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Abstract

We study a generalization of the problem of online learning in adversarial linear con-
textual bandits by incorporating loss functions that belong to a reproducing kernel
Hilbert space, which allows for a more flexible modeling of complex decision-
making scenarios. We propose a computationally efficient algorithm that makes
use of a new optimistically biased estimator for the loss functions and achieves
near-optimal regret guarantees under a variety of eigenvalue decay assumptions
made on the underlying kernel. Specifically, under the assumption of polynomial

. . . X 1 1
eigendecay with exponent ¢ > 1, the regret is O(KT2 (1+2) ), where T' denotes
the number of rounds and K the number of actions. Furthermore, when the eigen-
decay follows an exponential pattern, we achieve an even tighter regret bound

of 6(\/T ). These rates match the lower bounds in all special cases where lower
bounds are known at all, and match the best known upper bounds available for the
more well-studied stochastic counterpart of our problem.

1 Introduction

In the domain of sequential decision-making, the framework of contextual bandits has emerged as an
important tool for modeling interactions between a learner and environment in a sequence of rounds.
Within each such round, the learner observes a context and subsequently selects an action and incurs
a loss. The objective of the learner in this iterative process is to minimize her cumulative losses over
a sequence of rounds. This model has been employed in a large variety of applications, including
medical treatments [1], the domain of personalized recommendations [2], and online advertising [3].

One of the main challenges of the contextual bandit problem is that the partial observations made
about the losses handed out by the environment must be generalized efficiently to a possibly infinite
set of contexts that are yet to be encountered in future decision-making rounds. One possible way
to address this challenge is by making suitable assumptions about the structure of the losses. One
particularly well-studied model is that of linear contextual bandit, where the losses are assumed to be
linear in some known low-dimensional representation of the contexts. In the most broadly considered
version of this setup, the sequence of contexts is completely arbitrary and the losses are determined
by fixed linear functions. Advancements in this model have been made in a range of works, including
[3,4,5,6].

This model has been successfully generalized to deal with non-linear loss functions that belong to
reproducing kernel Hilbert spaces. This assumption is broadly applicable, as the RKHS associated
with commonly used kernels has the capacity to approximate nearly all continuous functions on
compact subsets of R [7, 8]. Viewed through the lens of kernel maps, this setting represents an
extreme extension of the parametric linear bandit setting mentioned above, where the contexts can
be represented in infinite-dimensional vector spaces. Works like [9, 10, 11] have provided efficient
algorithms with strong performance guarantees for contextual bandits with such nonlinear loss
functions that remain fixed throughout the online learning process.
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The primary focus of this paper lies in a distinct model known as the adversarial contextual bandit.
In this setup, we assume that the context is drawn from a fixed distribution, and losses are chosen
by a potentially adaptive adversary. For this setting, the simplest approach is to make use of a finite
class of policies that map contexts to actions, as done by the classic EXP4 algorithm of [12]. An
alternative to this line of work takes inspiration from the stochastic linear contextual bandit literature,
and models the losses as linear functions of some known finite-dimensional feature map [13, 14].

Our principal contribution is extending the understanding of the adversarial linear contextual bandit
model to work with a large class of nonlinear loss functions. To enhance model flexibility, we consider
the setting where the sequence of loss functions drawn by the adversary belong to a fixed and known

RKHS. Within this framework, we establish a regret bound of O(KT'/2(+1/€)) for loss functions

characterized by polynomial eigendecay (1; = O(i~¢)) and a O(K+/T) bound for those exhibiting
exponential eigendecay (1; = O(e~)). These conditions are well-studied in the broader literature
on learning with kernels, and in particular our results align with the lower bounds established for
kernelized bandits with adversarial losses by [15], and match the best known upper bounds in the
stochastic version of our problem by [10].

At a high level, our approach is based on the regret decomposition idea of [13] originally proposed
for finite-dimensional linear bandits: we place a suitably chosen online learning algorithm in each
context x, and feed each algorithm with a suitably chosen estimator for the loss functions that allows
generalization across different contexts. Our key technical contribution is the construction of an
optimistically biased loss estimator that can be effectively computed via a kernelized version of
the Matrix Geometric Resampling estimator proposed for finite-dimensional linear losses by [13].
The optimistic bias is achieved by adding a context-dependent exploration bonus to the standard
estimator, in order to offset its potentially large positive bias that could otherwise be problematic to
handle for a standard analysis. Another key component of our algorithm design is the now-classic
log-barrier regularization function popularized in the online learning literature by [16]—see also
the earlier works of [17, 18, 19, 20, 21] and follow-ups by [22, 23, 24, 25] that made use of the
same regularizer. In our case, we use the special property of the log-barrier that it can appropriately
handle loss functions in an FTRL scheme that are potentially unbounded (as will be the case with our
estimators).

The remainder of this paper is structured as follows. In the next section, we introduce the essential
notation and definitions. Section 3 presents our algorithm and provides its performance guarantees.
Detailed proofs supporting our analysis can be found in Section 4. We draw our conclusions in
Section 5, where we also delve into the implications of our results.

Notation. We let /5 denote the space of square-summable sequences. For any two elements
v,w € fo, we use (w,v) to denote the standard ¢ inner product Z;ﬁl w;u;, and we define the ¢y
norm of v as ||v||, = \/(v, v). The tensor product of v and w is denoted by v ® w, and is defined as
the operator that acts on elements u of £3 as (v ® w) u = v (w, u). For a positive definite operator B
on /5, we define ||v|| ; = \/(v, Bv), and its trace as tr (B) = ) _, ||ei||?3, where ¢; is the ith canonical
basis vector in ¢2. In the context of sequential-decision making problems, we will use F; to denote

the interaction history between the learner and the environment, and use the shorthand notations
]Et [] =K H]:t,l] and Pt [] =P ["]:15,1].

