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Figure 1: Comparison between fixed and dy-
namic topology search spaces.

NASBench-101 NASBench-201 DARTS-NDS

# Arch. 423,624 15,625 5,000
# Op. 3 5 8
Channel Dynamic Fix Fix
Optimal Global Global Sample
Nodes=(n) 5 4 4
Param. O(n) O(n) - O(n2) O(n) - O(n2)
Edges O(n2) O(n2) O(n)
Merge Concat. Sum Sum

Table 1: Search Spaces

In this section, we provide some additional details about our methodology.

A.1 ADAPTATION OF FAIRNAS

Originally, FairNAS (Chu et al., 2019) was proposed in a search space with a fixed sequential
topology, as depicted by Figure 1 (a), where every node is sequentially connected to the previous one,
and only the operations on the edges are subject to change. However, our benchmark search spaces
exploit a more complex dynamic topology, as illustrated in Figure 1 (b), where one node can connect
to one or more previous nodes.

Before generalizing to a dynamic topology search space, we simplify the original approach into
a 2-node scenario: for each input batch, FairNAS will first randomly generate a sequence of all o
possible operations. It then samples one operation at a time, computes gradients for the fixed input
batch, and accumulates the gradients across the operations. Once all operations have been sampled,
the super-net parameters are updated with the average gradients. This ensures that all possible paths
are equally exploited . With this simplification, FairNAS can be applied regardless of the topology.
For a sequential-topology search space, we repeat the 2-node policy for every consecutive node pair.
Naturally, for a dynamic topology space, FairNAS can be adopted in a similar manner, i.e., one first
samples a topology, then applies the 2-node strategy for all connected node pairs. Note that adapting
FairNAS increases the training time by a factor o.

A.2 SEARCH SPACES

Here we provide additional details of the search space used in this paper. A summary of these
search spaces and their properties is shown in Table 1. The search spaces differ in the number of
architectures that have known stand-alone accuracy (# Arch.), the number of possible operations (#
Op.), how the channels are handled in the convolution operations (Channel), where dynamic means
that the number of super-net channels might change based on the sampled architecture, and the type
of optimum that is known for the search space (Optimal). We further provide the maximum number
of nodes (n), excluding the input and output nodes, in each cell, as well as a bound on the number of
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shared weights (Param.) and edge connections (Edges). Finally, the search spaces differ in how the
nodes aggregate their inputs if they have multiple incoming edges (Merge).

A.3 KENDALL TAU V.S. SPEARMAN RANKING CORRELATION (SPR)

Corr. of Perf. KdT. S-KdT SpR S-SpR

NASBench-101 0.29 0.45 0.23 0.41
NASBench-201 0.42 0.55 0.38 0.57
DARTS-NDS 0.08 0.19 0.09 0.20

Table 2: Comparison of Kendall
Tau (KdT) and Spearman ranking (SpR)
with their sparse variants.

Kendall-tau is not the only metric to evaluate the ranking
correlation. Spearman ranking correlation is also widely
adopted in this field (Guo et al., 2019; Dong & Yang,
2020). Note that our idea of sparsity also applies to SpR.
In Table 2, we compare the performance of KdT, SpR
and their sparse variants, in the same setting as Figure
4 in the main paper. Note that SpR and KdT performs
similarly but that their sparse variants effectively improve
the correlation on all search spaces.

A.4 SPARSE KENDALL-TAU IMPLEMENTATION DETAILS

To compute the sparse Kendall-Tau we need access to two quantities: 1) the performance of the
sampled architectures based on the trained super-net; and 2) the associated ground-truth performances.
For each architecture in 1), we compute the average top-1 accuracy over n = 3 super-nets (that where
trained with different random initialization) to improve the stability of the evaluation. We round
the ground-truth top-1 accuracy to a precision of 0.1% for each sampled architecture to obtain the
ground-truth performance 2). We then rank the architectures in 1) and 2) and compute the Kendall-Tau
rank coefficient Kendall (1938) between the two ranked lists.

