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ABSTRACT

We consider the general class of time-homogeneous stochastic dynamical systems,
both discrete and continuous, and study the problem of learning a representation
of the state that faithfully captures its dynamics. This is instrumental to learning
the transfer operator or the generator of the system, which in turn can be used for
numerous tasks, such as forecasting and interpreting the system dynamics. We show
that the search for a good representation can be cast as an optimization problem
over neural networks. Our approach is supported by recent results in statistical
learning theory, highlighting the role of approximation error and metric distortion
in the learning problem. The objective function we propose is associated with
projection operators from the representation space to the data space, overcomes
metric distortion, and can be empirically estimated from data. In the discrete-time
setting, we further derive a relaxed objective function that is differentiable and
numerically well-conditioned. We compare our method against state-of-the-art
approaches on different datasets, showing better performance across the board.

1 INTRODUCTION

Dynamical systems are a mathematical framework describing the evolution of state variables over
time. These models, often represented by nonlinear differential equations (ordinary or partial) and
possibly stochastic, have broad applications in science and engineering, ranging from climate sciences
(Cannarsa et al., 2020; Fisher et al., 2009), to finance (Pascucci, 2011), to atomistic simulations
(Mardt et al., 2018; McCarty and Parrinello, 2017; Schütte et al., 2001), and to open quantum
system dynamics (Gorini and Kossakowski, 1976; Lindblad, 1976), among others. However, it is
usually the case that no analytical models of the dynamics are available and one must resort to
data-driven techniques to characterize a dynamical system. Two powerful paradigms have emerged:
deep neural networks (DNN) and kernel methods. The latter are backed up by solid statistical
guarantees (Steinwart and Christmann, 2008) determining when linearly parameterized models can
be learned efficiently. Yet, selecting an appropriate kernel function may be a hard task, requiring a
significant amount of experimentation and expertise. In comparison, the former are very effective in
learning complex data representations (Goodfellow et al., 2016), and benefit from a solid ecosystem of
software tools, making the learning process feasible on large-scale systems. However, their statistical
analysis is still in its infancy, with only a few proven results on their generalization properties.
Kernel-based methods hinge on the powerful idea of characterizing dynamical systems by lifting their
definition over a Hilbert space of functions and then studying the associated transfer operators. They
describe the average evolution of functions of the state (observables) over time and for deterministic
systems are also known as Koopman operators. Furthermore, transfer operators are linear, and under
additional assumptions admit a spectral decomposition, which provides a valuable tool to interpret
and analyze the behavior of non-linear systems (see e.g. Brunton et al., 2022; Kutz et al., 2016, and
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Figure 1: Pipeline for learning dynamical systems. DPNets learn a data representation to be used
with standard operator regression methods. In turn, these are employed to solve downstream tasks
such as forecasting and interpreting dynamical systems via spectral decomposition.

references therein). The usefulness of this approach critically relies on an appropriate choice of the
observable space. In particular, in order to fully benefit from the spectral decomposition, it is crucial
to find an observable space F which linearizes the dynamics and is invariant under the action of the
transfer operator. In kernel-based methods, such a space is implicitly linked to the kernel function
and gives a clear mathematical meaning to the problem of choosing a “good” kernel. Unfortunately,
the analytical form of transfer operators is often intractable or unavailable, especially in complex or
poorly understood systems, posing challenges in constructing invariant representations.

In this paper, we build synergistically upon both kernel and DNN paradigms: we first employ
DNNs to learn an invariant representation that fully captures the system dynamics, and then forward
this representation to kernel-based algorithms for the actual transfer operator regression task. This
general framework is illustrated in Fig. 1. Our method, named Deep Projection Networks (DPNets),
addressing the challenge of providing good representations to the operator regression algorithms, can
be cast as an optimization problem over neural networks and can benefit from a differentiable and
numerically well-conditioned score functional, enhancing the stability of the training process.
Previous work Extensive research has been conducted on learning dynamical systems from data.
The monographs (Brunton et al., 2022; Kutz et al., 2016) are standard references in this field. To learn
transfer operators we mention the works (Alexander and Giannakis, 2020; Bouvrie and Hamzi, 2017;
Das and Giannakis, 2020; Kawahara, 2016; Klus et al., 2019; Kostic et al., 2022; Williams et al.,
2015b) presenting kernel-based algorithms, and (Azencot et al., 2020; Bevanda et al., 2021; Fan et al.,
2021; Lusch et al., 2018; Morton et al., 2018) based on deep learning schemes. Finding meaningful
representations of the state of the system to be used in conjunction with transfer operator learning is a
critical challenge, tackled by many authors. We mention the works (Azencot et al., 2020; Federici
et al., 2024; Lusch et al., 2018; Morton et al., 2018; Otto and Rowley, 2019) where a representation is
learned via DNN schemes, as well as (Kawahara, 2016; Li et al., 2017; Mardt et al., 2019; 2018; Tian
and Wu, 2021; Yeung et al., 2019; Wu and Noé, 2019) addressing the problem of learning invariant
subspaces of the transfer operator. Mostly related to our methodology is (Andrew et al., 2013), which
introduced deep canonical correlation analysis and, especially, VAMPnets (Mardt et al., 2018; Wu
and Noé, 2019), which repurposed this approach to learn transfer operators. Within our theoretical
framework, indeed, we will show that VAMPNets can be recovered as a special case in the setting
of discrete dynamics. More in general, operator learning with DNN approaches is reviewed e.g. in
Kovachki et al. (2023), with a specific focus on PDEs.
Contributions Our contributions are: 1) Leveraging recent results in statistical learning theory, we
formalize the problem of representation learning for dynamical systems and design a score function
based on the orthogonal projections of the transfer operator in data spaces (Sec. 2); 2) We show how
to reliably solve the corresponding optimization problem. In the discrete case, our score leads to
optimal representation learning under the mild assumption of compactness of the transfer operator
(Thm. 1). In the continuous case, our method applies to time reversal invariant dynamics (Thm. 2)
including the important case of Langevin dynamics; 3) We show how the learned representation can
be used within the framework of operator regression in a variety of settings. Numerical experiments
illustrate the versatility and competitive performance of our approach against several baselines.
Notation We let N be the set of natural numbers and N0 = {0} ∪ N. For m∈N we denote [m] :=
{1, . . . ,m}. If T is a compact linear operator on two Hilbert spaces we let σi(T ) be its i-th largest
singular value, we let (T )† be the Moore-Penrose pseudo-inverse, and T ∗ the adjoint operator. We
denote by ∥ · ∥ and ∥ · ∥HS the operator and Hilbert-Schmidt norm, respectively.

2 REPRESENTATION LEARNING FOR DYNAMICAL SYSTEMS

In this section, we give some background on transfer operators for dynamical systems, discuss key
challenges in learning them from data, and propose our representation learning approach.
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Background Let (Xt)t∈T be a stochastic process taking values in some state space X , where the
time index t can be either discrete (T = N0) or continuous (T = [0,+∞)), and denote by µt the
law of Xt. Let F ⊂ RX be a prescribed space of real-valued functions, henceforth referred to as
observables space. By letting s, t ∈ T, with s ≤ t, the forward transfer operator Ts,t : F → F
evolves an observable f : X → R from time s ∈ T to time t, by the conditional expectation

[Ts,t(f)](x) := E[f(Xt) |Xs = x], x ∈ X . (1)

For a large class of stochastic dynamical systems, these linear operators are time-homogeneous, that
is they only depend on the time difference t − s. In this case Ts,t = T0,t−s =: Tt−s. Further, we
will use the shorthand notation T := T1. Time-homogeneous transfer operators at different times
are related through the Chapman-Kolmogorov equation (Allen, 2007), Ts+t = Tt Ts, implying that
the family (Tt)t∈T forms a semigroup. The utility of transfer operators is that, when the space F is
suitably chosen, they linearize the process. Two key requirements are that F is invariant under the
action of Tt, that is Tt[F ] ⊆ F for all t (a property that we tacitly assumed above), and rich enough
to represent the flow of the process. Two common choices for F that fulfill both requirements are the
space of bounded Borel-measurable functions and the space of square-integrable functions L2

π(X )
with respect to the invariant distribution π, when one exists. To ease our presentation we first focus on
the latter case, and then extend our results to non-stationary time-homogeneous processes. Formally,
the process (Xt)t∈T admits an invariant distribution π when µs = π implies µt = π for all s ≤ t
(Ross, 1995). This in turn allows one to define the transfer operator on F = L2

π(X ).
While in the discrete-time setting the whole process can be studied only through T = T1, when time
is continuous the process is characterized by the infinitesimal generator of the semigroup (Tt)t≥0,
defined as L := lim

t→0+
(Tt − I)/t. (2)

L can be properly defined on the Sobolev space W 1,2
π (X ) ⊂ L2

π(X ) formed by functions with
square-integrable gradients (see Lasota and Mackey, 1994; Ross, 1995).

Learning transfer operators In practice, dynamical systems are only observed, and neither T nor
its domain F =L2

π(X ) are known, providing a key challenge to learn them from data. The most
popular algorithms (Brunton et al., 2022; Kutz et al., 2016) aim to learn the action of T : F →F
on a predefined Reproducing Kernel Hilbert Space (RKHS)H, forming a subset of functions in F .
This allows one, via the kernel trick, to formulate the problem of learning the restriction of T toH,
T|H : H → F , via empirical risk minimization (Kostic et al., 2022). However, recent theoretical
advances (Korda and Mezić, 2017; Klus et al., 2019; Nüske et al., 2023), proved that such algorithms
are statistically consistent only to PHT|H , where PH is the orthogonal projection onto the closure of
H in F . The projection PH constrains the evolved observables back inside H, thereby, in general,
altering the dynamics of the system. Therefore, to assure that one properly learns the dynamics, two
major requirements onH are needed: i) T|H needs to approximate well T , i.e. the spaceH needs to
be big enough relative to the domain of T ; ii) the difference between the projected restriction and the
true one, i.e. the approximation error

∥∥[I − PH]T|H
∥∥, needs to be small.

WhenH is an infinite-dimensional universal RKHS, both the above requirements are satisfied (Kostic
et al., 2022), i.e.H is dense in F and the approximation error is zero, leading to an arbitrarily good
approximation of dynamics with enough data. Still, another key issue arises: the norms on the a-priori
chosen H and the unknown F do not coincide, since the latter depends on the process itself. This
metric distortion phenomenon has been recently identified as the source of spurious estimation of
the spectra of T (Kostic et al., 2023), limiting the utility of the learned transfer operators. Indeed,
even if T is self-adjoint, that is the eigenfunctions are orthogonal in F , the estimated ones will not be
orthogonal in H, giving rise to spectral pollution (Kato, 1976). This motivates one to additionally
require that iii)H is a subspace of F , i.e. both spaces have the same norm.

To summarize, the desired optimal H is the leading invariant subspace of T , that is the subspace
corresponding to the largest (in magnitude) eigenvalues of T . This subspace H achieves zero
approximation error, eliminates metric distortion and best approximates (in the dynamical system
sense) the operator T . Since any RKHSH is entirely described by a feature map, learning a leading
invariant subspaceH from data is, fundamentally, a representation learning problem.

Approach We start by formalizing the problem of learning a good finite dimensional representation
space for T , and then address the same for the generator L. We keep the discussion less formal
here, and state our main results more precisely in the next section. Our approach is inspired by the
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following upper and lower bounds on the approximation error, a direct consequence of the norm
change fromH to F ,∥∥[I − PH]T PH

∥∥2λ+min(CH) ≤
∥∥[I − PH]T|H

∥∥2 ≤ ∥∥[I − PH]T PH
∥∥2λmax(CH), (3)

where CH is the covariance operator onH w.r.t. the measure π, while λ+min and λmax are the smallest
and largest non-null eigenvalues, respectively. Note that the norms on the hypothetical domain H
and true domain L2

π(X ) coincide if and only if CH = I , in which case equalities hold in (3) and the
approximation error becomes

∥∥[I − PH]T PH
∥∥.

When the operator T is known, the latter quantity can be directly minimized by standard numerical
algorithms for spectral computation to find invariant subspaces (see e.g. Golub and Van Loan,
2013). Unfortunately, in our stochastic setting T is unknown since we cannot compute the conditional
expectation in (1). To overcome this issue we propose a learning approach to recover the invariant
space H, which is rooted in the singular value decomposition, holding under the mild assumption
that T is a compact operator1. The main idea is that the subspace made of the leading r left singular
functions of T serves as a good approximation of the desired leading invariant subspace of T .
Namely, due to the orthonormality of the singular functions, we have that CH = I and PHT becomes
the r-truncated SVD of T , that is, its best rank-r approximation. Therefore, according to (3), the
approximation error is at most σr+1(T ), which can be made arbitrarily small by rising r. Moreover,
the distance of the subspace of left singular functions to the desired leading invariant subspace is
determined by the "normality" of T (Trefethen and Embree, 2020). If the operator T is normal, that
is T T ∗ = T ∗T , then both its left and right singular spaces are invariant subspaces of T , resulting in
zero approximation error irrespectively of r. This leads us to the following optimization problem

max
H,H′⊂L2

π(X )

{∥∥PHT PH′
∥∥2
HS
| CH = CH′ = I, dim(H) ≤ r, dim(H′) ≤ r

}
. (4)

Relying on the application of Eckart-Young-Mirsky’s Theorem (Kato, 1976), we can show that the
desired representation spaceH can be computed by solving (4). Note that, in general, the auxiliary
spaceH′ is needed to capture right singular functions, while if we have prior knowledge that T is
normal without loss of generality one can setH = H′ in (4).

