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ABSTRACT

In order to interact with objects in our environment, we rely on an understanding
of the actions that can be performed on them, and the extent to which they rely
or have an effect on the properties of the object. This knowledge is called the
object “affordance”. We propose an approach for creating an embedding of objects
in an affordance space, in which each dimension corresponds to an aspect of
meaning shared by many actions, using text corpora. This embedding makes it
possible to predict which verbs will be applicable to a given object, as captured
in human judgments of affordance, better than a variety of alternative approaches.
Furthermore, we show that the dimensions learned are interpretable, and that they
correspond to typical patterns of interaction with objects. Finally, we show that
the dimensions can be used to predict a state-of-the-art mental representation of
objects, derived purely from human judgements of object similarity.

1 INTRODUCTION

In order to interact with objects in our environment, we rely on an understanding of the actions that
can be performed on them, and their dependence (or effect) on properties of the object. |Gibson! (2014)
coined the term “affordance” to describe what the environment “provides or furnishes the animal”.
Norman| (2013 developed the term to focus on the properties of objects that determine the action
possibilities. The notion of “affordance” emerges from the relationship between the properties of
objects and human actions. If we consider “object” as meaning anything concrete that one might
interact with in the environment, there will be thousands of possibilities, both animate and inanimate
(see WordNet (Miller} [1998))). The same is true if we consider “action” as meaning any verb that
might be applied to the noun naming an object (see VerbNet (Schuler, |2005)). Intuitively, only a
relatively small fraction of all possible combinations of object and action will be plausible. Of those,
many will also be trivial, e.g. “see” or “have” may apply to almost every object. Finally, different
actions might reflect a similar mode of interaction, depending on the type of object they are applied
to (e.g. ”chop” and slice” are distinct actions, but they are both used in food preparation).

Mental representations of objects encompass many aspects beyond function. Several studies (McRae
et al., 2005 Devereux et al., 2014; Hovhannisyan et al.,|2020) have asked human subjects to list binary
properties for hundreds of objects, yielding thousands of answers. Properties could be taxonomic
(category), functional (purpose), encyclopedic (attributes), or visual-perceptual (appearance), among
other groups. While some properties were affordances in themselves (e.g. “edible”), others reflected
many affordances at once (e.g. “is a vegetable” means that it could be planted, cooked, sliced, etc).
More recently,|Zheng et al.| (2019); Hebart et al.| (2020) introduced SPoSE, a model of the mental
representations of objects. The model was derived from a dataset of 1.5M Amazon Mechanical
Turk (AMT) judgments of object similarity, where subjects were asked which of a random triplet of
objects was the odd one out. The model was an embedding for objects where each dimension was
constrained to be sparse and positive, and where triplet judgments were predicted as a function of the
similarity between embedding vectors of the three objects considered. The authors showed that these
dimensions were predictable as a combination of elementary properties in the |Devereux et al.| (2014)
norm that often co-occur across many objects. |Hebart et al.| (2020) further showed that 1) human
subjects could coherently label what the dimensions were “about”, ranging from categorical (e.g. is
animate, food, drink, building) to functional (e.g. container, tool) or structural (e.g. made of metal or
wood, has inner structure). Subjects could also predict what dimension values new objects would
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have, based on knowing the dimension value for a few other objects. SPoSE is unusual in its wide
coverage — 1,854 objects — and in having been validated in independent behavioral data.

Our first goal is to produce an analogous affordance embedding space for objects, where each
dimension groups together actions corresponding to a particular “mode of interaction”. Our second
goal is to understand the degree to which affordance knowledge underlies the mental representation
of objects, as instantiated in SPoSE. In this paper, we will introduce and evaluate an approach for
achieving both of these goals. Our approach is based on the hypothesis that, if a set of verbs apply
to the same objects, they apply for similar reasons. We start by identifying applications of action
verbs to nouns naming objects, in large text corpora. We then use the resulting dataset to produce an
embedding that represents each object as a vector in a low-dimensional space, where each dimension
groups verbs that tend to be applied to similar objects. We do this for larger lists of objects and
action verbs than previous studies (thousands in each case). Combining the weights on each verb
assigned by various dimensions yields a ranking over verbs for each concept. We show that this
allows us to predict which verbs will be applicable to a given object, as captured in human judgments
of affordance. Further, we show that the dimensions learned are interpretable, and they group together
verbs that would all typically occur during certain complex interactions with objects. Finally, we
show that they can be used to predict most dimensions of the SPoSE representation, in particular
those that are categorical or functional. This suggests that affordance knowledge underlies much of
the mental representation of objects, in particular semantic categorization.