Sparse Kendall-Tau threshold. This value should be chosen according to what is considered a
significant improvement for a given task. For CIFAR-10, where accuracy is larger than 90%, we
consider a 0.1% performance gap to be sufficient. For tasks with smaller state-of-the-art performance,
larger values might be better suited.

Number of architectures. In practice, we observed that the sparse Kendall-Tau metric became stable
and reliable when using at least n = 150 architectures. We used n = 200 in our experiments to
guarantee stability and fairness of the comparison of the different factors.

A.5 LIMITATION OF SPARSE KENDALL-TAU

We nonetheless acknowledge that our sparse Kendall-Tau has some limitations. For example, a failure
case of using sparse Kendall-Tau for super-net evaluation may occur when the top 10% architectures
are perfectly ordered, while the bottom 90% architectures are purely randomly distributed. In this
case, the Kendall Tau will be close to 0. However, the search algorithm will always return the best
model, as desired.

Nevertheless, while this corner case would indeed be problematic for the standard Kendall Tau, it can
be circumvented by tuning the threshold of our sKdT. A large threshold value will lead to a small
number of groups, whose ranking might be more meaningful. For instance in some randomly-picked
NASBench-101 search processes, setting the threshold to 0.1% merges the top 3000 models into 9
ranks, but still yields an sKdT of only 0.2. Increasing the threshold to 10% clusters the 423K models
into 3 ranks, but still yields an sKdT of only 0.3. This indicates the stability of our metric.

In Figure 2, we randomly picked 12 settings and show the corresponding bipartite graphs relating the
super-net and ground-truth rankings to investigate where disorder occurs. In practice, the corner case
discussed above virtually never occurs; the ranking disorder is typically spread uniformly across the
architectures.

B EXPERIMENTAL DETAILS

Below, we provide additional details about our implementations and settings. We also report the best
settings in Table 3.
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Figure 2: Ranking disorder examples. We randomly select 12 runs from our experiments. For each
sub-plot, 0 indicates the architecture ground-truth rank, and 1 indicates the ranking according to their
super-net accuracy. We can clearly see that the ranking disorder happens uniformly across the search
space and does not follow a particular pattern.

Table 3: Parameter settings that obtained the best searched results.

Search Space implementation low fidelity hyperparam. sampling

Dynamic Conv OFA Conv WSBN Dropout Op map # layer portion batch-size # channels batch-norm learning rate epochs weight decay

NASBench-101 Interpolation N N 0. Node 9 0.75 256 128 Tr=F A=T 0.025 400 1e-3 FairNAS
NASBench-201 Fix N N 0. Edge 5 0.9 128 16 Tr=F A=T 0.025 1000 3e-3 FairNAS
DARTS-NDS Fix N Y 0. Edge 12 0.9 256 36 Tr=F A=F 0.025 400 0 FairNAS
For batch-norm, we report Track statistics (Tr) and Affine (A) setting with True (T) or False (F).
For other notation, Y = Yes, N = No.

B.1 TRAINING DETAILS

We use PyTorch (Paszke et al., 2019) for our experiments. Since NASBench-101 was constructed
in TensorFlow we implement a mapper that translates TensorFlow parameters into our PyTorch
model. We exploit two large-scale experiment management tools, SLURM (Slurm, 2020) and
Kubernetes (Kubernetes, 2020), to deploy our experiments. We use various GPUs throughout our
project, including NVIDIA Tesla V100, RTX 2080 Ti, GTX 1080 Ti and Quadro 6000 with CUDA
10.1. Depending on the number of training epochs, parameter sizes and batch-size, most of the
super-net training finishes within 12 to 24 hours, with the exception of FairNAS, whose training time
is longer, as discussed earlier. We split the data into training/validation using a 90/10 ratio for all
experiments, except those involving validation on the training portion. Please consult our submitted
code for more details.