2 Preliminaries
We now introduce our learning setting and the assumptions that we make about the loss functions.

2.1 Adversarial contextual bandits

We investigate a sequential interaction scheme between a learner and its environment, where the
subsequent steps are iteratively executed over a fixed number of rounds ¢ = 1,2, ... 7"

1. The environment draws the context vector X; € R¢ from the context distribution D, and
reveals it to the learner;

2. Independently of the context X, the environment chooses a loss function ¢; : X x A —
[0,1];
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3. Based on X and possibly some randomness, the learner chooses action A; € [K];
4. The learner incurs and observes loss ¢; (X, A).

The primary objective of the learner is to strategically choose actions to minimize its cumulative loss.
It is important to note that we refrain from making any statistical assumptions about the sequence
of losses. In fact, we allow these losses to depend on the entire historical interaction, making it
impractical for the learner to aim for a loss level as low as that of the best sequence of actions. A
more realistic goal is to strive to match the performance of the best fixed policy that maps contexts
to actions. To formalize this objective, the learner considers the set II, which contains all policies
7 : R4 — [K], and seeks to minimize its total expected regret, which is formally defined as

T

By = sup D (G X, Ad) = £a( Xy, w(X0)))

Here, the expectation is taken over the randomness injected by the learner, as well as the sequence of
random contexts. It is easy to show that the optimal policy 77, which serves as the benchmark for
the learner’s performance, is defined by the following rule:
T
mr(x) = argminz&(x, a), Ve € R% (1)

@ t=1
2.2 RKHS loss functions

Throughout the paper, we will make the assumption that the loss functions ¢;(-, a) belong to a known
reproducing kernel Hilbert space (RKHS) for each ¢, a. Specifically, we will suppose that the space
of contexts X C R%, and we are given a positive definite kernel x : X x X — R. We let H,, C RY
be the RKHS induced by x. Without loss of generality, we assume (z,2) < 1 forall z € X. The
inner product and norm of H, are represented by (-, )%, : H,, X Hy — Rand || - |, : Hi — R,
respectively. Mercer’s theorem implies that, under certain mild conditions, « can be represented
using an infinite-dimensional feature map:

R(a,a’) =Y pitb () ('), )
=1

where p1; € R are the Mercer eigenvalues and 1); € H, are the corresponding eigenfunctions, and
/It;%; form an orthonormal basis of H,;. Using this basis, any h € H,; can be represented through

the real-valued square summable sequence (wj);il € s as

oo
h=> wi\/it;,
j=1
where ||h||§{m = Z;‘;l w?. A formal statement and the details can be found in Appendix A. We will

use the notation ¢; () = \/f;9;(x) and use p(z) = (pi(x));=, € {2 to denote the representation of
context x in £5 induced by Mercer’s theorem. An important implication of Mercer’s theorem that we
will repeatedly use is that (p(z), p(2’)) = k(z,2’) holds for all z, 2" € X.

Attempting to obtain a sublinear regret bound without any assumptions regarding the regularity of the
loss function would be an arduous task. In this paper, we will impose such regularity conditions by
making assumptions about the Mercer eigenvalues of the kernel .

Assumption 1. We assume that the Mercer eigenvalues {;}j>1 of the kernel k over X are ordered
as py > po > ..., and are such that they meet one of the following two eigenvalue decay profiles for
some constants g > 0,¢ > 0:

* (g, c)-exponential decay: for all j € N, we have i; < ge~,
* (g, ¢)-polynomial decay with ¢ > 1: for all j € N, we have pu; < gj~°.

As an alternative way to measure the decay rate of the kernel s, we will also define the following
quantity for each € > 0:

m(e) = min {m eEN:Y2 < 5} .
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It is easy to see that for kernels that satisfy the exponential decay condition, m(e) =
O (log(g/(ce))/c) and for kernels that satisfy the polynomial decay condition, m(e) =

@] (((c —1)e/ g)l/ (1_0)). Many practically used kernels are consistent with Assumption 1. For

instance, the squared exponential kernel satisfies the exponential decay condition with ¢ = 1/d,
and the Matérn kernel with smoothness parameter v > 2 satisfies the polynomial decay condition
with ¢ = 1 4 2v/d. We refer to [26] and the discussion in [27] for proofs of these facts and further
examples.

Now we can precisely state our assumptions on the loss functions and the contexts. We will suppose
the context distribution is supported on the bounded compact set X C R? with each z € X’ satisfying
lle(x)|l, < 1. Furthermore, we will suppose that the loss function satisfies /;(-,a) € H, and in
particular that it can be written as £;(x, a) = (ft,4, @(z)) for some f; , € ¢5 that satisfies || f; 4][, < 1
for all £, a.

3 Algorithm and main result

We now present our algorithm which is based on a regret-decomposition approach first proposed by
[13] for finite-dimensional linear contextual bandits. The core idea of this method is to instantiate
an online learning algorithm in every context x € X and feed it with an appropriately designed
estimator of the loss function that allows generalization across different contexts. Concretely, we will
run an instance of the standard Follow-the-Regularized-Leader (FTRL) algorithm with log-barrier
regularization (as popularized in online learning by 16) as the online learning method, and derive a
new loss estimator based on the Matrix Geometric Resampling procedure proposed by [13] along
with an optimistic exploration idea that is novel within this context. While the algorithm formally
needs to calculate its policies and loss estimates that are valid on the whole context-action space,
we will show that it can be implemented efficiently by querying the policy and the estimates only in
the contexts encountered in runtime. To preserve readability in this section, we present a relatively
abstract version of our algorithm first without worrying about implementability, and defer a fully
detailed operational description to Appendix C.