The same reasoning cannot be applied straight away to the generator L of a continuous dynamical
system, which in is not even guaranteed to be bounded (Lasota and Mackey, 1994), let alone compact.
For time-reversal invariant processes, however, T and L are self-adjoint, that is T = T ∗ and L = L∗.
This includes the important case of Langevin dynamics, which are of paramount importance for
molecular dynamics (see, e.g., Tuckerman, 2010). For such systems we show (see Theorem 2)
that the leading r-dimensional subspace of the generator L can be found by solving the following
optimization problem featuring the partial trace objective

max
H⊂W 1,2

π (X )
{tr (PH LPH) | CH = I, dim(H) ≤ r} , (5)

where now the projector is PH : W 1,2
π (X ) → W 1,2

π (X ). We stress that, since we assume L = L∗,
we can relax the above assumption on the compactness of the transfer operators (Tt)t≥0, and still
show that the leading invariant subspace of L is the optimalH in (5). So, on suchH we can estimate
well L via generator operator regression, see e.g. (Hou et al., 2023; Klus et al., 2020).

3 DEEP PROJECTION SCORE FUNCTIONALS

In this section we show how to solve the representation learning problems (4) and (5) using DNNs. In
the discrete case, we consider a generalized version of problem (4), which encompasses non-stationary
processes, for which the probability distributions change along the trajectory. Namely, let X and
X ′ be two X -valued random variables with probability measures µ and µ′, respectively. Because
of time-homogeneity, w.l.o.g. X models the state at time 0 and X ′ its evolution after some time t.
Then, the transfer operator can be defined on the data-dependent domains Tt : L2

µ′(X ) → L2
µ(X ).

Replacing PH′ with P ′
H′ : L2

µ′(X ) → L2
µ′(X ) in (4), and using the covariances CH and CH′ w.r.t.

1This property is fulfilled by a large class of Markov processes (see e.g. Kostic et al., 2022) and is weaker
than requiring the operator being Hilbert-Schmidt as in (Mardt et al., 2018).
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the measures µ and µ′, we obtain the appropriate representation learning problem for non-stationary
process; see App. B for more details. Within this general setting we optimize two feature maps

ψw : X → Rr, and ψ′
w : X → Rr, (6)

parameterized by w taking values in some set W . Next, defining the two RKHSs2 Hw :=
span(ψw,j)j∈[r] and H′

w := span(ψ′
w,j)j∈[r], both equipped with the standard inner product, we

aim to solve (4) by optimizing over the weights w. To avoid solving the constrained optimization
problem, we further propose to relax the hard constraints in (4) through a metric distortion loss
R : Rr×r → R+ that is zero if and only if it is applied to the identity matrix. Our choice in Section 5,
well defined for SPD matrices C, is

R(C) := tr(C2 − C − ln(C)).

Finally, in Lem. 3, App. C we show that (4) can be solved by maximizing, for γ > 0

Pγ(w) =
∥∥(CwX)†/2C w

XX′(CwX′)†/2
∥∥2
HS
− γ (R(CwX) +R(CwX′)) , (7)

where we introduced the uncentered covariance matrices

CwX := Eψw(X)ψw(X)⊤, CwX′ := Eψ′
w(X

′)ψ′
w(X

′)⊤ and C w
XX′ := Eψw(X)ψ′

w(X
′)⊤. (8)

Notice that if γ = 0 and the covariances CwX and CwX′ are nonsingular, then the score reduces to∥∥(CwX)−
1
2C w

XX′(CwX′)−
1
2

∥∥2
HS

which is called VAMP-2 score in the VAMPNets approach of (Mardt
et al., 2018). Moreover, if in (7) the HS norm is replaced by the nuclear norm, the score becomes the
objective of canonical correlation analysis (CCA) (Harold, 1936; Hardoon et al., 2004) in feature
space. When DNNs are used to parametrize (6), such score is the objective of Deep-CCA (Andrew
et al., 2013), known as VAMP-1 score (Mardt et al., 2018) in the context of molecular kinetics.
Therefore, by maximizing Pγ we look for the strongest linear correlation betweenHw andH′

w. We
stress that differently from Deep-CCA and VAMPNets the crucial addition ofR is to decorrelate the
features within each space, guiding the maximization towards a solution in which the norms of H
andH′ coincide with those of L2

µ(X ) and L2
µ′(X ), overcoming metric distortion.

While in the optimal representation the covariances CwX and CwX′ are the identity, in general they
are non-invertible, making the score Pγ non-differentiable during optimization. Indeed, unless the
rank of both covariances is stable for every w ∈ W , we might have exploding gradients (Golub and
Pereyra, 1973). Even ignoring differentiability issues, the use of the pseudo-inverse, as well as the use
of the inverse in the non-singular case, can introduce severe numerical instabilities when estimating
Pγ and its gradients during the training process. More precisely, the numerical conditioning of
evaluating Pγ using (7) is determined by the covariance condition numbers λ1(CwX)/λr(C

w
X) and

λ1(C
w
X′)/λr(C

w
X′) that can be very large in practical situations (see e.g. the fluid dynamics example

in Sec. 5) To overcome this issue, we introduce the relaxed score

Sγ(w) :=
∥∥C w

XX′

∥∥2
HS
/ (

∥∥CwX∥∥∥∥CwX′

∥∥)− γ (R(CwX) +R(CwX′)) , (9)

which, as implied by Theorem 1 below, is a lower bound for the score in (7). A key advantage of this
approach is that the score Sγ is both differentiable (apart from the trivial case CwX , CwX′ = 0) and has
stable gradients, since we avoid matrix inversion. Indeed, computing Sγ is always well-conditioned,
as the numerical operator norm has conditioning equal to one.

The following theorem provides the theoretical backbone of our representation learning approach.
Theorem 1. If T : L2

µ′(X )→L2
µ(X ) is compact, Hw ⊆L2

µ(X ) and H′
w ⊆L2

µ′(X ), then for all
γ ≥ 0

Sγ(w) ≤ Pγ(w) ≤ σ2
1(T ) + · · ·+ σ2

r(T ). (10)
Moreover, if (ψw,j)j∈[r] and (ψ′

w,j)j∈[r] are the leading r left and right singular functions of T ,
respectively, then both equalities in (10) hold. Finally, if the operator T is Hilbert-Schmidt, σr(T ) >
σr+1(T ) and γ > 0, then the “only if” relation is satisfied up to unitary equivalence.

This result establishes that the relaxed score is a tight lower bound, in the optimization sense, for (7).
More precisely, in general |Sγ(w)−Pγ(w)| is arbitrarily small for small enoughR(w), while on the
feasible set in (4) both scores coincide. For instance, for a deterministic linear system this happens as

2Here, ψw,j and ψ′
w,j are the j-th component of ψw and ψ′

w, respectively.

5



Algorithm 1 DPNets Training

Input: Data D; metric loss parameter γ; DNNs ψw, ψ′
w : X → Rr; optimizer U ; # of steps k.

1: Initialize DNN weights to w1.
2: for j = 1 to k do;
3: Ĉ

wj

X , Ĉ
wj

X′ , Ĉ
wj

XX′ ← Covariances for ψwj
and ψ′

wj
from a mini-batch of m ≤ n samples.

4: F (wj) ← −Ŝγm(wj) from (9) and the covariances in Step 3.
5: wj+1 ← U(wj ,∇F (wj)) where∇F (wj) is computed using backpropagation.
6: end for
7: return representations ψwK

, ψ′
wK

.

soon as the classes of features ψw and ψ′
w include linear functions. In general, we can appeal to the

universal approximation properties of DNN (Cybenko, 1989) to fulfill the hypotheses of Theorem 1.

Generator learning We now consider how to learn the representation of continuous time-
homogeneous processes arising from stochastic differential equations (SDE) of the form

dXt = A(Xt) dt+B(Xt) dWt, (11)

whereA andB are the drift and diffusion terms, respectively, andWt is a Wiener process. The solution
of (11) is a stochastic process that is time-reversal invariant w.r.t. its invariant distribution π, (Arnold,
1974). To show that solving (5) leads to learning the leading invariant subspace of L, we restrict to
the case L = L∗ and consider the partial trace of L w.r.t. to the subspaceHw := span(ψw,j)j∈[r] ⊆
W 1,2
π (X ) as our objective function. Being L self-adjoint, we can relax the compactness assumption

of Thm. 1, requiring only the much weaker condition that L has the largest eigenvalues separated
from the essential spectrum (Kato, 1976). In particular, it holds tr (PHw

LPHw
) = tr

(
(CwX)†C w

X∂

)
,

where C w
X∂ = E[ψw(X) dψw(X)⊤] is the continuous version of the cross-covariance and dψw(·) is

given by the Itō formula (see e.g. (Arnold, 1974; Klus et al., 2020; Hou et al., 2023))

dψw,i(x) :=E[∇ψw,i(X)⊤dX/dt+ 1
2 (dX/dt)

⊤∇2ψw,i(X)(dX/dt) |X = x] (12)

=∇ψw,i(x)⊤A(X) + 1
2 tr(B(x)⊤∇2ψw,i(x)B(x)). (13)

The following result, the proof of which is given in App. E, then justifies our continuous DPNets.
Theorem 2. If Hw ⊆ W 1,2

π (X ), and λ1(L) ≥ · · · ≥ λr+1(L) are eigenvalues of L above its
essential spectrum, then for every γ ≥ 0 it holds

Pγ∂ (w) := tr
(
(CwX)†C w

X∂

)
− γR(CwX) ≤ λ1(L) + · · ·+ λr(L), (14)

and the equality is achieved when ψw,j is the eigenfunction of L corresponding to λj(L), for j ∈ [r].

Notice how tr
(
(CwX)†C w

X∂

)
in Eq. (14) is the sum of the (finite) eigenvalues of the symmetric

eigenvalue problem C w
X∂ − λCwX . Thus, in non-pathological cases, its value and gradient can be

computed efficiently in a numerically stable way, see e.g. (Andrew and Tan, 1998).

4 METHODS

Learning the representation To optimize a DPNet representation one needs to replace the population
covariances and cross-covariance in Eqs (7), (9) and (14) with their empirical counterparts. In
practice, given ψw, ψ′

w : X → Rr and a dataset D = (xi, x
′
i)i∈[n] consisting of samples from the

joint distribution of (X,X ′) one estimates the needed covariances CwX , CwX′ and C w
XX′ as

ĈwX= 1
n

∑
i∈[n]

ψw(xi)ψw(xi)
⊤, ĈwX′ = 1

n

∑
i∈[n]

ψ′
w(x

′
i)ψ

′
w(x

′
i)

⊤ and Ĉ w
XX′ = 1

n

∑
i∈[n]

ψw(xi)ψ
′
w(x

′
i)

⊤.

In App. D.1 we prove that the empirical scores P̂γn : W → R and Ŝγn : W → R, that is the scores
computed using empirical covariances, concentrate around the true ones with high probability for
any fixed w. Obtaining uniform guarantees over w requires advanced tools from empirical processes
and regularity assumptions on the representations which could be the subject of future work. The
difficulties arising from the estimation of Pγ during optimization are also addressed.
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In Alg. 1 we report the training procedure for DPNets-relaxed (using score (9)), which can also be
applied to (7) and (14) suitably modifying step 4. When using mini-batch SGD methods to compute
∇P̂γm(w) or∇Ŝγm(w), the batch size m should be taken sufficiently large to mitigate the impact of
biased stochastic estimators. The time complexity of the training algorithm is addressed in App. D.4.
Operator regression Once a representation ψw is learned, it can be used within the framework of
operator regression, see Fig. 1. Following the reasoning in (Kostic et al., 2022) one sees that any
model T̂w : Hw → Hw of the transfer operator T acts on functions inHw as

hz := ψw(·)⊤z 7→ T̂whz := ψw(·)⊤T̂ z, z ∈ Rr, (15)

where T̂ ∈ Rr×r is a matrix in the representation space. For example, denoting the data matrices
Ψ̂w = [ψw(x1) | · · · |ψw(xn)], Ψ̂′

w = [ψw(x
′
1) | · · · |ψw(x′n)] ∈ Rr×n, the ordinary least square

estimator (OLS) minimizes the empirical risk
∥∥Ψ̂′

w − T̂⊤ Ψ̂w
∥∥2
HS

, yielding T̂ := (Ψ̂⊤
w)

†Ψ̂′⊤
w .

