
Published as a conference paper at ICLR 2025

A COEFFICIENT MAKES SVRG EFFECTIVE

Yida Yin1 Zhiqiu Xu2 Zhiyuan Li3 Trevor Darrell1 Zhuang Liu4

1UC Berkeley 2University of Pennsylvania 3TTIC 4Meta AI Research

ABSTRACT

Stochastic Variance Reduced Gradient (SVRG), introduced by Johnson & Zhang
(2013), is a theoretically compelling optimization method. However, as Defazio &
Bottou (2019) highlight, its effectiveness in deep learning is yet to be proven. In
this work, we demonstrate the potential of SVRG in optimizing real-world neural
networks. Our empirical analysis finds that, for deeper neural networks, the strength
of the variance reduction term in SVRG should be smaller and decrease as training
progresses. Inspired by this, we introduce a multiplicative coefficient α to control
the strength and adjust it through a linear decay schedule. We name our method α-
SVRG. Our results show α-SVRG better optimizes models, consistently reducing
training loss compared to the baseline and standard SVRG across various model
architectures and multiple image classification datasets. We hope our findings
encourage further exploration into variance reduction techniques in deep learning.
Code is available at github.com/davidyyd/alpha-SVRG.

1 INTRODUCTION

A decade ago, Johnson & Zhang (2013) proposed a simple approach for reducing gradient variance
in SGD—Stochastic Variance Reduced Gradient (SVRG). SVRG keeps a snapshot model and uses it
to form a variance reduction term to adjust the gradient of the current model. This variance reduction
term is the difference between the snapshot’s stochastic gradient and its full gradient on the whole
dataset. Utilizing this term, SVRG can reduce gradient variance of SGD and accelerate it to almost
as fast as the full-batch gradient descent in strongly convex settings.

Over the years, numerous SVRG variants have emerged. Some focus on further accelerating con-
vergence in convex settings (Xiao & Zhang, 2014; Lin et al., 2015; Defazio, 2016), while others are
tailored for non-convex scenarios (Allen-Zhu & Hazan, 2016; Reddi et al., 2016; Lei et al., 2017;
Fang et al., 2018). SVRG and its variants have shown effectiveness in optimizing simple machine
learning models like logistic regression and ridge regression (Allen-Zhu, 2017; Lei et al., 2017).

Despite the theoretical value of SVRG and its subsequent works, they have seen limited practical
success in training neural networks. Most SVRG research in non-convex settings is restricted to
modest experiments: training basic models like Multi-Layer Perceptrons (MLP) or simple CNNs
on small datasets like MNIST and CIFAR-10. These studies usually exclude evaluations on more
capable and deeper networks. More recently, Defazio & Bottou (2019) have exploited several variance
reduction methods, including SVRG, to deep vision models. They found that SVRG fails to reduce
gradient variance for deep neural networks because the model updates so quickly on the loss surface
that the snapshot model becomes outdated and ineffective at variance reduction.

In this work, we show that adding a multiplicative coefficient to SVRG’s variance reduction term can
make it effective for deep neural networks. Our exploration is motivated by an intriguing observation:
SVRG can only reduce gradient variance in the initial training stages but increases it later. To tackle
this problem, we mathematically derive the optimal coefficient for the variance reduction term to
minimize the gradient variance. Our empirical analysis then leads to two key observations about this
optimal coefficient: (1) as the depth of the model increases, the optimal coefficient becomes smaller;
(2) as training advances, the optimal coefficient decreases, dropping well below the default coefficient
of 1 in SVRG. These findings help explain why a constant coefficient of 1 in SVRG, while initially
effective, eventually fails to reduce gradient variance.

Based on these observations, we introduce a linearly decaying coefficient α to control the strength
of the variance reduction term in SVRG. We call our method α-SVRG and illustrate it in Figure 1.

1

github.com/davidyyd/alpha-SVRG


Published as a conference paper at ICLR 2025

variance reduced gradient
snapshot full gradient

loss
lowhigh

snapshot stochastic gradientsnapshot model
variance reduction term model stochastic gradient

(a) SVRG (b) ⍺-SVRG

α

Figure 1: SVRG vs. α-SVRG. Both SVRG (left) and α-SVRG (right) use the difference between
snapshot stochastic gradient (gray) and snapshot full gradient (blue) to form a variance reduction
term (orange), which modifies model stochastic gradient (black) into variance reduced gradient (red).
But α-SVRG employs a coefficient α to modulate the strength of the variance reduction term. With
this coefficient, α-SVRG reduces the gradient variance and results in faster convergence.

α-SVRG decreases gradient variance stably across both early and late training and helps optimize
the model better. We evaluate α-SVRG on a range of architectures and image classification datasets.
α-SVRG achieves a lower training loss than the baseline and the standard SVRG. Our results highlight
the value of SVRG in deep learning. We hope our work can offer insights about SVRG and stimulate
more research in variance reduction approaches for optimization in neural networks.

2 MOTIVATION: SVRG MAY NOT ALWAYS REDUCE VARIANCE

SVRG formulation. We first introduce the basic formulation of SVRG. We adopt the following
notation: t is the iteration index, θt represents the current model parameters, and ∇fi(·) denotes
the gradient of loss function f for the i-th mini-batch. In SVRG’s original work (Johnson & Zhang,
2013), this corresponds to the i-th data point. When the subscript i is omitted, ∇f(·) represents the
full gradient across the entire dataset. A key concept in SVRG is the snapshot model, represented as
θpast. It is a snapshot of the model at a previous iteration before t. We store its full gradient ∇f(θpast).
This snapshot is taken periodically. SVRG defines the variance reduced gradient gt

i , as follows:

gt
i = ∇fi(θ

t)− (∇fi(θ
past)−∇f(θpast))︸ ︷︷ ︸

variance reduction term

. (1)

Intuitively, SVRG uses the difference between the mini-batch gradient and full gradient of a past
model to modify the current mini-batch gradient. This could make gt

i better aligned with the current
full gradient ∇f(θt) and thus stabilize each update.

SVRG was initially introduced in the context of vanilla SGD. Recent work (Dubois-Taine et al., 2021;
Wang & Klabjan, 2022) has integrated SVRG into alternative base optimizers. Following them, we
input the variance reduced gradient gt

i into the base optimizer and ensure a fair comparison by using
the same base optimizer for SVRG and the baseline. We also follow the practice in Defazio & Bottou
(2019), taking snapshot for SVRG once per training epoch.

Gradient variance. Our goal is to assess SVRG’s effectiveness in reducing gradient variance. To
this end, we gather N mini-batch gradients, denoted as {gt

i |i ∈ {1, · · · , N}}, by performing back-

name formula description

metric 1* 2
N(N−1)

∑
i ̸=j

1
2
(1− ⟨gt

i ,g
t
j⟩

∥gt
i∥2∥g

t
j∥2

) the directional variance of the gradients

metric 2†
∑d

k=1 Var(g
t
i,k) the variance of gradients across each component

metric 3‡ λmax(
1
N

∑N
i=1(g

t
i − gt)(gt

i − gt)T ) the magnitude of the most significant variation

Table 1: Metrics. gt is the mean of the mini-batch gradients gt
i . k indexes the k-th component of

gradient gti,k. References: ∗ Liu et al. (2023), † Defazio & Bottou (2019), ‡ Jastrzebski et al. (2020)

2



Published as a conference paper at ICLR 2025

propagation on checkpoints of the model at the iteration t with randomly selected N mini-batches.
For SVRG, each of these gradients is modified based on Equation 1. To present a comprehensive
view, we employ three metrics from prior studies to quantify gradient variance in Table 1.

In this part, we compare our three metrics. Metric 1 calculates the cosine distance between pairwise
mini-batch gradients, therefore only capturing variance in gradient directions rather than gradient
magnitudes. This is very important for scale-invariant optimizers, such as Adagrad (Lydia & Francis,
2019) and Adam (Kingma & Ba, 2015). In contrast, metric 2 focuses on both gradient directions
and magnitudes by summing the variance of each component of gradients. This metric has been the
standard tool to measure gradient variance in various optimization literature (Allen-Zhu & Hazan,
2016; Defazio & Bottou, 2019). Metric 3 considers the largest eigenvalue in gradient covariance
matrix, characterizing the most dominant part in gradient variance. We also average each gradient
variance metric across three runs, with shaded regions in figures representing the standard deviation.

SVRG’s effect on gradient variance. To understand how SVRG affects training, we examine two
simple models: a linear layer (Logistic Regression) and a 4-layer Multi-Layer Perceptron (MLP-4).
We train them over 30 epochs on CIFAR-10. We compare SVRG to a baseline using only SGD.

0 5 10 15 20 25 30
epochs

0.00

0.15

0.30

0.45

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 5 10 15 20 25 30
epochs

0

2

4

6

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 5 10 15 20 25 30
epochs

0.00

0.15

0.30

0.45

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 5 10 15 20 25 30
epochs

1.6

1.7

1.8

1.9

tra
in

 lo
ss

SGD
+ SVRG

Figure 2: SVRG on Logistic Regression. SVRG effectively reduces the gradient variance for
Logistic Regression, leading to a lower training loss than the baseline.