We start by describing the algorithm (that we call KERNELFTRL) for a generic choice of loss estima-

~

tors Z; : X x A — R whose specifics will be described shortly. Letting Et(x, a) = 23:1 L (x,a)
denote the cumulative sum of the estimated losses, our algorithm calculates its policy m; : X — A4

by solving the following optimization problem in each round ¢:

7¢(-|X¢) = arg min <\I/(p) + anaEt_l(Xt,a)> )

PEA(A)
Here, ) > 0 serves as a learning-rate parameter and ¥(p) = > ,In (%) Note that the algorithm
only has to compute the distribution 7 (-|X;) locally at X; which can be done efficiently as long as
L1 (X4, a) can be efficiently computed for all actions a [16]. We will show later that this condition
holds true for our loss estimators. We present this method as Algorithm 1 below.

Algorithm 1 KERNELFTRL
Parameters: Learning rate n > 0.
Initialization: Set B; = 0.

Fort =1,...,T, repeat:

1. Observe X; and, for all a, set
PEA(A)

m¢(+[X¢) = argmin (‘I’(p) + UZpaft—l(Xna)) ; 3)

2. draw A; from the policy m;(-| X3),
3. observe the loss ¢;(X¢, A;) and call Kernel Geometric Resampling to produce ;.

To describe our loss estimator, we first introduce the following operator on ¢5:
Et,a =E, [H{At:a} (@(Xt) ® @(Xf))] : “)
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Then, supposing for the sake of argument that ¥, , is invertible (which will not be necessary for our
actual estimator), we can define the estimate

Fra= S ao(Xe)l(Xe, )l a,—ay

which can be easily demonstrated to be unbiased:
E; {ﬁa:| = E; [Egiw(Xt)gt(XuG)H{At:a}] =E; [Z;;H{At:a}SD(Xt)QP(Xt)yft,a>] = ft,a-

Here, we used that £, (X, a) = (¢p(X4), ft,0)» and that o( Xy ) (0(Xy), fr.a) = (0(Xt) ® ©(X4)) froa
holds by definition of the tensor product. Note that the dimension of the H, could be infinite (for

example when & is the Gaussian kernel), so neither ¥ , or f; , can be computed explicitly. Another
challenge is that, even in the case of a fixed dimension, the operator 3J; , relies on the joint distribution
of both the context X; and the action A;, which exhibits a highly intricate structure. As a final note,
the eigenvalues of ¥, , can be arbitrary small, which may result in a loss estimator of unbounded

norm || ft.a||, even in the unlikely case that ¥ , is invertible.

I,

To deal with the difficulties stated above, we propose an estimator derived by adapting the idea of
Matrix Geometric Resampling (MGR) from [13] to the kernel setting. The estimator is efficiently
computable, but requires sampling access to the context distribution D. To deal with the bias of the
standard MGR estimator, we also introduce a new element in our algorithm design: an optimistic
exploration bonus whose purpose is to make sure that the estimates are negatively biased which we
will see to be beneficial to the analysis. The bonus for context-action pair (z, a) added in round ¢ will
be denoted by b;(x, a), and will be computed within the same procedure as the base loss estimates
themselves. The procedure (which we call Kernel Geometric Resampling or KGR) is presented
below:

Kernel Geometric Resampling

Input: Context z, Xy, policy 7, data distribution D, parameters 3, M.
For k =1,..., M, repeat:
1. Draw X (k) ~ D and A(k) ~ m:(-| X (k)),

2. compute gy, kq(z) = (p(2), Crap(Xt)) and by k,a(z) = B ((2), Crap(2)),
where Cj;, o = Hle (I —Bja)
and By o = [{a(k)=a} p(X (k) @ 0(X(K)).
Return ¢;(z,a) = x(z, Xy) + Z;:[:l Qtk,a(2),
bi(z,a) = k(z,x) + 22/[:1 bt ko ().
Then, the estimator of ¢;(x, a) can be written as

E(a:, a) = qi(z,a)li(Xt,a)lia,—ay — be(z, a).

Notice that all operations performed by Kernel Geometric Resampling can be implemented by

applying simple rank-one operators to elements of /5, so Zt (2, a) can be computed without having
to hold in memory C}, , and By, o, which can both be infinite-dimensional objects. In Appendix C,
we show that ¢;(x,a) and b;(z,a) can both be computed for any given z using O(tM?) kernel
evaluations, and describe all the implementation details of KERNELFTRL. The overall idea is
that using Mercer’s theorem (Theorem 2) shows that the kernel function can be represented as
k(z,2") = {p(x), p(z)), and the algorithm only needs to evaluate the kernel function for various
values of =, x'.

Our main result regarding the performance of KERNELFTRL for the two different eigenvalue decay
conditions is the following:

Theorem 1. Suppose that the kernel k satisfies Assumption 1 with the polynomial eigenvalues decay
rate p; < gi—€. Then, setting the parameters as M = T, n = = Tf%(H%) W the
expected regret of KERNELFTRL satisfies

Rr=0 (KT%<1+%) (9/(c—1)) 1nT) .
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Furthermore, suppose that the kernel r satisfies Assumption 1 with the exponential decay rate
wi < ge~°. Then, setting the parameters as M = T, n = 8 = ,/<BL

o the expected regret of
KERNELFTRL satisfies

Rp=0 (K (g/¢)T (In T)B) .

