities within current MORL approaches that could impede the transfer in perfor-
mance from the single- to multiple-environment settings. This work fills a critical
gap and lays the groundwork for future research that brings together two key ar-
eas in reinforcement learning: solving multi-objective decision-making problems
and generalizing across diverse environments. We make our code available at
https://github.com/JaydenTeoh/MORL-Generalization.

1 INTRODUCTION

Developing agents capable of generalizing across diverse environments is a central challenge in
reinforcement learning (RL) research. While significant progress has been made in studying the
generalizability of RL algorithms, these efforts predominantly focus on optimizing a single scalar
reward signal (Zhang et al., 2018; Cobbe et al., 2019; Irpan & Song, 2019; Packer et al., 2019; Kirk
et al., 2023). Single-objective RL (SORL) overlooks the complexity of real-world problems, which
often necessitate trade-offs to be made between multiple conflicting objectives. Reducing these mul-
tifaceted considerations to a single scalar reward (objective) obscures critical interactions between
the objectives and limits the agent’s utility (Vamplew et al., 2022). The field of Multi-Objective
Reinforcement Learning (MORL) has sought to address the inherent multi-objective nature of se-
quential decision-making tasks (Roijers et al., 2013; Hayes et al., 2022). However, the existing body
of MORL research has concentrated on optimizing agent performance within static environments,
neglecting the dimension of generalization across varying situations. Consequently, there exists a
significant gap in the RL literature: the intersection of generalization and MORL.

Generalising over multiple scenarios and objectives simultaneously is routinely demanded in many
real-world applications, such as healthcare management, autonomous driving, and recommendation
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systems. Consider an autonomous vehicle, which must not only generalize across varied environ-
mental conditions—different weather patterns, lighting, and road surfaces—but also learn optimal
trade-offs between competing objectives such as fuel consumption, travel time, passenger’s comfort,
and safety. Failure to effectively generalize across these environments and objectives would lead to
inefficient operation or even catastrophic outcomes. The real world’s dynamic nature extends be-
yond just environmental variability, but also includes evolving goals and utility preferences. An
agent optimizing a single scalar reward may exhibit some level of generalization, such as adapting
to state variations, but it will struggle to generalize when faced with new goals or reward structures.
This is because the agent has only observed its current reward signal, and lacks the basis for adapt-
ing its behaviour should the reward signal change. In contrast, a MORL agent learns to consider all
dimensions of a vector reward, even those that are not immediately relevant to current goals. This
holistic approach to learning allows the agent to adapt swiftly when its utility landscape evolves or
when stakeholders’ prioritisation over the different objectives shifts. For example, in autonomous
driving, a generally capable MORL agent can satisfy unique preferences over objectives for different
passengers without the need for retraining. Therefore, developing generally capable multi-objective
agents enables not only generalization across diverse environments, but also across dynamic goals
and utility functions—an overlooked aspect in current single-objective RL generalization literature,
yet one that is arguably essential for real-world applicability.

The contributions of this paper are as follows: (1) we present formal frameworks for discussing
and evaluating generalization in MORL, (2) we introduce the MORL-Generalization benchmark, a
collection of multi-objective domains with rich environmental variations, (3) we conduct extensive
evaluations demonstrating that state-of-the-art (SOTA) algorithms fall short on our benchmark, and
(4) we provide post-hoc analyses of possible failure modes in these methods and offer directions for
future research. Notably, we open-source our software and release a comprehensive dataset derived
from over 1,700 cumulative days of baseline evaluations across multiple SOTA algorithms. These
contributions lay the foundation for advancing MORL generalization research, ultimately pushing
the boundaries of what RL agents can achieve in complex, real-world environments.

2 BACKGROUND

In this section, we introduce MORL and establish the formal notations referenced throughout this
paper. A multi-objective sequential decision-making problem can be modeled by a Multi-Objective
Markov Decision Process (MOMDP; White (1982)) represented by the tuple: ⟨S,A, T ,R, µ, γ⟩
with state space S, action space A, transition function T : S × A × S → [0, 1], initial state
distribution µ, and discount factor γ ∈ [0, 1). The key distinction between MOMDPs and standard
MDPs lies in the vector-valued reward function R : S × A × S → Rk, where k is the number of
objectives. The goal of a standard RL agent is to maximize its expected long-term discounted sum
of rewards, i.e. value function. For a stationary policy π : S × A → [0, 1], the multi-objective state
value function at state s ∈ S is given by

Vπ(s) := Eπ

[ ∞∑
t=0

γtrt+1|s0 = s
]
,

where rt+1 = R(st, at, st+1) is the k-dimensional reward vector received at timestep t + 1. The
expected value vector of π under the initial state distribution µ is defined as vπ = Es0∼µ[V

π(s0)].
Since Vπ(s) is a vector-valued function, it can only specify a partial ordering over the policy space
for a given state. Given two policies π and π′. it is possible that vπ

i > vπ′

i for objective i, but
vπ
j < vπ′

j for objective j. Since there may be no single policy that is optimal across all objectives,
MORL requires the agent to learn a solution set of policies, each reflecting different trade-offs across
objectives. There are two primary approaches to deriving an optimal solution set: the axiomatic
approach and the utility-based approach (Roijers et al., 2013).

The axiomatic approach operates on the axiom that the optimal solution set is the Pareto set. This
leads us to the concept of Pareto dominance. We say a policy π Pareto dominates (denoted by
≻P ) another policy π′ if its expected value vector is higher or equal across all objectives, that is:
vπ ≻P vπ′ ⇐⇒ (∀i : vπi ≥ vπ

′

i ) ∧ (∃i : vπi > vπ
′

i ). The Pareto Set consists of all nondominated
(Pareto optimal) policies:

PS(Π) = {π ∈ Π | ∄π′ ∈ Π,vπ′
≻P vπ}
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where Π is the set of all possible policies. The image of the Pareto set under the expected value
function mapping is known as the Pareto front.

On the other hand, the more prevalent utility-based approach assumes each user’s preferences over
the objectives can be modeled by a utility function that projects the multi-objective value vectors
to a scalar utility. In the multi-policy setting, utility-based approaches assume user preferences can
be represented by a space of weight vectors w ∈ W that parameterize the utility function, i.e.
u : Rk × W → R. These utility functions are usually assumed to be monotonically increasing in
every objective. This is a natural assumption in accordance with notions of reward—getting more
reward for an objective should not decrease a user’s utility as long as it does not result in a decrease
in reward for another. Linear utility functions, u(v,w) = w⊺v, with weights satisfying

∑
i wi = 1

and wi ≥ 0, are commonly employed. During training, utility-based agents aim to learn a coverage
set, CS ⊂ Π, that maximizes the scalar utility for all weights. Formally, this means:

∀w ∈ W,∃π ∈ CS s.t. vπ
w = max

π′∈Π
vπ′

w .

where vπ
w denotes the scalar utility of policy π under the utility function u(·,w). Thus, every

weight vector w, CS contains at least one optimal policy that achieves the maximal scalar utility.
There are two optimization criteria for which the calculation of vπ

w are different: expected scalarized
return (ESR), vπ

w = Eπ,s0∼µ[u(
∑∞

t=0 γ
trt,w)|s0], and scalarized expected return (SER), vπ

w =
u(Eπ,s0∼µ[

∑∞
t=0 γ

trt|s0],w). When the utility function u is non-linear, these two formulations
generally yield different optimal solution sets.

Axiomatic approaches seek to learn the optimal Pareto set and present it to users for selection a
posteriori. While the Pareto set always contains the policy that maximizes the scalarized value
for any monotonically increasing utility function, it can become prohibitively large to learn and
to retrieve. In contrast, utility-based approaches narrows the solution set by only focussing on
policies that maximize the user’s utility. It also simplifies policy selection, as the user’s preference,
represented by a weight vector w, directly guides the choice of policy during inference. However,
this approach requires the users’ utility function to be specifiable in closed form and known a priori.

3 MULTI-OBJECTIVE CONTEXTUAL MARKOV DECISION PROCESS

To formalize the notion of generalization in the context of MORL, we need to start with a way to
reason about a collection of multi-objective environments. In single-objective RL (SORL), this is
often done using the Contextual MDP (CMDP; Hallak et al. (2015)) framework. As such, we for-
mally define a Multi-Objective Contextual Markov Decision Process (MOC-MDP)—an adaptation
of the CMDP framework to the multi-objective setting.

Definition 1 (Multi-Objective Contextual MDP). A MOC-MDP is defined by the tuple

⟨C,S,A, γ,M⟩

where C is the context space and S and A are the shared state and action spaces across environments
respectively. This is similar to a CMDP except M is a function mapping any c ∈ C to a MOMDP,
i.e. M(c) = ⟨S,A, T c,Rc, µc, γ⟩.

The context space, C defines a set of parameters, each representing a different MOMDP. Intuitively,
the context can be viewed as a discrete or continuous parameter specifying the multi-objective en-
vironment configuration, such as a seed or a vector controlling the environment dynamics. Each
configuration varies in its initial state distribution, transition functions and multi-objective rewards,
but share enough common structure across which the MORL agent can generalize. MOC-MDP
describes a model where for each context there is a potentially distinct optimal Pareto front. The
context remains constant within a single episode. Throughout this paper, we will also refer to a par-
ticular MOC-MDP as a “domain”, and its associated “contexts” as “environments”, interchangeably.