B.2 COST OF COMPUTING THE STAND-ALONE MODEL PERFORMANCE

Computing the final accuracy is more expensive than training the super-net. Despite the low-fidelity
heuristics reducing the weight-sharing costs, training a stand-alone network to convergence has
higher cost, e.g., DARTS searches for 50 epochs but trains from scratch for 600 epochs (Liu et al.,
2019). Furthermore, debugging and hyper-parameter tuning typically require training thousands
of stand-alone models. Note that, as one typically evaluates a random subset of architectures to
understand the design space (Radosavovic et al., 2019), sparse Kendall-Tau can be computed without
additional costs. In any event, the budget for sparse Kendall-Tau is bounded with n.

B.3 STAND-ALONE ACCURACY V.S. SPARSE KENDALL-TAU

A common misconception is that the super-net quality is well reflected by stand-alone accuracy of
the final selected architecture. Neither sparse Kendall-Tau (sKdT) nor stand-alone accuracy (SAA)
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Figure 3: Comparing sparse Kendall-Tau and final search accuracy. Here, we provide a toy
example to illustrate why one cannot rely on the final search accuracy to evaluate the quality of
the super-net. Let us consider a search space with only 30 architectures, whose accuracy ranges
from 95.3% to 87% on the CIFAR-10 dataset, and we run a search algorithm on top. (a) describes
a common scenario: we run the search for multiple times, yielding a best architecture with 93.1%
accuracy. While this may seem good, it does not give any information about the quality of the search
or the super-net. If we had full knowledge about the performance of every architecture in this space,
we would see that this architecture is close to the average performance and hence no better than
random. In (b), the sparse Kendall-Tau allows us to diagnose this pathological case. A small sparse
Kendall-Tau implies that there is a problem with super-net training.

are perfect. Both are tools to measure different aspects of a super-net. Below, we discuss this in more
detail.

Let us consider a completely new search space in which we have no prior knowledge about perfor-
mance. As depicted by Figure 3, if we only rely on the SAA, the following situation might happen:
Due to the lack of knowledge, the ranking of the super-net is purely random, and the search space
accuracy is uniformly distributed. When trying different settings, there will be 1 configuration that
‘outperforms’ the others in terms of SAA. However, this configuration will be selected by pure chance.
By only measuring SAA, it is technically impossible to realize that the ranking is random. By contrast,
if one measures the sKdT (which is close to 0 in this example), an ill-conditioned super-net can easily
be identified. In other words, purely relying on SAA could lead to pathological outcomes that can be
avoided using sKdT.

Additionally, SAA is related to both the super-net and the search algorithm. sKdT allows us to judge
super-net accuracy independently from the search algorithm. As an example, consider the use of
a reinforcement learning algorithm, instead of random sampling, on top of the super-net. When
observing a poor SAA, one cannot conclude if the problem is due to a poor super-net or to a poor
performance of the RL algorithm. Prior to our work, people relied on the super-net accuracy to
analyze the super-net quality. This is not a reliable metric, as shown in Fig. 9 in the main paper. We
believe that sKdT is a better alternative.

C ADDITIONAL RESULTS

C.1 WEIGHT-SHARING PROTOCOL Pws – OTHER FACTORS

We report results of additional factors such as the number of training epochs, weight decay and path
sampling here. In summary, our experiments show that more training epochs positively influence
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Figure 4: Learning rate on NASBench-101.
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Figure 5: Learning rate on DARTS-NDS.

super-net quality. The behavior of weight decay varies across datasets, and one cannot simply disable
it as suggested by Nayman et al. (2019).

Learning rate.