4 Analysis

In this section we provide the main arguments forming the proof of Theorem 1, relegating the proofs
of some technical lemmas to Appendix B. First, we introduce some important notations that will
be useful throughout the proof. We first define the operator E;f =1+ Eﬁil Cy, (with C, defined
through the KGR subroutine for the ¢, a pair in question), so that we can write the estimate of f; , as

Fra = Sao(X0)0 (X, A4, —a}- (%)

Similarly, the exploration bonus b;(x, a) can be written using this notation as
2
bz, a) = Bllp(e) 2

Using this notation, we denote ¢;(z,a) = (¢(z), fr.a) — bi(x,a). When written in this form, it
becomes readily apparent that our bonus is closely related to the adjustment proposed by [28]
for proving high-probability bounds in linear bandits (see also 29). That said, the purpose of our
adjustment is quite different in that it mainly serves to remove a potentially harmful bias from the
KGR estimators. As for computing the estimates and bonuses defined above, note that the full
functions f; , and b; are never computed by the algorithm, and are only evaluated at the contexts
Xit1, Xit2,. .., X encountered in runtime. As explained in Appendix D, each such evaluation has
a cost of O(tM?).

Our analysis will use ideas from [13] and a number of new techniques that are necessary for dealing
with the infinite-dimensional loss functions f; ,. For the sake of analysis, we define X as a sample
from the context distribution D drawn independently from the history of interactions Fr. We
introduce the following notations:

¢ R =B[N T ea(m(alXo) - 7 (0l X0)lu(Xo.a)].
* B =E [T Coeam(@lXo) ((Xo,0) = £i(Xo,0)) ]
* Br=E |1 LoeamlalXo) (6(Xo,a) = L(Xo,a)) |
The first step in our proof is then to rewrite the regret as the sum of these three terms:
Rr = Ry + B + Br. (6)

The proof of this claim is a straightforward extension of the regret decomposition of Lemma 3 in [13]
and can be found in Appendix B.1.

The terms in the decomposition can be interpreted as follows. First, B is the overestimation bias
of the total loss of the comparator policy 7*, measuring the extent to which the expectation of the
estimated loss of 7* exceeds the actual loss of the same policy. Similarly, By is the underestimation
bias of the total loss incurred by the learner. As we will show, the overestimation bias can be
uniformly upper bounded for all comparator policies thanks to the optimistic adjustment term b, (x, a)
added to the loss function. Furthermore, we will show that the price of this adjustment is a term of
the order E; [b:(X;, A;)] = PE; [tr (Et’aEzfa)] , which can be controlled in terms of the effective
dimension of the kernel.

To provide an interpretation for the term Rr, let’s consider an auxiliary online learning problem

where z is fixed, there are K actions, and the losses are defined as ¢; , = ¢;(x, a) for each ¢, a. We
then execute a copy of FTRL with the log-barrier regularizer on this sequence of losses, resulting in
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the sequence of action distributions 7; = argmin,c 5 4) (\I/(p) 3,3, l(x, a)). Thus, the
regret in the auxiliary game against the comparator 7* at x can be expressed as

T
Rr(z) =Y (mi(alz) — 7*(al2))li(x, a). )

a

Now it is easy to notice that Ry can be expressed in terms of the regret in these auxiliary games as
Rr=E {RT(XO)} . Our proof strategy will be to prove an almost-sure regret bound for the auxiliary

games defined at each x and take the expectation of the resulting bounds with respect to the law of
X, thus achieving a bound on the regret.

Before we jump into the analysis of each term discussed above, we state a technical result that will
be used repeatedly in nearly all proofs. The simple proof is provided in Appendix B.2.

Lemma 1. Forallt,a and e > 0, we have

tr (B [2F,50a)) = tr (I — (I = S1,0)™)) < m(e) + Me.

4.1 The bias of the loss estimator

The most important ingredient in our analysis is establishing a bound on the bias of our loss estimators
;. The following lemma is our key tool that we use to this end.

Lemma 2. Forany x € X, forany > 0,7 > 0, A > 0, we have

B (p(o): foa = Foo)]| < 9B [le@ ] + 575 ®)

The proof follows from a more or less straightforward calculation regarding the bias arising from the
truncated geometric series we use to approximate the “inverse” of 3, ,. While the building blocks are
standard, the result itself is new and and valuable in the sense that it gives a tighter control on the bias
of the geometric resampling estimator than previous works (e.g., 13). This tighter bound is enabled
by our use of the log-barrier policy that allows us to set M significantly larger than what the previous
analysis of [13] could have tolerated, which in turns enables meaningful control of the additional bias

term m appearing in the above bound. We relegate the proof of this result to Appendix B.3.

We are now well-equipped to tackle the bias terms B} and Br. We first show a bound on the
overestimation bias:

. . . * T
Lemma 3. The overestimation bias can be bounded as B} < O

Proof. We appeal to Lemma 2 to show that

B [fy(2,0)] — u(@,0) = (0(2). Ee[fra] = fr) = Eo [bu(a, )

1 1
<E[ a:%}—i—i—be,a =,
< 68, [le@:, ] + 5077 ~ B B0l = 57T,
where we recalled the definition of b;(z, a) in the last step. The claim then follows from averaging
both sides with the joint distribution of X and A* ~ 7*(Xj), and summing up for all ¢. O

Notice that without the optimistic adjustment b;(z, a), the overestimation bias would scale with
E >, 7 (a|Xo) ||50(X0)H2§+ }, which cannot be meaningfully bounded in general. The second

lemma takes care of the underestimation bias, and also establishes the price of adding the exploration
bonus b;(x, a) to the loss estimator.

Lemma 4. The underestimation bias can be bounded for any € > 0 as

T
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The proof of this lemma can be found in Appendix B.5.

In words, the effect of the optimistic bias is a factor of 2 multiplying the term
E; |7 (al Xo) ||¢(Xo) |\2§+ , which itself can be bounded effectively in terms of the effective dimen-

sion.