We begin by formalizing the generalization objective for axiomatic MORL approaches. The main
objective of the axiomatic approach lies in identifying all nondominated vectors across the Pareto
front. In the case of a MOC-MDP, since there are different Pareto fronts for each context, to attain
optimality in any scalarization function for any context, it would involve a union of policies from
Pareto sets across contexts. Collectively, these policies form a global Pareto set.
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Definition 2 (Axiomatic Generalization). Given a MOC-MDP with policy space Π, the generaliza-
tion problem for axiomatic approaches is to learn a global Pareto set PSC given by

PSC = {π ∈ Π | ∃c ∈ C,∄π′ ∈ Π, vπ′

c ≻P vπ
c },

where vπ
c is the expected value vector in a context c. Thus, the global Pareto set comprises of policies

that are nondominated in at least one context, ensuring that all necessary policies for constructing
the Pareto fronts in every context are captured.

Recall that in utility-based approaches, each user’s preference is modeled by a weight vector, w ∈
W , which parameterizes a utility function u. Thus, utility-based approaches seek to learn optimal
policies for each w. However, in a MOC-MDP, the optimal policies for a given w may vary across
contexts. Therefore, the generalization objective in utility-based approaches is to find policies that
maximize the expected utility over the context distribution for each w.

Definition 3 (Utility-based Generalization). Given a MOC-MDP, for each weight w ∈ W , the
generalization objective for utility-based approaches is to learn a generalized coverage set CSC
given by

∀w ∈ W,∃π ∈ CSC s.t. Ec∼p(c)[v
π
c,w] = max

π′∈Π
Ec∼p(c)[v

π′

c,w],

where p(c) is the context distribution and vπ
c,w denotes the scalar utility of π for context c under the

utility function u(·,w), computed using either the ESR or SER criterion. In this framework, each
policy must generalize across contexts for a specific w. This structure retains the key advantage
of utility-based methods—allowing users to easily select their preferred policy by indicating w at
inference time, independent of the context.

When the context is fully observable, one can simply augment the state-space with the sampled
context c itself, e.g. s′ = concat(s, c). This effectively reduces the MOC-MDP to a “universal”
MOMDP that unifies the context-dependent components, i.e. T c,Rc, µc, into a single model. In
this setting, the global Pareto set PSC and the generalized coverage set CSC correspond directly to
the Pareto set PS and coverage set CS of the “universal” MOMDP, respectively.

In settings where the context is hidden or only partially observable at test time, both axiomatic
and utility-based generalization methods must infer the underlying context to achieve optimality.
That is, the agent must learn a posterior over the context space, i.e. p(c|H), where H represents
observable information in the test environment such as state-action history and rewards. This process
is analogous to solving a partially-observable MOMDP, in which the agent forms and updates a
belief over the current context to determine the optimal policy. Note here that we do not impose
restrictions on the nature of the policies learned in PSC and CSC . The policies may be either
Markovian or non-Markovian, depending on whether context inference is decoupled from the policy.

4 EMPIRICAL EVALUATION OF MORL GENERALIZATION PERFORMANCE

Let Ceval = {c1, c2, . . . , cn} represent a set of independent evaluation contexts. Measuring an agent’s
generalization performance in SORL is straightforward: the larger the reward value across Ceval, the
better. In MORL, however, agents produce an approximate Pareto front comprising multiple value
vectors for each c ∈ Ceval, and translating the quality of this Pareto front into a scalar metric that
captures generalization performance is non-trivial.

In what follows, we propose an axiomatic-based evaluation metric called the Normalized Hyper-
volume Generalization Ratio (NHGR) to enable fairer assessments of generalization performance
in MORL. Our discussions and evaluations focus primarily on this axiomatic-based metric because
specifying a meaningful user utility function a priori can often be infeasible in reinforcement learn-
ing benchmark tasks, including those introduced in Section 5. For completeness, we also introduce a
utility-based evaluation metric, the Expected Utility Generalization Ratio (EUGR) in the appendix.
The EUGR is useful in scenarios where the MORL agent must generalize across multiple environ-
ments with well-defined user utility functions. Both metrics assume that an optimal Pareto front is
available for each evaluation context. In practice, when the true front is unavailable, it can be ap-
proximated by aggregating nondominated value vectors from specialist agents trained independently
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in each context. For extended discussions on the benefits of NHGR, evaluations using EUGR and
other metrics, we refer motivated readers to Appendix D.

The Normalized Hypervolume Generalization Ratio (NHGR) is an extension of the widely used
Hypervolume (HV) indicator (Zitzler & Thiele, 1998). The HV is a standard metric for evaluating
the quality of approximate Pareto fronts in single-context MORL, measuring the volume in objec-
tive space covered by a Pareto front relative to a reference point. However, the HV metric is not
scale-invariant and tends to bias evaluations toward objectives with larger magnitudes. While nor-
malization has been explored in multi-objective optimization (MOO) (Deb & Kalyanmoy, 2001),
it has been largely overlooked in MORL literature. Therefore, before we introduce the NHGR, we
briefly introduce the Normalized Hypervolume (HVnorm).

Consider a k-objective domain and let F∗
c ⊂ Rk denote the optimal Pareto front for an evaluation

context c ∈ Ceval. We define the element-wise minimum and maximum boundary value vectors of
F∗

c as vmin
c and vmax

c respectively. We refer to a MORL agent trained to generalize across multiple
multi-objective contexts as the generalist. Our goal is to evaluate the performance of this generalist.
Let F̃c ⊂ Rk denote the approximate Pareto front produced by the generalist for context c. The
Normalized Hypervolume is defined as

HVnorm(F̃c) = λk

 ⋃
vπ∈F̃c

[
vπ − vmin

c

vmax
c − vmin

c

,0

] ,

where λk is the k-dimensional Lebesgue measure (Lebesgue, 1902). Since the objec-
tives are normalized, we can use the origin 0 as the reference point. The use of
HVnorm also enhances interpretability as it is bounded within 0 and the hypervolume of the
unit hypercube (which is 1). Using HVnorm, we can then introduce the NHGR metric:

0 1

1

v1

v2

Normalized F̃c (generalist’s)
Normalized F∗

c (optimal)

NHGR =

Figure 1: NHGR visualized as the ratio
between the hypervolume of the normal-
ized generalist’s and the optimal Pareto
fronts (dashed and shaded areas).

Definition 4 (Normalized Hypervolume Generalization
Ratio). The NHGR for the generalist in context c is de-
fined as:

NHGR(F̃c,F∗
c ) =

HVnorm(F̃c)

HVnorm(F∗
c )

.

NHGR measures the ratio of normalized hypervolume
between the generalist’s approximate Pareto front and
the optimal Pareto front. NHGR draws similarities to
the Hyperarea Ratio (Veldhuizen & Allen, 1999) met-
ric in MOO literature but additionally employs HVnorm
to ensure scale-invariance. Fig. 1 illustrates the NHGR
metric for a biobjective domain. Intuitively, a truly gen-
eralizable MORL agent should achieve optimal perfor-
mance in every context, which corresponds to attaining
an NHGR of 1 across all contexts.

5 MORL GENERALIZATION BENCHMARK

We now introduce the MORL-Generalization benchmark, a diverse collection of multi-objective do-
mains with rich environmental variations to facilitate future research on generalization in MORL.
We adapted existing domains from MO-Gymnasium (Felten et al., 2023), a multi-objective extension
of the Gymnasium library (Towers et al., 2024; Brockman et al., 2016), and introduced new ones,
each with expressive parameters controlling environmental variations. Kirk et al. (2023) identified
four key types of domain variations for studying generalization: 1) state-space variation (S), which
alters the initial state distribution, 2) dynamics variation (D), which alters the transition function,
3) visual variation (O), which impacts the observation function, and 4) reward function variation
(R). This benchmark primarily focuses on state-space and dynamics variations. Observation varia-
tions do not alter the underlying MOMDP structure (Du et al., 2019). Hence, they provide limited
insights into the multi-objective decision-making capabilities of the agent since the optimal Pareto
front across variations remain isomorphic. Reward variations are often introduced through multiple
goals. Multiple goals can naturally be modeled as multiple objectives by treating each goal as a
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Figure 2: Domains in the MORL Generalization benchmark. Top row from left to right: 1) MO-
LunarLander, 2) MO-Hopper, 3) MO-Cheetah, 4) MO-Humanoid. Middle row: MO-LavaGrid (8
handcrafted evaluation environments). Bottom row: MO-SuperMarioBros (8 out of 32 stages).

conflicting objective (Sener & Koltun, 2018), which means MORL inherently involves learning to
adapt to reward function variations. Nevertheless, we provided a novel maze domain that explicitly
segregates the goals and multiple objectives, for completeness. Fig. 2 visualizes the domains pro-
vided in the MORL-Generalization benchmark with annotations for their environment parameters,
where applicable. We provide detailed descriptions of each benchmark domain in Appendix F.1.

When designing a generalization benchmark for MORL, it is important to keep in mind of The
Principle of Unchanged Optimality (Irpan & Song, 2019). This principle asserts that, for a domain
to support generalization, it should provide all necessary information such that a policy optimal in
every context can exist. We discuss how we uphold this important principle within Appendix B.

