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ABSTRACT

We study the problem of computing the privacy parameters for DP machine learning when
using privacy amplification via random batching and noise correlated across rounds via a
correlation matrix C (i.e., the matrix mechanism). Past work on this problem either only
applied to banded C, or gave loose privacy parameters. In this work, we give a framework
for computing near-exact privacy parameters for any lower-triangular, non-negative C.
Our framework allows us to optimize the correlation matrix C while accounting for am-
plification, whereas past work could not. Empirically, we show this lets us achieve smaller
RMSE on prefix sums than the previous state-of-the-art (SOTA). We also show that we
can improve on the SOTA performance on deep learning tasks. Our two main technical
tools are (i) using Monte Carlo accounting to bypass composition, which was the main
technical challenge for past work, and (ii) a “balls-in-bins” batching scheme that enables
easy privacy analysis and implementation-wise is closer to shuffling (widely considered a
practical random batching method) than Poisson sampling.

1 INTRODUCTION

Many recent works have improved the privacy-utility tradeoff of differentially private machine learning via
improvements in either privacy amplification or how noise is correlated across rounds. Privacy amplification
(Kasiviswanathan et al.,2008}; Balle & Wang, |2018; |[Erlingsson et al.,|2019a; Balle et al.,2020) uses random-
ness in data processing to improve the existing privacy guarantees. Correlated noise (Kairouz et al., 2021}
Denisov et al., [2022} |(Choquette-Choo et al., [2022)), or DP-FTRL, uses the matrix mechanism to add noise
in DP training such that the noise added in one round is cancelled out in subsequent rounds. Specifically, if
z is an i.i.d. Gaussian matrix, independent noise approaches, i.e., differentially private stochastic gradient
descent (DP-SGD) clip gradients and add noise z[i, :] in the ith round of DP training; instead, DP-FTRL
(C~!2z)[i,:] as the noise in the ith round, where C is a carefully chosen “correlation matrix”.

Choquette-Choo et al.|(2024a)) showed that one could simultaneously obtain the benefits of privacy amplifi-
cation and noise correlation, leading to a class of “banded”! C correlation matrices that Pareto dominated

'A square lower-triangular matrix is b-banded, if at most b of the principal diagonals are non-zero.
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either alone. However, their amplification analysis only applied to these specific banded matrices, whereas
we may want to work with non-banded C due to utility or efficiency concerns (Dvijotham et al., [2024;
McMahan et al., |2024). (Choquette-Choo et al.|(2024b) gives an amplification analysis that works with gen-
eral (i.e., non-banded) C and is tight in the limit as ¢ — 0, but for larger ¢ values used commonly in DP
machine learning, their analysis inherently introduces slack, and can greatly overestimate the true privacy
parameter. Both of these works’ limitations are due to a reliance on composition theorems. We propose an
approach which bypasses composition and in turn avoids both of these limitations simultaneously:

In this work, we use Monte Carlo accounting to enable nearly-exact privacy analysis and optimization of
these amplified correlated noise mechanisms without any constraint on the structure of the correlation
matrices. In turn, we are able to achieve smaller error for prefix sums than past work in various settings,
and improve the state-of-the-art utility on deep learning tasks, even while using memory-efficient
correlation matrices.

This allows us to obtain significant amplification benefits for generic C matrices, which were shown to be
better than constrained versions in both utility (Choquette-Choo et al.,2022) and memory (Dvijotham et al.|
2024) but cannot yet be combined with privacy amplification in the practical regimes of interest for € in DP
machine learning. In particular, we first consider the standard objective for correlated noise mechanisms,
RMSE of prefix sums (as defined in e.g., Kairouz et al.| (2021); Denisov et al.|(2022); see Section @]), and
find that our techniques lead to C with significant reduction in RMSE over the prior SOTA around 10%.
When used to train models on the standard CIFAR-10 benchmark?, the RMSE improvements translate to up
to 1% absolute accuracy improvements compared to the prior SOTA (Choquette-Choo et al., [2024a)).

1.1 OUR CONTRIBUTIONS

1.1.1 ALGORITHMIC CONTRIBUTIONS

Balls-in-bins minibatching: We propose a more practical sampling scheme that (i) does not require random
access to the entire dataset, (ii) achieves much better privacy amplification than the next-best alternative,
shuffling, and (iii) enables efficient amplification analysis via Monte Carlo sampling which would otherwise
be NP-hard to compute. We are able to implement a practical variant of this sampling scheme that enforces
fixed batch sizes (which are required for compatability with modern ML techniques like XILA compilation)
for our deep learning experiments.