We plot Logistic Regression’s gradient variance (top two and bottom left) and training loss (bottom
right) in Figure 2. For Logistic Regression, SVRG can reduce the gradient variance throughout the
entire training process and achieve a lower training loss than the baseline.

0 5 10 15 20 25 30
epochs

0.00

0.15

0.30

0.45

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 5 10 15 20 25 30
epochs

0

4

8

12

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 5 10 15 20 25 30
epochs

0.00

0.16

0.32

0.48

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 5 10 15 20 25 30
epochs

0.2

0.8

1.4

2.0

tra
in

 lo
ss

SGD
+ SVRG

Figure 3: SVRG on MLP-4. In the first few epochs, SVRG reduces the gradient variance for MLP-4,
but afterward, SVRG increases it, well above the baseline. As a result, SVRG exhibits a higher
training loss than the baseline at the end of training.

3



Published as a conference paper at ICLR 2025

In contrast, for MLP-4, SVRG may not always reduce gradient variance. As shown in Figure 3, SVRG
can only decrease the gradient variance for the first five epochs but then increases it. Consequently,
SVRG has a larger final training loss than the baseline. This indicates that the increase in gradient
variance caused by SVRG hinders the convergence of MLP-4’s training loss.

This surprising empirical observation in a slightly deeper model leads us to question whether SVRG
may alter the gradient too excessively at certain phases of training. Can we mitigate this adverse
effect? We explore these questions starting from a theoretical framework in the next section.

3 A CLOSER LOOK AT CONTROL VARIATES IN SVRG

Control variates (Lavenberg et al., 1977) is a technique initially developed in Monte Carlo methods
to reduce variance. We aim to estimate the expected value of a random variable X. The variance of
this estimate usually depends on Var(X). To form a less variate estimate X∗, we can use a control
variate Y that correlates with X and a coefficient α to regulate the influence of Y and E[Y] :

X∗ = X − α(Y − E[Y]). (2)

This estimate remains unbiased for any value of α. The coefficient that minimizes the variance of the
estimate can be derived as:

α∗ =
Cov(X,Y)

Var(Y)
= ρ(X,Y)

σ(X)

σ(Y)
, (3)

where ρ(X,Y) represents the correlation coefficient between X and Y; σ(·) denotes the standard
deviation. The derivation is detailed in Appendix A. The minimized variance becomes Var(X∗) =
(1− ρ(X,Y)2)Var(X). The higher the correlation is, the lower the variance of the estimate is.

Note that SVRG uses control variates to reduce variance in each component of the gradient. This
variance reduction occurs at each iteration t. Take a closer look at Equation 1 and 2: the model
stochastic gradient fi(θt) is the random variable X; the snapshot stochastic gradient fi(θpast) is the
control variate Y; and the snapshot full gradient f(θpast) is the expectation E[Y].

A key difference between SVRG and control variates is that SVRG omits the coefficient α, defaulting
it to 1. This is possibly because the gradient distribution does not change drastically in strongly
convex settings (Johnson & Zhang, 2013). Yet, SVRG’s subsequent studies, even those addressing
non-convex cases, have neglected the coefficient and formulated their theories based on Equation 1.

Motivated by this, we introduce a time-dependent coefficient vector αt ∈ Rd in SVRG:

gt
i = ∇fi(θ

t)−αt ⊙ (∇fi(θ
past)−∇f(θpast)), (4)

where ⊙ represents the element-wise multiplication.

Optimal coefficient. We adopt the same gradient variance definition as Defazio & Bottou (2019)
(metric 2 in Table 1) and aim to determine the optimal αt∗ that minimizes it at each iteration.
Specifically, our objective is to minimize the sum of variances across each component of gt

i . Let k
index the k-th component αt∗

k and the k-th component of the gradient ∇f·,k(·). For clarity, we omit
the mini-batch index i. This can be formally expressed as follows:

min
αt

d∑
k=1

Var(gt·,k) =

d∑
k=1

min
αt

k

Var(gt·,k). (5)

We can switch the order of minimization and summation in Equation 5 because the variance of the
k-th component of the gradient only depends on the k-th component of the coefficient. Applying
Equation 3 yields the optimal coefficient αt∗

k :

αt∗
k =

Cov(∇f·,k(θ
past),∇f·,k(θ

t))

Var(∇f·,k(θpast))
= ρ(∇f·,k(θ

past),∇f·,k(θ
t))

σ(∇f·,k(θ
t))

σ(∇f·,k(θpast))
. (6)

A stronger correlation between the snapshot and model gradients leads to a larger optimal coefficient.

For small networks like MLP-4, calculating the optimal coefficient at each iteration is feasible by
gathering all mini-batch gradients for both the current and snapshot models. For larger networks,
however, this method becomes impractical; we will address this challenge later in the paper.

4



Published as a conference paper at ICLR 2025

2 3 4 5 6 7 8 9 10 11
epochs

0.1

0.4

0.7

1.0

op
tim

al
 c

oe
ffi

ci
en

t
Logistic Regression
MLP-2
MLP-4

(a) SGD

2 3 4 5 6 7 8 9 10 11
epochs

0.1

0.4

0.7

1.0

op
tim

al
 c

oe
ffi

ci
en

t

(b) AdamW

Figure 4: Optimal coefficient. At the start of each epoch, a snapshot is taken. Consequently, the
optimal coefficient initiates at a value of 1 and results in a periodic upward jump.

Observations on optimal coefficient. To explore how the optimal coefficient evolves in a normal
training setting, we train 1, 2, and 4-layer MLPs (Logistic Regression, MLP-2, and MLP-4) using
SGD and AdamW (Loshchilov & Hutter, 2019) on CIFAR-10 without using SVRG. Given the small
size of these models, we can analytically compute the optimal coefficient at each iteration. We plot
its mean value over all indices k in Figure 4. We can make two notable observations as below.

Observation 1: a deeper model has a smaller optimal coefficient. For Logistic Regression, the optimal
coefficient remains relatively stable, hovering near 1. For MLP-2, the coefficient deviates from 1,
dropping to about 0.6. For MLP-4, it decreases more sharply, reaching approximately 0.4.

Observation 2: the average optimal coefficient of a deeper model in each epoch generally decreases as
training progresses. This suggests that each epoch’s average correlation between snapshot gradients
and model gradients (ρ(∇f·,k(θ

past),∇f·,k(θ
t)) in Equation 6) decreases as the model becomes

better trained. We further analyze this decreasing trend of the correlation term in Appendix D.3.

These observations shed light on why the standard SVRG struggles to reduce gradient variance or
training loss in later training stages (Figure 3). A default coefficient of 1 proves to be too high, and
the weakening correlation between snapshot and model gradients necessitates a smaller coefficient.
Without a suitable coefficient, gradient variance may increase, leading to oscillations in SGD.

Optimal coefficient’s effect on gradient variance. We evaluate whether optimal coefficient can
make SVRG more effective in reducing gradient variance. Specifically, we use SVRG with optimal
coefficient to train an MLP-4 by computing optimal coefficient (Equation 6) and adjusting the gradient
(Equation 4) at each iteration. In Figure 5, we compare SVRG with optimal coefficient to an SGD
baseline. Using the optimal coefficient enables SVRG to reduce gradient variance in the early stages
of training without uplifting it later. This yields a consistently lower training loss than the baseline.

0 5 10 15 20 25 30
epochs

0.00

0.15

0.30

0.45

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 5 10 15 20 25 30
epochs

0

4

8

12

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 5 10 15 20 25 30
epochs

0.00

0.16

0.32

0.48

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 5 10 15 20 25 30
epochs

0.2

0.8

1.4

2.0

tra
in

 lo
ss

SGD
+ SVRG (opt. coef.)

Figure 5: SVRG with optimal coefficient on MLP-4. SVRG with the optimal coefficient reduces
gradient variance stably and achieves a lower training loss than the baseline SGD.

5



Published as a conference paper at ICLR 2025

4 α-SVRG

From our analysis above, it becomes clear that the best coefficient for SVRG is not necessarily 1 for
deep neural networks. However, computing the optimal coefficient at each iteration would result in
a complexity of full-batch gradient descent. This approach quickly becomes impractical for larger
networks like ResNet (He et al., 2016). In this section, we show how using a preset schedule of α
values can achieve a similar effect of using the computed optimal coefficients.

α-SVRG. Given the decreasing trend (Figure 4) and the computational challenge, we propose to apply
a linearly decreasing scalar coefficient for SVRG, starting from an initial value α0 and decreasing to
0. This is our main method in this paper. We name it α-SVRG. More results of enabling α-SVRG
only during the early stage of training are in Appendix C.4. The pseudocode for α-SVRG with SGD
and AdamW as base optimizers is provided in Appendix G.

0 5 10 15 20 25 30
epochs

0.00

0.15

0.30

0.45

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 5 10 15 20 25 30
epochs

0

4

8

12

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 5 10 15 20 25 30
epochs

0.00

0.16

0.32

0.48

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 5 10 15 20 25 30
epochs

0.2

0.8

1.4

2.0

tra
in

 lo
ss

SVRG (opt. coef.)
α-SVRG

Figure 6: α-SVRG on MLP-4. α-SVRG behaves similarly to SVRG with optimal coefficient.

