
Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

A MODELING RECONFIGURABLE DL
TRAINING

In this section, we model and predict training throughput
using different combinations of strategies and resource al-
locations. We will first model each of the training parts in
Fig. 5, and then show how to combine them into Titer.

We denote each fittable parameter in our model as k plus
a certain subscript to distinguish it from other model- or
environment-related constants (summarized in Table 5).

A.1 Modeling Computation and Communication

Modeling Tfwd. The time for forward pass Tfwd under
3D parallelism can generally be obtained from profilers
provided by DL frameworks (e.g., in DeepSpeed) on a node
with a given global batch size. We scale Tfwd linearly to
the actual per-GPU batch size for data parallelism, and to
per-GPU tensor shard size for tensor parallelism. Besides,
we have special treatments for the following two strategies.

Pipeline Parallelism. PP balances the layers among GPUs.
When profiling with gp GPUs, the forward time provided by
the framework (denoted as tp) is usually the time for a single
GPU to process a micro-batch, with l/gp layers placed on
it, where l is the total number of layers. The complete Tfwd

for PP includes the time taken for the first micro-batch to be
processed sequentially on each GPU, and that for all GPUs
to serially process the other micro-batches (Narayanan et al.,
2019). Besides, Tfwd is linear to the per-GPU number of
layers. We then have Tfwd = tp · gp/p · (m+ p� 1), where
m is the number of micro-batches and p is the PP size.

Gradient Accumulation. GA aggregates per-GPU gradients
over multiple passes. Therefore, the total forward time is
Tfwd · a, where a is the number of accumulation steps.

Modeling Tbwd. Tbwd is the time for computing the gra-
dients during the backward pass. Transformer-based mod-
els are primarily comprised of matrix multiplication oper-
ations, where the time required for gradient computation
can be generally considered to be proportional to Tfwd, i.e.,
Tbwd = kbwd · Tfwd. A special case arises with gradient
checkpointing (GC): GC recomputes activations during the
backward pass. The time cost for the extra computation is
typically equal to the time Tfwd (Chen et al., 2016). There-
fore, when GC is used, modeling the Tbwd requires adding
the time required for a forward pass.

Modeling Tcomm. The communication time Tcomm in-
volves those for data, tensor, and pipeline parallelisms. For
each part, Tcomm is in general estimated as Tcomm = V/B,
where V is the volume of the data to transfer between each
pair of GPUs and B is the corresponding bandwidth.

Table 5. Summary of performance model parameters.

Fittable kbwd, ksync, kopt, kopt off , koff , kswap, kconst

Job

Model s (seq), h (hidden), l (layers), P (param size)

Resources g (GPU), c (CPU)

Parallelism d, t, p (3D-parallel sizes, d · t · p = g)

Others b (batch size), m (micro-batch num), a (GA steps)

Environment Bintra, Binter, Bpcie

We discuss how to model B first. For each type of com-
munication (DP/TP/PP), we basically use the bottleneck
bandwidth of the GPUs involved in the communication, i.e.,
the lowest bandwidth among all pairs of GPUs. For example,
when all GPUs are co-located on the same node, the data
can be transferred via a high-speed connection like NVLink.
In this case, we use the intra-node bandwidth Bintra as B.
However, when the GPUs are spread on multiple nodes, the
communication is largely dominated by the bandwidth be-
tween nodes because the speed is much slower than NVLink.
Hence we use inter-node bandwidth Binter here. Note that
different types of communication may use different B val-
ues. For example, TP is typically restricted inside each node
while PP can be distributed across nodes (Narayanan et al.,
2021). In this case, TP and PP will use Bintra and Binter,
respectively. The values of Bintra and Binter are measured
on the cluster offline.

Next, we model the communication volume V for different
strategies, respectively. When the parallelism size of any
parallel strategy is 1, then the corresponding V is 0.

Data Parallelism. DP typically uses the ring AllReduce al-
gorithm to synchronize gradients, where each model replica
sends and receives 2(d � 1)/d times gradients (d being
the DP size). The gradients generated during the entire
backward pass are approximately as large as the parameter
size. Considering that the gradients are partitioned and syn-
chronized in parallel across TP and PP partitions, we have
Vdp = P ·2(d�1)/(d · t ·p), where P is the total parameter
size, and t and p are TP and PP sizes, respectively. This rule
also applies to the ZeRO series as they are based on DP.