Downstream tasks Once T̂ is obtained, it can be used predict the next expected state of the dynamics
given the initial one, compute the modal decomposition of an observable (Kutz et al., 2016), estimate
the spectrum of the transfer operator (Kostic et al., 2023) or controlling the dynamics (Proctor et al.,
2016). Indeed, recalling that X ′ is the one step ahead evolution of X , we can use (15) to approximate
E[hz(X ′) |X = x] as ψw(x)⊤T̂ z. Moreover, relying on the reproducing property of Hw, the
predictions can be extended to functions f : X → Rℓ as E[f(X ′) |X = x] ≈ ψw(x)

⊤(Ψ̂⊤
w)

†F̂ ′,
where F̂ ′ = [f(x′1) | . . . | f(x′n)]⊤ ∈ Rn×ℓ is the matrix of the observations of the evolved data.
Clearly, when the observable is the state itself (i.e. f(x) = x), we obtain one step ahead predictions.

Next, observe that eigenvalue decomposition of the matrix T̂ leads to the eigenvalue decomposition
of the operator T̂ . Namely, let (λ̂i, ûi, v̂i) ∈ C×Cd×Cd be an eigen-triplet made of eigenvalue, left
eigenvector and right eigenvector of T̂ , that is T̂ v̂i = λ̂iv̂i, û∗i T̂ = λ̂iû

∗
i and û∗i v̂k = δi,k, i, k ∈ [r],

we directly obtain, using (15), the spectral decomposition

T̂w =
∑
i∈[r]λ̂i f̂i ⊗ ĝi, where f̂i(x) := ψw(x)

⊤v̂i and ĝi(x) := (ûi)
∗ψw(x). (16)

Finally, we can use the spectral decomposition of T̂ to efficiently forecast observables for several
time-steps in the future via E[hz(Xt) |X0 = x] ≈

∑
i∈[r] λ̂

t
i ⟨ĝi, hz⟩Hw

f̂i(x), which is known as
the extended dynamic mode decomposition (EDMD), see e.g. (Brunton et al., 2022). Noticing that
⟨ĝi, hz⟩Hw

= (ûi)
∗z = (ûi)

∗T̂ z/λ̂i, when λ̂i ̸= 0, and, again, using the reproducing property, we
can extend this approximation to vector-valued observables f : X → Rℓ as

E[f(Xt) |X0 = x] ≈
∑
i∈[r]λ̂

t−1
i

(
ψw(x)

⊤v̂i
) (
û∗i (Ψ̂

⊤
w)

†F̂ ′) ∈ Rℓ. (17)

5 EXPERIMENTS

In this experimental section we show that DPNets (i) learn reliable representations of non-normal
dynamical systems, (ii) can be used in its continuous-dynamics form (14) to approximate the eigen-
values of a Langevin generator, and (iii) outperforms kernel methods and auto-encoders in large-scale
and/or structured (e.g. graphs and images) data settings. To have a fair comparison, every neural
network model in these experiments has been trained on the same data splits, batch sizes, number
of epochs, architectures and seeds. The learning rate, however, has been optimized for each one
separately. We defer every technical detail, as well as additional results to App. F. The code to
reproduce the examples can be found at https://pietronvll.github.io/DPNets/, and
it heavily depends on Kooplearn https://kooplearn.readthedocs.io/.

Baselines We compared our methods DPNets (Pγ) and DPNets-relaxed (Sγ), where appropriate,
with the following baselines: Dynamic AE (DAE) of (Lusch et al., 2018), Consistent AE of (Azencot
et al., 2020), DMD of (Schmid, 2010), KernelDMD and ExtendedDMD of (Williams et al., 2015a;b),
and VAMPNets of (Mardt et al., 2018).

Logistic Map We study the dynamical system Xt+1 = (4Xt(1−Xt) + ξt) mod 1, for X = [0, 1)
and ξt being i.i.d. trigonometric noise (Ostruszka et al., 2000) . The associated transfer operator T is
non-normal, making the learning of its spectral decomposition particularly challenging (Kostic et al.,
2023). Since T can be computed exactly, we can sidestep the problem of operator regression (see
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Representation Spectral Error Optimality Gap

DPNets 0.28 (0.03) 0.64 (0.01)
DPNets-relaxed 0.06 (0.05) 1.19 (0.04)

VAMPNets 0.21 (0.09) 0.97 (0.22)
Cheby-T 0.20 1.24

NoiseKernel 0.19 2.17

Table 1: Logistic Map. Comparison of DPNets to
relevant baselines. Mean and standard deviation
are over 20 independent runs. We used r = 7.

Model P Transition Enthalpy ∆H

DPNets 12.84 17.59 ns -1.97 kcal/mol
Nys-PCR 7.02 5.27 ns -1.76 kcal/mol
Nys-RRR 2.22 0.89 ns -1.44 kcal/mol

Reference - 40 ns -6.1 kcal/mol

Table 2: Chignolin. Comparison between DP-
Nets and kernel methods with Nyström sampling
(Meanti et al., 2023).

Fig. 1), and focus directly on evaluating the quality of the representation encoded byHw. We evaluate
DPNets on two different metrics: (i) the optimality gap

∑r
i=1 σ

2
i (T )−P0(w) for r = 3 and (ii) the

spectral error, given by maximinj |λi(PHT|H)− λj(T )|. While (i) informs on how close one is to
solve (4), (ii) measures how well the true eigenvalues of T can be recovered within the representation
spaceHw. In Tab. 1 we compare the DPNets representation against VAMPNets, ExtendedDMD with
a feature map of Chebyshev polynomials and the feature defining the trigonometric noise Ostruszka
et al. (2000) of the process itself. Notice that in this challenging setting recovering eigenvalues
via singular vectors is generally problematic, so a moderate optimality gap may lead to a larger
spectral error. In Fig. 2 we report the evolution of the spectral error during training for DPNets and
VAMPNets, while we defer to App. F.1 an in-depth analysis of the role of the feature dimension.
Notice that DPNets and DPNets-relaxed excel in both metrics.
Continuous dynamics We investigate a one-dimensional continuous SDE describing the stochastic
motion of a particle into the Schwantes potential (Schwantes and Pande, 2015). The invariant
distribution for this process is the Boltzmann distribution π(dx) ∝ e−βV (x)dx, where V (x) is the
potential at state x. The non-null eigenvalues of L hold physical significance, as their absolute value
represents the average rate at which particles cross one of the system’s potential barriers (Kramers,
1940); our objective is to accurately estimate them. Here Xt is sampled non-uniformly according to a
geometric law. In the lower panel of Fig. 2 we report the estimated transition rates, of L along the
DPNets training loop. Notice that the embedding ψw progressively improves eigenvalue estimation,
indicating that the invariant subspaces of the generator L are well captured.
Ordered MNIST Following Kostic et al. (2022), we create a stochastic dynamical system by
randomly sampling images from the MNIST dataset according to the rule that Xt should be an image
of the digit t (mod 5) for all t ∈ N0. Given an image from the dataset with label c, a model for the
transfer operator T of this system should then be able to produce an MNIST-alike image of the next
digit in the cycle. In the upper panel of Fig. 3 we thus evaluate DPNets and a number of baselines by
how accurate is an “oracle” supervised MNIST classifier (test accuracy for in-distribution ≥ 99%) in
predicting the correct label c+ t (mod 5) after t steps of evolution. DPNets consistently retain an
accuracy above 95%, while for every other method it degrades. The “reference” line corresponds
to random guessing, while the “Oracle-Feature” baseline is an operator regression model (EDMD)
using, as the dictionary of functions, the output logits of the oracle, and despite having been trained
with the true labels, its performance degrades drastically after t ≥ 5.
Fluid dynamics We study the classical problem of the transport of a passive scalar field by a 2D
fluid flow past a cylinder (Raissi et al., 2020). Each data point comprises a regular 2D grid that
encompasses fluid variables, including velocity, pressure, and scalar field concentration at each
grid point. This system is non-stationary and is also known to exhibit non-normal dynamics (see
Trefethen and Embree, 2020). We evaluate each trained baseline by feeding to it the last snapshot
of the train trajectory and evaluating the relative RMSE (that is, the RMSE normalized by the data
variance) between the forecasts and the subsequent test snapshots. In this experiment, we also have
a physics-informed (PINN) baseline not related to transfer operator learning, which is however the
model for which this dataset was created in the first place. Remarkably, the forecasting error of
DPNets does not grow sensibly with time as it does for every other method.
The Metastable states of Chignolin In our last experiment, we study the dynamics of Chignolin, a
folding protein, from a 106µs long molecular dynamics simulation sampled every 200 ps, totalling
over 500, 000 data points (Lindorff-Larsen et al., 2011). We focus on the leading eigenfunctions of
the transfer operator, which are known (Schütte et al., 2001) to provide a simple characterization of
the slowest (and usually most important) physical processes occurring along the dynamics. From
the leading left eigenfunctions of T̂ , one can indeed construct the free energy surface (see Fig. 4),
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whose local minima identify the metastable states of the system. The free energy surface, indeed, is
proportional to the negative log-pdf of finding the system in a given state while at thermodynamic
equilibrium, meaning that a state of low free energy is highly probable, hence metastable. For
Chignolin, the metastable states have been thoroughly studied (see e.g. Novelli et al., 2022). The
leading left eigenfunction of T̂ encodes the folding-unfolding transition and the typical transition time
is the implied timescale (Mardt et al., 2019) associated with its eigenvalue. The difference between
the local minima of the free energy surface encodes the enthalpy ∆H of the transition. In Tab. 2
we compare these quantities to the reference values reported in Lindorff-Larsen et al. (2011). We
trained a GNN-based DPNet-relaxed, as both DPNets unrelaxed and VAMPNets failed to converge,
possibly due to the large scale of the data. We compared it to a KernelDMD estimator trained with the
recent Nyström sketching technique (Meanti et al., 2023) as classical kernel methods are completely
intractable at this scale3. Notice that DPNets succeed in finding additional meta-stable states of the
system, which match the analysis of (Bonati et al., 2021); see App. F for more discussion.

6 CONCLUSIONS

We propose a framework for learning a representation of dynamical systems, based on orthogonal
projections in data-spaces. It captures a leading invariant subspace of the transfer operator and can be
applied to both discrete and continuous dynamical systems. In the discrete case, the representation is
learned through the optimization of a smooth and numerically well conditioned objective function.
Extensive numerical experiments demonstrate the effectiveness and generality of DPNets in various
settings, suggesting that they are a promising tool for data-driven dynamical systems. A limitation of
this work is that the score functional for the continuous systems might be unstable since it leverages
covariance matrix inversion. Moreover, a future direction would be to study the statistical learning
properties of the algorithm presented here.

3A back-of-the-envelope calculation shows that 450 GBs would be needed just to store kernel matrices in
single precision.
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Appendix
The appendix is organized as follows.

• App. A reviews the notation used throughout the paper and basic notions of stochastic
processes and reproducing kernel Hilbert spaces.

• In App. B we present the theoretical background for material presented in Sec. 2.
• In App. C we prove the first main result of the paper, Thm. 1.
• App. D adds value to Sec. 4. We first give theoretical justification for using the empirical

score instead of the population one, and then provide details on how to address downstream
tasks.

• In App. E we prove the second main result of the paper, Thm. 2 about DPNets for continuous
time stochastic processes.

• Finally, App. F contains more information about the experiments and additional results.

A BACKGROUND AND NOTATION

A.1 STOCHASTIC PROCESSES TOOLS

Let X be a state space and ΣX be the Borel σ-algebra on X . LetM denote the space of all finite
measures on (X ,ΣX ). In what follows, we consider a random process (Xt)t∈T with values in a state
space X .
Definition 1 (Markov process.). Let Ft := Σ ({Xs : 0 ≤ s ≤ t}) be the sigma-algebra generated
by the elements of the process up to time t. The random process X = (Xt)t∈T is called a Markov
process if for all t, τ ≥ 0 and B ∈ ΣX it holds

P (Xt+τ ∈ B|Ft) = P (Xt+τ ∈ B|Xt) , (18)
that is, conditioning on the full history of the process Ft up to time t is equivalent to condition
only on the state of the process at time t. For this reason, Markov process are sometimes called

“memoryless”.
Definition 2. The transition density function pτ : X × X → [0,∞] of a time-homogeneous process
X is defined by

P (Xt+τ ∈ B|Xt = x) =

∫
B

pτ (x, y)dy,

for every measurable set B ∈ ΣX .