Near-exact analysis via Monte Carlo: We recognize a common issue with prior amplification analysis of
correlated noise mechanisms, which is their reliance on composition which led to slack for various reasons
(see Section . We thus show how to use Monte Carlo accounting (Wang et al., [2023)) which instead
observes that approximate DP guarantees can be written as the expected value of some function of the
privacy loss and ¢ (see Section 2] for more details). Because it is easy to do Monte Carlo accounting for the
whole matrix Cx + z, we can bypass the need for composition. In turn, we are able to obtain near-exact
privacy analysis (only paying for the sampling error of Monte Carlo approximation, which can be made
arbitrarily small) while supporting general C, improving upon the weaknesses of both the past works.

Optimizing C under amplification: We, for the first time, show how to optimize C to minimize the
RMSE under privacy amplification. This remediates a significant issue with prior work which required an
expensive grid-search to check the amplified RMSE under all possible configurations (as this required post-
hoc analysis after optimization of C, where the optimization did not account for amplification). A crucial

’It is worth mentioning that accuracy of training on the CIFAR-10 benchmark with correlated noise has been highly
optimized for over a long series of papers (e.g. (Choquette-Choo et al.,|2022}2024a)). So, any tangible and unconditional
improvement is significant.
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aspect of Monte Carlo accounting is that it allows one to calibrate the quality of the privacy guarantee based
on the computation available, i.e., one can obtain a quick (and less rigorous) ¢ parameter by using a small
number of MC samples, which can be made rigorous (with appropriate failure probability §) by increasing
the number of samples. So, while optimizing for the C matrices we use fewer MC samples, and when
providing the final privacy guarantee with the optimized C matrix, we run it with a large number of samples
to achieve appropriate convergence of the sampler.

1.1.2 EMPIRICAL EVALUATION

RMSE analysis: We first look at the standard objective for evaluating correlated noise mechanisms, RMSE
on prefix sums (formally defined in Section [I.2). We compare the RMSE achieved by matrices amplified
using our analysis, and by the previous SOTA of banded matrices and Poisson sampling of [Choquette-Choo
et al|(2024a). We demonstrate that because we can directly optimize the correlation matrix for the RMSE
under amplification, we can achieve up to a 10% reduction in RMSE compared to the SOTA.

Empirical evaluation on CIFAR-10: We next use correlation matrices and ¢ computed using our privacy
analysis to train a VGG model on CIFAR-10. We again compare to the SOTA of |[Choquette-Choo et al.
(2024a). We show that despite using a weaker sampling assumption, matrices amplified by balls-in-bins
batching Pareto dominate the approach of (Choquette-Choo et al., [2024a)), getting equal accuracy at smaller
¢ and giving up to 1% absolute accuracy improvements at larger €.

1.2 BACKGROUND AND PRIOR WORK
Here, we summarize prior work and highlight why our contributions above are significant.

Privacy amplification: There are several forms of privacy amplification, but the two most popular are
sampling and shuffling. Poisson sampling forms batches by independently including each example with
some probability. Exact analyses for DP-SGD with Poisson sampling are well-known, but Poisson sampling
is generally considered impractical (Ponomareva et al., 2023). DP-SGD with shuffling uses multiple passes
over a shuffled dataset with fixed batch size. Shuffling is considered more practical, but tight analyses of
DP-SGD with shuffling remain elusive because of the dependence between examples.

Correlated noise: DP-SGD uses independent noise, i.e., if the gradients are the rows of a matrix x, the
gradients used in DP-SGD are the rows of x + z, where z is i.i.d. Gaussian noise the same shape as
x. DP-FTRL instead uses the correlated noise, i.e., uses rows of x + C~1z as gradients, where C is a
“correlation matrix.” By post-processing this has the same privacy guarantees as the matrix mechanism
Cx + z. Usually C is chosen to minimize some objective, the most common being the RMSE of prefix
sums, given by ||AC_1 ||2 -0 where A is the lower-triangular all-ones matrix and o is the noise multiplier
needed for privacy. We give more background on privacy amplification and DP-FTRL in Appendix

Challenges of combining privacy amplification and correlated noise: The main hurdle is that privacy
amplification analysis usually relies heavily on composition: instead of analyzing the entire training run
directly, we compute a privacy guarantee for each round of training separately, and then combine these in a
straightforward way to analyze the entire run. However, composition requires that both sampling and noise
randomness be independent across rounds and of course noise correlations violates this. Thus, the only
two prior works (Choquette-Choo et al., |2024ab) combining privacy amplification and noise correlation
leveraged reductions which significantly reduce the privacy amplification benefits.

Amplified banded matrix factorization (Choquette-Choo et al., 2024a): The matrix C is b-banded if
only the first b diagonals of C are non-zero. For b-banded C, they observe that rows ¢ and j of Cx + z are
independent if |i — j| > b. If each example is assigned an index k € {0,1,...b — 1} and then can only
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be sampled in rounds ¢ where ¢ (mod b) = k, the resulting privacy guarantee can be reduced to standard
DP-SGD but for n/b rounds and batch size scaled up by b. However, there are two key limitations: (i) it
constrains C limiting its expressivity, and (ii) its analysis does not exploit the fact that the assignment of
batches to indices can be randomized. This latter issue becomes apparent when b is sufficiently large, where
the result collapses to one without any amplification despite this randomness.

