S3-NeRF: Neural Reflectance Field from Shading and
Shadow under a Single Viewpoint

—— Supplementary Materials —

In this supplementary material, we provide more results, analyses, implementation details and
discussions to supplement our main paper.
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A Visual Examples For the Shadow Cue

To help better understand how shadow provides cues for inferring shape of the invisible surface, in
Fig. S1, we visualize the rendered images of three different objects, which have the same front view
but with different shapes in the back (generated by cutting the READING mesh with a plane). We
can see that although these three objects have the same shapes and appearances in the front view, the
produced shadows are largely different, demonstrating that shadow can provide strong information
for shape reconstruction.

Frontal View Side View Input Samples

Figure S1: Visual examples to illustrate the shadow cue.

B More Details for the Method

The detailed architecture of the network is visualized in Fig. S2. Similar to [6], we use SoftPlus
activation for the occupancy branch and ReLU activation for albedo and specular weights branch.
Following most neural rendering works, we adopt positional encoding (with hyper-parameter L = 6)
to map the point coordinates to higher dimensions, which is then concatenated with the coordinate as
the input. To stabilize the training process, we add the shadow modeling after 1K iterations, and the
surface loss after 5K iterations.
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Figure S2: Detailed architecture of the network. Positional encoding is employed for the input z.

C More Details for the Synthetic Dataset

We use both Mitsuba and Blender for rendering. Specifically, Blender is used for the LEGO, CHAIR,
and HOTDOG, while other objects are rendered via Mitsuba. We created a scene by adding a
horizontal and a vertical plane to model the desk and wall, and objects are placed on the horizontal
plane. Each scene was rendered under 128 uniformly sampled near point lights. We use the default
materials for the Blender scenes and BUNNY, while employing the MERL dataset [4] to randomly
select materials for the other 6 objects.



The light distribution used in the default experiment setups is shown as Fig. S3 (a). The small range
and median range light distributions used in light range analysis (see Table 5 of the paper) are shown
in Fig. S3 (b)-(c), respectively.

Figure S4 visualizes the light distributions used in light number analysis (see Table 4 of the paper).
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Figure S3: Visualization of the light distributions with different ranges.
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Figure S4: Visualization of light distributions with different numbers of lights.

D More Method Analysis

D.1 Results on Scenes with Different Backgrounds

To verify the capability of our method in dealing with scenes with different types of backgrounds, we
evaluated it on four common types of backgrounds, namely the Wall and Desk, Wall only, Desk only,
and Wall Corner (see Fig. S5). We can see that our method works well on different scene layouts,
demonstrating the robustness of our method.

D.2 Analysis on Complicated Background

To further evaluate the robustness of our method on more complicated backgrounds, we evaluated it
on four scenes rendered with different backgrounds, including two uniform color backgrounds with
different lightness (denoted as "Light’ and *Dark’) and two textured backgrounds. Results in Table S1
and Fig. S6 show that our method is robust to backgrounds with different lightness and textures.

Table S1: Results on background with different lightness and textures.

BUNNY READING
BG Color | MAE| Depth| | MAE| Depth]
White 1.72 5.39 2.03 5.65
Gray 2.11 6.15 2.16 7.19

Texture 1 1.93 8.30 2.36 8.75
Texture 2 1.94 8.69 2.43 10.10
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Figure S5: Results on scenes with different background. From top to bottom shows the results on
background with types of Wall and Desk, Wall only, Desk only, and Wall Corner.
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D.3 Analysis on Shadow Modeling in Foreground and Background Regions

We also analyze the effect of cast shadow modeling in both foreground and background regions.
Specifically, we trained two variant models, one without foreground shadow modeling and the other
without background modeling. Results in Table S2 and Fig. S7 show that modeling cast shadow in
both regions is important, as disabling either one of them leads to decreased accuracy.

Table S2: Analysis of foreground/background shadow modeling (depth object regions only).

BUNNY CHAIR
Method MAE,| Depth| | MAE| Depth|
w/o back 1.84 34.60 3.58 29.49

w/o fore 2.11 6.75 2.03 9.67
Ours 1.72 6.82 1.83 9.04

D.4 Compare with MLP Regression for Shadow Computation

We also compare our shadow modeling method with direct MLP regression. We trained a variant
model replacing the ray-marching visibility computation with a direct visibility MLP. Results in
Table S3 and Fig. S8 show that simply regressing the visibility produces worse results, as this
MLP cannot regularize the occupancy field. In contrast, our method performs ray-marching in the
occupancy field to render shadow, providing strong constraints for the occupancy field.