To evaluate how well α-SVRG matches SVRG with optimal coefficient, we train an MLP-4 using
α-SVRG and compare it to SVRG with optimal coefficient. For all experiments in this section, we set
α0 = 0.5. The results are presented in Figure 6. Interestingly, α-SVRG exhibits a gradient variance
trend that is not much different from SVRG with optimal coefficient. Similarly, the training loss of
α-SVRG is only marginally larger than that of SVRG with optimal coefficient.

0 5 10 15 20 25 30
epochs

0.08

0.18

0.28

0.38

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 5 10 15 20 25 30
epochs

0.3

1.3

2.3

3.3

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 5 10 15 20 25 30
epochs

0.03

0.12

0.21

0.30

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 5 10 15 20 25 30
epochs

0.2

0.7

1.2

1.7

tra
in

 lo
ss

AdamW
+ α-SVRG

Figure 7: α-SVRG with AdamW on MLP-4. α-SVRG can lower the gradient variance at the first
10 epochs, leading to a faster convergence than the baseline AdamW.

6



Published as a conference paper at ICLR 2025

α-SVRG with AdamW. Since AdamW (Loshchilov & Hutter, 2019) is a widely used optimizer in
modern neural network training, we assess the performance of α-SVRG with AdamW. We change
the base optimizer in α-SVRG to AdamW and use it to train an MLP-4 on CIFAR-10. We compare
α-SVRG to a baseline using only AdamW. As shown in Figure 7, α-SVRG has a noticeable gradient
variance reduction initially and achieves a consistent lower training loss for MLP-4 than the baseline.

α-SVRG on deeper networks. We further study the effectiveness of α-SVRG with AdamW on real-
world neural architectures, moving beyond simple MLPs. To this end, we train a modern ConvNet
architecture, ConvNeXt-Femto (Liu et al., 2022; Wightman, 2019), on CIFAR-10 using the default
AdamW optimizer. We compare α-SVRG to the baseline using vanilla AdamW in Figure 8. α-SVRG
can reduce gradient variance during the first 10 epochs (zoom-in plot of Figure 8) and then maintain
it at the same level as the baseline. As a result, the training loss of α-SVRG converges much faster
than the baseline. This demonstrates the potential of α-SVRG in optimizing more complex models.
We further explore this with additional experiments next.

0 50 100 150 200 250 300
epochs

0.00

0.16

0.32

0.48

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 50 100 150 200 250 300
epochs

0.0

1.8

3.6

5.4

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 50 100 150 200 250 300
epochs

0.0

0.5

1.0

1.5

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 50 100 150 200 250 300
epochs

1.4

1.7

2.0

2.3

tra
in

 lo
ss

AdamW
+ α-SVRG

Figure 8: α-SVRG on ConvNeXt-Femto. α-SVRG can reduce the gradient variance for ConvNeXt-
Femto during the first 10 epochs (zoom-in plot) without increasing it later on. Consequently, α-SVRG
can decrease the training loss at a faster rate than the baseline AdamW.

5 EXPERIMENTS

5.1 SETTINGS

Datasets. We evaluate α-SVRG using ImageNet-1K classification (Deng et al., 2009) as well as
smaller image classification datasets: CIFAR-100 (Krizhevsky, 2009), Pets (Parkhi et al., 2012),
Flowers (Nilsback & Zisserman, 2008), STL-10 (Coates et al., 2011), Food-101 (Bossard et al., 2014),
DTD (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), and EuroSAT (Helber et al., 2019).

Models. We use recently proposed vision models on ImageNet-1K, categorized into two groups:
(1) smaller models with 5-19M parameters, including ConvNeXt-F (Wightman, 2019; Liu et al.,
2022), ViT-T/16 (Dosovitskiy et al., 2021), Swin-F (Liu et al., 2021b), and Mixer-S/32 (Tolstikhin
et al., 2021); (2) larger models featuring 86M and 89M parameters: ViT-B/16 and ConvNeXt-B.
ConvNeXt-F is also evaluated on all smaller image classification datasets.

Training. We report both final epoch training loss and top-1 validation accuracy. Our basic training
setting follows ConvNeXt (Liu et al., 2022), which uses AdamW. Both SVRG and α-SVRG also use
AdamW as the base optimizer. On small datasets, we choose the best α0 from {0.5, 0.75, 1}. We find
the coefficient is robust and does not require extensive tuning. Therefore, for ImageNet-1K, we set
α0 to 0.75 for smaller models and 0.5 for larger ones. Other training settings for α-SVRG remain the
same as the baseline. Further experimental settings can be found in Appendix B.

7



Published as a conference paper at ICLR 2025

ConvNeXt-F ViT-T Swin-F Mixer-S ViT-B ConvNeXt-B

training loss
AdamW 3.487 - 3.443 - 3.427 - 3.149 - 2.817 - 2.644 -
+ SVRG 3.505 ↑ .018 3.431 ↓ .012 3.389 ↓ .038 3.172 ↑ .023 3.309 ↑ .492 3.113 ↑ .469
+ α-SVRG 3.467 ↓ .020 3.415 ↓ .028 3.392 ↓ .035 3.097 ↓ .052 2.806 ↓ .011 2.642 ↓ .002

validation accuracy
AdamW 76.0 - 73.9 - 74.3 - 76.4 - 81.6 - 83.7 -
+ SVRG 75.7 ↓ 0.3 74.3 ↑ 0.4 74.3 ↑ 0.0 74.5 ↓ 1.9 78.0 ↓ 3.6 80.8 ↓ 2.9
+ α-SVRG 76.3 ↑ 0.3 74.2 ↑ 0.3 74.8 ↑ 0.5 76.1 ↓ 0.3 81.6 ↑ 0.0 83.1 ↓ 0.6

Table 2: Results on ImageNet-1K. The standard SVRG increases the training loss for most models,
whereas α-SVRG consistently decreases it for all models.

CIFAR-100 Pets Flowers STL-10 Food-101 DTD SVHN EuroSAT

training loss
AdamW 2.66 - 2.20 - 2.40 - 1.64 - 2.45 - 1.98 - 1.59 - 1.25 -
+ SVRG 2.94 ↑ 0.28 3.42 ↑ 1.22 2.26 ↓ 0.14 1.90 ↑ 0.26 3.03 ↑ 0.58 2.01 ↑ 0.03 1.64 ↑ 0.05 1.25 0.00
+ α-SVRG 2.62 ↓ 0.04 1.96 ↓ 0.24 2.16 ↓ 0.24 1.57 ↓ 0.07 2.42 ↓ 0.03 1.83 ↓ 0.15 1.57 ↓ 0.02 1.23 ↓ 0.02

validation accuracy
AdamW 81.0 - 72.8 - 80.8 - 82.3 - 85.9 - 57.9 - 94.9 - 98.1 -
+ SVRG 78.2 ↓ 2.8 17.6 ↓ 55.2 82.6 ↑ 1.8 65.1 ↓ 17.2 79.6 ↓ 6.3 57.8 ↓ 0.1 95.7 ↑ 0.8 97.9 ↓ 0.2
+ α-SVRG 81.4 ↑ 0.4 77.8 ↑ 5.0 83.3 ↑ 2.5 84.0 ↑ 1.7 85.9 ↑ 0.0 61.8 ↑ 3.9 95.8 ↑ 0.9 98.2 ↑ 0.1

Table 3: Results on smaller classification datasets. While the standard SVRG mostly hurts the
performance, α-SVRG decreases the training loss and increases the validation accuracy.

5.2 RESULTS

Table 2 presents the results of training various models on ImageNet-1K. The standard SVRG often
increases the training loss, especially for larger models. In contrast, α-SVRG decreases the training
loss for both smaller and larger models. This also supports our earlier finding that deeper models
benefit from lower coefficient values, and using a default coefficient of 1 impedes convergence.

Table 3 displays the results of training ConvNeXt-F on various smaller datasets. The standard SVRG
generally elevates the training loss and impairs the generalization. On the contrary, α-SVRG lowers
the training loss and improves the validation accuracy across all small datasets. We have provided
additional experiment results to demonstrate α-SVRG’s effectiveness in Appendix C.

Note that a lower training loss in α-SVRG does not always lead to better generalization. For smaller
models, a lower training loss usually directly translates to a higher validation accuracy. In larger
models (Mixer-S, ViT-B, and ConvNeXt-B), additional adjustments to regularization strength may be
needed for better generalization. This is out of scope for α-SVRG as an optimization method but
warrants future research on co-adapting optimization and regularization.

5.3 ANALYSIS

We analyze various components in α-SVRG. In the following experiments, we use an initial value
α0 = 0.5 and ConvNeXt-F on STL-10 as the default setting. Because the standard SVRG is
ineffective as discussed above, we omit it and only compare α-SVRG to an AdamW baseline.