4.2 Bounding the auxiliary regret

The first major step in our proof is to bound the regret in the auxiliary games, which is done in the
following standard lemma concerning the bound of FTRL with log-barrier regularization:

Lemma 5. Let p1,...,pr € A(A) be defined as

pe = argmin{anaZcﬂa +\I/(p)},Vt =1,...,T,

pEA(A) a <t

where ¢, € R* is an arbitrary loss vector and ¥(p) = >, 4 In pi. Then, for any y € A(A),

T T
Z Z (pt,a - ya) Ct.a < \Ij(y)nw + 7]2 Z pnacf’a.

t=1 a t=1acA

The proof of this result is standard and can be found in a number of references—we point the reader
to Lemma 3.1 from [30] for concreteness. Notably, the second term in this bound has the the same
qualitative form as the standard bound for FTRL with negative entropy, with the key advantage that it
does not require any assumptions regarding the range of losses c;.

Before we apply the above result to bounding Rr, we state the following useful technical result
regarding the second moment of the KGR estimator:

Lemma 6. Suppose that X; satisfies ||o(X:)|| < 1 for each t. Then for each t, the following
inequality holds for any € > 0:

K
Eq Zﬁt(a\X0)<<P(Xo)a ﬁ,a>2 <2K (14 (m(e) + Me)).

The proof of this lemma follows from a rather tedious calculation that can be found in Appendix B.4.
With this result at hand, we are ready to state and prove the last remaining part of our regret bound.

Lemma 7. For any positive n, 3, M, e, KERNELFTRL guarantees
KInT

Ry < +2428(M+1)+ +20KT (2 + (m(e) + Me)) - (2+ 2M) .

2
B(M +1)
The proof of this lemma can be found in Appendix B.6.
4.3 The proof of Theorem 1

The proof now follows from putting together the results of Lemmas 3, 4, and 7, yielding

RTZIA:L;T—FB;—FBT
KInT
<

+2428(M+1) + +2nKT (2+ (m(e) + Me)) - (2+ B>M)

2
B(M +1)
2T

It remains to derive the concrete rates claimed in the theorem for the two separate eigendecay regimes
considered therein. First, consider the polynomial decay rate y; < gi~¢ and recall from Section 2.2

that we have m(s) = O (((c — 1)e/g)*/(¢=Y) in this case. Thus, we can set ¢ = C-_%T% which
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yields m = O (Tl/c). Taking M =T,n =0 = Tfé(H%)w/w and plugging into the

bound above, the expected regret of KERNELFTRL can be seen to satisfy

Rr = 0 (K/(g/(c= D)D) |

proving the first claim.

As for the exponential decay p; < ge™“!, recall from Section 2.2 that m(g) = O (M), so that

we cansete = L to get m(e) = L. Letting M =T, n = = C;“TT, and substituting these
values into the previously derived bound, we can observe that

Ry =0 (K\/(g/c)Tln(T) 1n(T)) :
which proves the second claim. ]

5 Discussion

We now turn to discussing our results in some more detail, focusing on comparison with related work
and the possibility to improve certain aspects of our algorithm and its theoretical guarantees.

The first question one may ask is if our results match the best achievable regret bounds in this context.
While we cannot provide a fully affirmative answer to this question, there are definitely reasons to
believe that at least the dependence of our bounds on 7 is optimal. In the special cases of Matérn
and Gaussian kernels, our upper bounds match the lower bounds proved by [31] and also the lower
bounds of [15] that were proved for more general kernels but in a slightly different setting. In the
general case, our bounds can also be shown to match the best known rates for the stochastic version
of our problem claimed by [10]—see the discussion in Appendix D of [32] that relates the various
notions of “effective dimension” used in these works. A comparison with these results is made
possible by noticing that tr (I — (I =% )M ) can be also seen as an effective dimension that closely
matches the other dimensions proposed in the previously mentioned papers [33, 34]. In light of these
observations, we conjecture that our bounds are optimal in terms of 7" under the set of assumptions
we make.

One remarkable downside of our bounds is their linear scaling with the number of actions K. This
obviously suboptimal scaling is due to the use of the log-barrier regularizer in our algorithm. We
conjecture that this factor can be improved by a more sophisticated algorithm design. One potential
idea that we believe could work would be to adapt the very recently proposed “magnitude-reduced”
loss estimators of [30] in tandem with a standard entropy regularizer, but we can see many potential
failure modes for this approach and as such we leave its exploration for future work.

Finally, let us comment on the computational complexity of our method. In Appendix D, we show
that the computation of Et—l,a for all actions takes O(K (t — 1)M?3) steps, which makes for a
total computational complexity of O(KT®) over T rounds due to our choice of M = T. While
polynomial in 7', this rate is obviously not the most practical that one can wish for, and thus it is a
natural question to ask if a faster method can be devised without compromising the regret bounds. A
potential idea to consider is to use sketching methods such as the ones used by [35, 36] or [32] to
reduce the computational burden. We note that it is not obvious at all if such methods can achieve the
desired goal, as none of these sketching-based methods are able to attain the near-optimal rates of
inefficient algorithms like that of [10].
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A Mercer’s theorem

Mercer’s theorem [37] provides a representation of a positive-definite kernel x in terms of an infinite
dimensional feature map (see, e.g. [38], Theorem 4.49). Let X’ be a compact metric space and v
be a finite Borel measure on X’ (we consider Lebesgue measure in a Euclidean space). Let L2(X)
be the set of square-integrable functions on X with respect to v. We further say that the kernel s

square-integrable if
/ / w(x, 2")? dv(z)dv(z') < oo. 9
xJx

Theorem 2. (Mercer’s Theorem) Let X be a compact metric space and v be a finite Borel measure on
X. Let K be a continuous and square-integrable kernel, inducing an integral operator Ty, : L2(X) —
L2(X) defined by

(T.f) () = /X w2 f () dula), (10)

where f € L2(X). Then, there exists a sequence of eigenvalue-eigenfunction pairs {(ji;, Vi) ooy
such that p; > 0, and T,;0; = pi;, for m > 1. Moreover, the kernel function can be represented as

) =) () (2) (1)
i=1
where the convergence of the series holds uniformly on X x X.