6 EXPERIMENTS

In this section, we evaluate state-of-the-art MORL algorithms on the newly-developed benchmark
to establish baseline expectations for their generalization capabilities. The implementations of
these algorithms are adapted from Felten et al. (2023). Specifically, the algorithms evaluated are
CAPQL (Lu et al., 2023), Envelope (Yang et al., 2019), GPI-LS (Alegre et al., 2023), PCN (Rey-
mond et al., 2022), PGMORL (Xu et al., 2020), and MORL/D SB (Felten et al., 2024). We also
include the model-based extension of GPI-LS, i.e. GPI-PD, and the weight adaptation variant of
MORL/D SB, i.e. MORL/D SB+PSA. Additionally, we include the SAC (Haarnoja et al., 2018) al-
gorithm trained with a single objective/utility function in our evaluations to verify that the objectives
are not so highly correlated that a single-objective agent could also achieve high performance across
multiple objectives. In total, we evaluate 8 MORL algorithms across 6 domains using 5 seeds each.
These established baseline performances are open-sourced via Weights and Biases (Biewald, 2020),
facilitating future research and saving computational resources.

Note that Envelope is restricted to discrete-action domains, while CAPQL and PGMORL apply
only to continuous-action domains. MORL/D SB and MORL/D SB+PSA were excluded from
MO-SuperMarioBros evaluations due to the high memory demands of convolutional neural net-
works, which are incompatible with their evolutionary approach. GPI-PD was omitted from MO-
HalfCheetah, MO-Humanoid, MO-SuperMarioBros, and MO-LavaGrid, as the large state spaces in
these domains cause its dynamics model to degrade rapidly, resulting in zero simulated transitions
and effectively reducing it to its model-free counterpart, GPI-LS.

Domain Randomization (DR) is an efficient method to expose the agent to a wide range of environ-
ments during training by uniformly sampling from the environment parameter space. It has found
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success in deep RL even for complex visual domains and real-world robotic control (Tobin et al.,
2017; Peng et al., 2018). We utilise DR for all our experiments by randomizing the environment
parameters after every training episode. This also enables us to standardise the presentation of
environments across algorithms via the RNG seed, and evaluate the algorithms solely for their gen-
eralization capabilities. At each evaluation time step, each algorithm is assessed over 100 episodes 1

across a set of environment configurations. Whenever possible, these configurations are chosen
using the boundary values of environment parameter ranges to ensure diverse evaluation environ-
ments and behaviors. For MORL algorithms using linear scalarization, a weight vector is uniformly
sampled from the unit simplex for each evaluation episode. We aggregate the NHGR performance
across all evaluation environments for each domain and report results in terms of inter-quartile mean
(IQM) and optimality gap using the rliable library (Agarwal et al., 2021), which helps account
for statistical uncertainty prevalent in deep RL. IQM focuses on the middle 50% of combined runs,
discarding the bottom and top 25%. Optimality gap captures the amount by which the algorithm
fails to meet a desirable target, i.e. when NHGR=1. The evaluation environment configurations and
other experiment setups are detailed in Section F of the appendix for reproducibility.

6.1 MORL GENERALIZATION RESULTS

The baseline results using NHGR reveal significant performance gaps in the generalist agents across
various domains, highlighting the benchmark’s potential to serve as a foundational benchmark for
future research in MORL generalization.

(a) MO-LunarLander (b) MO-Hopper

(c) MO-HalfCheetah (d) MO-Humanoid

(e) MO-SuperMarioBros (f) MO-LavaGrid

Figure 3: Aggregate NHGR performance in all domains of the benchmark. Each algorithm is eval-
uated across 5 independent seeds and several evaluation environment configurations. Higher IQM
and lower optimality gap scores are better. The best algorithm for each domain is bolded.

MO-LunarLander MO-LunarLander is one of the simplest domains in the benchmark, featuring
a low-dimensional observation space and discrete action space. The best-performing algorithm,
GPI-LS, achieved an IQM NHGR score of 0.66 with an optimality gap of 33.9% (see Fig. 3a).
Given its simplicity, we recommend using MO-LunarLander as a starting point for evaluating new
algorithms. Additionally, our software includes a continuous-action variant of this domain, which
may reveal larger NHGR optimality gaps and provide greater opportunities for improvement.

1In MO-SuperMarioBros, 32 evaluation episodes are used to keep runtime under 72 hours.
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MuJoCo-based Domains The challenge of generalization in MORL becomes more pronounced
in the MuJoCo-based (Todorov et al., 2012) domains. Across the 3 domains, a wider spread in
performances and noticeably lower performance ceilings are observed. In the MO-Hopper domain,
the leading algorithm, MORL/D SB+PSA, managed to reach an IQM NHGR score of only 0.56 and
optimality gap of 46.4% (see Fig. 3b). This gap widens in higher-dimensional domains like MO-
HalfCheetah (Fig. 3c) and MO-Humanoid (Fig. 3d), where the top algorithms, MORL/D SB+PSA
and MORL/D SB, achieve IQM NHGR scores of just 0.28 and 0.41, respectively. These wide
optimality gaps, combined with the strong relevance to real-world robotic control tasks, suggest that
these domains may serve as enduring benchmarks for studying generalization in MORL.

=+ +

(a) MO-SuperMarioBros Performances (b) Heatmap of visited tiles

Figure 4: (a) MO-SuperMarioBros performances on 4 stages. Stage 3-3 in the rightmost column
shares visual similarities with the other stages so it is excluded from training to evaluate for zero-
shot generalization. (b) Heatmap of visited tiles for a specialist and generalist in the MO-LavaGrid
“Room” environment. Each column’s title shows the conditioned linear weights for the lava and
time penalty objectives.

MO-SuperMarioBros Fig. 3e presents the NHGR performance of 3 discrete MORL algorithms and
SAC on MO-SuperMarioBros. The leading algorithm, GPI-LS, achieved an IQM NHGR score of
only 0.07 and optimality gap of 87.7%. We also conducted a zero-shot generalization experiment by
excluding stage 3-3 from the training distribution. This stage shares a combination of visual features
with stages 3-2, 4-3, and 5-3, allowing us to test if an agent has learned generalizable behaviors over
the pixel space or merely memorized stage-specific sequences. The results in Fig. 4a show negligible
NHGR performances in the zero-shot environment (stage 3-3), suggesting the latter.

MO-LavaGrid Fig. 3f shows the performance of five discrete MORL algorithms on MO-LavaGrid,
with MORL/D SB achieving the highest IQM NHGR score of 0.37, though still far from optimal. To
analyze this, we recorded trajectories for a generalist (MORL/D SB) and a specialist (GPI-LS) in the
“Room” environment, both using linear scalarization. Fig. 4b presents heatmaps of tile visit counts
when conditioned on three different weightings of lava and time penalties. While the specialist
consistently follows optimal routes, the generalist exhibits random walks overlapping with the three
goals. This likely explains MORL/D SB’s nonzero NHGR performance across environments but
significant optimality gap, as it incurs high penalties from inefficient navigation.

In summary, the generalization performance of the current MORL algorithms leaves much to be
desired. This outcome is not surprising, as these experiments were aimed to provide a baseline un-
derstanding of existing methods without any tailored interventions to enhance generalization yet.
Despite not attaining the top performance in every domain, MORL/D SB and MORL/D SB+PSA,
demonstrated the most consistent results overall. Future research aiming to improve MORL gener-
alizability can consider building upon these algorithms for more reliable testing.

6.2 SCALAR REWARD IS NOT ENOUGH FOR RL GENERALIZATION

Real-world problems are often multi-objective. In fact, many popular SORL benchmarks are natu-
rally multi-objective but are simplified using hidden scalarization functions. For instance, the origi-
nal Hopper domain combines forward velocity (vx), control cost (c), and a bonus for not falling (h)
into a scalar reward: 1.5vx + 0.001c+ h. In contrast, MORL approaches treat these as independent
objectives and may even introduce additional ones, such as torso height. One might argue that if a
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stakeholder’s sole goal is to maximize the agent’s forward movement, MORL approaches that seek
to learn tradeoffs across multiple objectives would be redundant in RL generalization. However, our
empirical results challenge this assumption.

Figure 5: Single-objective return on 6 MO-Hopper testing environments during training. Each curve
is measured across 5 seeds (mean and standard error).

Let fSORL denote the fixed scalar reward function that SORL agents are trained to optimise during
generalization. Throughout the generalization training horizon of the MORL algorithms in Sec-
tion 6.1, we sampled solution vectors across their Pareto fronts, scalarized them using fSORL, and
recorded the highest scalar reward in each evaluation environment. For the SORL agent, which al-
ready specializes on fSORL, we allow it as many runs as solution vectors sampled from the MORL
agents, and took the best result. Our results reveal that when trained on the same generalization
procedure, MORL algorithms can outperform the SORL agent on its own specialized reward func-
tion fSORL. Fig. 5 shows several MORL algorithms surpassing the SAC agent by large margins in
fSORL return across six distinct test environments during generalization training in the MO-Hopper
domain. Note that CAPQL is a multi-objective variant of SAC, while MORL/D SB and MORL/D
SB+PSA is population-based approach of SAC. All SAC-based implementations are from the same
library, CleanRL (Huang et al., 2022), making these results fair. Similar findings are observed in
other domains (see Section D.3 in appendix), where leading MORL algorithms could outperform or
achieved parity with SAC on fSORL performance.

(a) Default (b) Slippery (c) Hard

Default Slippery Hard

forward velocity 0.84 0.52 0.3
torso height 0.09 0.4 0.23
control cost 0.07 0.08 0.47

Figure 6: Screenshots of MORL/D SB+PSA
agent’s behavior in different MO-Hopper environ-
ments and the corresponding linear weights.