2 RELATED WORK

The problem of determining, given an action and an object, whether the action can apply to the object
was defined as “affordance mining” in |Chao et al.|(2015). The authors proposed complementary
methods for solving the affordance mining problem by predicting a plausibility score for each
combination of object and action. The best method used word co-occurrences in two ways: n-
gram counts of verb-noun pairs, or similarity between verb and noun vectors in Latent Semantic
Analysis (Deerwester et al., [1990) or Word2Vec (Mikolov et al., [2013) word embeddings. For
evaluation, they collected AMT judgements of plausibility (“is it possible to < verb > a < object >")
for every combination of 91 objects and 957 action verbs. The authors found they could retrieve a
small number of affordances for each item, but precision dropped quickly with a higher recall.

Subsequent work (Rubinstein et al., 2015 |Lucy & Gauthier, 2017} Utsumi, 2020) predicted properties
of objects in the norms above from word embeddings (Mikolov et al., 2013; Pennington et al., [2014),
albeit without a focus on affordances. [Forbes et al.| (2019) extracted 50 properties (some were
affordances) from Devereux et al.[(2014)), for a set of 514 objects, to generate positive and negative
examples for 25,700 combinations. They used this data to train a small neural network to predict these
properties. The input to the network was either the product of the vectors for object and property, if
using word embeddings (Mikolov et al.,|2013;|Pennington et al., 2014} |Levy & Goldberg, [2014), or the
representation of a synthesized sentence combining them, if using contextualized embeddings (Peters
et al., 2018 |Devlin et al., 2018). They found that the latter outperformed the former for property
prediction, but none allowed reliable affordance prediction. In addition to object/action plausibility
prediction, Ji et al.| (2020) addressed the problem of determining whether a object1/action/object2
(target of the action with objectl) was feasible. They selected a set of 20 actions from |Chao et al.
(2015) and combined them with the 70 most frequent objects in ConceptNet (Speer & Havasi, [2012)
into 1400 object/action pairs, which were then labelled as plausible or not; given rater disagreements,
this yielded 330 positive pairs and 1070 negative ones. They then combined the positive pairs with
other objects as tails” (recipients of the action), yielding 3900 triplets. They reached F1 scores of
0.81 and 0.52 on the two problems, respectively. Other papers focus on understanding the relevant
visual features in objects that predict affordances, e.g. (Myers et al., [2015; Sawatzky et al.,|2017;
Wang & Tarr, [2020). The latter collected affordance judgments on AMT (“what can you do with
< object >”) for 500 objects and harmonized them with WordNet synsets for 334 action verbs.

We are not aware of any related work on representing objects in a space where dimensions reflect
verb applicability, or where predictions cover thousands of objects and actions. For validation of
the rankings of verb applicability predicted by our model, we will use the datasets from|Chao et al.
(2015)) and Wang & Tarr|(2020), as they are the largest available human rated datasets.
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3 DATA AND METHODS

3.1 OBIJECTS AND ACTIONS CONSIDERED

In this paper, we use the list of 1854 object concepts introduced in (Hebart et al.,|2020). This sampled
systematically from concrete, picturable, and nameable nouns in American English, and was further
expanded by a crowdsourced study to elicit category membership ratings. Note that the list includes
many things besides small objects, e.g. animals, insects, vehicles. We will refer to objects and the
nouns naming them interchangeably. We created a verb list by having three annotators go through all
verb categories on VerbNet (Schuler, 2003)), and selecting those that included verbs that corresponded
to an action performed by a human on an object. We kept all the verbs in each selected category, and
selected only those categories where all annotators agreed. The resulting list has 2541 verbs.