The distribution of a time-homogeneous stochastic process (Xt)t with transition density functions
(pτ )τ>0 can be described by the semigroup of transfer operators (Tτ )τ≥0 usually defined on L∞(X ).
Definition 3 (Transfer operator). For any τ ≥ 0, the Koopman transfer operator Tτ : L∞(X )→
L∞(X ) is defined by

Tτ (f) = E [f(Xt+τ )|Xt = ·] , ∀f ∈ L∞(X ).
Definition 4 (Feller process). Let (Tτ )τ≥0 be the semigroup of transfer operators of a homogeneous
Markov process. Then, (Tτ )τ≥0 is said to be a Feller semigroup when the following condition holds:

1. Tτ (C0(X )) ⊆ C0(X ) for all τ ≥ 0.

2. limτ→0 ∥Tτf − f∥ = 0 for all f ∈ C0(X ).

Here C0(X ) is the Banach space of all continuous functions vanishing at infinity.
Definition 5 (Infinitesimal generator of a semigroup). Let (Tτ )τ≥0 be a Feller semigroup. We define
its infinitesimal generator L : C0(X )→ C0(X )

Lf = lim
τ→0

1

τ
(Tτf − f),

for any f ∈ C0(X ) such that the above limit is well-defined.

The above definitions can be lifted to L2
π(X ) if the dynamical system has an invariant distribution, or

if we are interested in the action of Tτ on a specific couple of states X,X ′ of the process, as discussed
in the main text.
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A.2 REPRODUCING KERNEL HILBERT SPACES

In this section we review few basic concepts on kernel based approaches to learning transfer operators;
for more details on reproducing kernel Hilbert spaces (RKHS) we refer reader to (Aronszajn, 1950).

Let kX : X × X → R and kX′ : X × X → R be two bounded kernels, and let H and H′ be
their respective reproducing kernel Hilbert spaces (RKHS). Denote the canonical feature maps by
ψ(x) := kX(x, ·), x ∈ X , and ψ′(x′) := kX′(x′, ·), x′ ∈ X .

Next, consider two probability measures µ and µ′ on X , and their associated L2 spaces L2
µ(X ) and

L2
µ′(X ). If kX(·, ·) is square-integrable w.r.t. measure µ and kX′(·, ·) is square-integrable w.r.t.

the measure µ′, then we can define injection (or the evaluation) operators Sµ : H ↪→ L2
µ(X ) and

Sµ′ : H′ ↪→ L2
µ′(X ). Then, their adjoints S∗

µ : L
2
µ(X )→ H and S∗

µ′ : L2
µ′(X )→ H′ are given by

S∗
µf =

∫
X
f(x)ψ(x)µ(dx) ∈ H and S∗

µ′f ′ =

∫
X
f ′(x′)ψ′(x′)µ′(dx′) ∈ H′,

where f ∈ L2
µ(X ) and f ′ ∈ L2

µ′(X ).
Using injections and their adjoints one can introduce covariance operators CX : H → H and
CX′ : H′ → H′ by

CX := S∗
µSµ = EX∼µψ(X)⊗ ψ(X), and CX′ := S∗

µ′Sµ′ = EX′∼µ′ψ(X ′)⊗ ψ(X ′),

as well as the cross-covariance CXX′ : H′ → H operator
CXX′ := S∗

µT Sµ′ = E(X,X′)∼ρψ(X)⊗ ψ′(X ′),

where ρ is the joint measure of (X,X ′) and T : L2
µ′(X )→ L2

µ(X ) is a transfer operator correspond-
ing to the evolution of X ∼ µ to X ′ ∼ µ′.

Different estimators for the problem of learning transfer operators from data D = (xi, x
′
i)i∈[n]

have been considered, see e.g. (Kostic et al., 2022; Li et al., 2022), which are all of the form
T̂W = Ŝ′∗WŜ, where W ∈ Rn×n and Ŝ : H → Rn and Ŝ′ : H′ → Rn are sampling operators
given by Ŝf = n−

1
2 [f(x1) . . . f(xn)]

⊤, f ∈ H, and Ŝ′f ′ = n−
1
2 [f ′(x′1) . . . f

′(x′n)]
⊤, f ′ ∈ H′.

In particular, kernel methods usually consider universal kernels that generate infinite-dimensional
RKHS spaces that are dense in L2. In such a way, one can approximate transfer operators via operator
(vector-valued) regression arbitrarily well with enough data. However, one important aspect has
been recently reported in (Kostic et al., 2022; 2023). Namely, from the application perspective,
utility of transfer operators is largely relying on the ability to estimate well their eigenvalues and
eigenfunctions, which lead to the notion of modal decomposition of observables (Brunton et al.,
2022). In that context, the difference in the norms between RKHS and L2 spaces can produce
spectral pollution and lead to bad estimation of the eigenvalues and eigenfunctions. We recall that the
difference in norms is due to the covariance, i.e. for every h ∈ H its L2 norm is∫

X
|h(x)|2µ(dx) = ⟨Sµh, Sµh⟩L2

µ(X ) = ⟨h,CXh⟩H. (19)

While this difference in norms is unavoidable for universal kernels (indeed for universal kernels
generating infinite-dimensional RKHS spaces, since covariance is a trace class operator, we have
λj(CX) → 0 as j → ∞ potentially leading to ⟨h,CXh⟩H ≪ ⟨h, h⟩H for some h ∈ H), for finite
dimensional kernels one can hope to avoid metric distortion between spaces by aiming to find features
for which CX = I .

B REPRESENTATION LEARNING: PROBLEM AND APPROACH

In this section we prove some of the statements made in Sec. 2. In particular we show that (3) holds
true, and show how the objectives (4) and (5) are related to the desired spaceH.

We first note that T|H := T Sπ : H → L2
π(X ), while T PH = T SπC†

XS
∗
π. Hence,

∥∥[I −
PH]T PH

∥∥2 =
∥∥[I − PH]T|HC

†/2
X

∥∥2 =
∥∥C†/2

X ([I − PH]T|H)∗
∥∥2. Therefore, using that Im

(
([I −

PH]T|H)∗
)
= Im(S∗

πT ∗[I − PH]) ⊆ Im(C†
X) (3) follows.

Next, we show how Eckart-Young’s theorem justifies (4), which is the basis of Thm. 1.
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Lemma 1. Let H1 and H2 be two separable Hilbert spaces, and A : H1 → H2 be a compact
operator. Let r ∈ N and Prk := {P : Hk → Hk |P ∗ = P 2 = P, rank(P ) ≤ r} denote the set of
rank-r orthogonal projectors inHk, k = 1, 2. It holds that

(i) max
(P1,P2)∈Pr

1×Pr
2

∥∥P2AP1

∥∥2
HS

=
∑
i∈[r]

σ2
i (A),

(ii) Let UrΣrV
∗
r be the r-truncated SVD of A, then (VrV

∗
r , UrU

∗
r ) ∈

arg max
(P1,P2)∈Pr

1×Pr
2

∥∥P2AP1

∥∥2
HS

.

(iii) If σr+1(A) < σr(A) and
∥∥A∥∥

HS
<∞, then arg max

(P1,P2)∈Pr
1×Pr

2

∥∥P2AP1

∥∥2
HS

is singleton.

Proof. This lemma is a direct consequence of the Eckart-Young theorem for compact operators (Kato,
1976). Recall, since A is compact, there exists its SVD A = UΣV ∗ and Eckart-Young theorem
states that if A is Hilbert-Schmidt, for every r ∈ N and every B : H1 → H2 such that rank(B) ≤ r,
it holds

∥∥A − B∥∥
HS
≥

∥∥A − Ar∥∥HS
, where Ar := UrΣrV

∗
r denotes the r-truncated SVD of A.

Moreover, if σr+1(A) < σr(A), then equality implies B = Ar.

Hence, for arbitrary Pk ∈ Prk , k = 1, 2, using that the norm of a projection is 1 and Pythagoras
theorem, for every m ≥ r we have that∥∥P2AmP1

∥∥2
HS
≤

∥∥P2Am
∥∥2
HS

∥∥P1

∥∥2 =
∥∥P2Am

∥∥2
HS

=
∥∥Am∥∥2

HS
−

∥∥[I − P2]Am
∥∥2
HS

=
∥∥Am∥∥2

HS
−
∥∥Am − P2Am

∥∥2
HS
≤

∥∥Am∥∥2
HS
−
∥∥Am −Ar∥∥2HS

=
∥∥Ar∥∥2HS

,

and, similarly,
∥∥P2AmP1

∥∥2
HS
≤

∥∥Am∥∥2
HS
−
∥∥Am −AmP1

∥∥2
HS
≤

∥∥Ar∥∥2HS
. However, since∣∣∥∥P2AP1

∥∥
HS
−
∥∥P2AmP1

∥∥
HS

∣∣ ≤ ∥∥P2(A−Am)P1

∥∥
HS
≤
√
r
∥∥P2(A−Am)P1

∥∥
≤
√
r
∥∥A−Am∥∥ ≤ √rσm+1(A),

we obtain
∥∥P2AP1

∥∥2
HS
≤

∥∥Ar∥∥2HS
+
√
rσm+1(A) for all m ≥ r. Thus, since

∥∥P2AP1

∥∥2
HS

=∥∥Ar∥∥2HS
obviously holds for P1 = VrV

∗
r and P2 = UrU

∗
r , letting m→∞ we obtain (i) and (ii).

Finally, assume that A is an Hilbert-Schmidt operator such that 0 ≤ σr+1(A) < σr(A). Then,
similarly to the above now working with A instead of Am,∥∥P2AP1

∥∥2
HS
≤

∥∥A∥∥2
HS
−max{

∥∥A−AP1

∥∥2
HS
,
∥∥A− P2A

∥∥2
HS
} ≤

∥∥Ar∥∥2HS
.

So, if
(P1, P2) ∈ arg max

(P ′
1,P

′
2)∈Pr

1×Pr
2

∥∥P ′
2AP

′
1

∥∥2
HS
,

then
max{

∥∥A−AP1

∥∥2
HS
,
∥∥A− P2A

∥∥2
HS
} =

∥∥A−Ar∥∥2HS
.

Now, the uniqueness result of the Eckart-Young theorem implies that AP1 = P2A = Ar, and,
consequently rank(P1) = rank(P2) = r, A†

rAP1 = A†
rAr and P2AA

†
r = ArA

†
r. Therefore,

VrV
∗
r P1 = VrV

∗
r and P2UrU

∗
r = UrU

∗
r , imply Im(Vr) ⊆ Im(P1) and Im(Ur)⊆ Im(P2). But since

P1 and P2 have exactly rank r, we obtain P1 = VrV
∗
r and P2 = UrU

∗
r .

We also discuss how to extend part of the analysis to the important setting of stationary deterministic
systems for which the transfer operator is not compact.
Remark 1. The compactness assumption on the the transfer operator, does not hold for purely
deterministic dynamical systems. However, our approach is still applicable to the study of deter-
ministic systems, that is when Xt+1 = F (Xt), for a deterministic map F : X → X , and Xt ∼ π
for all t ∈ T, where π is the invariant measure defined on the attractor. Then, we have that
E[f(Xt+1) |Xt] = F ◦ f and T : L2

π(X )→ L2
π(X ) is unitary, see e.g. (Brunton et al., 2022). Thus,

T is not a compact operator, however it is a normal one. But then, Pythagoras theorem gives that

inf
w∈W

∥∥[I − PHw
]T PHw

]
∥∥2
HS

= inf
w∈W

(∥∥T PHw

∥∥2
HS
−

∥∥PHw
T PHw

∥∥2
HS

)
= r − sup

w∈W
P(w),
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where the second equality holds since the HS-norm is unitarily invariant. Therefore, when w is such
that T ψw,j = λjψw,j , since T is unitary we have P(w) =

∑r
j=1|λj |2 = r and the above inf is zero.

Consequently, we have identified an r-dimensional invariant subspace of T .

Finally, we conclude this section with the lemma that is the basis of generator learning via optimization
problem (5) whose objective is defined through a partial trace.
Lemma 2. LetH be a separable Hilbert space and letHr ⊆ H be a (finite) r-dimensional subspace.
If A : H → H is a self-adjoint operator having at least r + 1 eigenvalues λ1(A) ≥ λ2(A) ≥ . . . ≥
λr(A) ≥ λr+1(A) above its essential spectrum, then

tr(APHr ) ≤ λ1(A) + λ2(A) + · · ·+ λr(A),

and equality holds when Hr is spanned by eigenfunctions of A corresponding to eigenvalues
λ1(A), . . . , λr(A).