Conditional composition (Choquette-Choo et al., 2024b): They instead show that these mechanisms have
privacy guarantees upper bounded by a different independent noise mechanism, allowing the use of compo-
sition. Specifically, consider Poisson sampling with probability p. Effectively what they show is that we can
compute a separate privacy guarantee for each row of Cx + z using an inflated sampling probability p > p
and compose these guarantees as if they were independent. This approach is more general than (Choquette-
Choo et al.|, |2024a) because it applies to generic C. However, p introduces slack in the analysis that gets
worse as the noise multiplier decreases, such that the € computed in low-privacy regimes can be much worse
than even the unamplified . This manifests practically in DP machine learning: most mechanisms obtain
no benefits.

1.3 FUTURE DIRECTIONS

There are several interesting directions for extending the practicality of our work. One reason for our choice
of balls-in-bins sampling is that it is more amenable to Monte Carlo accounting than Poisson sampling.
Poisson sampling provides much stronger amplification than shuffling in most settings (Chua et al.| 2024)),
so ignoring the practicality of Poisson sampling, enabling Monte Carlo accounting for correlated noise
with Poisson sampling could thus enable even higher utility for private training. However, the fact that the
corresponding mixture of Gaussians has 2™ modes is a challenging technical barrier to such a result.

The number of samples we need to verify a DP guarantee using Monte Carlo accounting and e.g. Bernstein’s
inequality scales as 1/, which may be prohibitive for small §. It is an interesting but challenging question
to determine if a more careful sampler and concentration analysis can give substantially improved sample
complexity for analyzing correlated noise mechanisms. Due to space constraints, we discuss other future
directions in Appendix

2  PRIVACY LOSS DISTRIBUTIONS AND MONTE CARLO ACCOUNTING

We can define (£,4)-DP in terms of the hockey-stick divergence. For any two distributions P, Q, their
a-hockey stick divergence for a > 0 is given by Ho(P,Q) = [ max{P(z) — aQ(x),0}. A mecha-
nism M is (e, d)-DP if for any adjacent databases D ~ D’ (under the add-remove adjacency), we have
H.-(M(D),M(D’)) < 4. Suppose P, Q are a dominating pair (Zhu et al.,[2022)) for M of interest; that
is, for any D ~ D', > 0 we have H,(M(D), M(D")) < H,(P,Q). Then, by sampling X ~ P and
computing Y = log P(X)/Q(X), we then say that the privacy-loss distribution (PLD) (Balle et al., [2018))
of P and () is the law of Y.

Now to prove (g, §)-DP for M, it suffices to show H,-(P, Q) < 4. The main observation in Monte Carlo
accounting is that we can write H,, as an expectation over Y, H, (P, Q) = Ey [max{1 — ae™Y, 0}]. Then,
if exactly computing H,, (P, Q) is hard but sampling Y is easy, we can estimate J for some ¢ by taking the
average of sufficiently many samples of max{1 — e~Y,0}. Namely, let 4 be the estimated J value, i.e. the
average over some samples of max{1 — e~ 0}. As a starting point, we can already claim (e, §)-DP as an
informal privacy statement. To make it formal, we can use the Estimate- Verify-Release framework of (Wang
et al.,[2023) (Algorithm : we fix a target (¢, 0)-DP privacy guarantee ahead of time, and use Monte Carlo
accounting to verify that M satisfies with (£, §)-DP, and only run M if the verification succeeds.

The below theorem shows that Algorithm[I]can be made to incur only a constant blowup in :
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Algorithm 1 Estimate-Verify-Release of (Wang et al.| 2023
Inputs: Mechanism M, dataset D, estimated privacy parameters ¢, §.

1: Determine dominating pair P, ) of M, get 6, an estimate of H,- (P,Q).
2: if o < § then
3: return M(D)
4: else
5: return |
6: end if
deA d |d d |d | |d|d||d|d, dldads d,|d,
Bl 2 3 Bl 2 3 1 2 3
d|d | d|d]||d | d, d5d3 d, | d, d,[d |/d |d,|d ||[d|d
B, B, B, B, B, B, B, B, B, B, B, B,
No amplification Shuffling Balls-in-bins Poisson sampling

Figure 1: A comparison of the how different amplification methods might form batches. Here, we use
n = 6 rounds, and form b = 3 batches per epoch for E = 2 epochs (visually represented as one row for
each epoch). Note that shuffling uses fixed batch sizes, and all methods but Poisson sampling use the same
batching across epochs and enforce exactly one participation per example per epoch.