3.2 EXTRACTION OF VERB APPLICATIONS TO NOUNS FROM TEXT CORPORA

We used the UKWaC and Wackypedia corpora (Ferraresi et al.,2008)) containing, approximately, 2B
and 1B tokens, and 88M and 43M sentences, respectively. The former is the result of a crawl of British
web pages, while the latter is a subset of Wikipedia. Both have been extensively cleaned up and
have clearly demarcated sentences, which makes them ideal for dependency parsing. We replaced all
common bigrams in |Brysbaert et al.|(2014)) by a single token. We identified all sentences containing
both verbs and nouns in our list, and we used Stanza (Q1 et al.,|2020) to produce dependency parses
for them. We extracted all the noun-verb pairs in which the verb was a syntactic head of a noun
having ob j (object) or nsubj: pass (passive nominal subject) dependency relations. We compiled
raw counts of how often each verb was used on each noun, producing a count matrix M. Note that
this is very different from normal co-occurrence counts - those would register a count whenever
verb and noun were both present within a short window (e.g. up to 5 words away from each other),
regardless of whether the verb applied to the noun, or they were simply in the same sentence. Out of
the 1854 nouns considered, there were 1755 with at least one associated action, and this is the list we
will use in the remainder of this paper. Note also that the counts pertain to every possible meaning of
the noun, given that no word sense disambiguation was performed.

Finally, we converted the matrix M into a Positive Pointwise Mutual Information (PPMI (Turney &
Pantel, [2010)) matrix P where, for each object ¢ and verb k:

o P(M;y)
P(i, k) := max (log W’O> , (1)

where P(M;,) and P(M.,) are respectively the marginal probability of ¢ and k. P can be viewed
as a pair-pattern matrix (Lin & Pantel, 2001), where the PPMI helps in separating frequency from
informativess of the co-occurrence of nouns and verbs (Turney & Pantel, 2010; [Turney & Littman)
2003). However, PPMI is also biased and may be large for rare co-occurrences, e.g. for (o;, vy ) that
co-occur only once in M. This is addressed in the process described in the next section.

3.3 OBIJECT EMBEDDING IN A VERB USAGE SPACE

Object embedding via matrix factorization Our object embedding is based on a factorization of
the PPMI matrix P (m objects by n verbs) into the product of low-rank matrices O (m objects by d

dimensions) and V' (n verbs by d dimensions), yielding an approximation P := OV ~ P. O is the
object embedding in d-dimensional space, and V' is the verb loading for each of the d dimensions.
Intuitively, if two verbs occur often with the same objects, they will both have high loadings on one of
the d-dimensions; conversely, the objects they occur with will share high loadings on that dimension.
The idea of factoring a count matrix (or a transformation of it) dates back to Latent Semantic Analysis
(Landauer & Dumais, |1997), and was investigated by many others ((Turney & Pantel, |2010) is a good
review). Given that PPMI is biased towards rare pairs of noun/verb, the matrix P is not necessarily
very sparse. If factorized into a product of two low-rank matrices, however, the structure of the matrix
can be approximated while excluding noise or rare events (Bullinaria & Levy,[2012).
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Optimization problem Given that PPMI is positive, the matrices O and V' are as well. This allows
us to obtain them through a non-negative matrix factorization (NMF) problem

O*,V* = argmin||P — OVT||% + BR(O,V), (2)
o,V

which can be solved through an iterative minimization procedure. For the regularization R(O, V),
we chose the sparsity control R(O, V) =3, Oi; + 3, Vij.

In our experiments, we use d = 70 and 5 = 0.3. These values were found using the two-dimensional
hold-out cross validation (Kanagal & Sindhwani, [2010), due to its scalability and natural fit to the
multiplicative update algorithm for solving (2). Specifically, denoting M; and M, to be the mask
matrices representing the held-in and held-out entries, we optimize for

O*,V* = argmin||M; ® (P — OVT)||% + BR(O, V) (3)
o.v

and obtain the reconstruction error £ = [|[M, ® (P — O*(V*)T)||% + BR(O*,V*). For more
details, please refer to Appendix [A] The optimization problem (2) is NP-hard and all state-of-the-art
algorithms may converge only to a local minimum (Gillis, [2014)); choosing a proper initialization
of O and V is crucial. We used the NNDSVD initialization (Boutsidis & Gallopoulos| [2008)), a
SVD-based initialization which favours sparsity on O and V' and approximation error reduction.