Proof. First, let (vi)i∈[r] denote eigenvectors of A corresponding to eigenvalues λi, that is Avi =
λi(A)vi, and let (hi)i∈N be an ortho-normal basis ofH such that (hi)i∈[r] is the ortho-normal basis
ofHr. Then, clearly

tr(APHr
) = tr(PHr

APHr
) =

∑
i∈N
⟨hi, (PHr

APHr
)hi⟩ =

∑
i∈[r]

⟨hi, Ahi⟩, (20)

which is clearly equal to λ1(A) + λ2(A) + . . .+ λr(A) whenever hi = vi, i ∈ [r].

The upper bound we prove by induction. First, for r = 1 we have that ⟨hi, Ahi⟩ ≤ λ1(A) follows
directly from the Courant-Fischer max-min theorem for operators which claims that

λi(A) = max
h1,...,hi

min{⟨h,Ah⟩ |h ∈ span(hj)j∈[i],
∥∥h∥∥ = 1}, i ∈ [r + 1]

Next, assuming that (20) holds for arbitrary A and r ≤ m− 1, we will prove that it holds for r = m.

Start by observing that there exists H′ ⊆ Hm such that dim(H′) ≤ m − 1 and H′ ⊥ v1. Indeed,
taking gi =

∑
j∈[m] bijhj , i ∈ [m− 1], for some B = [bij ] ∈ R(m−1)×m, we have that gi ⊥ v1 for

all i ∈ [m− 1] iff Bβ = 0, where the vector β ∈ Rm is given by βj = ⟨hj , v1⟩. Now, if β = 0, then
Hm ⊥ v1 and the claim trivially follows. Otherwise, since dim(span(β)⊥) = m− 1, there exists a
matrix B ∈ R(m−1)×m so that Bβ = 0. Consequently, the spaceH′ spanned by (gi)i∈[m−1] is such
that dim(H′) ≤ m− 1 andH′ ⊆ span(v1)⊥. Without the loss of generality, assume that (gi)i∈[m−1]

are orthonormal basis ofH′ and that gm is such that (gi)i∈[m] are orthonormal basis ofH.

First, clearly ⟨gm, Agm⟩ ≤ λ1. On the other hand, define A′ := A+ (λr+1− λ1) v1⊗ v1. This is an
operator obtained by deflating (moving) the first eigenvalue into the (r + 1)-th one. Namely, we have
that λi(A′) = λi+1(A) for i ∈ [m− 1]. Moreover, it holds that A′PH′ = APH′ . Hence, according
to the inductive hypothesis, we have

tr(APH′) = tr(A′PH′) ≤
∑

i∈[m−1]

λi(A
′) =

m∑
i=2

λi(A),

and, consequently,

tr(APH) =
∑
i∈[r]

⟨gi, Agi⟩ = tr(APH′) + ⟨gm, Agm⟩ ≤
m∑
i=2

λi(A) + λ1(A) =
∑
i∈[m]

λi(A),

which completes the proof.

C SCORE FUNCTIONAL

We start by extending problem (4) to the representation learning for stable non-stationary processes
(Xt)t∈N0

. Since for the operator regression problem we typically collect data samples uniformly
at random along trajectory, we have that X ∼ µ := 1

n

∑
i∈[n] µi−1, recalling that µt is the law
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of Xt and n is the sample size. Then, the one step ahead evolution of a random variable X is
X ′ ∼ µ′ = 1

n

∑
i∈[n] µi. Since the transfer operator is properly defined as T : L2

µ′(X ) → L2
µ(X ),

we obtain the following version of (3)∥∥[I − PH]T P ′
H
∥∥2λ+min(C

′
H) ≤

∥∥[I − PH]T|H
∥∥2 ≤ ∥∥[I − PH]T P ′

H
∥∥2λmax(C

′
H), (21)

where, PH : L2
µ(X )→ L2

µ(X ) and P ′
H : L2

µ′(X )→ L2
µ′(X ) are the orthogonal projections ontoH

as a subspace of L2
µ(X ) and L2

µ′(X ), respectively, and covariance C ′
H is now w.r.t. measure µ′. Now,

assuming that the feature map ofH is bounded by some constant cH, we have that∥∥C ′
H − CH

∥∥ ≤ ∫
X

∥∥ψ(x)⊗ ψ(x)∥∥|µ′ − µ|(dx) ≤ 2c2H
∥∥µ′ − µ

∥∥
TV

=
2c2H
n

∥∥µn − µ0

∥∥
TV
.

Thus, if the dynamics is stable, the total variation norm
∥∥µn − µ0

∥∥
TV

is bounded w.r.t. n→∞, and
we conclude that for large enough sample size n one can replace C ′

H by CH in (21) to obtain tight
approximation of the approximation error

∥∥[I − PH]T|H
∥∥2 by controlling

∥∥[I − PH]T P ′
H
∥∥. This

motivates the optimization problem for non-stationary dynamics

max
H⊂L2

µ(X ),H′⊂L2
µ′ (X )

{∥∥PHT P ′
H′

∥∥2
HS
| CH = C ′

H′ = I, dim(H) ≤ r, dim(H′) ≤ r
}
. (22)

Next, we prove (7), relating the projection score with the covariance operators.
Lemma 3. Let X and X ′ be two X -valued random variables distributed according to probability
measures µ and µ′, respectively. Given w ∈ W let for every j ∈ [r] functions ψw,j : X → R and
ψ′
w,j : X → R be square integrable w.r.t measures µ and µ′, respectively. If PHw

: L2
µ(X )→ L2

µ(X )
and P ′

H′
w
: L2

µ′(X ) → L2
µ′(X ) are orthogonal projections onto subspaces Hw := span(ψw,j)j∈[r]

andH′
w := span(ψ′

w,j)j∈[r], respectively, then∥∥PHw
T P ′

H′
w

∥∥2
HS

=
∥∥(CwX)†/2C w

XX′(CwX′)†/2
∥∥2
HS
. (23)

Proof. The proof directly follows from the notion of finite-dimensional RKHS. Let kwX : X ×X → R
and kwX′ : X × X → R be two kernels given by

kwX(x, y) := ψw(x)
⊤ψw(y) and kwX′(x, y) := ψ′

w(x)
⊤ψ′

w(y), x, y ∈ X .

ThenHw andH′
w are the reproducing kernel Hilbert spaces (RKHS) associated with kernels kwX and

kwX′ , respectively.

Now, due to square integrability of the embeddings ψw,j and ψ′
w,j , j ∈ [r], we have that the injection

operators of the two RKHS spaces into their respective L2 spaces are well-defined: Sµ : Hw ↪→
L2
µ(X ) and Sµ′ : H′

w ↪→ L2
µ′(X ). Moreover, observing thatHw andH′

w are isometrically isomorphic
to Rr, we have that S∗

µSµ : Hw → Hw and S∗
µ′Sµ′ : H′

w → H′
w can be identified with CwX ∈ Rr×r

and CwX′ ∈ Rr×r, respectively, that is

S∗
µSµ = QCwXQ

∗ and S∗
µ′Sµ′ = Q′CwX′(Q′)∗.

where Q : Rr → Hw and Q′ : Rr → H′
w are partial isometries, meaning that QQ∗ and Q′(Q′)∗ are

identity operators onHw and Q∗Q and (Q′)∗Q′ are identity matrices in Rr×r.

As a consequence, the polar decompositions of finite rank operators Sµ and Sµ′ can be written as

Sµ = UQ(CwX)1/2Q∗ and Sµ′ = U ′Q′(CwX′)1/2(Q′)∗, (24)

where U : Hw → L2
µ(X ) and U ′ : H′

w → L2
µ′(X ) are partial isometries.

But then, sinceHw as a subspace of L2
µ(X ) is identified as Im(Sµ), andH′

w as a subspace of L2
µ′(X )

is identified as Im(Sµ′), using adjoints S∗
µ : L

2
µ(X )→ Hw and S∗

µ′ : L2
µ′(X )→ H′

w, we can write
the aforementioned orthogonal projections as

PHw
= Sµ(S

∗
µSµ)

†S∗
µ and PH′

w
= Sµ′(S∗

µ′Sµ′)†S∗
µ′ , (25)
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which, using (24) and the fact that (CwX)1/2(CwX)† = (CwX)†/2, is equivalent to

PHw
= UQ(CwX)†/2Q∗S∗

µ and PH′
w
= U ′Q′(CwX′)†/2(Q′)∗S∗

µ′ .

Finally, since for every v ∈ Rr we obtain

(Q∗S∗
µT Sµ′Q′)v = Q∗S∗

µ(T Sµ′Q′v) = Q∗
∫
X
µ(dx)ϕwX(x)(T Sµ′Q′v)(x)

= Q∗
∫
X

∫
X
µ(dx)p(x, dx′)ϕwX(x)(Q′v)(x′)

= Q∗
∫
X×X

ρ(dx, dx′)ϕwX(x)(Q′v)(x′)

where ρ is joint measure of (X,X ′) and ϕwX is the canonical feature map of kwX , that is ϕwX(x) =
kwX(·, x), x ∈ X . Next, using the reproducing property

(Q∗S∗
µT Sµ′Q′)v = Q∗

∫
X×X

ρ(dx, dx′)ϕwX(x)⟨ϕwX′(x′), Q′v⟩H′
w

=

[∫
X×X

ρ(dx, dx′)Q∗ϕwX(x)⊗ ((Q′)∗ϕwX′(x′))

]
v

=

[∫
X×X

ρ(dx, dx′)ψw(x)⊗ ψ′
w(x

′)

]
v = C w

XX′v,

where ϕwX′ is the canonical feature map of kwX′ and we used that Q∗ϕwX(x) = ψw(x) and
(Q′)∗ϕwX′(x′) = ψ′

w(x
′).

Therefore, using (25) we obtain

PHwT P ′
H′

w
= UQ(CwX)†/2C w

XX′(CwX′)†/2(Q′)∗(U ′)∗,

which using that U,U ′ and Q,Q′ are partial isometries, implies (23).

Now, using Lem. 1, we prove one of the main theoretical results of the paper. From this point forward,
we abbreviate P(w) := P0(w), S(w) := S0(w), P̂n(w) := P0

n(w) and Ŝn(w) := P0
n(w).

Theorem 1. If T : L2
µ′(X )→L2

µ(X ) is compact, Hw ⊆L2
µ(X ) and H′

w ⊆L2
µ′(X ), then for all

γ ≥ 0
Sγ(w) ≤ Pγ(w) ≤ σ2

1(T ) + · · ·+ σ2
r(T ). (10)

Moreover, if (ψw,j)j∈[r] and (ψ′
w,j)j∈[r] are the leading r left and right singular functions of T ,

respectively, then both equalities in (10) hold. Finally, if the operator T is Hilbert-Schmidt, σr(T ) >
σr+1(T ) and γ > 0, then the “only if” relation is satisfied up to unitary equivalence.

Proof. Recall that Pγ(w) = P(w) − γ (R(CwX) +R(CwX′)) with P(w) =
∥∥PHw

T P ′
H′

w

∥∥2
HS

=∥∥(CwX)†/2C w
XX′(CwX′)†/2

∥∥2
HS

, where the last equality follows from Lemma 3, and that S(w) :=∥∥C w
XX′

∥∥2
HS
/
(∥∥CwX∥∥∥∥CwX′

∥∥). The first inequality in (10)holds thanks to a standard matrix norm
inequality, while the second holds by applying Lemma 1(i) and noting thatR(CwX) +R(CwX′) ≥ 0.

Now assume that (ψw,j)j∈[r] and (ψ′
w,j)j∈[r] are some leading r left and right singular functions of

T , respectively. Then, since singular functions form ortho-normal systems in L2 spaces we have that

(CwX)i,j = ⟨ψw,i, ψw,j⟩L2
µ(X ) = δi,j and (CwX′)i,j =

〈
ψ′
w,i, ψ

′
w,j

〉
L2

µ(X )
= δi,j , i, j ∈ [r],

that is CwX = CwX′ = Ir, and, therefore, R(CwX) = R(CwX′) = 0 and S(w) = P(w). Thus, using
Lemma 1(ii), we obtain that (10) holds with equalities in place of inequalities.

Next, assume that the operator T is Hilbert-Schmidt, σr(T ) > σr+1(T ), γ > 0 and Sγ(w) =
σ2
1(T ) + . . .+ σ2

r(T ). Then, clearlyR(CwX) = R(CwX′) = 0, which implies that CwX = CwX′ = Ir,
that is (ψw,j)j∈[r] and (ψ′

w,j)j∈[r] form orthonormal systems. Consequently,

PHw
=

∑
j∈[r]

ψw,j ⊗ ψw,j and PH′
w
=

∑
j∈[r]

ψ′
w,j ⊗ ψ′

w,j ,
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and
P(w) = Pγ(w) = Sγ(w) = σ2

1(T ) + . . .+ σ2
r(T ).

But then, Lemma 1(iii) implies that PHw and PH′
w

are orthogonal projectors on the leading r left and
right singular spaces of T . In other words, up to unitary changes of basis, (ψw,j)j∈[r] and (ψ′

w,j)j∈[r]

are the leading r left and right singular functions of T , which completes the proof.