We report the learning rate validation results for NASBench-101 in Figure 4 and for DARTS-NDS in
Figure 5. For NASBench-101, we can see that learning rates of 0.025 and 0.05 clearly outperform

other learning rates in terms of sparse Kendall-Tau and validation accuracy. For DARTS-NDS,
although the best validation accuracy is obtained with a learning rate of 0.01, the sparse Kendall-Tau
suggests that there is no significant difference once the learning rate is below 0.025, which is the
stand-alone training learning rate. We pick 0.025 to be consistent with the other search spaces.

Number of epochs.

Figure 6: Validating the number of epochs.
Each data point summarizes 3 individual runs.

Since the cosine learning rate schedule decays
the learning rate to zero towards the end of
training, we evaluate the impact of the num-
ber of training epochs. In stand-alone train-
ing, the number of epochs was set to 108 for
NASBench-101, 200 for NASBench-201, and
100 for DARTS-NDS. Figure 6 shows that in-
creasing the number of epochs significantly im-
proves the accuracy in the beginning, but even-
tually decreases the accuracy for NASBench-
101 and DARTS-NDS. Interestingly, the num-
ber of epochs impacts neither the correlation
of the ranking nor the final selected model per-
formance after 400 epochs. We thus use 400
epochs for the remaining experiments.

Weight decay.
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Figure 7: Weight decay validation.

Weight decay is used to reduce overfitting. For
WS-NAS, however, overfitting does not occur
because there are billions of architectures shar-
ing the same set of parameters, which in fact
rather causes underfitting. Based on this obser-
vation, Nayman et al. (2019) propose to disable
weight decay during super-net training. Figure 7,
however, shows that the behavior of weight de-
cay varies across datasets. While on DARTS-
NDS weight decay is indeed harmful, it improves the results on NASBench 101 and 201. We
conjecture that this is due to the much larger number of architectures in DARTS-NDS (243 billion)
than in the NASBench series (less than 500,000).

C.2 WEIGHT-SHARING PROTOCOL Pws – PATH SAMPLING

Aside from the Random-NAS described in the main paper, we additionally include two variants
of Random-NAS: 1) As pointed out by Ying et al. (2019), two super-net architectures might be
topologically equivalent in the stand-alone network by simply swapping operations. We thus include
architecture-aware random sampling that ensures equal probability for unique architectures (Yu
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Figure 8: Path sampling comparison on NASBench-101 (a) and NASBench-201 (b). We sampled
10,000 architectures using different samplers and plot histograms of the architecture rank and the
stand-alone test accuracy. We plot the s-KdT across the epochs. Results averaged across 3 runs.

et al., 2020). We name this variant Random-A; 2) We evaluate a variant called FairNAS (Chu et al.,
2019), which ensures that each operation is selected with equal probability during super-net training.
Although FairNAS was designed for a search space where only operations are searched but not the
topology, we adapt it to our setting (see Appendix A.1 for details).

With the hyper-parameters fixed, we now compare three path-sampling techniques. Since DARTS-
NDS does not contain enough samples trained in a stand-alone manner, we only report results on
NASBench-101 and 201. In Figure 8, we show the sampling distributions of different approaches
and the impact on the super-net in terms of sparse Kendall-Tau. These experiments reveal that, on
NASBench-101, uniformly randomly sampling one architecture, as in Li & Talwalkar (2019); Yu
et al. (2020), is strongly biased in terms of accuracy and ranking. This can be observed from the
peaks around rank 0, 100,000, and 400,000. The reason is that a single architecture can have multiple
encodings, and uniform sampling thus oversamples such architectures with equivalent encodings.
FairNAS samples architectures more evenly and yields consistently better sparse Kendall-Tau values,
albeit by a small margin.

On NASBench-201, the three sampling policies have a similar coverage. This is because, in
NASBench-201, topologically-equivalent encodings were not pruned. In this case, Random-NAS
performs better than in NASBench-101, and FairNAS yields good early performance but quickly
saturates. In short, using different sampling strategies might in general be beneficial, but we advocate
for FairNAS in the presence of a limited training budget.