Estimating the verb usage pattern for each object Each column V. ; of matrix V contains a
pattern of verb usage for dimension k, which captures verb co-occurrence across all objects. Deriving
a similar pattern for each object i, given its embedding vector O; . = [0;,, 04y, - . . 0;,], requires
combining these patterns based on the weights given to each dimension. The first step in doing so
requires computing the cosine similarity between each embedding dimension O. ;, and the PPMI

values P. j, for each verb k in the approximated PPMI matrix P= OVT, which is

- O.n-P.
S(Oun Pg) = b, “
1O: 2l Pkll2
Given the embedding vector for object i, O; . = [0;,, 04y, - - - 05,], We compute the pattern of verb

usage for the object as O; ..S. Thus, this is a weighted sum of the similarity between every O. ; and
P. ;.. We will refer to the ordering of verbs by this score as the verb ranking for object i.

4 EXPERIMENTS AND RESULTS

4.1 PREDICTION OF AFFORDANCE PLAUSIBILITY

Affordance ranking task The first quantitative evaluation of our embedding focuses on the ranking
of verbs as possible affordances for each object. We will use the Affordance Area Under The Curve
(AAUQC) relative to datasets that provide, for each object, a set of verbs known (or likely) to be
affordances. Intuitively, the verb ranking for object ¢ is good if it places these verbs close to the top of
the ranking, yielding an AAUC of 1. Conversely, a random verb ranking would have an AAUC of 0.5,
on average. Note that this is a conservative measure, given that a perfect ranking would still penalize
every true affordance not at the top. Hence, this is useful as a relative measure for comparing between
our and competing approaches for producing rankings. More formally, given the K ground truth verb
affordances {gx } 1, of object 7, and its verb ranking {v; }""_;, we denote ¢} to be the index such that

Vg, = gr Vk. We then define AUCC for object i as AUCC = % Zle (1 - %’“)

Datasets We used the two largest publicly available object affordance datasets as ground truth.
In the first dataset, WTAction (Wang & Tarr, |2020), objects are associated with the top 5 actions
label provided by human annotators in response to “What can you do with this object?”’. Out of
1,046 objects and 445 actions in this dataset, there are 971 objects and 433 verbs that overlap with
those in our lists (~ 3.12 action labels per object) . The second dataset, MSCOCO (Chao et al.|
2015)), scores every candidate action for an object ranging from 5.0 (“definitely an affordance”) to
1.0 (“definitely not an affordance”) marked by 5 different workers. We consider only a 5.0 score as
being an affordance, whereas|Chao et al.|(2015) used both 4.0 and 5.0. Out of 91 objects and 567
actions, there are 78 objects and 558 verbs that overlap with ours (~ 34 action labels per object).
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Baseline methods We compared the ranking of verbs produced by our algorithm with an alternative
proposed in (Chao et al., | 2015)): ranking by the cosine similarity between word embedding vectors
for each noun and those for all possible verbs in the dataset. We considered several off-the-shelf
embedding alternatives, namely Word2Vec (Mikolov et al.|(2013)), 6B token corpus), GloVe (Pen-
nington et al.| (2014), 6B and 840B token corpora, and our 2B corpus), and Dependency-Based Word
Embedding (Levy & Goldberg|(2014), 6B corpus). Finally, we included the other two methods in
(Chao et al.,[2015)), LSA (Deerwester et al.|(1990), trained on our corpus), and ranking by frequency
of verb/noun pair in Google N-grams (Lin et al.| (2012)). The embeddings are 300-D in all cases.
We contrasted Word2Vec and GloVe because they are based on two different embedding approaches
(negative sampling and decomposition of a word co-occurrence matrix), developed on corpora twice
as large as ours. We contrasted 6B and 840B versions of GloVe to see the effect of increasing dataset
size, and 2B to show the effect of our corpus. In these methods, the co-occurrence considered is
simply proximity within a window of a few tokens, rather than application of the verb to the noun. We
included|Levy & Goldberg|(2014) as it is the only embedding using dependency parse information
(albeit to define the word-cooccurrence window, rather than select verb applications to nouns as we
do). We also ranked the verbs by their values in the row of the PPMI matrix P corresponding to each
probed object, to see the effect of using a low-rank approximation in extracting information.