Fig. 6 presents snapshots from the highest
fSORL episodes of the MORL/D SB+PSA agent
on three MO-Hopper environments. Since
MORL/D SB+PSA is a linear utility-based ap-
proach, the table in Fig. 6 provides the linear
weight vectors which the agent conditioned on.
In the Default environment, the agent placed a
higher weight on forward velocity, causing it
to lean forward and cover more distance. In
the Slippery environment, where low friction
makes leaning forward dangerous, the agent
balances forward velocity with torso height,
maintaining an upright posture to prevent slip-
ping. In the Hard environment, which features
a slippery floor, unbalanced body masses, and
low joint damping, the agent maximized fSORL
by emphasizing torso height and minimizing
control cost, which help maintain stability and
avoid abrupt movements. In contrast, the single-objective SAC agent learned only a single behavior
to generalise across all environments, causing it to fail in dire conditions.

The single-objective approach to RL generalization is heavily reliant on reward engineering, i.e.
finding an optimal scalar reward signal through trial-and-error search of scalarization functions
(Sutton & Barto (2018), Chapter 17.4). However, our observations suggest that there may be no
universal scalarization function capable of optimizing performance across all environments. Each
environment demands distinct behaviors from the agent, even for a fixed goal like moving for-
ward. Consequently, a priori scalarization in SORL limits the agent’s adaptability to environmental
changes. In contrast, generalization with MORL approaches circumvents the reward engineering
problem by considering all dimensions of a vector reward independently, even those not immedi-
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ately relevant to current goals. This flexibility allows agents to learn diverse behaviors that address
different trade-offs among objectives. Stakeholders can then select policies from the agent’s solution
set that best match their utility preferences for any given environment, enhancing the adaptability
of MORL agents in generalization tasks. These observations align with recent studies that chal-
lenge the expressivity of scalar rewards and advocate for the adoption of multi-objective reward
formulations (Vamplew et al., 2022; Skalse & Abate, 2024; Subramani et al., 2024).

7 RELATED WORK

Multi-Objective Contextual Multi-Armed Bandits: Multi-Objective Contextual Multi-Armed
Bandits (MOC-MAB; Tekin & Turgay (2017); Turgay et al. (2018)) are a context-dependent, multi-
objective extension of the classic Multi-Arm Bandit (MAB) problem. In MOC-MAB, at each deci-
sion point, the agent observes a context and selects an action (arm) to maximize a vector of immedi-
ate rewards corresponding to different objectives. While MOC-MAB provides valuable insights into
handling contexts and balancing multiple objectives simultaneously, it fundamentally differs from
the MOC-MDP framework. Specifically, MOC-MAB does not address the state-transitions and se-
quential decision-making inherent in MORL. Our work extends beyond the MOC-MAB setting by
focusing on the generalization of RL agents in a context-dependent, multi-objective environment—a
problem that, to our knowledge, has not been previously explored in the literature. However, bandit
analysis often forms the foundations of progress in RL, so we implore future work to look into the
MOC-MAB framework for inspiration on improving generalization in MORL.

Multi-Task Learning: Multi-Task Learning (MTL; Caruana (1998)) and Multi-Task Reinforcement
Learning (MTRL; Tanaka & Yamamura (2003)) aim to improve learning efficiency and performance
by leveraging shared representations across multiple tasks. Reinforcement learning based on Con-
textual MDP (CMDP) is closely related to MTRL but involves a parameterized variable, termed the
context, which allows for a more unified modeling of tasks within a single framework. However,
both MTRL and CMDP have predominantly been studied in the single-objective setting, focusing on
maximizing a scalar reward function. Sener & Koltun (2018) framed MTL as a MOO problem by
treating different tasks as conflicting objectives. While this perspective introduces multi-objectivity
into MTL, it primarily addresses trade-offs between tasks rather than scenarios where each task in-
volves multiple objectives. In the optimization domain, the Multi-Objective Multifactorial Optimiza-
tion paradigm (Gupta et al., 2017) considers multitasking across multiple multi-objective problems
by leveraging shared evolutionary operators to solve them simultaneously.

Despite these advancements, there is a notable gap in the literature regarding the simultaneous con-
sideration of multi-objectivity and generalization across contexts (i.e. environments or tasks) in
reinforcement learning. To the best of our knowledge, this is the first study to systematically explore
generalization in MORL and highlight unique difficulties within this combined setting.

8 DISCUSSION AND CONCLUSION

Developing reinforcement learning agents for real-world tasks necessitates not only generalization
across diverse environments, but also across multiple objectives. By formally introducing a frame-
work for discussing and evaluating generalization in MORL, we bridge a crucial gap between RL
generalization and multi-objective decision-making. To measure progress in this area, we con-
tributed a novel benchmark to facilitate rigorous investigations into MORL generalization. The
extensive baseline evaluations of state-of-the-art MORL algorithms on the benchmark also highlight
significant room for future research to improve upon. We encourage readers to look at Section A of
the appendix, where we analyzed algorithmic failure modes in current MORL approaches, offering
insights into their poor generalization performance. Extended discussions of MORL generalization
and future research directions are also provided in the appendix. Moreover, we have open-sourced
our software, alongside the raw dataset derived from our baseline evaluations. These contribu-
tions would streamline future investigations into MORL generalization. We hope this paper spurs
greater recognition of the importance of multi-objective reward structures for RL generalization.
Ultimately, by unifying these two fields, this paper lays the groundwork for advancing RL agents
capable of tackling the complexities of real-world, multi-objective scenarios.
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and Bruno C. da Silva. A toolkit for reliable benchmarking and research in multi-objective re-
inforcement learning. In Proceedings of the 37th Conference on Neural Information Processing
Systems (NeurIPS 2023), 2023.
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ceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’22, pp. 1110–1118, Richland, SC, 2022. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 9781450392136.

Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. J. Artif. Int. Res., 48(1):67–113, oct 2013. ISSN 1076-
9757.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp.
525–536, Red Hook, NY, USA, 2018. Curran Associates Inc.

Joar Skalse and Alessandro Abate. On the limitations of markovian rewards to express multi-
objective, risk-sensitive, and modal tasks, 2024. URL https://arxiv.org/abs/2401.
14811.

Rohan Subramani, Marcus Williams, Max Heitmann, Halfdan Holm, Charlie Griffin, and Joar
Skalse. On the expressivity of objective-specification formalisms in reinforcement learning, 2024.
URL https://arxiv.org/abs/2310.11840.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

F. Tanaka and M. Yamamura. Multitask reinforcement learning on the distribution of mdps. In
Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and
Automation. Computational Intelligence in Robotics and Automation for the New Millennium
(Cat. No.03EX694), volume 3, pp. 1108–1113 vol.3, 2003. doi: 10.1109/CIRA.2003.1222152.

Yujin Tang, Duong Nguyen, and David Ha. Neuroevolution of self-interpretable agents. In Proceed-
ings of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20. ACM, June
2020. doi: 10.1145/3377930.3389847. URL http://dx.doi.org/10.1145/3377930.
3389847.

Cem Tekin and Eralp Turgay. Multi-objective contextual bandits with a dominant objective. In 2017
IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6,
2017. doi: 10.1109/MLSP.2017.8168123.

Jayden Teoh, Wenjun Li, and Pradeep Varakantham. Improving environment novelty quan-
tification for effective unsupervised environment design. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 135299–135333. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/f445ba15f0f05c26e1d24f908ea78d60-Paper-Conference.pdf.

Gabriele Tiboni, Pascal Klink, Jan Peters, Tatiana Tommasi, Carlo D’Eramo, and Georgia Chal-
vatzaki. Domain randomization via entropy maximization. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
GXtmuiVrOM.

13

https://arxiv.org/abs/1810.12282
https://arxiv.org/abs/1810.12282
https://arxiv.org/abs/2102.10330
https://arxiv.org/abs/2401.14811
https://arxiv.org/abs/2401.14811
https://arxiv.org/abs/2310.11840
http://dx.doi.org/10.1145/3377930.3389847
http://dx.doi.org/10.1145/3377930.3389847
https://proceedings.neurips.cc/paper_files/paper/2024/file/f445ba15f0f05c26e1d24f908ea78d60-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f445ba15f0f05c26e1d24f908ea78d60-Paper-Conference.pdf
https://openreview.net/forum?id=GXtmuiVrOM
https://openreview.net/forum?id=GXtmuiVrOM


Published as a conference paper at ICLR 2025

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30,
2017. doi: 10.1109/IROS.2017.8202133.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Eralp Turgay, Doruk Oner, and Cem Tekin. Multi-objective contextual bandit problem with sim-
ilarity information. In Amos Storkey and Fernando Perez-Cruz (eds.), Proceedings of the
Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of
Proceedings of Machine Learning Research, pp. 1673–1681. PMLR, 09–11 Apr 2018. URL
https://proceedings.mlr.press/v84/turgay18a.html.

Peter Vamplew, John Yearwood, Richard Dazeley, and Adam Berry. On the limitations of scalarisa-
tion for multi-objective reinforcement learning of pareto fronts. In Wayne Wobcke and Mengjie
Zhang (eds.), AI 2008: Advances in Artificial Intelligence, pp. 372–378, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-89378-3.

Peter Vamplew, Richard Dazeley, and Cameron Foale. Softmax exploration strategies for mul-
tiobjective reinforcement learning. Neurocomputing, 263:74–86, 2017. ISSN 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2016.09.141. URL https://www.sciencedirect.
com/science/article/pii/S0925231217310974. Multiobjective Reinforcement
Learning: Theory and Applications.

Peter Vamplew, Benjamin J. Smith, Johan Källström, Gabriel Ramos, Roxana Rădulescu,
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A ANALYSIS OF FAILURE MODES IN MORL APPROACHES

In this section, we seek a deeper understanding on failure modes within the current MORL algo-
rithms that can hinder generalization. We caution readers looking to further MORL generalization
to be wary of them and encourage exploration to solve these failure modes. Note that we will only
discuss challenges that are unique to generalization within MORL, and problems pertaining to the
broader RL generalization literature are excluded.