Additionally, the Mercer representation theorem (see, e.g., [38], Theorem 4.51) states that the RKHS
induced by & can consequently be represented in terms of {(z;, ;) }52,

Theorem 3. (Mercer Representation Theorem) Let {(pu;,1;)};~, be the Mercer eigenvalue-
eigenfunction pairs. Then, the RKHS associated with k is given by

= {f(')zzwm;%(')fwz‘ERv 115, == w? <00} (12)
i=1 =1

In particular, the Mercer representation theorem indicates that the scaled eigenfunctions {/m;4; 12,
form an orthonormal basis for H,.

B Omitted proofs
B.1 Proof of the regret decomposition (6)

Let us rewrite the estimate lza( ) = (p(z ), fr ‘o) + (@), 6¢,a) + b o), where ft*a and d; o are

such that [E; [E*a} = ft,q and ﬁ’a = ft’a + 0t.q, SO ét’a is the bias of ft,a. Also, let X be a sample
from the context distribution D, drawn independently from Fr. We will consider each term separately
on the right-hand side of Equation (6). First, for Rr, we have:

A
Fr Z 3 (mi(alXo) — 7" (al X)) B (Xo, a)]

Lt=1 ac A

=E; |E Z Z (m(alXo) — 7 (a] X0))l: (Xo, a)| X, H
t=1acA
T

=B, (B | 303 (realXo) = 7 (@l Xo)) ((#(X0). Fr ) + ((X0).dr) — bt,a<Xo>>| XH
t=1acA

=E, Z > (me(alXo) = 7 (al X0) ({(Xo), fr.a) + (#(X0), E [8t,a]) — bt,a(XO))]

Lt=1 ac A

[ T
=E¢ YD (mlalXe) — 7 (al X)) ((2(X0), fra) + (0(X0), E [6r.a)) — bt,a(Xt))]

Lt=1 acA

12



444
445

446

447

448

449

450

451
452

453
454
455

—F,

T
DN (mlalXe) — 7 (a]X0)) (Ce.a(X2) + (2(Xe), E[01.a]) — bw(Xt))] ;
t=1acA

where we used the independence of X; and ft,a. Applying the same sequence of equations to B,
and Br, we get

B =E; lz Z 7 (] X)) ((p(Xe), E [0r,0]) — bt,a(Xt))]

t=1acA
and
T
Br =B |> > m(alXy)({@(Xo), br.a(X:) — E [5t,a]>)1 ~
t=1acA
The proof is concluded by collecting all terms together. ]

B.2 Proof of Lemma 1

For the first part, recall the construction of f]j ., defined through the KGR procedure. Note that
E; [Bk,a] = Xt,q, and { X (k) }2L | are independent, and recall the identity (I + Zf\il UZ-) (I-U) =

(I — UM+1) that holds for any Hermitian operator U : ¢, — (5. Applying this identity with
U=1-%,,, weget

E [iga} Sta = (1 + szj (I - zm)’) Sta = (1 — (I - zt,a)M“) . (13)
=1

Let {e1, ez, . .. } be the canonical basis in ¢ and recall that tr (U) = >_;°, (e;, Ue;). Also introduc-
ing the notation tr, (U) = Y .2 (e;, Ue;) for n € N, we observe that the following holds for each
t,a:
try, (B4,0) = trn (B [m(a] Xe)o(Xe) @ 0(X)])
— E [my(al Xt ((X) © 9(X0))]
(by Fubini’s theorem)

=E |m(a| Xy) Z (e, p(X1) ® @(Xt)€i>]

i=n

<E | (e, p(Xo) @ w(Xt)e»]

i=n

—E Z<<ei,w<xt>>>2]

Li=n

[ oo
2 2
<E ZII@(Xt)zllez'IIz]

Li=n

(Cauchy-Schwarz inequality)

(S

using [le;|2 = 1)

=E (Z mzﬁ()@))] <> i, (14)

~
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461

462
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464

465
466

467

470

471

472

where we used |1;(x)| < 1 and p; > 0 in the last step. Moving on to bounding the trace of Zmi: o

we observe
oo

tr(]E [i;a} Em)ztr((f (I-S0a)™) =3 (e (I - (1= Sea)™) -e)
i=1
<m+ Z e“ (I —%t4) )~ei>
i=m-+1
=m 4+ Z ]-_ ezvzta el>)M)
i=m-+1

<m+M Z (€5, 21,0 - €;) =m + Mtr,(3;,,)
i1=m-+1

i=m-+1
where we have split the sum at some arbitrary m, used <ei, (I —(I- Zm)M) . ei> < le; Hg < 1 for
the first m terms, and used the inequality 1 — M\ < (1 — \)M that holds for A € [0,1] and M > 1

for the rest of the terms. Finally, we used the inequality (14) in the last step. The statement then
follows from the taking m = m(e). O

B.3 Proof of Lemma 2
Proof. We start by writing the bias as
E: [(0(@), fua) = (#(@), fra)| = (@), fra) = Ee [(0(@), SHap(X0)) (X0, fra) Tarma)
= (p(@), fua) = Bt | (0(@), St Tvafua)]
=B [(p@), (1~ £a200) fia)|
= (@), (= 20)™*) fra)
(by (13))

2
Sa H@(fﬂ)H(pztﬁ)M“ +

for an arbitrary o > 0, where we have used the Cauchy—SchwarZ inequality in the last step. The last

term can be conveniently upper bounded by < || f; , 1> < L, as || fi.q] < 1. To bound the first term,
notice that

WML
— a?