Table 1: Average AAUC of verb rankings produced by our and baseline methods

Method W2V  GloVe GloVe GloVe
Dataset LSA DBWE N-gram (6B) (2B) (6B) (840B) PPMI  Ours
WTaction | “ 0.81 0.60 0.65 0.70 0.79 0.75 0.80 0.77 0.88
S 5e—3 6e—3 8e—3 Te—3 Te—3 Te—3 6e—3 6e—3 4e—3
I3 0.63 0.56 0.58 0.59 0.66 0.64 0.68 0.61 0.77
MSCOCO S Te—3 8e—3 8e—3 Te—3 Te—3 8e—3 6e—3 8e—3 b5e—3

Results For each dataset, we reduced our embeddings O and V' according to the sets of objects and
verbs available. We then obtained the verb ranking for each object, as described in Section[3.3] as
well as rankings predicted with the different baseline methods in the previous section. Table[1|shows
the AAUC results (in terms of the mean p and the standard error Sg of AAUCS) obtained with these
verb rankings on the two datasets. Our ranking is better than those of all the baseline methods, as
determined from a paired two-sided ¢-test, in both WTAction (p-values of 7.36e—23, 6.82e—174,
1.34e—53, 1.44e—89, 5.21e—47, 8.70e—25 and 8.14e—39) and MSCOCO (p-values of 1.54e—23,
9.32e—36, 2.15e—27, 2.82e—30, 9, 64e—20, 7.93e—17 and 2.13e—29) datasets.

The overall distributions of AAUCs for the two datasets are shown in Appendix Bl Our procedure
yields AAUC closer to 1.0 for many more items than the other methods. This suggests that the co-
occurrence of verb and noun within a window of a few tokens, the basis of the word embeddings that
we compare against, carries some information about affordances, but also includes other relationships
and noise (e.g. if the verb is in one clause and the noun in another). Results are better in the
embedding trained in a corpus 280X larger, but still statistically worse than those of our procedure.
Ranking based on the PPMI matrix P performs at the level of the 6B token embeddings. This suggests
that our procedure is effective at removing extraneous information in the matrix P.

4.2 PREDICTION OF SPOSE OBJECT REPRESENTATIONS FROM OUR AFFORDANCE EMBEDDING

The SPoSE representation and dataset The dimensions in the SPoSE representation (Hebart
et al., 2020) are interpretable, in that human subjects coherently label what those dimensions are
“about”, ranging from the categorical (e.g. animate, building) to the functional (e.g. can tie, can
contain, flammable) or structural (e.g. made of metal or wood, has inner structure). The SPoSE
vectors for objects are derived solely from behaviour in a “which of a random triplet of objects is the
odd one out” task. The authors propose a hypothesis for why there is enough information in this data
to allow this: when given any two objects to consider, subjects mentally sample the contexts where
they might be found or used. The resulting dimensions reflect the aspects of the mental representation
of an object that come up in that sampling process. The natural question is, then, which of these
dimensions reflect affordance information, and that is what our experiments aim to answer.

For our experiments, we used the 49-D SPoSE embedding published with (Hebart et al.,[2020). Out
of these, we excluded objects named by nouns that had no verb co-occurrences in our dataset and,
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conversely, verbs that had no interaction with any objects. We averaged the vectors for each set
of objects named by the same polysemous noun (e.g. “bat”). This resulted in a dataset of 1755
objects/nouns, with their respective SPoSE embedding vectors, and 2462 verbs.
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Figure 1: Prediction of SPoSE embeddings from affordance embeddings (top) versus actual SPoSE
embeddings (bottom). Objects are grouped by semantic category (those with > 15 objects).

Prediction of SPoSE meaning dimensions from affordance embedding The first experiment
we carried out was to predict the SPoSE dimensions for an object from its representation in our
affordance embedding. The ability to do this tells us which SPoSE dimensions — and, crucially, which
kinds of SPoSE dimensions — can be explained in terms of affordances, to some extent.

Denoting the SPoSE embeddings for m objects as a m x 49 matrix Y, we solved the following Lasso
regression problem for each column Y ;
Y., — Owl| + Nw|i, i=1,2,...49, (5)

w] =arg min % I

wERL,w>0
where \ was chosen based on a 2-Fold cross-validation, with X in [10e ™", 10e3] with log-scale spacing.
Since both Y. ; and our embedding O represent object features by positive values, we restricted w > 0.
Intuitively, this means that we try to explain every SPoSE dimension by combination of the presence
of certain affordance dimensions, not by trading them off.