Coefficient value. We investigate the impact of the initial value of the coefficient α0 for α-SVRG.
We vary it between 0 and 1 and observe its effect on the training loss. The results are presented in
Figure 9. The favorable range for initial values in α-SVRG is quite broad, ranging from 0.2 to 0.9.
This robustness indicates α-SVRG requires minimal tuning in the practical setting.

8



Published as a conference paper at ICLR 2025

0.1 0.3 0.5 0.7 0.9
coefficient

1.56

1.59

1.62

1.65

tra
in

 lo
ss

1.64
1.63

1.62

1.59 1.59

1.56 1.56
1.58

1.59

AdamW
+ α-SVRG

Figure 9: Coefficient value. α-SVRG is effec-
tive with a wide range of coefficient values.

32 64 128 256 512
batch size

1.55

1.70

1.85

2.00

tra
in

 lo
ss

1.69
1.64 1.64

1.69 1.71

1.94

1.74

1.58 1.58
1.62

AdamW
+ α-SVRG

Figure 10: Batch size. α-SVRG’s effectiveness
is observed for larger batch sizes.

Batch size. Since the batch size controls the variance among mini-batch data, we change the batch
size to understand how it affects α-SVRG. We also scale the learning rate linearly (Goyal et al., 2017).
The default batch size is 128. In Figure 10, we can see that α-SVRG leads to a lower training loss
when the batch size is larger, but it is worse than the baseline when the batch size is smaller. This
may stem from the weakening correlation between snapshot gradients and model gradients as the
batch size decreases. Therefore, a sufficiently large batch size is essential for α-SVRG.

Coefficient schedule. By default, our α-SVRG uses a linearly decreasing schedule to adjust the
coefficient. Below we explore other schedules and illustrate them in Figure 11. Global schedules
only decay the coefficient across epochs and keep as a constant within an epoch. In contrast, double
schedules also model the local decay in each epoch (Figure 4) by initiating the coefficient at 1 and
decreasing to an ending value specified by the global decay. More details on them are in Appendix E.

1 2 3 4 5 6 7 8 9 10 11
epoch

0.1

0.4

0.7

1.0

co
ef

fic
ie

nt

linear
quadratic
geometric

(a) global schedules

1 2 3 4 5 6 7 8 9 10 11
epoch

0.1

0.4

0.7

1.0

co
ef

fic
ie

nt

d-linear
d-quadratic
d-geometric

(b) double schedules

Figure 11: Different coefficient schedules with α0 = 0.75. Each global schedule (left) maintains a
static coefficient within an epoch and applies a coefficient decay only at the end of each epoch. In
contrast, each double schedule (right) also adjusts the coefficient within an epoch.

Table 4 presents the results of α-SVRG using each schedule. α-SVRG with double schedules
surprisingly have a higher training loss than the AdamW baseline (1.64). This is possibly because the
coefficient within an epoch sometimes overestimates the optimal coefficient and therefore increases
gradient variance. In contrast, α-SVRG with global schedules consistently achieves a lower training
loss than the baseline (1.64) regardless of the choice of any initial coefficient.

train loss linear quadratic geometric d-linear d-quadratic d-geometric

α0 = 0.5 1.59 1.61 1.62 2.07 1.97 1.81
α0 = 0.75 1.57 1.58 1.58 2.07 2.00 1.93
α0 = 1 1.57 1.56 1.57 2.00 1.97 1.88

Table 4: Schedules. Bold indicates the lowest training loss among different schedules using the same
initial coefficient (row). α-SVRG with global schedules outperforms that with double schedules.

Inner loop size. The inner loop size specifies the number of iterations between two consecutive
snapshot captures. We vary it from 1 to 312 iterations to understand its effect on α-SVRG. The
default value is 39 iterations (one epoch). Figure 12 illustrates α-SVRG has a lower training loss
than the baseline even with a larger inner loop size, where the snapshot is relatively distant from
the current model. On the other hand, a smaller inner loop size results in a lower training loss but
requires additional training time, as a full gradient must be calculated each time a snapshot is taken.

9



Published as a conference paper at ICLR 2025

1 4 16 64 256
inner loop size

1.35

1.45

1.55

1.65

tra
in

 lo
ss

1.37
1.43

1.48 1.49

1.58
1.55 1.55 1.54

AdamW
+ α-SVRG

Figure 12: Inner loop size. Although a greater inner loop size leads to a weakening correlation
between the model gradients and the snapshot gradients, α-SVRG can still lower training loss.

6 RELATED WORK

Variance reduction in optimization. There are a range of methods aiming at reducing gradient
variance by directly modifying stochastic gradient. Initial works (Johnson & Zhang, 2013; Schmidt
et al., 2016) focus on simple convex settings. Subsequent research enhances these methods (Defazio
et al., 2014a; Mairal, 2015; Lin et al., 2015; Defazio, 2016; Allen-Zhu, 2017; Lin et al., 2018) or
handles finite sums in non-convex landscapes (Allen-Zhu & Hazan, 2016; Nguyen et al., 2017; Fang
et al., 2018; Li & Li, 2018; Cutkosky & Orabona, 2019; Elibol et al., 2020; Zhou et al., 2020; Kavis
et al., 2022). For these methods, we either need to store all gradient with respect to each individual
data point (Defazio et al., 2014b; Shalev-Shwartz & Zhang, 2013; Li et al., 2021) or calculate full
gradient periodically (Johnson & Zhang, 2013; Fang et al., 2018). Gower et al. (2020) provide a
comprehensive review for variance reduction methods. While these studies focus on theories of
SVRG, we primarily explore the practical utility of SVRG for real-world neural networks.

One of the most relevant works to us is MARS (Yuan et al., 2024), which also demonstrates that using
a coefficient helps the variance reduction methods optimize modern neural networks. In contrast, our
work studies how a coefficient makes SVRG effective through step-by-step controlled experiments.

Implicit variance reduction. Apart from methods that explicitly adjust the gradient, there are
variance reduction techniques that implicitly reduce gradient variance through other means. A variety
of optimizers (Zeiler, 2012; Kingma & Ba, 2015; Dozat, 2016; Lydia & Francis, 2019; Loshchilov
& Hutter, 2019; Liu et al., 2021a; 2024; Chen et al., 2023) utilize momentum to mitigate gradient
variance. They achieve this by averaging past gradients exponentially, thus stabilizing subsequent
updates. Lookahead optimizer (Zhang et al., 2019) reduces gradient variance by only updating the
model once every k iterations. Dropout (Hinton et al., 2012) is also found to reduce gradient variance
and better optimize models when used at early training (Liu et al., 2023).

7 CONCLUSION

Over the past decade, SVRG has been a method with a significant impact on the theory of optimization.
In this work, we explore the effectiveness of SVRG in training real-world neural networks. Our key
insight is the optimal strength for the variance reduction term in SVRG is not necessarily 1. It should
be lower for deeper networks and decrease as training advances. This motivates us to introduce
α-SVRG: applying a linearly decreasing coefficient α to SVRG. α-SVRG leads to a steady reduction
in gradient variance and optimizes models better. Our experiments show that α-SVRG consistently
achieves a lower training loss compared to both baseline and the standard SVRG. Our results motivate
further research of variance reduction methods in neural networks training.

Acknowledgement. We would like to thank Kaiming He, Aaron Defazio, Zeyuan Allen-Zhu, Kirill
Vishniakov, Huijin Ou, Jiayi Xu, Shuyi Wang, and Zekai Wang for valuable discussions and feedback.

10



Published as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. Symposium
on Theory of Computing, 2017.

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In ICML,
2016.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In ECCV, 2014.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc Le. Symbolic discovery of optimization
algorithms. arXiv preprint arXiv:2302.06675, 2023.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, 2014.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In AISTATS, 2011.

Ekin Cubuk, Barret Zoph, Jonathon Shlens, and Quoc Le. Randaugment: Practical automated data
augmentation with a reduced search space. In CVPR Workshops, 2020.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
In NeurIPS, 2019.

Alex Damian, Tengyu Ma, and Jason D Lee. Label noise sgd provably prefers flat global minimizers.
In NeurIPS, 2021.

Aaron Defazio. A simple practical accelerated method for finite sums. In NeurIPS, 2016.

Aaron Defazio and Lon Bottou. On the ineffectiveness of variance reduced optimization for deep
learning. arXiv preprint arXiv:1812.04529, 2019.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In NeurIPS, 2014a.

Aaron Defazio, Tibrio Caetano, and Justin Domke. Finito: A faster, permutable incremental gradient
method for big data problems. In ICML, 2014b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In ICLR, 2021.

Timothy Dozat. Incorporating Nesterov Momentum into Adam. In ICLR, 2016.

Benjamin Dubois-Taine, Sharan Vaswani, Reza Babanezhad, Mark Schmidt, and Simon Lacoste-
Julien. Svrg meets adagrad: Painless variance reduction. arXiv preprint arXiv:2102.09645,
2021.

Melih Elibol, Lihua Lei, and Michael Jordan. Variance reduction with sparse gradients. In ICLR,
2020.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path integrated differential estimator. In NeurIPS, 2018.

Robert Gower, Mark Schmidt, Francis Bach, and Peter Richtrik. Variance-reduced methods for
machine learning. In IEEE, 2020.