2
a le@lff—x, . < MHZ”@ Wir-se = Gre® le@ly, ]

1=0
where we have used that (I — 3, )M ! 5 (I — %, ,)* holds forall i < M + 1 due to ||X; o ||

and the definition of f]j .- Putting the above statements together we obtain

1
[0, fua) = (0@, Fua)] < e (e @lEe ] + 5
The statement is then proved by taking o« = 3 (M + 1). |

Op—

B.4 Proof of Lemma 6

The proof follows the steps of the proof of Lemma 6 of [13]. We start by plugging in the definition of
ft,o and writing

K
> m(alXo) (9(Xo), fra) ] E, lZm alXo) ({i(x >,izaw<xt>>-<so<xt>,ft,a>ﬂ{m_a})2]
a=1

14



iwxau{o) (<@<Xo),i?,aw(Xt>>H{At—a}>2]
a=1
i tr (Zt,aizazt,a§:a>

a=1

:Et

)

473 where we used <<,0(X0)7 ft,a> < 1 in the inequality. We omit ¢, a indexes in the following text. Using
474 the Araki-Lieb-Thirring inequality, we get

r(Z2test) <u (32 (),

475 Define Gy, = (I — By). Using the definition of 1 and elementary manipulations, we can get
2

M M k M k k'
(2%)" = I+ZHG =r+2) J[e+ > (16 (116
k=1 j=1 k=1j=1 k=1 \j=1 j=0
M k M M k k M k
=r+2) J[e+2> > 1167 I 6-> 114
k=1j=1 k=1k/'=k j=1 jfk—o—l k=1j=1
M M
2I+2ZHG HZZHG? H G,
h=1j=1 h=1kimkj=1  j—=k+1

. . M M M M
476 where in the second line we reordered the sum >, ., apar = 2> 3 >0, akar — Y, a3,

477 while in the third line we dropped the last term and added /. Denote D = E, [G;] and E = E, [G3].
a7e  Using independence of G;’s we get:

M—k

E, [ (=) } <2ZD"+QZE’“ 3" D¥.
k=1 k’=0
479 Using the fact that D = I — 3, we have Zk:o D*% = I — DM and thus
M M
E (5922 <2(-DM) 42 B (I- DM )z <242 E'E
k=1 k=1

480 where we have also used the fact that if A < B, then for any positive semi-definite operator C' holds
ag1  the inequality tr (C'A) < tr (C'B). Furthermore, since we have B < I, we can also simplify

E=E [(I-B)’] <E|[(I-B) =D,
482 and write

M
E'S x) DS =(1—-(1-%)M).

M

483 This then gives

tr (ZQEt [(z+)2D <20 (2) + 2> (D) = 2 (8) + 2t (1 - (I - £)M))

<2+ m(e) + Me,

44+ where the last step follows from using Lemma 1. (]

485 B.5 Proof of Lemma 4

486 By applying Lemma 2, we get that
0, 0) = Eu[lu(w, )] = (p(@), fra — Ba[Foa] ) +Ee ol )]
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488

489
490

491

492

493

494

496
497

498

499

500

501

< BB, [lle(@)E; | + m + B [bi(2,0)) = 2 [br(, 0)] + m

where we recalled the definition of b;(z, a) in the last step. Taking expectations and averaging with
respect to 7+ (+| X) and the distribution of X, we get

B [mi(alXo) lo(Xo)I3r, | = B [tr (S0aS,)] < mie) + Me,

where the last step follows from an application of Lemma 1. The proof is concluded by summing up
for all ¢. (]

B.6 Proof of Lemma 7

Let us fix x € X and apply Lemma 5 to obtain the following:

3 7 (-|z)) = U (m(|z
>3 (male) - 7 (al2)) (G(a,2)) < U(7* (o) — W(m(|2))

— Ui
t=1acA . (15)
~ ~ 2
+ Z Z “(alz) — 7" (a|z)) ((t(a:, a)) + nz Z m(alx) (ft(:b,a))
t=1acA t=1acA
By picking 7*(a|z) = (1 — &) 7*(a|z) + %, the first term is bounded by
V(@ (|r)) = ¥(m(|z)) - KInT
Ui n
To proceed, we appeal to Lemma 2 to show that
~ 1 1
Ee[le(a,0)] — ol a)] < 28E: [llp(@) I3 | + sar T = @ ol + gy

and also observe that the exploration bonus can be bounded as
bi(w,0) = Blp(@)s < 8|S, < B +1).

Altogether, these observations can be used to simply bound the second term on the right-hand side of
Equation (15) as

1
lz Z (alz) — 7*(alz))l;(z, a)] <2 (1 +BAM +1) + 5(M+1)) '

t=1acA
It remains to bound the last term on the right-hand side of Equation (15), which we start by writing

T N 2 T ~ \2
1Y X wlalo) (o) <203 3 male) (((ple): o))+ (ule.))?).

t=1acA t=1acA
We will bound these terms on expectation with respect to the random context X. The first term in
the resulting expression can be upper bounded by using Lemma 6:

T A
E lZZm(alXo)@(Xo), ﬁ,a>21 < 2K (1+ (m(e) + Me)).

t=1a=1

Moving on to the second term, we have

T T
S m(alX0) (0 (X0, 0))? > 3 il ety ]
t=1acA t=1ac A

T
= B2ME, lz Z tr (Et,aiza)] < B*M (m(e) + Me) KT,
t=1acA

where the last inequality uses Lemma 1. Collecting all terms together, we get

ETS KInT

< B*ME,

+2428(M +1)+ +2nKT (2 + (m(e) + Me)) - (2 + M) ,

2
B(M +1)

thus concluding the proof. (]
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C Implementing KERNELFTRL

We now present a fully operational definition of KERNELFTRL that does away with all the ab-
stractions used in the main text. In particular, we here provide a version that fully unpacks the

computation of the cumulative loss estimates L;(X¢, a) needed by the FTRL subroutine to calculate
the policy 7+ (| X¢). As some pondering of the abstract description reveals, this computation requires
rerunning the entire KGR subroutine for the whole sequence of past observations, including reusing
the context-action pairs generated by KGR in each time step preceding ¢. In order to accommodate
this sample reuse, in Algorithm 2, we present a version of KERNELFTRL that uses the subroutine
KGRLOSSESTIMATE to compute the cumulative loss estimates and a data buffer B; that stores all
relevant data for computing said estimates. This subroutine is presented as Algorithm 4, and it makes
use of the KGR subroutine presented as Algorithm 3.