C.3 MAPPING fws – DYNAMIC CHANNELING

Other dynamic channeling methods. In NASBench-101, the output cell concatenates the feature
maps from previous nodes. However, the concatenation has a fixed target size, which requires the
number of output channels in the intermediate nodes to be dynamically adapted during super-net
training. To model this, we initialize the super-net convolution weights so as to accommodate the
largest possible number of channels cmax, and reduce it dynamically to c output channels using one
of the following heuristics: 1) Use a fixed chunk of weights, [0 : c] (Guo et al., 2019); 2) Shuffle
the channels before applying 1) (Zhang et al., 2018); 3) Linearly interpolate the cmax channels into
c channels via a moving average across the neighboring channels. The strategies are compared in
Table 2 in the main paper. Shuffling the channels drastically degrades all metrics. Interpolation yields
a lower super-net accuracy than using a fixed chunk, but improves the other metrics. Altogether,
interpolation comes out as a more robust solution.

Table 6: NASBench-
101 sub-spaces ob-
tained by fixing the
number of channels.

# Incoming # Arch.
Edge

1 120933
2 201441
3 90782
4 10467

Random subspace baseline. Since each sub-space now encompasses fewer
architectures, it is not fair to perform a comparison with the full NASBench
101 search space. To this end, for each sub-space, we construct a baseline
space where we drop architectures uniformly at random until the number
of remaining architectures matches the size of the sub-space. We repeat
this process with 3 different initializations, while keeping all other factors
unchanged when training the super-net. We refer to this as ‘Baseline’ in Table
2 in the main paper. Table 6 indicates the number of architectures in each such
sub-spaces. Here we provide additional result in Table 4 for each individual
sub-space and shows the sparse Kendall-Tau remains similar as the baseline using the full search
space, which clearly evidence the effectiveness of our approach to disable the dynamic channeling.
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Table 4: Disabling dynamic channels

Edges Accuracy S-KdT P > R Final searched model

Baseline: random sampling sub-spaces with dynamic channeling.
1 70.04± 8.15 0.173 0.797 91.19±2.01
2 78.29±10.51 0.206 0.734 82.03±1.50
3 79.92± 9.42 0.242 0.576 92.20±1.19
4 79.37± 17.34 0.270 0.793 92.32±1.10

Average 76.905 ± 10.05 0.223 0.865 89.435 ± 4.30

Disable dynamic channels by fixing the edges to the output node.
1 76.92± 7.87 0.435 0.991 93.94±0.22
2 74.32± 8.21 0.426 0.925 93.34±0.01
3 77.24± 9.18 0.487 0.901 93.66±0.07
4 79.31± 7.04 0.493 0.978 93.65±0.07

Average 76.95 ± 8.29 0.460 0.949 93.65 ± 0.73

Table 5: Comparison of different mappings
fws. We report s-KdT / final search perfor-
mance.

NASBench-101 NASBench-201 DARTS-NDS

Baseline 0.236 / 92.32 0.740 / 92.92 0.159 / 93.59

WSBN 0.056 / 91.33 0.675 / 92.04 0.331 / 92.95
Global-Dropout 0.179 / 90.95 0.676 / 91.76 0.102 / 92.30
Path-Dropout 0.128 / 91.19 0.431 / 91.42 0.090 / 91.90

OFA Kernel 0.132 / 92.01 0.574 / 91.83 0.112 / 92.83

C.4 MAPPING fws – OTHER FACTORS

We evaluate the weight-sharing batch normalization (WSBN) of Luo et al. (2018b) , which keeps an
independent set of parameters for each incoming edge. Furthermore, we test the two commonly-used
dropout strategies: right before global pooling (global dropout); and at all edge connections between
the nodes (path dropout). Note that path dropout has been widely used in WS-NAS Luo et al. (2018a);
Liu et al. (2019); Pham et al. (2018). For both dropout strategies, we set the dropout rate to 0.2.
Finally, we evaluate the super convolution layer of Cai et al. (2020), referred to as OFA kernel, which
accounts for the fact that, in CNN search spaces, convolution operations appear as groups, and thus
merges the convolutions within the same group, keeping only the largest kernel parameters and
performing a parametric projection to obtain the other kernels. The results in Table 5 show that all
these factors negatively impact the search performances and the super-net quality.