Pareto Archival Methods MORL methods often maintain a Pareto archive—a set of nondom-
inated policies discovered during training. This archive is constantly updated by comparing the
value vector of new policies with old ones, and discarding the dominated ones. This archive can
then aid the agent’s search process within the objective space, or be used as solutions during test
time. This technique is commonly used in multi-objective evolutionary algorithms like PGMORL
and MORL/D. Similarly, GPI-LS and GPI-PD track a finite convex subset of the Pareto front where
dominance is defined only for linear utility functions. However, when extending these methods to a
MOC-MDP—where each context has its own optimal Pareto front—current archiving mechanisms
can lead to suboptimal outcomes. Most MORL literature assumes a static environment, so existing
Pareto archival mechanisms are not designed to handle context variability in MOC-MDPs. As a
result, the archive overrepresents policies that perform well in a narrow set of contexts with higher
reward scales or lower difficulty, while discarding those optimal for more challenging or less re-
warding contexts. This has severe implications as it will cause the agent to converge to a maximax
strategy, adopting policies that are only optimized to yield the best of the best possible outcomes
during test time, and results in poor generalization across the entire range of contexts in the MOC-
MDP.

Reliance on Linear Scalarization The convexity of the induced value functions’ range deter-
mines if MORL algorithms relying on linear scalarization (LS), are capable of finding all policies
corresponding to the optimal Pareto front (Vamplew et al., 2008; Roijers et al., 2013). Lu et al.
(2023) showed that in the static-environment setting, the induced value functions’ range of stochas-
tic stationary policies in a MOMDP is convex, which means LS is not a bottleneck for approximating
the Pareto front. If the learning objective is to maximize the expected (average) multi-objective value
function across contexts in a context-agnostic manner, the results from Lu et al. (2023) can be di-
rectly applied to show that the range of expected value vectors in a MOC-MDP remains convex. This
follows trivially from the linearity of the expectation operator, which preserves convexity. However,
if our maximization objective is the recovery of the optimal Pareto Front or coverage set across all
contexts, the policies that the agent learn may need to be non-stationary and/or non-Markovian (fur-
ther discussed in Section B). Prima facie, in cases where the policies exhibits nonlinear dependence
on state-action history, methods relying solely on LS would be insufficient to identify all globally
Pareto-optimal policies in a MOC-MDP. We encourage future research to further investigate the
viability of LS in MORL generalization and to explore alternative approaches capable of approxi-
mating the Pareto front without convexity assumptions, such as nonlinear scalarization methods or
evolutionary algorithms.

Value Function Interference Within state-of-the-art MORL, many approaches extend value-
based scalar RL algorithms such as Q-learning or Deep Q-Networks to handle vector rewards. If the
utility function allows actions with widely differing vector outcomes to map to the same utility value,
then the vector value function learned for earlier states may be inconsistent with the actual optimal
policy (Vamplew et al., 2024). This problem is particularly likely to arise in environments which
are stochastic or partially-observable. We note that for MOC-MDPs, the dynamics and rewards ob-
served by the agent may appear to be stochastic even if the underlying MDPs are deterministic, due
to the influence of the hidden context variables. Therefore, value function interference may pose a
particular problem when naively applying value-based MORL algorithms to MOC-MDPs. We note
that if the utility function is linear then value interference does not impact on selecting the optimal
action, hence there is an implicit tension between this failure mode, and the issues of reliance on
linear scalarisation raised in the previous paragraph.
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B PRINCIPLE OF UNCHANGED PARETO OPTIMALITY

When constructing a benchmark in reinforcement learning, it is essential that the domain adheres to
The Principle of Unchanged Optimality (Irpan & Song, 2019)—a fundamental yet underappreciated
principle. This principle states that, for a domain to support true generalization, it must provide
all necessary information such that an optimal policy exists in every context. In the MOC-MDP
framework, The Principle of Unchanged (Pareto) Optimality implies the existence of globally Pareto
optimal policies, π∗, such that:

∀c ∈ C : π∗ ∈ PSc(Π),

where Π is the set of feasible policies and PSc(Π) denotes the Pareto set containing nondomi-
nated policies for a given c ∈ C. This principle has significant theoretical implications. When the
unchanged optimality principle is disregarded, the benchmark can become a proxy measure of the
memorization capability (Zhang et al., 2018) of the MORL agents, instead of generalization. More-
over, if the principle is violated, generalist agents would never achieve an aggregated NHGR score
of 1, since they would fail to recover Pareto optimality across all contexts.

This section examines how our MORL-Generalization benchmark upholds The Principle of Un-
changed Pareto Optimality, thereby validating our baseline evaluations. Note that each context in
our benchmark varies in initial state distribution, transition dynamics, and multi-objective reward
function. When the context is fully observable, the agent can simply include the context in its
state representation, enabling it to learn “universal” policies that adapt across contexts. In scenarios
where the context is hidden, the agent must infer it from its observations. Therefore, to respect
The Principle of Unchanged Pareto Optimality, our benchmark is designed to ensure that neces-
sary information about the context can be recovered from the agent’s observations in the proposed
domains.

In MO-SuperMarioBros, despite visual similarities across levels, each observation provides suffi-
cient information to determine the optimal action at every time step. For example, the locations
of coins, enemies, and bricks are clearly visible. Moreover, since there are only a finite number
of stages (32), the agent can deduce its current stage directly from its observations with enough
training. Similarly, in MO-LavaGrid, the complete layout of lava and goals, along with the agent’s
position and orientation, is fully observable at each time step. Furthermore, as described later in
Section F, we concatenate the reward weights for each goal with the agent’s observation, ensuring
that the current reward function is explicitly provided.

For the continuous control domains like MO-Hopper, MO-HalfCheetah, and MO-Humanoid, con-
text variations arise from changes in dynamics (e.g., gravity, friction), yet the agent’s observations
typically include only joint positions and velocities. Consequently, optimal actions cannot be in-
ferred from a single time step. A similar limitation exists in the discrete domain MO-LunarLander,
where the observations are typically restricted to orientation and velocity. The environment dynam-
ics is, however, inferable when the agent considers its state-action history. Prior work has shown
that history-based policies are effective in domains with changing dynamics (Yu et al., 2017; Peng
et al., 2018; Tiboni et al., 2024). Therefore, we adopt the standard approach of augmenting the
state with a fixed-length history of past state-action pairs. In our main experiments for MO-Hopper,
MO-HalfCheetah, MO-Humanoid, and MO-LunarLander, we use a history length of 2 so that the
observed state at time t is a vector of the form: (st−2, at−2, st−1, at−1, st). For time steps before 2,
we repeat the initial state and pad missing actions with zeros.

We recommend that future researchers verify that The Principle of Unchanged Pareto Optimality
is upheld when using our software to study MORL generalization. This is crucial for establish-
ing benchmarks that accurately assess an algorithm’s capacity to generalize across diverse multi-
objective domains.

C FUTURE WORK AND LIMITATIONS

Our extensive evaluations of current MORL algorithms on the introduced benchmark, have high-
lighted a significant gap in generalization capabilities. The suboptimal performance observed un-
derscores the necessity for innovative approaches to enhance MORL generalization.
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A promising direction for future research involves adapting established methods from single-
objective RL generalization to the multi-objective context. Techniques such as regularization tech-
niques (Cobbe et al., 2019; Ahmed et al., 2019; Li et al., 2019; Igl et al., 2019; Eysenbach et al.,
2021), incorporating inductive biases (Tang et al., 2020; Raileanu & Fergus, 2021; Higgins et al.,
2018), and curriculum learning methods (Narvekar et al., 2020; Jiang et al., 2021; Teoh et al., 2024)
have demonstrated efficacy in single-objective settings and could be tailored to address the complex-
ities inherent in MORL.

Beyond adapting existing methods, there is a need to develop specialized techniques targetted to-
wards MORL. As highlighted in Section A, many current methods rely heavily on linear scalar-
ization, potentially limiting the generalization potential of MORL agents. Exploring alternative
approaches that move beyond this constraint can be a promising direction. Recently, evolution-
ary methods such as those proposed by Xu et al. (2020) and Felten et al. (2024) have been in-
troduced, but they remain underexplored in the MORL literature and warrant further investigation
to enhance generalization. Effective exploration is critical for generalization in RL (Jiang et al.,
2023). Thus, approaches like Vamplew et al. (2017), which incorporate exploration techniques
from single-objective RL into the MORL framework could be of interest to future research. In many
real-world scenarios, agents operate under partially observable contexts, such as the dynamics of
the environment, as just described in Section B. Developing MORL algorithms capable of adapting
to partially-observable contexts is crucial for generalization. Therefore, future work can take inspi-
ration from the POMDP or model-based RL literature to develop methods capable of inferring the
hidden context and recovering Pareto optimality.

Limitations Our MORL-Generalization benchmark is built using Gymnasium’s API, which has
become the standard interface for reinforcement learning due to its accessibility. However, Gymna-
sium relies on CPU-based policy rollouts, leading to significant computational bottlenecks caused
by frequent GPU-CPU data transfers. This limitation is particularly problematic for MORL algo-
rithms, which generally require longer training times. Most of our experiments complete within
1–2 days, with all runs kept under five days on a single NVIDIA RTX A5000 GPU and a 48-core
AMD EPYC 7643 CPU. Given these computational constraints, exhaustive hyperparameter tuning
is impractical. Instead, we tune hyperparameters within the neighborhood of those already validated
by the MORL-Baselines (Felten et al., 2023) library in single-environment settings, from which we
also derive the implementations of the baseline algorithms. Future work on extending the MORL-
Generalization domains to run directly on GPU, enabling fully end-to-end MORL training, would
significantly benefit the community.