Algorithm 2 KERNELFTRL

Parameters: Learning rate n > 0.

Initialization: Set B; = 0.

Fort=1,...,T, repeat:
1. Observe X; and, for all a, compute L;(X;,a) = KGRLOSSESTIMATE(X¢, a, B;).
2. Observe X; and, for all a, set

PEA(A)

(| X¢) = argmin (\If(p) +n2pait_1(Xt,a)> : (16)

draw A; from the policy m:(+| X¢),

observe the loss £; (X3, A¢),

fork =1,2,...,M,draw X (k) ~ D and A(k) ~ 7;(-| X (k)) using the procedure above,
update buffer with the tuple

Biy1 =By U (Xe, Ay, 0( Xy, Ay), { X (E), At(k’)}g/[:l)'

Sk w

Algorithm 3 Kernel Geometric Resampling (KGR)
Parameters: 5 > 0.

Input: Context-action pairs (z,a), (¢',a’), and {z(k), a(k:)}ﬁ/il.
For k =1,..., M, repeat:

set Br.a = lia(r)=ayp(x(k)) @ 0(z(k)),
set Cp q = Hf 1 (I = Bja),
compute gy, o(z) = (ip(x), Ch.a (X)), and
- compute by,q(z) = B {p(z), C%aw()>

Return ¢(z,a) = Ij4—q1 (n(x,x )+ Zk 1 k.0l )) ,
b(x,a) = k(z, ) + Yo, br.al).

B )

Algorithm 4 KGRLOSSESTIMATE

Input: context x, action a, a set of tuples (Xi, A (X5, Ay, {Xi(k),Ai(k)}Q/[zl)é )
Initialize: Lo(x,a) = 0 for all a. -
For:=1,2,...,n, repeat:

1. let (g:(w, ), bi(x, a)) = KGR(x, a, X;, Ag, {Xi(k), Ai (k) }21,),

2. letl;(xz,a) = g;(x,a)l (X“a)H{A —a} — bi(z,0a),
3. update Ei(x7a) Li_ 1(z, a) + 0 (z,a).

As we show in Appendix D, the KGR procedure with a given set of inputs runs in O(M?) time.
In round ¢, the KGR subroutine is called by KGRLOSSESTIMATE ¢ times, which costs a total of
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O(tM?) time. Finally, KGRLOSSESTIMATE is called by the main algorithm KERNELFTRL M + 1
times when generating the action A; and the independent copies {At(k)},i”:l which altogether
makes for a time complexity of O(tM?) per round. Thus, the total time complexity of implementing
KERNELFTRL is O(T?M?). As for memory complexity, the main bottleneck is having to store the
data buffer B;, which consists of ¢(M + 1) context-action pairs and ¢ observed losses. Overall, this
means that KERNELFTRL requires to store a total of O(T' M) context-action pairs in memory.

D Computational analysis of KGR

Lemma 8. Kernel Geometric Resampling requires O(M?) elementary operations and requires
O(M) memory.

Proof. The proof goes by induction. For M = 1, we get

Qt(‘r7 a’) = k<x7Xt) + <(p(.’1?), (I - H{a(l):a}@(‘x(l)) ® QO(X(l))) (,0(.%‘)>
= 2k(2, X) — Layzay oo, X(1)R(X (1), Xo).

For step m + 1, we have

k
Gt,k,a(T) = (9 H (I = Bja) p(Xt))
k—1
H (I = Bja) - (I = La(r)=ayp(X (k) ® p(X (k))) p(X))
k—1

= drh—1,0 T Hamy=a) (p(2), | | (I = Bja) - (X (k) @ (X (K))p(Xy))-
1

.
I

Note that there exists a set of coefficients {p, 1., }+—, such that

1:[[ Bya) - 9(X0) Zpam X (), 9(X0)

We can compute {p, k. }¥_; in k steps, as:

k
H - o(Xt))
= Zpa,k—l,i (p(X(9), (I — Br,a) - p(Xt))

k
= Zpa,k—l,i (p(X (7)), p(X¢))

k

— La(k)=a} Zpa,k—l,i (p(X (1), p(X(k+1)) @ (X (k+1))p(Xt))
=1

k
=" pas-ri (X (D)), p(X0))
=1
k

~Tatty=ay Y Pasi—1,i {(X (), o(X (k + 1)) {p(X (k + 1)), (X¢))
=1

k
=3 pas1i (P(X (D)), 0(X0)
=1
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k

— Lia(k)=a} Zpa,k—LiF«'(X(i)a X(k+1)(p(X(k+1)), 0(Xe)) -

i=1

Thus, we get that for 4 <

~a(k)=a) Zf;ll Pak—1,:k((X(7), X (k)), which means that computing p,; takes k — 1

operations, which results in %

k - 13 pa,k7i

Pa,k—1,i

and  pg ik

operations to compute {p, x—1,;}2Z,. In order to do this we

need to store in memory an array of size M with coefficients {p,, k,l,i}f;f. Notice, that the same

line of computations apply to computing b; ,(z). Thus, given that the time of computing kernel is K,
M(M+1)
2

to compute g; o (z) and b; (), we need

K steps.
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