Tensor Parallelism. The communication volume for TP
depends on the size of output tensor of a Transformer layer,
which is b · s · h (Vaswani et al., 2017) when not sliced,
where b, h, and s represent the batch size, hidden size, and
sequence length, respectively. Each layer involves in total
4 communication operations in the forward and backward
passes (Shoeybi et al., 2019). Considering the output tensor
and the batch are partitioned by TP and DP, respectively, we
have Vtp = 4 ·2 · (t�1) ·b ·s ·h · l/(d · t) (this volume is not
divided by the PP size p because the TP communications
across pipeline stages are serialized).

Pipeline Parallelism. Micro-batches need to wait for the



Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

communication from other pipeline stages after finishing
the forward/backward pass for the current micro-batch. The
communication volume for each micro-batch between each
consecutive pair of devices is b/m ·s ·h. PP communication
is involved in both forward and backward passes, and the
tensors are partitioned by DP and TP along the batch size
and operator dimensions. We thus have Vpp = 2 · p · b · s ·
h/(d · t)3.

Combining computation and communication. As de-
picted in Fig. 5, it is possible to overlap the communication
with the forward/backward pass computation. We use an
intermediate variable Tcc to denote the combination of com-
putation and communication, which is calculated as follows.

3D parallelism. In 3D parallelism, the gradient synchro-
nization of DP can be overlapped with the backward pass,
whereas the communication for TP/PP cannot as it is on
the critical path. We use a function fk

overlap(Tx, Ty) pa-
rameterized by k to model the overlapping of two stages,
where the fittable parameter k represents the degree of
the overlapping. Here we use ksync for the overlapping
of DP and backward pass, thus we have Tcc = Tfwd +

f
ksync

overlap(Tbwd, Tcomm dp) + Tcomm tp + Tcomm pp, where
the three communication times are calculated using the rule
described above. To avoid distraction, we defer the detail of
fk
overlap to Sec. A.3.

Gradient Accumulation. When GA is used in DP, per-
GPU gradients are aggregated locally over a� 1 forward-
backward passes before being synchronized across all GPUs
during the ath pass. Therefore, the total backward propa-
gation spans a� 1 accumulation steps followed by the last
step overlapped with the synchronization, that is, Tcc =

a·Tfwd + (a� 1) · Tbwd + f
ksync

overlap(Tbwd, Tcomm dp).

A.2 Modeling Optimizer and Offloading

Modeling Topt. The optimizer time Topt depends on the
parameter size on each GPU, instead of the total parameter
size, as the parameters are updated in parallel. We discuss
each strategy as below.

3D parallelism or ZeRO-DP. 3D parallelism and ZeRO-DP
partition model parameters by the TP/PP size and DP size,
respectively, thus we have Topt = kopt · P/x, where x
represents t · p for 3D parallelism, and d for ZeRO-DP.

ZeRO-Offload. Beyond the partitioning, ZeRO-Offload up-
3We model the commonly used 1F1B strategy for

PP (Narayanan et al., 2019). This formula only considers
the micro-batches whose results are needed immediately by
the next pipeline stage. For some of the micro-batches in the
warm-up phase of 1F1B, the communication can be overlapped,
but the degree is hard to model. We assume that they are perfectly
overlapped.

dates the partition each GPU owns directly on the CPU.
Thus, we add a new fittable parameter to represent the CPU
computation efficiency. Since CPU resources are used in
parallel to jointly compute a single weight update, increas-
ing the number of CPUs c can also optimize Topt under
ZeRO-Offload, that is, Topt = kopt off · P/(d · c).

Modeling Toff . Toff represents the time specifically re-
quired by ZeRO-Offload, which is taken by the communi-
cation between CPU and GPU. ZeRO-Offload offloads the
partitioned gradients to the CPU memory after computa-
tion and moves the parameter partitions back to the GPU
after the parameter update. The communication volume for
each data parallel GPU to the CPU is P/d without mixed
precision, thus we have Toff raw = P/(d ·Bpcie).