11



Published as a conference paper at ICLR 2025

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
ImageNet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Geoffrey Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In ECCV, 2016.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
networks. In ICLR, 2020.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NeurIPS, 2013.

Ali Kavis, Stratis Skoulakis, Kimon Antonakopoulos, Leello Tadesse Dadi, and Volkan Cevher.
Adaptive stochastic variance reduction for non-convex finite-sum minimization. In NeurIPS, 2022.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.

Stephen Lavenberg, Thomas L Moeller, and Peter D Welch. The application of control variables
to the simulation of closed queueing networks. In Proceedings of the 9th conference on Winter
simulation-Volume 1, 1977.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael Jordan. Non-convex finite-sum optimization via scsg
methods. In NeurIPS, 2017.

Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss? –a
mathematical framework. In ICLR, 2022.

Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex
optimization. In NeurIPS, 2018.

Zhize Li, Slavomı́r Hanzely, and Peter Richtárik. Zerosarah: Efficient nonconvex finite-sum opti-
mization with zero full gradient computation. arXiv preprint arXiv:2103.01447, 2021.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization.
In NeurIPS, 2015.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. Catalyst acceleration for first-order convex
optimization: from theory to practice. JMLR, 2018.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. In ICLR, 2024.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In ICLR, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021b.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In CVPR, 2022.

12



Published as a conference paper at ICLR 2025

Zhuang Liu, Zhiqiu Xu, Joseph Jin, Zhiqiang Shen, and Trevor Darrell. Dropout reduces underfitting.
In ICML, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Agnes Lydia and Sagayaraj Francis. Adagradan optimizer for stochastic gradient descent. JMLR,
2019.

Julien Mairal. Incremental majorization-minimization optimization with application to large-scale
machine learning. SIAM Journal on Optimization, 2015.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop, 2011.

Lam Nguyen, Jie Liu, Katya Scheinberg, and Martin Tak. Sarah: A novel method for machine
learning problems using stochastic recursive gradient. In ICML, 2017.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics & Image Processing, 2008.

Omkar Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In CVPR, 2012.

Sashank Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In ICML, 2016.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. arXiv preprint arXiv:1309.2388, 2016.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. JMLR, 2013.

Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
gradient descent. In ICML, 2020.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In CVPR, 2016.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In NeurIPS, 2021.

Ruiqi Wang and Diego Klabjan. Divergence results and convergence of a variance reduced version of
adam. arXiv preprint arXiv:2210.05607, 2022.

Ross Wightman. GitHub repository: Pytorch image models. GitHub repository, 2019.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction.
SIAM Journal on Optimization, 2014.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
of variance reduction for training large models. arXiv preprint arXiv:2411.10438, 2024.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV, 2019.

Matthew Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

Hongyi Zhang, Moustapha Cisse, Yann Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In ICLR, 2018.

Michael Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba. Lookahead optimizer: k steps
forward, 1 step back. In NeurIPS, 2019.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmenta-
tion. In AAAI, 2020.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
optimization. In NeurIPS, 2020.

13



Published as a conference paper at ICLR 2025

APPENDIX

A DERIVATION OF THE OPTIMAL COEFFICIENT

We present the full derivation of the optimal coefficient for control variates:

min
α

Var(X∗) = min
α

Var(X − αY) (7)

= min
α

Var(X)− 2αCov(X,Y) + α2Var(Y). (8)

Differentiating the objective with respect to α, we can determine the optimal coefficient α∗:

2αVar(Y)− 2Cov(X,Y) = 0, (9)

=⇒ α∗ =
Cov(X,Y)

Var(Y)
. (10)

Lastly, we can plug the definition of the correlation coefficient:

ρ(X,Y) =
Cov(X,Y)

σ(X)σ(Y)
(11)

into the optimal coefficient and rewrite Equation 10 as:

α∗ = ρ(X,Y)
σ(X)

σ(Y)
. (12)

B EXPERIMENTAL SETTINGS

Training recipe. Table 5 outlines our training recipe. It is based on the setting in ConvNeXt (Liu
et al., 2022). For all experiments, the base learning rate is set at 4e-3, except for training ConvNeXt-F
on ImageNet-1K using α-SVRG, where increasing it to 8e-3 reduces training loss very much.

config value
weight init trunc. normal (0.2)
optimizer AdamW
base learning rate 4e-3
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999

learning rate schedule cosine decay
warmup schedule linear
randaugment (Cubuk et al., 2020) (9, 0.5)
mixup (Zhang et al., 2018) 0.8
cutmix (Yun et al., 2019) 1.0
random erasing (Zhong et al., 2020) 0.25
label smoothing (Szegedy et al., 2016) 0.1

Table 5: Our basic training recipe, adapted from ConvNeXt (Liu et al., 2022).

Hyperparameters. Table 6 lists the batch size, warmup epochs, and training epochs for each dataset.
Note that these hyperparameters selections are done on the AdamW baseline. For each dataset, we

CIFAR-100 Pets Flowers STL-10 Food101 DTD SVHN EuroSAT ImageNet-1K
batch size 1024 128 128 128 1024 128 1024 512 4096
warmup epochs 50 100 100 50 50 100 20 40 50
training epochs 300 600 600 300 300 600 100 200 300

Table 6: Hyperparameter setting.

14



Published as a conference paper at ICLR 2025

set the batch size proportional to its total size and tune the training epochs to achieve reasonable
performance. The warmup epochs are set to one-fifth or one-sixth of the total training epochs.

We do not use stochastic depth (Huang et al., 2016) on small models. For larger models, we adhere to
the original work (Dosovitskiy et al., 2021; Liu et al., 2022), using a stochastic depth rate of 0.4 for
ViT-B and 0.5 for ConvNeXt-B. In these models, we maintain a consistent stochastic pattern between
the current model and the snapshot at each iteration (Defazio & Bottou, 2019).

C ADDITIONAL RESULTS OF α-SVRG

In this section, we provide additional experiment results to demonstrate the effectiveness of α-SVRG.
This includes full results of α-SVRG with different initial coefficients α0 on small image classification
datasets (Appendix C.1), training with three random seeds (Appendix C.2), a full learning rate search
(Appendix C.3), and applying α-SVRG only in the early training stage (Appendix C.4).

C.1 DIFFERENT INITIAL COEFFICIENTS

Table 7 presents the performance of ConvNeXt-F trained with α-SVRG using different initial
coefficients α0 on various image classification datasets. α-SVRG consistently reduces the training
loss of ConvNeXt-F and enhances the validation accuracy on most datasets, regardless of the choice
of initial coefficient α0. This demonstrates the robustness of α-SVRG to the initial coefficient.

CIFAR-100 Pets Flowers STL-10

AdamW 2.659 - 2.203 - 2.400 - 1.641 -
+ SVRG 2.937 ↑ 0.278 3.424 ↑ 1.221 2.256 ↓ 0.144 1.899 ↑ 0.258
+ α-SVRG (α0 = 0.5) 2.622 ↓ 0.037 1.960 ↓ 0.243 2.265 ↓ 0.135 1.583 ↓ 0.058
+ α-SVRG (α0 = 0.75) 2.646 ↓ 0.013 2.004 ↓ 0.199 2.162 ↓ 0.238 1.568 ↓ 0.073
+ α-SVRG (α0 = 1) 2.712 ↑ 0.053 1.994 ↓ 0.209 2.259 ↓ 0.141 1.573 ↓ 0.068

Food-101 DTD SVHN EuroSAT

AdamW 2.451 - 1.980 - 1.588 - 1.247 -
+ SVRG 3.026 ↑ 0.575 2.009 ↑ 0.029 1.639 ↑ 0.051 1.249 ↑ 0.002
+ α-SVRG (α0 = 0.5) 2.423 ↓ 0.028 1.865 ↓ 0.115 1.572 ↓ 0.016 1.243 ↓ 0.004
+ α-SVRG (α0 = 0.75) 2.461 ↑ 0.010 1.829 ↓ 0.151 1.573 ↓ 0.015 1.237 ↓ 0.010
+ α-SVRG (α0 = 1) 2.649 ↑ 0.198 1.790 ↓ 0.190 1.585 ↓ 0.003 1.230 ↓ 0.017

(a) training loss

CIFAR-100 Pets Flowers STL-10

AdamW 81.0 - 72.8 - 80.8 - 82.3 -
+ SVRG 78.2 ↓ 2.8 17.6 ↓ 55.2 82.6 ↑ 1.8 65.1 ↓ 17.2
+ α-SVRG (α0 = 0.5) 81.4 ↑ 0.4 77.8 ↑ 5.0 83.3 ↑ 2.5 83.5 ↑ 1.2
+ α-SVRG (α0 = 0.75) 80.6 ↓ 0.4 76.7 ↑ 3.9 82.6 ↑ 1.8 84.0 ↑ 1.7
+ α-SVRG (α0 = 1) 80.0 ↓ 1.0 77.3 ↑ 4.5 81.9 ↑ 1.1 84.0 ↑ 1.7

Food-101 DTD SVHN Euro

AdamW 85.9 - 57.9 - 94.9 - 98.1 -
+ SVRG 79.6 ↓ 6.3 57.8 ↓ 0.1 95.7 ↑ 0.8 97.9 ↓ 0.2
+ α-SVRG (α0 = 0.5) 85.9 ↑ 0.0 57.0 ↓ 0.9 95.4 ↑ 0.5 98.2 ↑ 0.1
+ α-SVRG (α0 = 0.75) 85.0 ↓ 0.9 60.3 ↑ 2.4 95.7 ↑ 0.8 98.2 ↑ 0.1
+ α-SVRG (α0 = 1) 83.8 ↓ 2.1 61.8 ↑ 3.9 95.8 ↑ 0.9 98.2 ↑ 0.1

(b) validation accuracy

Table 7: Results on smaller classification datasets with different initial coefficients. While SVRG
negatively affects performance on most of these datasets, α-SVRG consistently reduces the training
loss and improves the validation accuracy for almost any initial coefficient on each dataset.