Table S3: Comparison of our ray-marching shadow computation and MLP regression.
CHAIR BUDDHA
Method MAE| Depthl PSNR{ | MAE| Depth] PSNR?T

Vis-MLP | 3.07 17.14 35.57 2.59 1971  41.24
Ours 1.83 5.57 36.33 2.44 5.48 43.42
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Figure S6: Visual results on backgrounds with different lightness and textures. Row 1 is the input
sample, and row 2 shows the normal map of the view. Row 3 shows a rendered image under a novel
light, and row 4 shows the shape of a novel view. (To make the lightness/texture details clearer, we
show the GT/rendered images in linear space.)
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Figure S7: Visual results for the analysis on foreground/background shadow modeling. Row 1 is the
normal of train view, and row 2 shows its error map compared with ground truth. Row 3 shows the
albedo map and row 4 shows the normal of a novel view.
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Figure S8: Visual results for the analysis on shadow modeling. "Vis-MLP" means using an MLP to
predict the visibility distribution. Row 1 is the normal of train view, and row 2 shows its error map
compared with ground truth. Row 3 shows the normal of a novel view.
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D.5 Effect of Area Light

We also analyze the effect of soft shadow caused by a larger light source, we tested our method on
data rendered using light sources with different scales (i.e., a sphere with a radius of 1/50, 1/25, or
1/10 of the object size). Results in Fig. S9 show that our method is robust to larger light sources (e.g.,
1/50 and 1/25). We also observe that when the light source size is considerably large (e.g., 1/10), the
results in the object boundary will decrease because of the heavy soft shadow. Note that this is not a
problem in practice as it is very easy to find a point light source whose size is smaller than 1/25 of
the object size (e.g., the cellphone flashlight).

GT Point Light 1/50 Object Size  1/25 Object Size  1/10 Object Size

Figure S9: Visual results for the analysis of foreground/background shadow modeling. Row 1 is the
input sample. Row 2 shows the normal map of the view, and row 3-4 shows its error map. Row 5
shows the surface in novel view.

D.6 Effect of Lighting Distributions For Invisible Shape Reconstruction

To analyze the effect of light distribution on reconstructed shape of invisible regions, we also report
the Chamfer Distance between the reconstructed and ground-truth meshes of “ARMADILLO” (object
regions only), which can quantify the full shape reconstruction. Since the extracted scene consists of
both the object and background, we crop out the background regions and only calculate the Chamfer
Distance on objects. We also notice that the depth variance will cause significant increase of the
errors. Therefore, we crop the bottom areas of the object and apply ICP to align the extracted mesh
and the ground truth before calculating the Chamfer Distance. Results in Table S4 and Table S5 show
that the shape accuracy will improve given more lights, and our method is able to achieve robust
results given 8 input lights. When the light distribution becomes narrow (small), the shape accuracy
will decrease.

D.7 Effect of Normal Smoothness Loss

To further study the impact of the normal smoothness loss, we did an ablation study on the loss term.
Results in Fig. S10 show that imposing the normal smoothness loss is helpful to reduce the artifacts
in the invisible regions.



Table S4: Chamfer distance of model trained  Table S5: Chamfer distance of model trained

with different light numbers. with different light range.
Light# | Chamfer Dist. | Range | Chamfer Dist. |

4 - small 10.32
8 10.16 median 5.98

16 8.08 broad 6.92

32 7.42

64 7.74

128 6.92
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Figure S10: Ablation for normal smoothness loss.

E Results on the LUCES Dataset

As mentioned in Section 4.2 of the paper, existing photometric stereo (PS) datasets [5, 9] are
primarily interested in the object region, and the shadow and shading information cannot be observed
in the background regions. Therefore, they are not suitable to evaluate our method in full scene
reconstruction.

For completeness of the evaluation, we compare our method with existing near-field PS methods on
the public near-field PS dataset LUCES [5] for normal and depth estimations of the visible surface'.
Note that only the ground-truth normal and depth maps of the object observed in the input view are
provided. Following previous methods, we adopt an anisotropic light source [5] for light modeling.