In ZeRO-Offload, the offloading is also overlapped with
the gradient synchronization and the optimizer step. We
use an intermediate variable Too to denote the combina-
tion of these parts. When using ZeRO-Offload, we have
Too = f

koff

overlap(Tcomm dp, Toff ) + f
kswap

overlap(Topt, Toff );
otherwise, we simply have Too = Topt.

A.3 Putting It All Together

Combining the discussion in previous sections, we model
the end-to-end iteration time as:

Titer = Tcc + Too + kconst (1)

where we use another fittable parameter kconst to denote
other constant overhead.

Modeling overlapping. We use the function
fk
overlap(Tx, Ty) to represent the total time spent by
x and y, considering the overlap between them. Taking
the overlapping of Tbwd and Tcomm as an example, if there
is no overlap in data parallelism, they are combined as
Tbwd + Tcomm. If there is a perfect overlap, it should be
max(Tbwd, Tcomm). A realistic value is somewhere in
between these two extremes. To capture the overlapping,
we borrow the definition from prior work (Qiao et al., 2021)
as fk

overlap(Tx, Ty) =
�
T k
x + T k

y

� 1
k . This formula has the

property that the total time equals Tx+Ty when k = 1, and
it smoothly transitions towards max(Tx, Ty) as k �! 1.

Continuous model fitting. As mentioned in Sec. 4, To
fit the 7-tuple fittable parameters (listed in Table 5), we
require at least seven data points before scheduling corre-
sponding jobs. Considering that three parameters involve
ZeRO-Offload (kopt off , koff , kswap), the test runs should
include three using this strategy. We minimize the root mean
squared logarithmic error (RMSLE) between Eq. (1) and
the collected data triples. The model can also be updated
online to correct potential prediction errors.



Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

B ARTIFACT APPENDIX

B.1 Abstract

The artifact includes the source code and scripts to run
the experiments. It can validate the core functionalities of
Rubick and reproduce the main evaluation results of this
paper.

B.2 Notes

Our experiments can be reproduced in two ways: artifact
evaluation (referred to as “artifact” hereafter) and real GPU
cluster experiments (referred to as “real experiments” here-
after). For the artifact, we have pre-collected performance
values for all Transformer models in Table 1 under various
resource amounts and execution plans in a 64-GPU cluster
setup. Based on the data, we can quickly validate Rubick’s
core functionalities without requiring GPUs.

For the real experiments, they require access to a 64-A800
GPU cluster, which incurs significant costs and also de-
mands lengthy runtimes to complete. As a result, we do not
recommend this approach. However, for those interested,
we have provided instructions below and on GitHub.

It is worth highlighting that both methods use the same code
to implement the core function of Rubick. We believe the
artifact is sufficient to validate Rubick’s capabilities.

B.3 Artifact check-list
• Algorithm: A new scheduling algorithm is used for recon-

figurable scheduling.

• Program: Seven deep learning training workloads, such as
ResNet, GPT-2, are used as benchmarks.

• Model: For artifacts, we only need the model configuration
information (e.g., model structure), which has been included
in the code. For real experiments, you will need to down-
load their checkpoints from https://huggingface.
co/models.

• Data set: For real experiments only. They need to be down-
loaded from https://huggingface.co/datasets.

• Run-time environment: The artifact is designed to run in a
Docker container, making it OS-agnostic. Root access is not
required, but Docker must be installed and configured. The
real experiments need more support such as Kubernetes and
training frameworks.

• Hardware: Artifact: CPUs. Real experiments: 64-A800
GPU cluster.

• Execution: For real experiments only. They need profiling
for every new model. The overhead can be found in Sec. 7.3.

• Metrics: For each training job: iteration time and through-
put. For cluster experiment: average job completion time
and makespan.

• Output: Standard console output (stdout)/log files/fig-
ures/tables.

• Experiments: README, scripts, IPython/Jupyter notebook
are used. See Github for more details.

• How much disk space required (approximately)?: Arti-
fact: 1 GB. Real experiments: 800 GB.

• How much time is needed to prepare workflow (approxi-
mately)?: Artifact: 30 minutes. Real experiments: 1 day.