15



Published as a conference paper at ICLR 2025

C.2 STANDARD DEVIATION RESULTS

Here we run the AdamW baseline and α-SVRG in Table 3 with 3 random seeds. Table 8 presents the
results. α-SVRG decreases the mean training loss and improves the mean validation accuracy. The
mean difference is usually larger than one standard deviation, indicating the reliability of α-SVRG.

CIFAR-100 Pets Flowers STL-10

AdamW 2.645 ± 0.013 2.326 ± 0.088 2.436 ± 0.038 1.660 ± 0.017
+ α-SVRG 2.606 ± 0.017 2.060 ± 0.071 2.221 ± 0.042 1.577 ± 0.022

Food-101 DTD SVHN EuroSAT

AdamW 2.478 ± 0.021 2.072 ± 0.066 1.583 ± 0.005 1.259 ± 0.017
+ α-SVRG 2.426 ± 0.007 1.896 ± 0.075 1.572 ± 0.011 1.239 ± 0.016

(a) training loss

CIFAR-100 Pets Flowers STL-10

AdamW 81.02 ± 0.07 70.61 ± 1.55 80.33 ± 1.01 80.80 ± 1.46
+ α-SVRG 81.07 ± 0.22 76.37 ± 1.06 84.15 ± 1.15 83.65 ± 0.92

Food-101 DTD SVHN EuroSAT

AdamW 85.29 ± 0.47 56.21 ± 1.19 94.29 ± 0.67 97.91 ± 0.12
+ α-SVRG 85.45 ± 0.43 61.44 ± 0.35 94.94 ± 0.60 98.13 ± 0.07

(b) validation accuracy

Table 8: Results of α-SVRG with AdamW with standard deviation.

In Section 5, we primarily use AdamW as the base optimizer to study α-SVRG. Here we switch
the base optimizer in α-SVRG from AdamW to SGD. Specifically, we train a ResNet-18 (He et al.,
2016), which by default uses SGD to train, on the small image classification datasets. Following He
et al. (2016), we use an initial learning rate of 0.1, which is divided by 10 when the error plateaus, a
momentum of 0.9, and a weight decay of 1e-4. Other settings in training recipe remain the same as
Table 5. Table 10 details other hyperparameters, such as batch size and training epochs.

CIFAR-100 Pets Flowers STL-10

SGD 3.118 ± 0.035 2.706 ± 0.095 2.822 ± 0.058 1.763 ± 0.032
+ α-SVRG 3.087 ± 0.011 2.655 ± 0.134 2.699 ± 0.049 1.725 ± 0.043

Food-101 DTD SVHN EuroSAT

SGD 3.424 ± 0.015 2.589 ± 0.032 1.789 ± 0.029 1.449 ± 0.029
+ α-SVRG 3.397 ± 0.006 2.543 ± 0.039 1.764 ± 0.014 1.412 ± 0.011

(a) training loss

CIFAR-100 Pets Flowers STL-10

SGD 75.43 ± 0.88 71.25 ± 4.74 65.92 ± 4.24 76.09 ± 1.09
+ α-SVRG 75.93 ± 0.83 71.89 ± 4.84 74.98 ± 3.14 78.55 ± 2.54

Food-101 DTD SVHN EuroSAT

SGD 60.58 ± 2.00 57.53 ± 1.25 91.10 ± 1.31 95.31 ± 0.46
+ α-SVRG 62.89 ± 0.87 58.44 ± 1.05 91.60 ± 0.59 96.17 ± 0.17

(b) validation accuracy

Table 9: Results of α-SVRG with SGD on smaller datasets with standard deviation.

16



Published as a conference paper at ICLR 2025

We compare α-SVRG (α0 = 0.5) equipped by a linear decreasing schedule to the baseline using only
SGD. The results, shown in Table 9, are based on the average of 3 runs with different random seeds.
As we can see, α-SVRG consistently outperforms the SGD baseline across all datasets.

CIFAR-100 Pets Flowers STL-10 Food101 DTD SVHN EuroSAT
batch size 1024 128 128 128 1024 128 1024 512
training epochs 150 200 150 200 50 200 50 100

Table 10: Hyperparameter setting for α-SVRG with SGD on ResNet-18.

C.3 DIFFERENT LEARNING RATES

α-SVRG with AdamW. In Section 5, we use the same base learning rate of 4e-3 for both AdamW
and α-SVRG. However, each method’s optimal learning rate might be different. Here we sweep
the base learning rate over the range {1e-2, 5e-3, 1e-3, 5e-4, 1e-4} for both methods. As shown in
Figure 13, α-SVRG (α0 = 0.5) can decrease training loss better than vanilla AdamW in most cases.

1e-2 5e-3 1e-3 5e-4 1e-4
learning rate

2.4

2.8

3.2

3.6

4.0

tra
in

 lo
ss

2.655 2.680
2.873

3.074

3.788

2.624 2.641
2.806

2.987

3.685
AdamW
+ α-SVRG

1e-2 5e-3 1e-3 5e-4 1e-4
learning rate

1.8

2.2

2.6

3.0

3.4

tra
in

 lo
ss

2.855

2.352
2.575 2.688

3.231

2.174 2.130
2.302

2.492

3.090

AdamW
+ α-SVRG

(a) CIFAR-100 (b) Pets

1e-2 5e-3 1e-3 5e-4 1e-4
learning rate

2.0

2.5

3.0

3.5

4.0

tra
in

 lo
ss

2.484 2.461
2.652

2.876

3.657

2.370 2.294
2.485 2.618

3.458
AdamW
+ α-SVRG

1e-2 5e-3 1e-3 5e-4 1e-4
learning rate

1.4

1.6

1.8

2.0

2.2

tra
in

 lo
ss

1.679 1.672 1.732 1.782
1.914

1.629 1.579 1.641 1.689

1.879

AdamW
+ α-SVRG

(c) Flowers (d) STL-10

1e-2 5e-3 1e-3 5e-4 1e-4
learning rate

2.2

2.8

3.4

4.0

4.6

tra
in

 lo
ss

2.417 2.447 2.610 2.740

3.818

2.412 2.398 2.555 2.710

3.654

AdamW
+ α-SVRG

1e-2 5e-3 1e-3 5e-4 1e-4
learning rate

2.0

2.3

2.6

2.9

3.2

tra
in

 lo
ss

2.776

2.367

2.156

2.284

2.865

2.642

2.312 2.172
2.253

2.697

AdamW
+ α-SVRG

(e) Food-101 (f) DTD

1e-2 5e-3 1e-3 5e-4 1e-4
learning rate

1.4

1.6

1.8

2.0

2.2

tra
in

 lo
ss

1.578 1.584 1.645 1.702

1.946

1.565 1.573 1.625 1.673

1.904

AdamW
+ α-SVRG

1e-2 5e-3 1e-3 5e-4 1e-4
learning rate

1.3

1.4

1.5

1.6

1.7

tra
in

 lo
ss

1.373 1.327 1.328
1.366

1.581

1.389

1.324 1.318 1.353

1.552

AdamW
+ α-SVRG

(g) SVHN (h) EuroSAT

Figure 13: α-SVRG with AdamW at different learning rates.

17



Published as a conference paper at ICLR 2025

α-SVRG with SGD. We also sweep the base learning rate for the results of Table 9 using SGD as the
base optimizer. We compare vanilla SGD to α-SVRG (α0 = 0.5). The results are shown in Figure 14.
In most learning rates, α-SVRG can achieve a lower training loss than SGD.