C.5 WS ON EDGES OR NODES?

Table 7: Comparison of operations on the nodes
or on the edges. We report sKT / final search
performance.

NASBench-101 NASBench-201 DARTS-NDS

Baseline 0.236 / 92.32 0.740 / 92.92 0.159 / 93.59

Op-Edge N/A as Baseline 0.189 / 93.97
Op-Node as Baseline 0.738 / 92.36 as Baseline
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Figure 9: (a) Consider a search space with 2 inter-
mediate nodes, 1, 2, with one input (I) and output
(O) node. This yields 5 edges. Let us assume that
we have 4 possible operations to choose from, as
indicated as the purple color code. (b) When the
operations are on the nodes, there are 2 × 4 ops to
share, i.e., I→2 and 1→2 share weights on node 2.
(c) If the operations are on the edges, then we have
5 × 4 ops to share.

Most existing works build fws to define the
shared operations on the graph nodes rather than
on the edges. This is because, if fws maps to the
edges, the parameter size increases from O(n)
to O(n2), where n is the number of intermedi-
ate nodes. We provide a concrete example in
Figure 9. However, the high sparse Kendall-Tau
on NASBench-201 in the top part of Table 7,
which is obtained by mapping to the edges, may
suggest that sharing on the edges is beneficial.
Here we investigate if this is truly the case.

On NASBench-101, by design, each node
merges the previous nodes’ outputs and then
applies parametric operations. This makes it
impossible to build an equivalent sharing on
the edges. We therefore construct sharing on
the edges for DARTS-NDS and sharing on the
nodes for NASBench-201. As shown in Table 5,
for both spaces, sharing on the edges yields a
marginally better super-net than sharing on the
nodes. Such small differences might be due
to the fact that, in both spaces, the number of
nodes is 4, while the number of edges is 6, thus
mapping to edges will not drastically affect the
number of parameters. Nevertheless, this indi-
cates that one should consider having a larger
number of shared weights when the resources
are not a bottleneck.
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C.6 RESULTS FOR ALL FACTORS

We report the numerical results for all hyper-parameter factors in Table 8, low-fidelity factors in
Table 9 and implementation factors in Table 10. These results were computed from the last epochs of
3 different runs, as those reported in the main text.
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Table 8: Results for all WS Protocol Pws factors on the three search spaces.
Factor NASBench-101 NASBench-201 DARTS-NDS
and Super-net Final Super-net Final Super-net Final
settings Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance

Batch-norm.
affine F track F 0.651±0.05 0.161 0.996 0.916±0.13 0.660±0.13 0.783 0.997 92.67±1.21 0.735±0.18 0.056 0.224 93.14±0.28
affine T track F 0.710±0.04 0.240 0.996 0.924±0.01 0.713±0.14 0.718 0.707 91.71±1.05 0.265±0.21 -0.071 0.213 91.89±2.01
affine F track T 0.144±0.09 0.084 0.112 0.882±0.02 0.182±0.15 -0.171 0.583 86.41±4.84 0.359±0.25 -0.078 0.023 90.33±0.76
affine T track T 0.153±0.10 -0.008 0.229 0.905±0.01 0.134±0.09 -0.417 0.274 90.77±0.40 0.216±0.18 -0.050 0.109 90.49±0.32