We conclude this section with a remark on the importance of regularization.
Remark 2. Recalling the proof of the previous theorem, note that when γ = 0, equality in (10) is
achieved whenever Hw and H′

w are spanned by leading r left and right singular functions of T ,
respectively. Meaning that after the change of basis Q,Q′ ∈ Rr×r so that (

∑
i∈[r]Qi,jψw,i)j∈[r]

and (
∑
i∈[r]Q

′
i,jψ

′
w,i)j∈[r] are the leading left and right singular functions, respectively. Under the

additional conditions, also the "only if" part holds for some changes of basis. Indeed, we can take
the change of basis to be Q = (CwX)−1/2 and Q′ = (CwX′)−1/2, which without regularization term,
need not be unitary. This, as we see in App. D.2, highly impacts on the stability of computation of the
transfer operator estimators, and, therefore, impacts their practical use.

D METHODS

D.1 STATISTICAL LEARNING GUARANTEES

Before we study the statistical learning guarantees for our novel score S , we first discuss a fundamental
limitation of using the score P to learn the invariant representation. In order to maximize the
score P one can use standard ridge regularization on the empirical covariances. This approach
considered in DeepCCA (Andrew et al., 2013) and VAMPNets (Mardt et al., 2019), typically requires
a large number of training samples n, and the rates are governed by the choice of the regularization
hyperparameter, typically ranging from O(n−1/3) to O(n−1/2). Namely, in this approach one
uses score

∥∥(ĈwX + λI)−1/2Ĉ w
XX′(ĈwX′ + λI)−1/2

∥∥
HS

instead of P , where λ is the regularization
parameter. So the main concern is now to measure how close the regularized empirical score is to the
true score? To do this, we first study the operator norm deviation:∣∣∣∥∥(CwX)†/2C w

XX′(CwX′)†/2
∥∥− ∥∥(ĈwX + λI)−1/2Ĉ w

XX′(ĈwX′ + λI)−1/2
∥∥∣∣∣

≤
∥∥(CwX)†/2C w

XX′(CwX′)†/2 − (ĈwX + λI)−1/2Ĉ w
XX′(ĈwX′ + λI)−1/2

∥∥
≤

∥∥(CwX)†/2C w
XX′(CwX′)†/2 − (CwX + λI)−1/2C w

XX′(CwX′ + λI)−1/2
∥∥

+
∥∥(CwX + λI)−1/2C w

XX′(CwX′ + λI)−1/2 − (ĈwX + λI)−1/2Ĉ w
XX′(ĈwX′ + λI)−1/2

∥∥.
Using Lemma 4 in (Ullah and Arora, 2023), we get the following control on the "bias term" of the
previous display:∥∥(CwX)†/2C w

XX′(CwX′)†/2 − (CwX + λI)−1/2C w
XX′(CwX′ + λI)−1/2

∥∥ ≤ 8
√
λ.

Next, using Lemma 6 in (Fukumizu et al., 2007) gives the following asymptotic rate of convergence
on the "variance" part. Assume that λ = λn → 0 as n→∞, then∥∥(CwX + λI)−1/2C w

XX′(CwX′ + λI)−1/2 − (ĈwX + λI)−1/2Ĉ w
XX′(ĈwX′ + λI)−1/2

∥∥ = OP

(
1√
λ3 n

)
.

Combining the last three displays and for the optimal choice λ = λn = n−1/4, we obtain∣∣∣∥∥(CwX)†/2C w
XX′(CwX′)†/2

∥∥− ∥∥(ĈwX + λI)−1/2Ĉ w
XX′(ĈwX′ + λI)−1/2

∥∥∣∣∣ = OP(n
−1/3).

According again to (Ullah and Arora, 2023), in the most favorable scenario of finite-dimensional
spaces with well-conditioned covariance matrices, we can obtain an improved control on the "vari-
ance" part of the order of magnitude OP(λ

−1/2n−1/2). Consequently, taking λ = λn ≍ n−1/2 → 0
as n→∞, the estimation error improves from OP(n

−1/3) to OP(n
−1/2) in the best-case scenario.

While these guarantees were obtained for the spectral norm, one can directly deduce such guarantees
also for the HS-norm when the latent space is low-dimensional. This analysis highlights a funda-
mental limitation of using the score P(w). On the one hand, the Ridge regularization parameter λ
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cannot be set too small to maintain the numerical stability of the method. On the other hand, the
statistical analysis requires that λ = λn converges sufficiently fast to 0 as n→∞ to guarantees that
the empirical score P̂ approximate the true objective P . These two constraints are antagonistic and it
is not clear that they can be simultaneously satisfied in practice. Hence, balancing between numerical
stability and convergence to the true objective presents a challenging trade-off when using P for
learning invariant representations. By contrast, our score S and its relaxed version do not suffer from
this limitation. Namely, there is no need to sacrifice numerical stability for statistical accuracy or vice
versa since |S(w)− Ŝ(w)| = OP(n

−1/2) in all situations, as we prove it in Theorem 3 below.

Our goal is to derive concentration guarantees for the empirical score Ŝ from the true score S. We
focus on time-homogeneous Markovian dynamical systems in the stationary regime with invariant
measure π which was proposed in (Lasota and Mackey, 1994; Kostic et al., 2022).

Recall the definition of the true and empirical scores

S(w) :=
∥∥C w

XX′

∥∥2
HS∥∥CwX∥∥∥∥CwX′

∥∥ and Ŝ(w) :=
∥∥Ĉ w

XX′

∥∥2
HS∥∥ĈwX∥∥∥∥ĈwX′

∥∥ , (26)

where, as before,

ĈwX := 1
n

∑
i∈[n]

ψw(xi)ψw(xi)
⊤, ĈwX′ := 1

n

∑
i∈[n]

ψ′
w(x

′
i)ψ

′
w(x

′
i)

⊤ and Ĉ w
XX′ := 1

n

∑
i∈[n]

ψw(xi)ψ
′
w(x

′
i)

⊤.

Denote by ρ the joint distribution of (X,X ′).

We assume that the embeddings are bounded almost surely, that is there exists an absolute constant c
such that

ess sup
x∼µ

∥ψw(x)∥2 ≤ c, ess sup
x′∼µ′

∥ψ′
w(x

′)∥2 ≤ c. (27)

For any fixed w and any fixed δ ∈ (0, 1), we assume that n is large enough such that

4c

3
∥∥CwX∥∥n log

(
12rδ−1

)
+

√
2∥∥CwX∥∥n log(12rδ−1) <

1

3
. (28)

Define

εn(δ) =
4c

3
∥∥CwX∥∥n log

(
12rδ−1

)
+

√
2∥∥CwX∥∥n log(12rδ−1),

and

ε′′n(δ) := c2
√

5 log(18δ−1)

n
+ c2

C

n
,

where C is some absolute constant.
Theorem 3. Let Conditions (27) and (28) be satisfied. Then we get with probability at least 1− δ∣∣∣S(w)− Ŝ(w)∣∣∣ ≤ S(w) 3εn(δ)

1− 3εn(δ)
+

ε′′n(δ)∥∥CwX∥∥∥∥CwX′

∥∥(1− 3εn(δ))
. (29)

Proof. By definition of S(w) and Ŝ(w), we have

∣∣∣Ŝ(w)− S(w)∣∣∣ ≤ Ŝ(w)
∣∣∣∥∥ĈwX∥∥∥∥ĈwX′

∥∥− ∥∥CwX∥∥∥∥CwX′

∥∥∣∣∣∥∥CwX∥∥∥∥CwX′

∥∥ +

∣∣∣∥∥Ĉ w
XX′

∥∥2
HS
−
∥∥C w

XX′

∥∥2
HS

∣∣∣∥∥CwX∥∥∥∥CwX′

∥∥
≤ |Ŝ(w)− S(w)|

∣∣∣∥∥ĈwX∥∥∥∥ĈwX′

∥∥− ∥∥CwX∥∥∥∥CwX′

∥∥∣∣∣∥∥CwX∥∥∥∥CwX′

∥∥ + S(w)

∣∣∣∥∥ĈwX∥∥∥∥ĈwX′

∥∥− ∥∥CwX∥∥∥∥CwX′

∥∥∣∣∣∥∥CwX∥∥∥∥CwX′

∥∥
+

∣∣∣∥∥Ĉ w
XX′

∥∥2
HS
−
∥∥C w

XX′

∥∥2
HS

∣∣∣∥∥CwX∥∥∥∥CwX′

∥∥ .
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Using (34), (36) below, we get with probability at least 1− 2δ,∣∣∣∥∥ĈwX∥∥∥∥ĈwX′

∥∥− ∥∥CwX∥∥∥∥CwX′

∥∥∣∣∣∥∥CwX∥∥∥∥CwX′

∥∥ ≤ εn(δ) + ε′n(δ) + εn(δ)ε
′
n(δ).

Next, (37) gives with probability at least 1− δ∣∣∣∥∥Ĉ w
XX′

∥∥2
HS
−

∥∥C w
XX′

∥∥2
HS

∣∣∣∥∥CwX∥∥∥∥CwX′

∥∥ ≤ ε′′n(δ)∥∥CwX∥∥∥∥CwX′

∥∥ .
Under Conditions 27 and 28, we get

εn(δ) = ε′n(δ) =
4c

3
∥∥CwX∥∥n log

(
4rδ−1

)
+

√
2∥∥CwX∥∥n log(4rδ−1) <

1

3
,

and

ε′′n(δ) := c2
√

5 log(6δ−1)

n
+ c2

C

n
.

An union bound gives with probability at least 1− 3δ,∣∣∣Ŝ(w)− S(w)∣∣∣ ≤ S(w) 3εn(δ)

1− 3εn(δ)
+

ε′′n(δ)∥∥CwX∥∥∥∥CwX′

∥∥(1− 3εn(δ))
. (30)

Replacing δ with δ/3, we get the result with probability 1− δ.

To control the operator norm deviation of the empirical covariances ĈwX and ĈwX′ from their population
counterparts, we use the following dimension-free version of (Minsker, 2017) of the non-commutative
Bernstein inequality (see also Theorem 7.3.1 in (Tropp, 2012) for an easier to read and slightly
improved version) as well as an extension to self-adjoint Hilbert-Schmidt operators on separable
Hilbert spaces.

Proposition 1 ((Minsker, 2017) and Theorem 7.3.1 in (Tropp, 2012)). Let Ai, i ∈ [n] be i.i.d copies
of a random Hilbert-Schmidt operator A on separable Hilbert spaces. Let

∥∥A∥∥ ≤ c almost surely,
EA = 0 and let E[A2] ⪯ V for some trace class operator V . Then with probability at least 1− δ∥∥∥∥∥∥ 1n

∑
i∈[n]

Ai

∥∥∥∥∥∥ ≤ 2c

3n
LA(δ) +

√
2
∥∥V ∥∥
n
LA(δ), (31)

where

LA(δ) := log
4

δ
+ log

tr(V )∥∥V ∥∥ .
Proposition 2. Assume that cψ := supx

{∥∥ψw(x)∥∥2} <∞. Given δ > 0, with probability in the

i.i.d. draw of (xi)ni=1 from µ, it holds that

P{
∥∥ĈwX − CwX∥∥/∥∥CwX∥∥ ≤ εn(δ)} ≥ 1− δ, (32)

where

εn(δ) :=
4cψ

3
∥∥CwX∥∥nL(δ) +

√
2∥∥CwX∥∥nL(δ) and L(δ) := log

4r

δ
. (33)

Proof of Proposition 2. Proof follows directly from Proposition 1 applied to operators ψw(xi) ⊗
ψw(xi) using the fact that CwX = Eψw(xi) ⊗ ψw(xi), where we recall that ψw(x) :=

(ψw,1(x), . . . , ψw,r(x)) ∈ Rr. Hence, we have the obvious upper bound tr(Cw
X)∥∥Cw
X

∥∥ ≤ r.
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We deduce from (32), with probability at least 1− δ

(1− εn(δ))
∥∥CwX∥∥ ≤ ∥∥ĈwX∥∥ ≤ ∥∥CwX∥∥(1 + εn(δ))

∥∥CwX∥∥, (34)

A similar result is also valid for ĈwX′ provided that cψ′ := supw,x

{∥∥ψ′
w(x)

∥∥2} <∞. Define

ε′n(δ) :=
4cψ′

3
∥∥CwX∥∥nL(δ) +

√
2∥∥CwX∥∥nL(δ) and L(δ) := log

4r

δ
. (35)

Then, with probability at least 1− δ

(1− ε′n(δ))
∥∥CwX′

∥∥ ≤ ∥∥ĈwX′

∥∥ ≤ (1 + ε′n(δ))
∥∥CwX′

∥∥, (36)

We study now the deviation of
∥∥Ĉ w

XX′

∥∥2
HS

from
∥∥C w

XX′

∥∥2
HS

. We can essentially apply Theorem 3 in
(Gretton et al., 2005) with kernels kw(x, x′) = ⟨ψw(x), ψw(x′)⟩ and lw(y, y′) = ⟨ψ′

w(y), ψ
′
w(y

′)⟩.
Note that these two kernels are essentially bounded. Indeed we have

ess sup
x,x′

|kw(x, x′)| ≤ sup
x
∥ψw(x)∥2 ≤ cψ and ess sup

y,y′
|lw(y, y′)| ≤ sup

x
∥ψ′

w(y)∥2 ≤ cψ′ .