• How much time is needed to complete experiments (ap-
proximately)?: Artifact: 2 hours. Real experiments: 9
days.

• Publicly available?: https://github.com/
AlibabaPAI/reconfigurable-dl-scheduler.

• Code licenses (if publicly available)?: Apache-2.0

• Data licenses (if publicly available)?: Apache-2.0

• Archived (provide DOI): 10.5281/zenodo.14991392

B.4 Description

B.4.1 How delivered

The artifact repository can be obtained from Github. To get the
Rubick artifact, run:

git clone https://github.com/AlibabaPAI/
reconfigurable-dl-scheduler.git

cd reconfigurable-dl-scheduler
git checkout mlsys25-artifact

B.4.2 Hardware dependencies

Artifact: CPUs.

Real experiments: A cluster comprised of 8 servers, each with 8
NVIDIA A800 GPUs (80 GB), 96 vCPUs, 1, 600 GB memory,
400 GB/s NVLink bandwidth, and 100 GB/s RDMA network
bandwidth.

B.4.3 Software dependencies

Artifact: Docker container. You can pull the Docker images we
prepared or setup the containers by yourself using Dockerfile we
provided.

Real experiments: Kubernetes, Kubeflow, PyTorch 1.12, Deep-
Speed 0.9.2, and Megatron-DeepSpeed v2.4.

B.5 Installation
Here, we provide a brief introduction to the artifact installation.
For more details, see https://github.com/AlibabaPAI/
reconfigurable-dl-scheduler.

You can pull the container as:

docker pull zzxy180318/rubick-artifact:
mlsys25ae

You can also setup the containers by yourself using Dockerfile,
which takes only 1-2 minutes to build:

https://huggingface.co/models
https://huggingface.co/models
https://huggingface.co/datasets
https://github.com/AlibabaPAI/reconfigurable-dl-scheduler
https://github.com/AlibabaPAI/reconfigurable-dl-scheduler
https://github.com/AlibabaPAI/reconfigurable-dl-scheduler
https://github.com/AlibabaPAI/reconfigurable-dl-scheduler


Rubick: Exploiting Job Reconfigurability for Deep Learning Cluster Scheduling

docker build -t rubick:mlsys25ae .

Finally, launch the Docker images as follows:

docker run -tid --name rubick-artifact
rubick:mlsys25ae

docker exec -it rubick-artifact /bin/bash

B.6 Experiment workflow
Here, we provide a brief overview of the artifact workflow. For
detailed steps on how it is implemented and executed, please visit
the Github.

To validate the performance model of Rubick, we use seven models
listed in Table 1 to evaluate the prediction errors (Table 2). To
assess Rubick’s reconfigurabilities, we use Rubick to train the
LLaMA-2-7B under different resource limits and evaluate the
training performance (Fig. 7).

To demonstrate Rubick’s ability to maximize the throughput across
jobs, we submit RoBERTa and T5 models to a 4-GPU cluster and
compare the overall performance with a simple scheduler (Fig. 8).
To ensure that Rubick preserves training accuracy, we profile the
training loss across 3, 000 mini-batches under different execution
plans and compare it with the loss with randomized seeds (Fig. 9).

Finally, to highlight Rubick’s ability to optimize cluster scheduling
by maximizing cluster throughput while maintaining job perfor-
mance, we use three different traces (each consisting of 406 jobs)
and schedule them with Rubick onto a 64-GPU cluster (Table 4).

B.7 Evaluation and expected result
Here, we only discuss the expected results of the artifact. For the
performance model validation and micro-benchmarks, the number
of resources and jobs involved is relatively small. Therefore, the
artifact results will closely match those reported in the paper.

However, for cluster experiments, each row in Table 4 requires a
long runtime (i.e., Makespan), during which unavoidable factors
such as network fluctuations and restart delays may affect the
experiment results. It is impossible to accurately predict or quantify
their impact in the artifact, although we have taken these factors
into consideration. As a result, cluster experiments may exhibit
some variation from the results in the paper. As shown in Sec. 7.4,
we consider a mean variation of up to 6.9% to be acceptable.