2e-1 1e-1 4e-2 2e-2 1e-2
learning rate

3.0

3.2

3.4

3.6

3.8

tra
in

 lo
ss

3.120 3.118 3.311

3.488

3.704

3.063 3.087

3.314 3.478

3.693SGD
+ α-SVRG

2e-1 1e-1 4e-2 2e-2 1e-2
learning rate

2.4

2.6

2.8

3.0

3.2

tra
in

 lo
ss

3.066

2.706

3.009 3.082
3.171

2.715 2.655
2.526

2.693

3.062SGD
+ α-SVRG

(a) CIFAR-100 (b) Pets

2e-1 1e-1 4e-2 2e-2 1e-2
learning rate

2.8

3.0

3.2

3.4

3.6

tra
in

 lo
ss

3.381
3.233 3.224

3.400
3.541

3.207

3.023 3.061

3.336
3.435

SGD
+ α-SVRG

2e-1 1e-1 4e-2 2e-2 1e-2
learning rate

1.6

1.7

1.8

1.9

2.0

tra
in

 lo
ss

1.779 1.763 1.740 1.778 1.746
1.686

1.725 1.731

1.814
1.754

SGD
+ α-SVRG

(c) Flowers (d) STL-10

2e-1 1e-1 4e-2 2e-2 1e-2
learning rate

3.2

3.5

3.8

4.1

4.4

tra
in

 lo
ss

3.391 3.424
3.636

3.840
4.031

3.349 3.397
3.607

3.824
4.028

SGD
+ α-SVRG

2e-1 1e-1 4e-2 2e-2 1e-2
learning rate

2.4

2.6

2.8

3.0

3.2

tra
in

 lo
ss

3.118

2.586

2.770 2.717
2.706

2.556 2.546 2.585 2.653

2.766

SGD
+ α-SVRG

(e) Food-101 (f) DTD

2e-1 1e-1 4e-2 2e-2 1e-2
learning rate

1.6

1.8

2.0

2.2

2.4

tra
in

 lo
ss

2.248

1.788

1.737

1.794 1.854
2.164

1.764
1.742

1.779
1.851

SGD
+ α-SVRG

2e-1 1e-1 4e-2 2e-2 1e-2
learning rate

1.3

1.4

1.5

1.6

1.7

tra
in

 lo
ss

1.528 1.449

1.401

1.498
1.556

1.597

1.412

1.462
1.469

1.530

SGD
+ α-SVRG

(g) SVHN (h) EuroSAT

Figure 14: α-SVRG with SGD at different learning rates.

18



Published as a conference paper at ICLR 2025

C.4 USING α-SVRG DURING THE INITIAL PHASES OF TRAINING

Compared with SGD and AdamW, both standard SVRG and α-SVRG require computing the snapshot
stochastic gradient ∇fi(θ

past) and snapshot full gradient ∇f(θpast). This leads to about twice the
computational cost of the baseline methods. Nevertheless, in Section 4, we find that α-SVRG can
only reduce gradient variance during the initial training epochs and then maintains at a similar level
as the baseline methods. This motivates us to apply α-SVRG only at the early phases of training, and
we refer this approach as early α-SVRG.

To evaluate this approach, we use early α-SVRG to train ConvNeXt-Femto on various image
classification datasets. We use the default linear decay with an initial coefficient α0 = 0.75 to
schedule early α-SVRG, but α-SVRG is only applied during the first 10% of training and is disabled
thereafter. Moreover, we add a transition epoch where the coefficient decreases from its original final
value to zero. We find this crucial for maintaining the stability of momentum in the base optimizer.

CIFAR-100 Pets Flowers STL-10

AdamW 2.659 - 2.203 - 2.400 - 1.641 -
+ α-SVRG 2.646 ↓ 0.013 2.004 ↓ 0.199 2.162 ↓ 0.238 1.568 ↓ 0.073
+ early α-SVRG 2.644 ↓ 0.015 2.190 ↓ 0.013 2.328 ↓ 0.072 1.616 ↓ 0.025

Food-101 DTD SVHN EuroSAT

AdamW 2.451 - 1.980 - 1.588 - 1.247 -
+ α-SVRG 2.461 ↑ 0.010 1.829 ↓ 0.151 1.573 ↓ 0.015 1.237 ↓ 0.010
+ early α-SVRG 2.444 ↓ 0.007 1.918 ↓ 0.062 1.583 ↓ 0.005 1.240 ↓ 0.007

(a) training loss

CIFAR-100 Pets Flowers STL-10

baseline 81.0 - 72.8 - 80.8 - 82.3 -
+ α-SVRG 80.6 ↓ 0.4 76.7 ↑ 3.9 82.6 ↑ 1.8 84.0 ↑ 1.7
+ early α-SVRG 81.0 ↑ 0.0 74.6 ↑ 1.8 83.6 ↑ 2.8 82.8 ↑ 0.5

Food-101 DTD SVHN Euro

baseline 85.9 - 57.9 - 94.9 - 98.1 -
+ α-SVRG 85.0 ↓ 0.9 60.3 ↑ 2.4 95.7 ↑ 0.8 98.2 ↑ 0.1
+ early α-SVRG 85.9 ↑ 0.0 62.3 ↑ 4.4 95.8 ↑ 0.9 98.0 ↓ 0.1

(b) validation accuracy

Table 11: Early α-SVRG on smaller classification datasets.

Figure 11 shows the results. We can see early α-SVRG consistently reduces training loss across
different datasets. Furthermore, we observe that the validation accuracy achieved by early α-
SVRG is sometimes higher than that of standard α-SVRG. This phenomenon is likely because
disabling α-SVRG in the later training stages allows the presence of benign gradient noise during
optimization. Such noise may drive the model toward local minima that exhibit better generalization
properties (Smith et al., 2020; Damian et al., 2021; Li et al., 2022).

19



Published as a conference paper at ICLR 2025

D ADDITIONAL RESULTS OF OPTIMAL COEFFICIENT

We provide further results on optimal coefficient in SVRG (Equation 6) below: gradient variance
reduction on other datasets with SVRG using optimal coefficient (Appendix D.1), the impact of data
on optimal coefficient (Appendix D.2), and the evolution of the correlation between model gradients
and snapshot gradients during training (Appendix D.3).

D.1 SVRG WITH OPTIMAL COEFFICIENT ON OTHER DATASETS

Throughout the experiments in Section 3, we mainly study the behavior of SVRG with optimal
coefficient on CIFAR-10 dataset. To show the generality of our approach for SVRG, we below
monitor the optimal coefficient on other image classification datasets. We train a MLP-4 on Flowers /
EuroSAT with SGD and SVRG using optimal coefficient for 15 / 25 epochs. As shown in Figure 15,
SVRG with optimal coefficient can consistently reduce gradient variance and achieve a lower training
loss than the baseline SGD.

0 3 6 9 12 15
epochs

0.0

0.2

0.4

0.6

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 3 6 9 12 15
epochs

0

5

10

15

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 3 6 9 12 15
epochs

0.0

0.9

1.8

2.7

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 3 6 9 12 15
epochs

0.0

1.6

3.2

4.8

tra
in

 lo
ss

SGD
+ SVRG (opt. coef.)

(a) Flowers

0 5 10 15 20 25
epochs

0.0

0.1

0.2

0.3

gr
ad

. v
ar

. (
m

et
ric

 1
)

0 5 10 15 20 25
epochs

0.0

0.7

1.4

2.1

gr
ad

. v
ar

. (
m

et
ric

 2
)

0 5 10 15 20 25
epochs

0.0

0.2

0.4

0.6

gr
ad

. v
ar

. (
m

et
ric

 3
)

0 5 10 15 20 25
epochs

0.8

1.3

1.8

2.3

tra
in

 lo
ss

SGD
+ SVRG (opt. coef.)

(b) EuroSAT

Figure 15: SVRG with optimal coefficient on other datasets.

D.2 EFFECT OF DATA ON OPTIMAL COEFFICIENT

Below we conduct experiments on CIFAR-10 and CIFAR-100 to understand how the number of
object classes in datasets affect optimal coefficient. Specifically, we train 1, 2, and 4-layer MLPs

20



Published as a conference paper at ICLR 2025

(Logistic Regression, MLP-2, and MLP-4) on each of the two datasets using SGD (without SVRG)
and compute the optimal coefficient (Equation 6) during the training. Figure 16 shows the results.

2 3 4 5 6 7 8 9 10 11
epochs

0.1

0.4

0.7

1.0
op

tim
al

 c
oe

ffi
ci

en
t

Logistic Regression
MLP-2
MLP-4

(a) CIFAR-10

2 3 4 5 6 7 8 9 10 11
epochs

0.1

0.4

0.7

1.0

op
tim

al
 c

oe
ffi

ci
en

t

(b) CIFAR-100

Figure 16: Effects of Data on Optimal Coefficient.

The optimal coefficient of each model trained on CIFAR-100 is lower than that on CIFAR-10. This
is possibly because CIFAR-100 has 10× more object classes than CIFAR-10 and therefore the
correlation between the snapshot model gradient and the current model gradient is weaker. Thus, we
recommend using a smaller coefficient when the training dataset includes a larger number of classes.

D.3 CORRELATION BETWEEN MODEL GRADIENTS AND SNAPSHOT GRADIENTS

In Section 3, we find each epoch’s average optimal coefficient decreases as training progresses. Here,
we seek to understand whether the standard deviation ratio σ(∇f·,k(θ

t))/σ(∇f·,k(θ
past)) or the

correlation ρ (∇f·,k(θ
past),∇f·,k(θ

t)) in Equation 6 contributes more to this observation. We plot
these two values separately in Figures 17 and 18. We can see the standard deviation ratio is relatively
stable during the training, whereas the correlation decreases very much during the training.