D EXTENDED METRIC DISCUSSIONS AND RESULTS

In this section, we extend our discussions on the benefits of using the NHGR metric. We also pro-
vided a utility-based evaluation metric for measuring generalization performance. However, as a
pioneering effort, our aim is not to prescribe a single definitive metric for evaluating generalization
in future research, but rather to establish well-justified and flexible options. The choice of perfor-
mance metric has long been debated in multi-objective optimization, as assessing the quality of
Pareto fronts is inherently more complex than single-objective evaluations—no single metric can
fully capture all aspects of performance. To provide a comprehensive assessment, we report results
using multiple metrics, including hypervolume, expected utility metric (EUM), NHGR, and EUGR,
as shown in Table 2. Additionally, while not explicitly included in our results, our software supports
other evaluation metrics such as cardinality and sparsity for further analysis.

D.1 EXTENDED DISCUSSIONS ON BENEFITS OF NHGR

In Section 4, we introduced the Normalized Hypervolume (HVnorm) to ensure equal weighting across
objectives in hypervolume calculations. This is achieved by normalizing reward scales using the
minimum and maximum values derived from the optimal Pareto front (or an approximation thereof)
before computing hypervolume. Ensuring equal weightage across objectives when measuring gener-
alization performance is important. This is because, unlike in single-objective RL, MORL requires
agents to generalize across both environments and objectives, making equal weighting crucial to
ensure that they learn all trade-offs across objectives effectively. Additionally, HVnorm removes the
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dependence on an arbitrary reference point often used in hypervolume calculations. Instead, the
origin vector can be used, as all objective ranges are normalized to the [0, 1] interval.

While HVnorm addresses scale bias and reference point dependence, it introduces a new challenge:
it does not account for variations in the maximally achievable HVnorm across contexts. Intuitively,
contexts with more convex Pareto fronts allow for higher maximum HVnorm values compared to
those with concave fronts. Naively aggregating HVnorm scores across contexts without accounting
for these differences skews evaluations toward contexts with higher achievable hypervolume, un-
fairly penalizing agents that balance learning across all environments—contradicting the goal of
generalization.

To address this, we proposed the NHGR metric, which adjusts for these discrepancies by comparing
the generalist agent’s performance against the maximum achievable HVnorm, derived from the opti-
mal Pareto front, in each context. By evaluating performance as a ratio of this maximum, NHGR
ensures that contexts with inherently lower achievable hypervolumes are weighted equally against
those with higher achievable hypervolumes, enabling fair and unbiased generalization assessments
across all contexts.

Default Hard Slippery

HV 1.4e5 5.7e4 9.3e4

HVnorm 0.20 0.065 0.094
NHGR 0.26 0.10 0.14

Table 1: Illustration of different metrics
on 3 MO-HalfCheetah environments.

Table 1 presents the mean performance of the GPI-
LS (Alegre et al., 2023) algorithm across three envi-
ronments in the MO-HalfCheetah domain. As shown,
the raw HV metric exhibits performance differences on
the order of 104 between environments. This disparity
arises because small variations in reward ranges com-
pound in hypervolume calculations, particularly as the
number of objectives increases, reducing interpretabil-
ity. While HVnorm mitigates this issue by normalizing
objective ranges, it unfairly penalizes the generalist in
the Hard and Slippery environment, where the optimal Pareto front has a significantly lower hyper-
volume compared to other contexts. In contrast, the NHGR metric offers a more balanced assess-
ment by evaluating the generalist’s normalized hypervolume relative to the maximum achievable
value. This ensures fair comparisons across all contexts. Additionally, from a generalization per-
spective, NHGR is more interpretable, as it directly quantifies how close an agent is to achieving the
optimal performance in each evaluation context.

Domains Metrics PCN CAPQL PGMORL Envelope GPI-
LS

GPI-
PD

MORL/D
SB

MORL/D
SB+PSA

MO-Lunar
Lander

HV (108) 6.09± 0.28 N/A N/A 4.14± 0.65 9.08± 0.55 7.62± 0.47 8.52± 0.65 8.55± 0.48
EUM (101) −0.45± 0.41 N/A N/A −2.53± 0.83 0.94± 0.25 0.09± 0.30 0.51± 0.29 0.45± 0.21
NHGR 0.28± 0.04 N/A N/A 0.18± 0.06 0.66± 0.06 0.45± 0.07 0.57± 0.07 0.57± 0.05
EUGR 0.01± 0.03 N/A N/A 0.00± 0.00 0.50± 0.14 0.09± 0.10 0.27± 0.13 0.23± 0.10

MO-
Hopper

HV (107) 0.44± 0.06 1.40± 0.20 0.91± 0.18 N/A 1.32± 0.23 1.18± 0.24 1.45± 0.25 1.57± 0.27
EUM (102) 0.59± 0.07 1.45± 0.14 1.07± 0.14 N/A 1.38± 0.14 1.26± 0.17 1.45± 0.15 1.50± 0.15
NHGR 0.05± 0.03 0.50± 0.16 0.20± 0.09 N/A 0.45± 0.15 0.37± 0.11 0.46± 0.14 0.54± 0.15
EUGR 0.31± 0.05 0.77± 0.12 0.57± 0.10 N/A 0.74± 0.11 0.66± 0.10 0.77± 0.12 0.80± 0.12

MO-Half
Cheetah

HV (105) 0.51± 0.00 0.46± 0.10 0.57± 0.07 N/A 0.81± 0.39 N/A 0.97± 0.32 1.15± 0.36
EUM (101) 0.07± 0.05 −2.86± 5.24 −1.38± 1.46 N/A 0.46± 6.64 N/A 3.28± 2.94 4.27± 3.15
NHGR 0.03± 0.02 0.03± 0.03 0.07± 0.02 N/A 0.16± 0.12 N/A 0.21± 0.09 0.29± 0.13
EUGR 0.00± 0.00 0.00± 0.00 0.00± 0.01 N/A 0.11± 0.12 N/A 0.16± 0.12 0.20± 0.13

MO-
Humanoid

HV (104) 3.80± 0.27 5.14± 0.79 0.15± 0.32 N/A 1.33± 0.09 N/A 4.86± 1.08 4.78± 1.15
EUM (102) 0.95± 0.08 1.26± 0.18 −0.38± 0.25 N/A 0.24± 0.09 N/A 1.27± 0.26 1.24± 0.27
NHGR 0.24± 0.07 0.31± 0.10 0.03± 0.02 N/A 0.07± 0.04 N/A 0.44± 0.19 0.43± 0.20
EUGR 0.42± 0.09 0.55± 0.13 0.01± 0.01 N/A 0.10± 0.04 N/A 0.56± 0.17 0.55± 0.18

MO-Super
MarioBros

HV (106) 1.41± 0.27 N/A N/A 1.48± 0.24 1.45± 0.19 N/A N/A N/A
EUM (101) 1.22± 0.81 N/A N/A 1.41± 0.70 1.30± 0.52 N/A N/A N/A
NHGR 0.04± 0.06 N/A N/A 0.08± 0.08 0.12± 0.14 N/A N/A N/A
EUGR 0.40± 0.16 N/A N/A 0.47± 0.14 0.47± 0.19 N/A N/A N/A

MO-
LavaGrid

HV (105) 1.12± 0.67 N/A N/A 1.10± 0.57 1.12± 0.58 N/A 3.54± 1.88 2.76± 1.84
EUM (102) −2.06± 0.61 N/A N/A −1.95± 0.48 −1.97± 0.51 N/A −0.85± 0.95 −1.34± 1.05
NHGR 0.03± 0.06 N/A N/A 0.02± 0.05 0.02± 0.05 N/A 0.37± 0.21 0.27± 0.23
EUGR 0.00± 0.00 N/A N/A 0.00± 0.00 0.00± 0.00 N/A 0.06± 0.15 0.04± 0.13

Table 2: Performance of various MORL algorithms across different domains and evaluation metrics.
Higher values indicate better performance for all metrics. Each entry indicates the mean and stan-
dard deviation computed over 5 independent runs. Bolded values fall within one standard deviation
of the best mean.
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D.2 EXPECTED UTILITY GENERALIZATION RATIO

When a good prior over possible user utility functions is known, The Expected Utility Metric (EUM)
proposed by Zintgraf et al. (2015) can be used for evaluating MORL algorithms. This metric
calculates the expected utility of the agent’s approximate Pareto front under the prior distribution of
user utility functions, parameterized by a weight space W . A higher EUM indicates that the policies
yields better expected utility across the user utility functions. Under the SER criterion, the expected
utility of the approximate Pareto front F̃ produced by a MORL agent is given by:

EUM(F̃) = Ew∼W

[
max
vπ∈F̃

u(vπ,w)

]
,

where u is the user’s utility function, and vπ is the expected value vector of policy π within the
Pareto set.

There are several scenarions in which the EUM can be applied. In practical applications, the utility
function of the stakeholders might be known due to domain knowledge. Using EUM would therefore
allow for more direct evaluations on how the solutions generated by the MORL agent corresponds
to improving the utility of the stakeholders. Not every point on the Pareto front would contribute to
an increase in the EUM for a given utility function. In addition, the hypervolume metric is known
for its computational challenge especially in higher dimensions, although various approximation
algorithms and heuristics have been developed to estimate the hypervolume more efficiently. The
EUM, on the other hand, depends only on the number of solutions on the approximate Pareto front
and the number of weights sampled from the weight space.