Figure [1{shows the predictions Y: ; = Ow;] and true values Y, ; for each SPoSE dimension ¢. For
clarity, objects are grouped by their semantic category and only plotted for categories with size > 15.
The visual resemblance of the patterns, and the range of correlations between true and predicted
dimensions (top: 0.84, mean: 0.46), see Figure |Zb for distribution), indicate that the affordance
embedding contains enough information to predict most SPoSE dimensions.

Relationship between SPoSE and affordance dimensions We first considered the question of
whether affordance dimensions correspond directly to SPoSE dimensions, by looking for the best
match for each of the latter in terms of correlation. As shown in Figure |Zka), most SPoSE dimensions
have one or more affordance dimensions that are similar to them. However, when we consider the
cross-validated regression models to predict SPoSE dimensions from affordance dimensions, every
model places non-zero weight on several of the latter. Furthermore, those predictions are much more
similar to SPoSE dimensions than almost any individual affordance dimension. Figure 2[b) plots,
for every SPoSE dimension, the correlation with its closest match (x-axis) versus the correlation
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Correlation between SPoSE vectors and best matched affordance
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Figure 2: a) Correlation between each SPoSE dimension and the corresponding best match in
our affordance embedding (correlation values shown in right vertical axis). b) For each SPoSE
dimension, the relationship between the similarity with the best matching affordance dimension
(x-axis) and the similarity with the cross-validated prediction of the regression model for it (y-axis).

with the cross-validated prediction of the regression model (y-axis). The best predicted dimensions
are categorical, e.g. “animal”, “plant”, or “tool”, or functional, e.g. “can tie” or “flammable”.
Structural dimensions are also predictable e.g. “made of metal”, “made of wood”, or “paper”, but
appearance-related dimensions, e.g. “colorful pattern”, “craft”, or “degree of red”, less so.

What can explain this pattern of predictability? Most SPoSE dimensions can be expressed as a linear
combination of affordance dimensions, where both the dimensions and regression weights are non-
negative. This leads to a sparse regression model — since dependent variables cannot be subtracted
to improve the fit — where, on average, 5 affordance dimensions have 80% of the regression weight.
Each affordance dimension, in turn, corresponds to a ranking over verbs. Figure[Bp shows the top 10
verbs in the 5 most important affordance dimensions for predicting the “animal” SPoSE dimension.
As each affordance dimension loads on verbs that correspond to coherent modes of interaction (e.g.
observation, killing, husbandry), the model is not only predictive but also interpretable. Whereas we
could also use dense embeddings to predict SPoSE dimensions, they do not work as well (in either
accuracy or interpretability, see Figure [3p for GloVe).

(a) ,, 22l spot,abserve, sight, hunt, watch il (b)
Dim 3 23.51% L otoqraph, find, chase, fee Dim 141 4,149 federate, uake, adm. aimmail dodder,scram,
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Figure 3: Top 10 verbs in the 5 most important affordance dimensions (proposed affordance embed-
ding versus GloVe 840B) for predicting the "animal” SPoSE feature

If we consider the top 5 verbs from affordance dimensions that are most used in predicting each
SPoSE dimension, we see that “tool” has ‘““sharpen, blunt, wield, plunge, thrust” (D50); “animal”
has “spot, observe, sight, hunt, watch” (D3), “hunt, kill, cull, exterminate, chase” (D37), or “pasture,
herd, slaughter, milk, tether” (D18); “food” has “serve, eat, cook, prepare, order” (D15), or “bake,
leaven, ice, eat, serve” (D64); “plant” shares D2 with “food”, but also has “cultivate, grow, plant,
prune, propagate” (D57). The full list of affordance dimensions most relevant for predicting each
SPoSE dimension is provided in Appendix [E] (Figure [THI2).