2 3 4 5 6 7 8 9 10 11
epochs

0.2

0.6

1.0

1.4

st
d.

 ra
tio

Logistic Regression
MLP-2
MLP-4

(a) SGD

2 3 4 5 6 7 8 9 10 11
epochs

0.2

0.6

1.0

1.4

st
d.

 ra
tio

(b) AdamW

Figure 17: Standard deviation ratio. The ratio between the standard deviations of the model
gradients and the snapshot gradients oscillates around 1 but is relatively stable overall.

2 3 4 5 6 7 8 9 10 11
epochs

0.1

0.4

0.7

1.0

co
rre

la
tio

n

Logistic Regression
MLP-2
MLP-4

(a) SGD

2 3 4 5 6 7 8 9 10 11
epochs

0.1

0.4

0.7

1.0

co
rre

la
tio

n

(b) AdamW

Figure 18: Correlation. The correlation between the snapshot gradients and the model gradients
decreases as the training progresses.

E ALTERNATIVE SCHEDULES FOR α-SVRG

In this part, we provide the exact mathematical formulation of each schedule studied in Section 5.3.

21



Published as a conference paper at ICLR 2025

Notations. We decompose the global iteration index t into an epoch-wise index s and an iteration
index i within an epoch. We also denote the total number of training epochs as T and represent the
number of iterations in one epoch as M .

Linear schedule. This is our default scheduling approach. The coefficient decreases linearly across
epochs and keeps as a constant within an epoch:

αt
linear = α0(1−

s(t)

T
), (13)

Other global schedules. We also consider quadratic decay and geometric decay:

αt
quadratic =

α0

T 2
(T − s(t))2, (14)

αt
geometric = α0(

αfinal
1

α0
)

s(t)
T , (15)

Double schedules. In Figure 4 of Section 3, within each epoch, the coefficient starts from 1 and
decreases over time. Motivated by this local behavior, we introduce three additional schedules that
combine both the local and global decay: d(ouble)-linear, d-quadratic, and d-geometric. In addition
to the global decay, each double schedule has another local decay for each epoch that initiates at 1
and decreases to an ending value specified by the global decay.

αt
d-linear = αt

linear (1−
i

M
)︸ ︷︷ ︸

local decay

+αt
linear (16)

αt
d-quadratic = (1− αt

quadratic)
1

M2
(M − i)2︸ ︷︷ ︸

local decay

+αt
quadratic (17)

αt
d-geometric = (αt

geometric + αd-final)
i
M︸ ︷︷ ︸

local decay

(18)

F CONVERGENCE COMPARISON

We compare the training loss convergence of the AdamW baseline and α-SVRG on ImageNet-1K
(Figure 19) and small classification datasets (Figure 20). It is observed that α-SVRG can consistently
decrease training loss and deliver faster convergence.

0 50 100 150 200 250 300
epochs

3.4

4.6

5.8

7.0

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

(a) ConvNeXt-F

0 50 100 150 200 250 300
epochs

3.4

4.6

5.8

7.0

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

(b) ViT-T

0 50 100 150 200 250 300
epochs

3.4

4.6

5.8

7.0

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

(c) Swin-F

0 50 100 150 200 250 300
epochs

3.4

4.6

5.8

7.0

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

(d) Mixer-S

0 50 100 150 200 250 300
epochs

3.4

4.6

5.8

7.0

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.5)

(e) ViT-B

0 50 100 150 200 250 300
epochs

3.4

4.6

5.8

7.0

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.5)

(f) ConvNeXt-B

Figure 19: Training loss with AdamW and α-SVRG on ImageNet-1K (Table 2).

1We set αfinal = 0.01 to ensure that the geometric schedule eventually decreases to a sufficiently small value.
Note that αfinal can not be zero, as it serves as the base of the exponent. The same rule applies to Equation 18.

22



Published as a conference paper at ICLR 2025

0 50 100 150 200 250 300
epochs

2.3

3.1

3.9

4.7
tra

in
 lo

ss
AdamW
+ α-SVRG (α0 = 0.5)

0 50 100 150 200 250 300
epochs

2.3

3.1

3.9

4.7

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

0 50 100 150 200 250 300
epochs

2.3

3.1

3.9

4.7

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 1)

(a) CIFAR-100

0 100 200 300 400 500 600
epochs

1.9

2.5

3.1

3.7

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.5)

0 100 200 300 400 500 600
epochs

1.9

2.5

3.1

3.7

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

0 100 200 300 400 500 600
epochs

1.9

2.5

3.1

3.7

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 1)

(b) Pets

0 100 200 300 400 500 600
epochs

2.1

3.0

3.9

4.8

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.5)

0 100 200 300 400 500 600
epochs

2.1

3.0

3.9

4.8
tra

in
 lo

ss

AdamW
+ α-SVRG (α0 = 0.75)

0 100 200 300 400 500 600
epochs

2.1

3.0

3.9

4.8

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 1)

(c) Flowers

0 50 100 150 200 250 300
epochs

1.4

1.7

2.0

2.3

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.5)

0 50 100 150 200 250 300
epochs

1.4

1.7

2.0

2.3

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

0 50 100 150 200 250 300
epochs

1.4

1.7

2.0

2.3

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 1)

(d) STL-10

0 50 100 150 200 250 300
epochs

2.3

3.1

3.9

4.7

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.5)

0 50 100 150 200 250 300
epochs

2.3

3.1

3.9

4.7

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

0 50 100 150 200 250 300
epochs

2.3

3.1

3.9

4.7

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 1)

(e) Food-101

0 100 200 300 400 500 600
epochs

1.6

2.4

3.2

4.0

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.5)

0 100 200 300 400 500 600
epochs

1.6

2.4

3.2

4.0

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

0 100 200 300 400 500 600
epochs

1.6

2.4

3.2

4.0

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 1)

(f) DTD

0 25 50 75 100
epochs

1.4

1.7

2.0

2.3

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.5)

0 25 50 75 100
epochs

1.4

1.7

2.0

2.3

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

0 25 50 75 100
epochs

1.4

1.7

2.0

2.3

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 1)

(g) SVHN

0 50 100 150 200
epochs

1.1

1.5

1.9

2.3

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.5)

0 50 100 150 200
epochs

1.1

1.5

1.9

2.3

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 0.75)

0 50 100 150 200
epochs

1.1

1.5

1.9

2.3

tra
in

 lo
ss

AdamW
+ α-SVRG (α0 = 1)

(h) EuroSAT

Figure 20: Training loss with AdamW and α-SVRG on smaller classification datasets (Table 7).

23



Published as a conference paper at ICLR 2025

G PSEUDOCODE FOR α-SVRG

For clarity, we adopt the following notations: s as the epoch index, t as the iteration index within
each epoch, it as the sampled index at iteration t, T as the epoch length, M as the iteration length
within each epoch, n as the total number of training data, and ηst as the learning rate. We illustrate
α-SVRG with SGD in Algorithm 1 and with AdamW in Algorithm 2:

Algorithm 1 α-SVRG with SGD
(
θ0
0, T,M, {{ηst }M−1

t=0 }T−1
s=0 , {{αs

t}M−1
t=0 }T−1

s=0 , λ
)

Input: initialized model parameters θ0
0 , epoch length T , iteration length within each epoch M , learning rates

{{ηs
t }M−1

t=0 }T−1
s=0 , scheduled coefficients {{αs

t}M−1
t=0 }T−1

s=0 , weight decay λ

θ0
past = θ0

0

for s = 0 to T − 1 do
∇f(θs

past) =
1
n

∑n
i=1 ∇fi(θ

s
past)

for t = 0 to M − 1 do
it

iid∼ Uniform{1, · · · , n}
gs
t = ∇fit(θ

s
t )− αs

t

(
∇fit(θ

s
past)−∇f(θs

past)
)

θs
t+1 = θs

t − ηs
tg

s
t − λθs

t

end for
θs+1

past = θs
M

end for
Output: final model θT−1

M .

Algorithm 2 α-SVRG with AdamW
(
θ0
0, T,M, {{ηst }M−1

t=0 }T−1
s=0 , {{αs

t}M−1
t=0 }T−1

s=0 , β1, β2, λ
)

Input: initialized model parameters θ0
0 , epoch length T , iteration length within each epoch M , learning rates

{{ηs
t }M−1

t=0 }T−1
s=0 , scheduled coefficients {{αs

t}M−1
t=0 }T−1

s=0 , momentums β1, β2, weight decay λ

θ0
past = θ0

0

m = v = 0

for s = 0 to T − 1 do
∇f(θs

past) =
1
n

∑n
i=1 ∇fi(θ

s
past)

for t = 0 to M − 1 do
it

iid∼ Uniform{1, · · · , n}
gs
t = ∇fit(θ

s
t )− αs

t

(
∇fit(θ

s
past)−∇f(θs

past)
)

m = β1m+ (1− β1)g
s
t

v = β2v + (1− β2)(g
s
t )

2

θs
t+1 = θs

t − ηs
t

m√
v+ϵ

− λθs
t

end for
θs+1

past = θs
M

end for
Output: final model θT−1

M .

24