Hence, for any n ≥ 2 and δ > 0, we get with probability at least 1− δ,∣∣∣∥∥Ĉ w
XX′

∥∥2
HS
−

∥∥C w
XX′

∥∥2
HS

∣∣∣ ≤ ϵ′′n(δ), (37)

where

ϵ′′n(δ) := cψcψ′

√
5 log(6δ−1)

n
+ cψcψ′

C

n
,

for some absolute constant C > 0.

D.2 OPERATOR REGRESSION AND PREDICTION

We next discuss how to design an estimator of the transfer operator T : L2
µ′(X )→ L2

µ(X ) using the
learned subspaces Hw and H′

w. Namely, we estimate T ≈ T̂w : H′
w → Hw. The purpose of such

estimation is to, given a initial state x ∈ X , predict the average evolution E[f(X ′) |X = x] of an
observable f ∈ L2

µ′(X ). Remark that in the main text, we have just discussed the task when one
takesH′

w = Hw.

In what follows, let us assume that after the training we obtained w ∈ W such that CwX and CwX′

are invertible, that is that (ψw,j)j∈[r] (ψ
′
w,j)j∈[r] form basis of the spacesHw andH′

w, respectively.
This means that the operators Ew, : Rr 7→ Hw and E′

w : Rr 7→ H′
w can be properly defined as partial

isometries by Ewv = ψw(·)⊤v and E′
wv = ψ′

w(·)⊤v. So, every estimator can be written in the form
T̂w = EwT̂ (E

′
w)

∗ for some T̂ ∈ Rr×r.

Different estimators can then computed from data Dn := (xi, x
′
i)i∈[n] (either seen or unseen during

training time). To elaborate on this, let us, as usual for kernel methods, define the sampling oper-
ators Ŝ : Hw → Rn and Ŝ′ : H′

w → Rn, given by Ŝh = n−
1
2 [h(x1) . . . h(xn)]

⊤, f ∈ Hw, and
Ŝ′g = n−

1
2 [g(x′1) . . . g(x

′
n)]

⊤, g ∈ H′
w. Notice that we can extend the domain of definition of

these operators via interpolation to arbitrary functions X → R that can be evaluated on a dataset,
respectively. Hence, without possible confusion, when evaluating we can use Ŝf and Ŝ′f ′ even when
f ̸∈ Hw or f ′ ̸∈ H′

w.

Now, as shown in (Kostic et al., 2022), the empirical estimator T̂w of the transfer operator T using
dataset Dn can be obtained via operator regression by minimizing the empirical risk∥∥Ŝ′ − ŜT̂w

∥∥2
HS

=
∥∥Ŝ′ − ŜEwT̂ (E′

w)
∗∥∥2

HS
=

∥∥Ŝ′E′
w − ŜEwT̂

∥∥2
HS

where the last equality holds since E′
w is a partial isometry. Therefore, the simple least square (LS)

estimator is than obtained as T̂ := (E∗
wŜ

∗ŜEw)
†(E∗

wŜ
∗Ŝ′E′

w) = (ĈwX)†Ĉ w
XX′ , or, equivalently, as

T̂w = EwT̂ (E
′
w)

∗ = Ŝ∗(ŜŜ∗)†Ŝ′

Once the regression is performed, recalling that X ′ is a ∆t = 1 step ahead evolution of X we can
use it to approximate E[f(X ′) |X = x] ≈ (T̂wf)(x) for f : X → R, as the following result shows.
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Proposition 3. Let T̂ : H′
w → Hw be a LS estimator of T , then for every x ∈ X and f ∈ Hw

(T̂wf)(x) = ψw(x)
⊤ (ĈwX)†Ψ̂w[f(x

′
1) | · · · |f(x′n)]⊤, (38)

where Ψ̂w := [ψw(x1) | · · · |ψw(xn)] ∈ Rr×n.

Proof. The proof follows directly observing that Ψ̂⊤
w =

√
n[Ŝψw,1 | . . . | Ŝψw,r] =

√
nŜEw.

Namely, then

Ψ̂w[f(x
′
1) | · · · |f(x′n)]⊤ = (ŜEw)

∗Ŝ′f = E∗
wŜ

∗Ŝ′f = E∗
wŜ

∗Ŝ′EwE
∗
wf = Ĉ w

XX′E∗
wf

and, hence

ψw(x)
⊤ (ĈwX)†Ψ̂w[f(x

′
1) | · · · |f(x′n)]⊤ = Ew(Ĉ

w
X)†Ĉ w

XX′E∗
wf = T̂wf.

We remark that the previous result formally holds for f ∈ H′
w, but it can be easily extended to

functions in L2
µ′(X ) via interpolation.

D.3 DYNAMICS MODE DECOMPOSITION AND FORECASTING

Now we consider the problem of forecasting the process for several time steps in future using what is
known as (extended) dynamic mode decomposition, which is based on the estimated eigenvalues and
eigenfunctions of the transfer operator. As observed in the main body, this is meaningful only if the
operator is an endomorphism on a function space, that is if it maps the space into itself.

Hence, after training DPNet we will use just one representation ψw and its r-dimensional space of
functions Hw := span(ψw,j)j∈[r] to perform the operator regression, as explained in the previous
section, and obtain an estimator T̂w = EwT̂E

∗
w : Hw → Hw, for some matrix T̂ ∈ Rr×r. Then,

if (λ̂i, ûi, v̂i)i∈[r] ⊂ C × Cr × Cr is a spectral decomposition of T̂ , then (λ̂i, Ewûi, Ewv̂i)i∈[r]

is a spectral decomposition of T̂w. In the following result we show how to compute dynamic
mode decomposition of T based on the estimator T̂w and use it for forecasting by approximating
E[f(Xt) |X0 = x] ≈ ((T̂w)tf)(x), for f : X → R, x ∈ X .

Proposition 4. Let T̂w = EwT̂Ew : Hw → Hw be rank r LS estimator of T∆t, for ∆t = 1. If
T̂ =

∑
i∈[r] λ̂iv̂i û

∗
i is the spectral decomposition of T̂ , and f̂i(x) := ψw(x)

⊤v̂i and ĝi(x) :=

(ûi)
∗ψw(x), i ∈ [r], then for every t ∈ N, every x ∈ X and every f ∈ Hw it holds that

((T̂w)tf)(x) =
∑
i∈[r]

λ̂ti f̂i(x) û
∗
iDw(f), (39)

where Dw(f) := Λ̂−1(ĈwX)†Ψ̂w[f(x
′
1) | . . . |f(x′n)]⊤ ∈ Rr.

Proof. First observe that

(T̂w)tf = EwT̂
tE∗

wf = EwT̂
t−1E∗

wEwT̂E
∗
wf =

∑
i∈[r]

λ̂t−1
i (f̂i ⊗ ĝi)EwT̂E∗

wf.

Hence,
((T̂w)tf)(x) =

∑
i∈[r]

λ̂t−1
i f̂i(x)(û

∗
i T̂E

∗
wf) =

∑
i∈[r]

λ̂ti f̂i(x)(λ̂
−1û∗i T̂E

∗
wf)

and the rest of the proof follows as in Prop. 3.

We remark that û∗iDw(f) is known as i-th Koopman mode of the observable f , and that in comparison
to Encoder-Decoder approaches Dw(f) can be considered as a decoder when forecasting function
f : X → R. Clearly this is easily extended to vector valued functions, and, hence, we can forecast
the states by using û∗iDw(I) := Λ̂−1(ĈwX)†Ψ̂w[x

′
1 | . . . |x′n]⊤ ∈ Rd, where X ⊂ Rd.
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Algorithm 2 DPNets Training (Discrete)

Input: data Dn = (x1, . . . , xn), D′
n = (x′1, . . . , x

′
n), metric distortion lossR; optimizer U ; DNNs

ψw, ψ
′
w : X → Rr; metric loss coefficient γ; # of steps K; minibatch size m.

1: Initialize DNN weights w1

2: for k = 1 to K do,
3: Sample minibatches (y1, . . . , ym) from Dn, and (y′1, . . . , y

′
m) from D′

n.
4: Compute empirical covariance matrices

Ĉwk

X ← 1
n

∑m
i=1 ψwk

(yi)ψwk
(yi)

⊤, Ĉwk

X′ ← 1
n

∑m
i=1ψ

′
wk

(y′i)ψ
′
wk

(y′i)
⊤

Ĉwk

XX′ ← 1
n

∑m
i=1ψwk

(yi)ψ
′
wk

(y′i)
⊤

5: if DPNets-relaxed then

6: F (wk)← Ŝγm(wk) :=

∥∥Ĉwk
XX′

∥∥2

HS∥∥Ĉwk
X

∥∥∥∥Ĉwk
X′

∥∥ − γ(R(Ĉwk

X ) +R(Ĉwk

X′ )
)

7: else
8: F (wk)← P̂γm(wk) :=

∥∥(Ĉwk

X )
†
2 Ĉwk

XX′(Ĉ
wk

X′ )
†
2

∥∥2
HS
− γ

(
R(Ĉwk

X ) +R(Ĉwk

X′ )
)

9: end if
10: wk+1 ← U(wk,∇F (wk)) where ∇F (wk) is computed via backpropagation
11: end for
12: return representations ψwK

, ψ′
wK

D.4 EXTENDED ALGORITHM AND TRAINING TIME

Algorithm 2 is an extended version of Algorithm 1. The time complexity of computing the empirical
scores P̂γm(w), Ŝγm(w) and (thanks to backpropagation) their gradients, isO(mCost(ψw)+mr2+r3)
andO(mCost(ψw)+mr2) respectively, where Cost(ψw) is the cost of one evaluation of ψw. Namely,
computing the embeddings for m samples costs O(mCost(ψw)), computing the (cross)covariance
matrices for m samples costs O(mr2), computing the pseudoinverse via eignevalue decomposition
costs O(r3), while computing the operator norm of the covariance matrices using e.g. the Arnoldi
iteration method costs O(r2). We note that the cost of training VAMPNets (Mardt et al., 2018) is
the of the same order as DPNets without relaxation, since evaluating the metric distortion loss is
relatively cheap once we have the covariance matrices.

E SDE LEARNING

We next prove the second main result on the optimization problem (5).

Theorem 2. If Hw ⊆ W 1,2
π (X ), and λ1(L) ≥ · · · ≥ λr+1(L) are eigenvalues of L above its

essential spectrum, then for every γ ≥ 0 it holds

Pγ∂ (w) := tr
(
(CwX)†C w

X∂

)
− γR(CwX) ≤ λ1(L) + · · ·+ λr(L), (14)

and the equality is achieved when ψw,j is the eigenfunction of L corresponding to λj(L), for j ∈ [r].

Proof. In view of Lem. 2, we only need to prove that tr(PHw
LPHw

) = tr
(
(CwX)†C w

X∂

)
. To

that end, we reason as in the proof of Lem. 3 to obtain that PHw
= UQ(CwX)†/2Q∗S∗

π, where
Sπ : Hw ↪→ W 1,2

π (X ) is an injection and Q : Rr → Hw and U : Hw → W 1,2
π (X ) are partial

isometries. Moreover, recalling (2), we have that

(Q∗S∗
πLSπQ) = lim

∆t→0+

Q∗S∗
π(T∆t − I)SπQ

∆t

= lim
∆t→0+

Q∗
[∫

X
π(dx)ϕwX(x)⊗

∫
X p∆t(x, dx

′)(Q∗ϕwX(x′)−Q∗ϕwX(x))

∆t

]
=

∫
X
π(dx)ψw(x)⊗

(
lim

∆t→0+

∫
X p∆t(x, dx

′)(ψw(x
′)− ψw(x))

∆t

)
= EX∼π [ψw(X)⊗ dψw(X)] = C w

X∂ ,
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DPNets DPNets-relax VAMPNets DynAE ConsAE

Logistic 1× 10−4 1× 10−4 3× 10−6 - -
Fluid Failed 1× 10−4 Failed 9× 10−4 9× 10−4

MNIST 9× 10−4 9× 10−4 9× 10−4 9× 10−4 9× 10−4

Chignolin Failed 1× 10−3 Failed - -
Langevin 1× 10−3 - - - -

Table 3: Best learning rates found by a grid search for each (experiment, method) pair. For all
experiments, the grid was made by 100 equally spaced values in the interval (10−6, 10−2).

where the last line follows from Itō formula (see e.g. Arnold, 1974). Hence, using PHw
=

UQ(CwX)†/2Q∗S∗
π we have that

tr(PHw
LPHw

) = tr((CwX)†/2C w
X∂(C

w
X)†/2) = tr((CwX)†C w

X∂),

which completes the proof

To conclude this section, we remark that in the continuous setting the estimator L̂w : Hw → Hw of
L on the learned spaceHw can be obtained via operator regression in a similar way as discussed in
Sec. 4. So, the LS estimator is given by matrix L̂ = (ĈwX)†Ĉ w

X∂ , and its spectral decomposition is

L̂w =
∑
i∈[r]λ̂i f̂i ⊗ ĝi, where f̂i(x) := ψw(x)

⊤v̂i and ĝi(x) := (ûi)
∗ψw(x), (40)

where L̂ =
∑
i∈[r] λ̂iv̂i û

⊤
i is the spectral decomposition of the matrix L̂.