As shown in Table S6 and Table S7, our method achieves the best average normal estimation result,
and the depth estimation results (aligned) are comparable to state-of-the-art methods, even though this
dataset does not well fit our assumption (i.e., shading and shadow are observed in the background).
Note that the results of other methods are collected from [5]. This result indicates that our method
works well for real-world datasets with challenging geometry and materials, demonstrating the
effectiveness of our method.

Table S6: Normal MAE of the input view on LUCES Dataset (object region only).

Method | Bell Ball Buddha Bunny Die Hippo House Cup  Owl Jar  Queen Squirrel Bowl Tool | Average
L171[2] | 2825 9.77 115 20.15 1195 1542 29.69 30.76 13.77 10.56 13.05 15.93 125 151 17.03
I8 [1] | 23.55 4429 3529 36 4152 449 4905 3578 4027 40.66 32.89 41.09 28.04 31.71 375
QI8 [7] | 25.8 1212  14.07 1373 1377 1851 30.63 37.63 1474 1566 13.16 1406 11.19 1612 | 17.94
S20 [8] 9.5 2542 19.17 12.5 523 2312 28.02 14.22 13.08 9.27 16.62 14.07 12.44  17.42 15.72
L20[3] | 1474 1243  10.73 815 655 775 3003 2335 1239 86 1096 1512 878 17.05| 1333

Ours 7.66 596  12.67 738  3.67 626 27.61 3019 878 549 1137 1245 611 1225 | 11.28

Table S7: Depth L1 error of the input view on LUCES Dataset (object region only).

Method | Bell Ball Buddha Bunny Die Hippo House Cup Owl Jar  Queen Squirrel Bowl Tool | Average
L17[2] | 445 0.81 4.67 751 458 3.19 6.99 267 3.64 656 1.89 1.82 437 325 4.02
18 [1] | 593 659 1092 6.88 7.83 7.59 898 3.17 8.67 1554 8.08 5.8 6.69 1245 8.22
QI8[7] | 12.03 25 9.28 7.06 591 6.8 8.02 483 583 1687 692 2.55 6.48  6.69 7.27
S20 [8] 1.9 5.5 5.53 6.02 276 7.04 615 1.62 375 6.09 391 2.81 522  4.68 45
L20[3] | 1.53 0.67 3.27 249 444 182 9.14 204 344 3.86 1.94 1.01 2.80  5.90 3.17
Ours 1.87 039 3.67 658 635 272 643 571 387 1139 431 2.72 234 290 4.37

"LUCES is licensed under the Apache License, Version 2.0.


https://www.apache.org/licenses/LICENSE-2.0
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Figure S11: Qualitative comparison with other near-field PS baselines.
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Figure S12: Results for novel-view rendering, relighting, and material editing.



F More Training Details for the Real Scenes

Since there may exist ambient light in the captured images, we adopt a simple strategy to model the
ambient light to stabilize the optimization process. Specifically, we assume the color changes of the
observed pixels caused by the ambient light are the product of the predicted albedos and a constant
ambient light A. we empirically set the constant value A to be a small value as 0.13. The final output
(for both C,, and C) then becomes

Calr) = Cr)+ pa- A. ()

G Applications

By modeling the scene with a neural reflectance field, our method can disentangle shape, reflectance,
and lights. As a result, our method enables applications like novel-view rendering, relighting, and
material editing. Figure S12 showcases the results of novel-view rendering, relighting with point light
sources and environment map, and material editing. We can see that our method produced visually
pleasing rendering and editing results.

H More Discussions

BRDF Reconstruction for the Invisible Surface Our experiments show that the proposed method
can utilize shadow information to constrain the shape of the invisible regions viewed from monocular
camera. However, when the input images cannot provide many cues for BRDF information of the
invisible surfaces, the recovered BRDF might be incorrect in some invisible regions (see Fig. S13).
In the future, it would be interesting to utilize sophisticated smoothness regularization or data-driven
priors to improve the reflectance estimation in the invisible regions.

Input View Ours Shape Ours Albedo Novel View

N

Figure S13: Shape and albedo estimation of our method. The reconstructed albedo in the invisible
regions (seen from the camera view) might contain artifacts and noise (as pointed out by the red
arrows).

Potential Negative Societal Impact Our work can reconstruct the complete shape of a scene from
single-view images captured different point lights. This method might be extended to reconstruct
invisible regions of a scene from single-view observations, which might cause privacy issues in some
situations.
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