As mentioned in Section 4 of the main body, when aggregating performances across multiple con-
texts for measuring generalization, we must ensure that each context is equally attributed. Specif-
ically, we can calculate a variant on the NHGR metric we call the Expected Utility Generalization
Ratio (EUGR).

Definition 5 (Expected Utility Generalization Ratio). Let F̃c and F∗
c be the approximate Pareto

front obtained by generalist MORL agent and the optimal Pareto front for context c respectively.
The EUGR for the agent in c is defined as:

EUGR(F̃c,F∗
c ) =

EUM(F̃c)

EUM(F∗
c )

.

Unlike in NHGR, the Pareto front is not normalized here. This is because the utility functions used
in the EUM should already inherently reflect the stakeholders’ preferences over objectives, including
their relative importance.

Since there is no clear utility function distribution that is suited for toy domains like those in our
benchmark, we followed standard conventions and evaluated EUM and EUGR in Table 2 using
linear utility functions with weights summing to unity:

u(vπ,w) = w⊺vπ where
∑
i

wi = 1, wi ≥ 0, i = 1, . . . , k

where k is the number of objectives. Specifically, we scalarized the value vectors in the approximate
Pareto front obtained by each algorithm at the end of each run using 100 weight vectors sampled
uniformly from the unit weight simplex to compute the expected utility.

D.3 SINGLE OBJECTIVE UTILITY FUNCTION RESULTS

As discussed in Section 6.2, most classic SORL domains in Gymnasium inherently perform an
implicit scalarization of multiple objectives when defining the scalar reward function. As such,
for every domain, we track and plot the single-objective scalarization function fSORL returns for
all MORL algorithms, as well as for the SAC algorithm, across all evaluation episodes throughout
training. Across many domains in our benchmark, we observe that the leading MORL algorithms
could outperform or achieve comparable performance to the single-objective SAC algorithm in terms
of maximum fSORL return. Below, we present the fSORL equations for each environment along with
their corresponding plots.
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D.3.1 MO-HOPPER

The default single objective utility function of the MO-Hopper domain is same as the one used in
Gymnasium’s Hopper, which is

fSORL = 1.5vx + 0.001c+ h

where vx is the forward speed, c is the control cost and h is the reward for staying alive.

Figure 7: Single-objective return on 6 MO-Hopper testing environments during training. Each curve
is measured across 5 seeds (mean and standard error).

D.4 MO-HALFCHEETAH

The default single objective utility function of the MO-HalfCheetah domain is same as the one used
in Gymnasium’s HalfCheetah, which is

fSORL = 1.0vx + 0.1c

where vx is the forward reward and c is the control cost. The HalfCheetah is always alive so it has
no alive reward.

Figure 8: Single-objective return on 5 MO-HalfCheetah testing environments during training. Each
curve is measured across 5 seeds (mean and standard error).

D.4.1 MO-HUMANOID

The single objective utility function of the MO-Humanoid domain is

fSORL = 1.25vx + 0.001c+ 2.0h

where vx is the forward speed, c is the control cost and h is the reward for staying alive. The original
Gymansium’s Humanoid domain uses a 5.0 coefficient for the alive reward but we tuned it down to
because it dominating all the other objectives in terms of magnitude. We have also verified that
the convergence of the SAC agent on the original single-objective Humanoid environment remains
unchanged with this lower alive reward.

21



Published as a conference paper at ICLR 2025

Figure 9: Single-objective return on 5 MO-Humanoid testing environments during training. Each
curve is measured across 5 seeds (mean and standard error).

D.4.2 MO-LUNARLANDER

The default single objective utility function of the MO-LunarLander domain is same as the one used
in Gymnasium’s LunarLander, which is

fSORL = l + s+ 0.3mc+ 0.03sc

where l is a -100/+100 one-time reward if the lander lands successfully or crashes, s is the shaping
reward, mc is the main engine cost and sc is the side engine cost.

Figure 10: Single-objective return on 8 MO-LunarLander testing environments during training.
Each curve is measured across 5 seeds (mean and standard error).

D.4.3 MO-SUPERMARIOBROS

The default single objective utility function of the MO-SuperMarioBros domain is same as the one
used in Gym Super Mario Bros (Kauten, 2018), which is

fSORL = f + t+ d

where f is a forward reward, t is the time penalty, d is the death penalty.

Figure 11: Single-objective return on 5 MO-SuperMarioBros (abbreviated as MO-SMB) testing
environments during training. Each curve is measured across 5 seeds (mean and standard error).

E TRAINING DETAILS

Table 3 shows shared training hyperparameters across algorithms for each domain in the MORL
generalization benchmark. The scripts to reproduce the results in this paper are provided in the
codebase, alongside with more specific hyperparameters for the different algorithms. To have fair
evaluations, we utilize the same architectures for the policy and value functions across all algorithms
for each domain. Specifically, for MO-LavaGrid, MO-LunarLander, MO-Hopper, MO-HalfCheetah,
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and MO-Humanoid, the policy and value functions are multi-layer perceptrons (MLPs) with four
hidden layers of 256 units each. For MO-SuperMarioBros which has image observations, the policy
and value functions consist of a NatureCNN (Mnih et al., 2015) followed by a MLP with two hidden
layers of 512 units each. For off-policy algorithms that depend on experience replay, we ensure
the same replay buffer size is used. We direct researchers to our codebase for detailed scripts and
hyperparameter settings used in training each baseline algorithm for the evaluations in Section 6.

Parameter MO-
LavaGrid

MO-Lunar
Lander

MO-Super
MarioBros

MO-
Hopper

MO-Half
Cheetah

MO-
Humanoid

Discount γ 0.995 0.99 0.99 0.99 0.99 0.99

Adam
learning rate 3e−4 3e−4 3e−4 3e−4 3e−4 3e−4

Adam ϵ 1e−8 1e−8 1e−8 1e−8 1e−8 1e−8

Batch Size 128 128 64 256 256 256

Replay
buffer size 1e6 1e6 1e5 1e6 1e6 1e6

Max
episode steps 256 1000 2000 1000 1000 1000

Env Steps 5e6 3e6 3e6 3e6 5e6 1e7

Table 3: Hyperparameters used for training on MORL generalization benchmark.

F MORL-GENERALIZATION BENCHMARK DETAILS

In this section, we begin by providing an overview of the domains in our MORL-Generalization
benchmark, highlighting the distinct context variations each domain introduces. Next, for each
domain, we detail the environment parameters used to create their evaluation environments. The
code commands to initialize these environments using Gymnasium are also included within our
codebase.

F.1 BENCHMARK DOMAIN DETAILS

Kirk et al. (2023) identified four key types of domain variations for studying generalization: 1) state-
space variation (S), which alters the initial state distribution, 2) dynamics variation (D), which alters
the transition function, 3) visual variation (O), which impacts the observation function, and 4) reward
function variation (R). We provide detailed descriptions of the benchmark domains introduced in
Section 5 below:

MO-LunarLander (D+S) This is a multi-objective adaptation of Gymnasium’s LunarLander do-
main where the agent has to balance between successfully landing on the moon surface, the stability
of the spacecraft, the fuel cost of the main engine, and the fuel cost of the side engine. The agent
operates over discrete-action and continuous-observation spaces. We introduce a 7-dimensional pa-
rameter that varies the environment’s gravity, wind power, turbulence, and the lander’s main engine
power, side engine power, and initial x, y coordinates.

MO-Hopper (D) This is a multi-objective adaptation of Gymnasium’s Hopper domain. The one-
legged agent must balance optimizing for its forward velocity, torso height, and energy cost. The
agent operates over continuous action and observation spaces. We introduce an 8-dimensional pa-
rameter that varies the hopper’s body masses (4D), joint damping (3D), and the floor’s friction.

MO-HalfCheetah (D) This is a multi-objective adaptation of Gymnasium’s HalfCheetah domain.
The 2-dimensional cheetah robot must balance optimizing for its forward velocity and energy cost.
The agent operates over continuous action and observation spaces. We introduce an 8-dimensional
parameter that varies the cheetah’s body masses (7D) and the floor’s friction.
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MO-Humanoid (D) This is a multi-objective adaptation of Gymnasium’s Humanoid domain. The
humanoid robot must balance between optimizing for its forward velocity and its energy cost. The
agent operates over continuous action and observation spaces. We introduce a 30-dimensional envi-
ronment parameter that varies the humanoid’s body masses (13D) and joint damping (17D).

MO-SuperMarioBros (S) This is a multi-objective adaptation of the Gym Super Mario
Bros (Kauten, 2018) domain based on the popular Super Mario Bros video game. The agent has
to balance between moving forward, collecting coins, and increasing the game score (by stomping
enemies, breaking bricks, etc.). The agent operates over discrete-action and discrete-observation
(pixel images) spaces. We introduce a 2-dimensional parameter that controls which stage of the
Super Mario Bros game to place the agent in. There are a total of 32 possible stages.

MO-LavaGrid (S+R) This is a novel multi-objective domain based on MiniGrid (Chevalier-
Boisvert et al., 2023). The agent (red triangle) has to navigate a 11 x 11 grid, incurring a penalty
each time it touches lava and another for every step it takes to collect all 3 goals (blue, green, and
yellow blocks), after which the episode terminates. The placements of the agent, goals, and lava
blocks are fully configurable, providing diverse evaluation contexts. Additionally, we introduce a 3-
dimensional parameter controlling the reward weight of each goal. These weights are concatenated
with the state space, ensuring the agent has the necessary information about the reward function
to plan its trajectory while balancing goal collection and lava avoidance. The agent operates over
discrete-action and mixed continuous-discrete (because of the reward weights) observation spaces.