Hence, using that λi(T∆t)= exp(λi(L)), we directly obtain the modal decomposition in the continu-
ous time,

E[f(Xt) |X0 = x] ≈
∑
i∈[r] exp(λ̂i t) f̂i(x) û

∗
iDw(f), t ∈ [0,+∞) (41)

where Dw(f)= (ĈwX)†Ψ̂w[f(x1 ) | · · · |f(xn)]⊤ ∈Rr are the coefficients of the LS estimator of f
inHw. As a final remark, note that in (41) we regress function f ontoHw using least squares with
data (xi, f(xi)).

F EXPERIMENTS

Hardware The experiments were performed on a workstation equipped with an Intel(R) Core™i9-
9900X CPU @ 3.50GHz, 48GB of RAM and a NVIDIA GeForce RTX 2080 Ti GPU. Due to RAM
insufficiency, the Nyström baseline reported in Table 2 was performed on a CPU node of a cluster
with 2x AMD EPYC 7713 @ 2.0GHz and 512GB of RAM.

Software All experiments and baselines have been implemented in Python 3.11 and Pytorch 2.0, the
only exception being the PINNs baseline for the fluid flow experiment, for which we relied on the
original implementation of the code. All the code to reproduce the experiments will be made openly
available.

General remarks Every algorithm has been performed in float32 single precision, fixing the
random number generator seed where appropriate. We made sure that each algorithm was trained on
the same combinations of input-output data, and for neural network models we used the same batches
and number of epochs. The learning rate for each method was tuned independently by running a
small number of steps at 100 equally spaced learning rates in the interval (10−6, 10−2) and selecting
the best out of these. The best learning rates for each experiment are reported in Table 3

Once a representation was learned, we always used the Ordinary Least Squares estimator described
in 4 to perform the subsequent evaluation tasks.

F.1 LOGISTIC MAP

Data We generated the data as explained in Kostic et al. (2022) for a value N = 20 of the
trigonometric noise. To train DPNets and VAMPNets we have sampled a trajectory of 214 ≈ 16000
points. We used a batch size of 213 points and trained for 500 epochs.
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Optimization Adam with learning rate tuned as explained in the general remarks.

Architecture Multi layer perceptron of shape Linear[64]→Linear[128]→
Linear[64]→Linear[feature_dim] with Leaky ReLU activations. We have set
the dimension of the feature map to r = 7 as the minimal dimension allowing to meaningfully learn
the first three eigenvalues.

Additional results: the role of feature dimension In the left panel of Fig. 5 we compare the
eigenvalues and the singular values of T for the noisy logistic map, while in the center and right
panels we show the metrics reported in Tab. 1 of the main text as a function of the feature dimension
r. Notice how the singular values decay significantly slower than eigenvalues, a consequence of the
fact that the transfer operator is not normal, i.e. T T ∗ ̸= T ∗T . Non-normality makes the estimation
of the spectra of T particularly sensitive, as captured by the pseudospectra, see Trefethen and Embree
(2020). In Fig. 6 we show how small estimation errors in operator norm (label on the contour lines)
incur larger errors in the eigenvalue estimation (distance of the true eigenvalues to the contour lines
in the complex plane). This means that for non-normal operators the estimation error needs to be
typically much smaller than the modulus of the eigenvalues one wants to recover. For r < 7, the
spectral error of every model is of the same order of the eigenvalues to approximate, as unequivocally
shown in Fig. 6. At r = 7, DPNets-relaxed already give a decent approximation of the three leading
eigenvalues, see also Fig. 6. From r > 7 onward, every model progressively yields reasonable
estimations, with DPNets and Cheby-T quickly catching up with DPNets-relaxed. For the optimality
gap, every model shows an improving trend by increasing the feature dimension r, with DPNets
showing the strongest performance.
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Figure 5: (Left) Decay of the singular values σi(T ) and of the the eigenvalues |λi(T )| for the logistic
map example. (Center, Right) Spectral error and Optimality gap as a function of the feature dimension
r for the baselines considered in Tab. 1.

Hyperparameters Metric loss coefficient γ = 1.

The reported results concern the average over 20 independent seed initializations.

F.2 FLUID FLOW PAST A CYLINDER

The data for this experiment are equally spaced sampled solutions of the Navier-Stokes equations (Tre-
fethen and Embree, 2020) for an incompressible Newtonian fluid coupled with the transport equation

∂tc+ u · ∇c = Pec−1∇2c.

Here, Pec is the Péclet number, and c : R3 → R is a field representing the concentration c(t;x, y) of
a scalar quantity which is transported by the fluid flow without influencing the fluid motion itself (e.g.
a dye dissolved in water). These partial derivative equations are solved over a 100× 200 regular grid.

In this experiment we have only been able to train DPNets-relaxed. Indeed both DPNets (unrelaxed)
and VAMPNets failed due to linear algebra errors arising in the back propagation step for the
pseudo-inverse matrix.

Data Available at https://github.com/maziarraissi/HFM. It consists of 201 snapshots:
160 used for training, the rest for testing. Has been standardized: each channel with its own mean
and std. In Fig. 8 we show two snapshots from the training dataset.
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Figure 6: Estimation of the eigenvalues of the logistic map at different feature dimensions. For each
model, we plot the eigenvalues estimated by 20 independent initial seeds. The color in each scatter
plot follows the same color-coding of Fig. 5. Black × represent reference eigenvalues, while the
dashed contour lines show the pseudospectral regions when the estimation error ranges from 10−1

(outermost) to 10−4 (innermost). Note that for this problem pseudospectra indicates that the leading
eigenvalue is easy to recover, while recovering eigenvalues close to zero is very hard.

Optimization Adam with learning rate tuned as explained in the general remarks. Full-batch training.
5000 total training iterations/epochs. The training time of a full batch ≈ 39 mins.

Architecture MLP with layers of width [128, 512, 1024, 512, 256, 64] and ReLU
activation function

Hyperparameters Metric loss coefficient γ = 1;

F.3 CONTINUOUS DYNAMICS

The implementation of this experiment is straightforward, and our results can be reproduced using
the following informations.
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Figure 7: The implied timescale (Mardt et al., 2018) associated to the eignvalues of the transfer
operator. Everything which is below the simulation lagtime τ = 0.2 ns, is just numerical noise.

Figure 8: Two snapshots of the passive scalar concentration for the flow past a cylinder.

Data Produced in-house with JAX MD. Both the dataset and the script to produce new trajectories
will be released. The dataset consists of 105 snapshots: 70% used for training, 10% for validation,
20% for testing.

Optimization Adam with learning rate 10−3. Other parameters are the predefined values in Optax’s
implementation. Batch size: 8192. 500 epochs. Training time is ≈ 2 mins.

Architecture Multi layer perceptron with CeLu activation function. Dimension of the hidden layer:
[32, 64, 128, 128, 64, 4].

Hyperparameters Metric loss coefficient γ = 50.

F.4 ORDERED MNIST

Data out of the full MNIST dataset we generated a trajectory of 1000 steps as discussed in the main
text, and evaluated the forecasting accuracy over 1000 different test initial conditions. In Tab. 4 we
report the training time for DPNets, DPNets-relaxed and the baselines used. We observe that both our
methods are the fastest during training. See also Fig. 10 for the generated sequences of digits by the
compared methods.

Optimization Adam with learning rate tuned as explained in the general remarks. Batches of 128
samples trained over 150 epochs.

Architecture Conv2d[16]→ReLU→MaxPool[2]→ Conv2d[32]→ReLU→
MaxPool[2]→Linear[5].

For the Auto-Encoder baselines we used this architecture for the encoder and the “reversed” network
constructed with transposed convolutions for the decoder.

Hyperparameters Metric loss coefficient γ = 1.
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Table 4: Ordered MNIST Training times. Each model is run on CPU and we report mean ± std for
20 runs.

Model Fit Time (s) Time per Epoch (s)
DynamicalAE 0.571± 0.034 0.057± 0.003

Oracle-Features 0.098 -
DMD 0.333 -

KernelDMD-Poly3 4.914 -
KernelDMD-AbsExp 0.832 -

KernelDMD-RBF 0.776 -
DPNets 0.046± 0.004 0.049± 0.001

DPNets-relaxed 0.043± 0.004 0.051± 0.004

Chignolin folding transition

Figure 9: Three snapshots of Chignolin while undergoing a folding transition.

F.5 THE METASTABLE STATES OF CHIGNOLIN

In this experiment we build from the work in (Ghorbani et al., 2022) by employing our framework
to learn the leading eigenfunctions associated to the dynamics of Chignolin, a folding protein, from
a 106µs long molecular dynamics simulation sampled every 200 ps, totalling over half a million
data points (Lindorff-Larsen et al., 2011). We consider every heavy atom for a total of 93 nodes as
well as a cutoff radius of 6 Angstroms giving an average of 30 neighbours for each atom. Compared
to (Ghorbani et al., 2022), which selects only the ≈ 20 Cα atoms each with its first 5 neighbours,
our experiment has therefore a much larger scale. Indeed, (Ghorbani et al., 2022) reports being able
to train directly with the objective P0, while in our case we always encountered numerical errors,
and we were able to only succesfully train the Sγ objective. We parametrized the feature map with a
graph neural network (GNN) model. GNNs currently are the state of the art in modeling atomistic
systems (Chanussot et al., 2021), and allow one to elegantly incorporate the roto-translational and
permutational symmetries prescribed by physics. Specifically, we train a SchNet (Schütt et al.,
2019; 2023) model with 3 interaction blocks, where in each block the latent atomic environment
is 64-dimensional and the inter-atomic distances used for the message-passing step are expanded
over 20 radial basis functions. After the last interaction block, each latent atomic environment is
forwarded to a linear layer and then aggregated via averaging. The model has been trained for 100
epochs with an Adam optimizer and a learning rate of 10−3. We analyzed the eigenfunctions using
the technique described in (Novelli et al., 2022), which links each metastable state to physically
interpretable conformational descriptors. Our analysis aligns perfectly with (Novelli et al., 2022),
where the slowest metastable state corresponds to the folding-unfolding transition and is linked to
the distance between residues (1, 10) and (2, 9) located at opposite ends of the protein. Additionally,
the immediately faster metastable state represents a conformational change within the folded state,
characterized by the relative angle between residues 6 and 8.

In Fig. 9 we plot how the structure of Chignolin changes while performing a folding transition,
while in Fig. 7 we plot the implied timescales of the dynamical modes of Chignolin as estimated by
DPNets-relaxed and Nyström-PCR.
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This is by far the heaviest experiment of the paper, and we made use of the package
SchNetPack (Schütt et al., 2019; 2023) on multiple instances. In particular, we have used
SchNetPack dataloaders and preprocessing transformations (casting to 32 bit precision and on-the
fly computation of the distance matrix). Further, we have used SchNetPack’s implementation of
the SchNet interaction block. To reproduce our results, the following informations may prove useful.

Data The data was presented for the first time in (Lindorff-Larsen et al., 2011) and is freely available
for non-commercial use upon request to DeShaw research. Dataset of 524743 snapshots. Each
graph is composed by the 93 heavy atoms. The edges are formed only if two atoms are less than 5
Angstroms distant. The average number of edges is 28.

Optimization Adam with learning rate 10−3. Other parameters are the predefined values in Torch’s
implementation. Batch size: 192. 100 epochs. Training time: ≈ 11 hrs.

Architecture SchNet with 3 blocks, 20 RBF functions expansions, 64 latent dimension. At the
output of SchNet, the hidden variables associated to the nodes are averaged and forwarded to a dense
layer with 16 final output features.

Hyperparameters Metric loss coefficient γ = 0.01. For the Nyström baseline we used M = 5000
inducing points.
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