Learning rate.
0.005 0.627±0.07 0.091 0.326 0.908±0.01 0.658±0.11 0.668 0.141 90.14±0.55 0.792±0.08 0.130 0.033 91.81±0.68
0.01 0.668±0.06 0.095 0.546 0.919±0.00 0.713±0.12 0.670 0.711 91.21±1.18 0.727±0.05 0.131 0.258 92.86±0.64
0.025 0.715±0.05 0.220 0.910 0.917±0.01 0.659±0.13 0.665 0.844 92.42±0.58 0.656±0.14 0.218 0.299 93.42±0.20
0.05 0.727±0.05 0.143 0.905 0.911±0.02 0.631±0.14 0.594 0.730 92.02±0.70 0.623±0.04 0.147 0.489 91.70±0.33
0.1 0.690±0.07 0.005 0.905 0.909±0.02 0.609±0.28 0.571 0.618 91.82±0.81 0.735±0.06 0.096 0.099 92.73±0.24
0.15 0.000±0.00 -0.274 N/A N/A 0.551±0.14 0.506 0.553 91.22±1.20 0.371±0.27 0.027 0.218 91.20±0.72
0.2 - - - - 0.519±0.12 0.557 0.035 88.74±0.11 0.102±0.48 -0.366 N/A N/A

Epochs.
100 0.468±0.07 0.190 0.759 0.920±0.01 0.472±0.09 0.355 0.997 92.11±1.67 0.643±0.04 0.144 0.901 93.90±0.49
200 0.662±0.05 0.131 0.685 0.914±0.01 0.604±0.12 0.610 0.881 91.88±2.01 0.761±0.05 0.169 0.778 94.08±0.21
300 0.727±0.03 0.251 0.739 0.920±0.01 0.664±0.13 0.627 0.840 91.42±1.91 0.793±0.06 0.098 0.870 93.22±0.95
400 0.769±0.03 0.236 0.932 0.921±0.01 0.697±0.14 0.667 0.158 89.83±0.97 0.798±0.07 0.106 0.036 92.34±0.22
600 0.815±0.02 0.246 0.556 0.911±0.01 0.720±0.13 0.682 0.285 90.28±0.82 0.734±0.10 0.090 0.209 93.23±0.19
800 0.826±0.02 0.243 0.177 0.907±0.00 0.760±0.13 0.711 0.378 91.53±0.53 0.728±0.10 0.044 0.853 93.29±0.81
1000 0.794±0.03 0.177 0.831 0.920±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.717±0.09 0.044 0.997 93.92±0.90
1200 - - - - 0.775±0.13 0.723 0.198 90.81±0.56 - - - -
1400 - - - - 0.774±0.13 0.750 0.604 92.26±0.33 - - - -
1600 - - - - 0.778±0.13 0.731 0.882 91.85±1.20 - - - -
1800 - - - - 0.783±0.13 0.746 0.266 90.64±0.82 - - - -

Weight decay.
0.0 0.645±0.05 -0.037 0.179 0.899±0.01 0.713±0.13 0.652 0.266 90.58±0.99 0.670±0.03 0.159 0.629 93.09±0.73
0.0001 0.719±0.03 0.109 0.659 0.912±0.01 0.756±0.13 0.734 0.612 91.88±0.59 0.751±0.05 0.143 0.396 93.37±0.44
0.0003 0.771±0.03 0.144 0.648 0.915±0.01 0.772±0.13 0.721 0.726 92.34±0.57 0.759±0.06 0.110 0.890 93.82±0.51
0.0005 0.782±0.03 0.117 0.910 0.911±0.02 0.764±0.13 0.705 0.882 92.61±0.59 0.739±0.07 0.077 0.051 91.61±1.01

Sampling.
Random-A 0.717±0.04 0.133 0.862 0.919±0.02 0.764±0.13 0.705 0.882 92.61±0.59 - - - -
Random-NAS 0.638±0.20 0.167 0.949 0.913±0.02 0.765±0.14 0.750 0.897 92.17±1.01 - - - -
FairNAS 0.789±0.03 0.288 0.382 0.908±0.01 0.774±0.14 0.713 0.917 93.06±0.31 - - - -