F.2 MO-LAVAGRID

The environment parameters for the MO-LavaGrid domain are represented using bit maps, which
we are unable to directly translate into this paper. Instead, the evaluation environments are visually
shown in Fig. 12. Also, as mentioned in 5, the MO-LavaGrid environment has a 3-dimensional
parameter controlling the reward weightages of each goal square (green, blue, yellow). The reward
weights for each goal are concatenated to the state space of the agent, and the weights sum to unity.
The reward weightages for each goal in each evaluation environment are shown in Table 4.

During training using domain randomization, after each episode concludes, the agent’s start position
and orientation, the number of lava blocks, the placement of the goals and lava blocks, and the
reward weightages of the goals are all randomly set. When an agent has collected/visited a goal, the
weightage of the goal in the state space is set to 0, to indicate that the reward corresponding to that
goal has already been awarded.

Figure 12: MO-LavaGrid Evaluation Environments. Top row (left to right): MO-LavaGridSnake,
MO-LavaGridRoom, MO-LavaGridSmiley, MO-LavaGridMaze. Bottom row (left to right): MO-
LavaGridCheckerBoard, MO-LavaGridCorridor, MO-LavaGridIslands, MO-LavaGridLabyrinth
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Environment Green Yellow Blue

MO-LavaGridSnake 0.20 0.30 0.50
MO-LavaGridRoom 0.50 0.30 0.20
MO-LavaGridSmiley 0.40 0.40 0.20
MO-LavaGridMaze 0.05 0.05 0.90
MO-LavaGridCheckerBoard 0.30 0.10 0.60
MO-LavaGridCorridor 0.60 0.10 0.30
MO-LavaGridIslands 0.33̇ 0.33̇ 0.33̇
MO-LavaGridLabyrinth 0.50 0.05 0.45

Table 4: Reward weightages for MO-LavaGrid evaluation environments.

F.3 MO-SUPERMARIOBROS

In MO-SuperMarioBros, each environment configuration is instantiated via a 2-dimensional param-
eter. The first dimension has discrete values {1, 2, 3, 4, 5, 6, 7, 8}, and indicates the SuperMarioBros
world. The second dimension has discrete values {1, 2, 3, 4}, and indicates the level within the cho-
sen world. Together, the parameters <world>-<level> defines the stage (configuration) of the
environment.

During training using domain randomization, an environment is randomly selected from the 32
possible stages, except Stage 3-3 which is reserved for zero-shot generalization evaluation. During
evaluation, the agents are evaluated on only 8/32 stages to keep the runtime within reasonable limits.
The evaluation stages are visually shown in Fig. 13. The evaluation stages are carefully selected
to encompass a wide range of environment dynamics and visual renditions. Additionally, they are
chosen to ensure that each stage offers non-zero rewards across all objective dimensions. This
is crucial to prevent hypervolume evaluations from collapsing to zero, which would occur if any
dimension of the objective space had a zero achievable range.

Figure 13: MO-SuperMarioBros Evaluation Environments. Top row (left to right): Stage 1-2, Stage
3-2, Stage 3-3 (zero shot), Stage 4-3. Bottom row (left to right): Stage 5-2, Stage 5-3, Stage 7-3,
Stage 8-1

F.4 MO-LUNARLANDER

In MO-LunarLander, each environment configuration is instantiated via a 7-dimensional parameter.
The dimensions of the environment parameter corresponds to the gravity coefficient, wind power,
turbulence, the lander’s main engine power, the lander’s side engine power, the lander’s initial x-
coordinate, and the lander’s initial y-coordinate.
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During evaluation, we assess the agents performances on a predefined set of 8 environment con-
figurations: Default, High Gravity, Windy, Turbulent, Low Main Engine, Low Side Engine, Start
Right, and Hard. Table 5 displays the environment parameter values used for each environment
configuration.

Parameters Default High
Gravity Windy Turbulent Low Main

Engine
Low Side
Engine

Start
Right Hard

Gravity -10.0 -13.0 -10.0 -10.0 -10.0 -10.0 -10.0 -12.0

Wind
Power 15.0 15.0 20.0 15.0 15.0 15.0 15.0 17.0

Turbulence
Power 1.5 1.5 1.5 3.5 1.5 1.5 1.5 2.5

Main Engine
Power 13.0 13.0 13.0 13.0 10.0 13.0 13.0 12.0

Side Engine
Power 0.6 0.6 0.6 0.6 0.6 0.3 0.6 0.4

Initial X
Coeff 0.5 0.5 0.5 0.5 0.5 0.4 0.75 0.4

Initial Y
Coeff 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 5: Environment parameters for MO-LunarLander

F.5 MO-HOPPER

In MO-Hopper, each environment configuration are instantiated via a 8-dimensional parameter that
varies the hopper’s body masses (4D), joint damping (3D), and the floor’s friction (1D).

During evaluation, we assess the agents performances on a predefined set of 6 environment configu-
rations: Default, Light, Heavy, Slippery, Low Damping, and Hard. Table 6 displays the environment
parameter values used for each environment configuration.

Parameters Default Light Heavy Slippery Low Damping Hard

Torso Mass 3.7 0.5 9.0 3.7 3.7 0.1

Thigh Mass 4.0 0.5 9.0 4.0 4.0 9.0

Leg Mass 2.8 0.3 8.5 2.8 2.8 9.0

Foot Mass 5.3 0.7 10.0 5.3 5.3 0.1

Damping 0 1.0 1.0 1.0 1.0 0.1 0.1

Damping 1 1.0 1.0 1.0 1.0 0.1 0.1

Friction 1.0 1.0 1.0 0.1 1.0 0.1

Table 6: Environment parameters for MO-Hopper

F.6 MO-HALFCHEETAH

In MO-HalfCheetah, each environment configuration is instantiated via a 8-dimensional parameter
that varies the cheetah’s body masses (7D) and the floor’s friction (1D).

26



Published as a conference paper at ICLR 2025

During evaluation, we assess the agents performances on a predefined set of 5 environment config-
urations: Default, Light, Heavy, Slippery, and Hard. Table 7 displays the environment parameter
values used for each environment configuration.

Parameters Default Light Heavy Slippery Hard

Torso Mass 6.25 0.5 10.0 6.25 6.25

Back Thigh Mass 1.538 0.1 9.5 1.54 9.5

Back Shin Mass 1.441 0.1 9.5 1.59 9.5

Back Foot Mass 0.891 0.1 9.5 1.10 9.5

Front Thigh Mass 1.434 0.1 9.5 1.44 0.1

Front Shin Mass 1.198 0.1 9.5 1.20 0.1

Front Foot Mass 0.869 0.1 9.5 0.88 0.1

Friction 0.4 0.4 0.4 0.1 0.1

Table 7: Environment parameters for MO-HalfCheetah

F.7 MO-HUMANOID

In MO-Humanoid, each environment configuration is instantiated via a 30-dimensional parameter
that varies the humanoid’s body masses (13D) and joint damping (17D).

During evaluation, we assess the agents performances on a predefined set of 5 environment con-
figurations: Default, Light, Heavy, Low Damping, and Hard. Table 8 displays the environment
parameter values used for each environment configuration.
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Parameters Default Light Heavy Low Damping Hard

Mass 1 8.91 1.7 10.0 8.91 8.91
Mass 2 2.26 0.5 7.0 2.26 2.26
Mass 3 6.62 1.3 9.0 6.62 6.62
Mass 4 4.75 0.7 8.0 4.75 0.7
Mass 5 2.76 0.6 7.0 2.76 0.6
Mass 6 1.77 0.5 6.0 1.77 0.5
Mass 7 4.75 0.7 8.0 4.75 8.0
Mass 8 2.76 0.5 7.0 2.76 7.0
Mass 9 1.77 0.3 6.0 1.77 6.0
Mass 10 1.66 0.3 6.0 1.66 0.1
Mass 11 1.23 0.1 5.5 1.23 0.1
Mass 12 1.66 0.3 6.0 1.66 5.0
Mass 13 1.23 0.1 5.5 1.23 5.0
Damp 1 1.0 5.0 5.0 1.0 1.0
Damp 2 1.0 5.0 5.0 1.0 1.0
Damp 3 1.0 5.0 5.0 1.0 1.0
Damp 4 1.0 5.0 5.0 1.0 1.0
Damp 5 1.0 5.0 5.0 1.0 1.0
Damp 6 1.0 5.0 5.0 1.0 1.0
Damp 7 0.2 1.0 1.0 0.2 0.2
Damp 8 1.0 5.0 5.0 1.0 1.0
Damp 9 1.0 5.0 5.0 1.0 1.0
Damp 10 1.0 5.0 5.0 1.0 1.0
Damp 11 0.2 1.0 1.0 0.2 0.2
Damp 12 0.2 1.0 1.0 0.2 0.2
Damp 13 0.2 1.0 1.0 0.2 0.2
Damp 14 0.2 1.0 1.0 0.2 0.2
Damp 15 0.2 1.0 1.0 0.2 0.2
Damp 16 0.2 1.0 1.0 0.2 0.2
Damp 17 0.2 1.0 1.0 0.2 0.2

Table 8: Environment parameters for MO-Humanoid
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