These results suggest that SPOSE dimensions are predictable insofar as they can be expressed
as combinations of modes of interaction with objects. Using the approach in Section [3.3] we
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produced a combined ranking over verbs for each SPoSE dimension. We first replaced the embedding
O in @ with the SPoSE prediction Y and we ranked the verbs for dimension h according to
S(Y. n, Pr). Table shows, for every SPoSE dimension, ranked by predictability, the top 10 verbs
in its ranking. Examining this table provides empirical confirmation that, first and foremost, highly
predictable categorical dimensions correspond to very clean affordances. The same is true for
functional dimensions, e.g. “can tie” or “container’” or “flammable”’; even though they are not “classic”
categories, subjects group items belonging to them based on their being suitable for a purpose (e.g.
“fasten”, “fill”, or “burn”). But why would this hold for structural dimensions? One possible reason is
that objects having that dimension overlap substantially with a known category (e.g. “made of metal”
and “tool””). Another is that the structure drives manual or mechanical affordance (e.g. “elongated” or
“granulated”). Finally, what are the affordances for appearance dimensions that can be predicted?
Primarily, actions on items in categories that share that appearance, e.g. “textured” is shared by fabric
items, “round” is shared by many fruits or vegetables. Prediction appears to be worse when the items
sharing the dimension come from many different semantic categories (judged with the THINGS
(Hebart et al., 2019) database, which contains the pictures of items shown to subjects).

Pearson Dimension

correlation  label Taxonomy Affordances (Top Ten Ranked Verbs)
0.84 animal categorical kill, spot, hunt, observe, chase, feed, slaughter, sight, trap, find
0.82  food categorical serve, eat, cook, prepare, taste, consume, add, mix, stir, order
0.75 wearable categorical wear, don, match, knit, sew, fasten, rip, embroider, tear, model
0.71 plant categorical grow, cultivate, plant, add, eat, chop, gather, cut, dry, prune
0.67 made of metal structural fit, invent, manufacture, incorporate, design, position, attach, utilize, carry, install
0.61 tool categorical wield, grab, hold, carry, sharpen, swing, hand, pick, clutch, throw
0.57  cantie functional fasten, tighten, unfasten, undo, attach, thread, tie, secure, loosen, loose
0.54  granulated structural contain, mix, scatter, add, gather, remove, sprinkle, dry, deposit, shovel
0.48 flammable functional light, extinguish, ignite, throw, carry, flash, kindle, place, manufacture, douse
0.47 textured appearance remove, place, hang, tear, stain, spread, weave, clean, drape, wrap
0.44 round appearance grow, cultivate, pick, add, slice, place, eat, chop, throw, plant
0.40  made of wood structural place, remove, carry, incorporate, design, contain, bring, construct, manufacture, find
0.40  container functional empty, fill, carry, place, clean, load, bring, dump, unload, leave
0.38  elongated structural grab, carry, wield, hold, pick, place, throw, hand, bring, drop
0.24 colorful pattern appearance manufacture, buy, design, place, remove, sell, invent, purchase, contain, bring
0.23 craft appearance place, bring, remove, design, hang, call, buy, put, pull, manufacture
0.22  permeable structural fit, incorporate, remove, place, design, manufacture, install, position, clean, attach
0.18  degree of red appearance  place, call, add, contain, remove, find, buy, bring, introduce, sell

Table 2: Affordance assignment for a selection of SPoSE dimensions mentioned in the text, ordered
by how well they can be predicted from the affordance embedding. Dimension labels are simplified.
The full table and descriptions for each dimension are provided in Appendices E] and @], respectively.

5 CONCLUSIONS

In this paper, we introduced an approach to embed objects in a space where every dimension
corresponds to a pattern of verb applicability to those objects. We showed that this embedding can
be learned from a text corpus and used to rank verbs by how applicable they would be to a given
object. We evaluated this prediction against two separate human judgment ground truth datasets, and
verified that our method outperforms general-purpose word embeddings trained on much larger text
corpora. Given this validation of the embedding, we were able to use it to predict SPoSE dimensions
for objects. This is an embedding that was derived from human behavioural judgements of object
similarity and has interpretable dimensions, which have been validated in psychological experiments.
We used the resulting prediction models to probe the relationship between affordances (as patterns of
verb co-occurrence over many objects) and the various types of SPOSE dimensions. This allowed
us to conclude that affordance knowledge predicts 1) category information, 2)purpose, and 3) some
structural aspects of the object. To increase prediction quality in future work, one approach will
be to enrich and refine the co-occurrence matrix in larger corpora, now that the basic approach has
been shown to be feasible. Another interesting future direction will be to understand how affordance
could be driven by more fine-grained visual appearance properties, by considering other semantic
dependencies, or jointly using text and image features such as (Wang & Tarr, [2020).
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