Table 9: Results for all low-fidelity factors on the three search spaces.
Factor NASBench-101 NASBench-201 DARTS-NDS
and Super-net Final Super-net Final Super-net Final
settings Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance

Number of Layer (-X indicates the baseline minus X)

Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
-1 0.759±0.03 0.214 0.222 0.901±0.01 0.749±0.13 0.710 0.796 91.85±0.92 0.843±0.04 0.178 0.299 92.35±1.25
-2 0.817±0.03 0.228 0.713 0.910±0.02 0.777±0.13 0.700 0.822 92.68±0.37 0.852±0.03 0.205 0.609 92.65±1.89

Train portion
0.25 0.433±0.07 0.216 0.281 0.901±0.01 0.660±0.11 0.668 0.979 92.30±1.14 0.597±0.14 0.132 0.359 92.27±1.84
0.5 0.612±0.06 0.251 0.424 0.896±0.02 0.740±0.12 0.669 0.979 93.17±0.47 0.666±0.17 0.083 0.551 92.22±1.36
0.75 0.688±0.05 0.222 0.857 0.920±0.01 0.758±0.13 0.725 0.618 92.46±0.19 0.715±0.18 0.096 0.081 92.29±0.47
0.9 0.722±0.05 0.186 0.996 0.931±0.01 0.772±0.13 0.721 0.726 92.34±0.57 0.703±0.18 0.042 0.065 92.78±0.10

Batch size (/ X indicates the baseline divide by X)

Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
/ 2 0.670±0.05 0.246 0.807 0.920±0.01 0.728±0.16 0.719 0.842 92.37±0.61 0.698±0.20 0.037 0.209 93.24±0.13
/ 4 0.686±0.07 0.155 0.913 0.921±0.01 0.703±0.16 0.679 0.672 92.35±0.34 0.633±0.20 0.033 0.690 93.68±0.62

# channel (/ X indicates the baseline divide by X)

Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
/ 2 0.658±0.05 0.156 0.704 0.898±0.02 0.697±0.14 0.667 0.158 89.83±0.97 0.776±0.05 0.190 0.993 93.90±0.71
/ 4 0.604±0.06 0.093 0.907 0.922±0.01 0.606±0.13 0.616 0.878 92.86±0.34 0.707±0.05 0.202 0.359 92.93±0.58

Table 10: Results for all implementation factors on the three search spaces.
Factor NASBench-101 NASBench-201 DARTS-NDS
and Super-net Final Super-net Final Super-net Final
settings Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance

Other factors
Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
OFA Kernel 0.708±0.08 0.132 0.203 92.01±0.19 0.672±0.18 0.574 0.605 91.83 ± 0.86 0.782±0.05 0.112 0.399 93.22±0.43
WSBN 0.155±0.07 0.085 0.504 0.809±0.13 0.703±0.14 0.676 0.585 92.06±0.48 0.744±0.16 0.033 0.682 92.88±1.22

Path dropout rate
Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
0.05 0.750±0.02 0.206 0.819 0.915±0.07 0.490±0.09 0.712 0.881 92.25±0.89 0.184±0.06 0.006 0.359 92.93±0.60
0.15 0.726±0.02 0.186 0.482 0.910±0.01 0.250±0.03 0.640 0.526 91.44±1.25 0.366±0.05 0.059 0.570 92.61±1.28
0.2 0.669±0.01 0.110 0.282 0.901±0.01 0.185±0.02 0.431 0.809 92.15±0.85 0.518±0.06 0.090 0.009 91.45±0.58

Global dropout
Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
0.2 0.739±0.05 0.233 0.221 0.910±0.00 0.712±0.13 0.702 0.950 91.76±1.36 0.557±0.19 0.018 0.451 93.51±0.27

Please refer to Appendix C.5 for mapping on the node or edge and Appendix C.3 for dynamic channel factor results.
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