Theorem 2.1 (Theorem 9 of Wang et al] (2023)). Suppose in Algorithm [I| that for any P,Q such that
H.(P,Q) > 76,6 > d w.p. at least 1 — 74. Then Algorithmis (e,76)-DP.

The following theorem (proven in Appendix [E)) can be used to derive the tail bound required for Theorem[2.T}

Theorem 2.2. Suppose we use s samples in computing 5 in Algorithm Then for any P, Q) such that

H.(P,Q) > 76,7 > 1, we have Pr[§ < 6] < exp (7;(;;7_1);/‘;) .

3 BALLS-IN-BINS BATCHING

As we will see in the next section, applying Monte Carlo accounting to correlated noise mechanisms requires
time linear in the number of possible participation patterns. For n-round DP-SGD with Poisson sampling,
this is 2. Shuffling reduces the number of possible participation patterns, and is generally considered a
more practical variant, but is hard to do privacy analysis for because the participations of different examples
are not independent like in Poisson sampling.

To alleviate the issues with both Poisson sampling and shuffling, we propose balls-in-bins batching. Infor-
mally, balls-in-bins batching forms batches using the balls-in-bins process, where examples are balls and
batches are bins:

Definition 3.1. In balls-in-bins batching, we form batches as follows. Let b be the number of batches
per epoch we wish to use and let E be the number of epochs that we train. Also denote by n = b - E
the total number of training iterations. For each example d, we independently include it in exactly one of
B, Bo, ..., By uniformly at random. We then iterate through the batches in round robin fashion, i.e. in
iteration i of our learning algorithm we use batch B; (o4 v) (abusing notation to let e.g. 2b (mod b) = b).

In Figure[I|we give a visualization of balls-in-bins batching and other standard methods for forming batches.
The following lemma (proven in Appendix [C) shows that the following pair of distributions is a dominating
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pair for the correlated noise mechanism x + C~!z with balls-in-bins batching:

P =

S =

b -1
ZN(I’I’IZ‘,U2I), where m; = Z |C|1:n,b-j+ia Q = N(O7021)7
i=1 =0

where |C]| is the matrix whose entries are the absolute values of corresponding entry in C.

Lemma 3.2 (Dimension-reduction for balls-in-bins batching). Suppose C € R"*" is a lower-triangular
matrix with non-negative entries. Then P,Q (resp. Q, P) as defined above is a dominating pair for the
correlated noise mechanism with balls-in-bins batching under the add (resp. remove) adjacency.

For simplicity of presentation, we will focus on the add adjacency in the rest of the paper. It is easy to extend
results to the remove adjacency, and for the add-and-remove adjacency we can simply take the worse of
the two adjacencies’ privacy guarantees (paying a factor of 2 in the failure probability of Theorem [2.2]by a
union bound). We also remark that Lemma [3.2] (and any results in our paper for the add/remove adjacency)
can be readily extended to the replace adjacency using recent results of |Schuchardt et al.| (2024)).

Advantages of balls-in-bins batching: In addition to being more amenable for Monte Carlo analysis than
shuffling or Poisson sampling, we believe balls-in-bins batching may be more practical than Poisson sam-
pling for various reasons. First, one way to implement balls-in-bins batching to form b batches is as follows:
We sample (c1,co, .. ., ¢p) from the multinomial random variable with | D| trials and b equally likely out-
comes. We shuffle the dataset once, and then we operate in multiple streaming passes over the shuffled
dataset. In iteration 7, we take the next ¢; (moq ) €xamples from the dataset stream.

Hence, up to the choice of variable batch size (which we will discuss how to make practical in Section [l]),
balls-in-bins batching is no harder to implement than shuffling, which is generally considered to be a prac-
tical batch sampling method. As a function of requiring little overhead compared to shuffling, balls-in-bins
batching avoids some of the practical issues with Poisson sampling. For example, shuffling and balls-in-bins
are both memory-efficient if implemented in an offline manner as the shuffled dataset is the same size as
the original dataset. In contrast, if we implement Poisson sampling in an offline manner, to store all batches
formed by Poisson sampling we need to write each example Bn/|D| times in expectation, which can be
much larger than 1.

4 MONTE CARLO ACCOUNTING FOR CORRELATED NOISE MECHANISMS

4.1 CALIBRATING o

Now, suppose we are given a lower triangular matrix C € R™*" with non-negative entries and we aim to
find the minimum noise-multiplier o so that the balls-in-bins mechanism is (¢, ¢’)-DP. This §’ will be slightly
smaller than § so that Algorithmis (e, 6)-DP and outputs | with very small probability. We approach this
by drawing a sample of the dominating PLD and employing a bisection root-finding algorithm on o.

To do this, we first recall the dominating distributions,

b —1
PC7O' = ZN(mi,O’ZI), where m; = Z |C|1:n,b»j+ia Qo— = N(O,O‘QI).
i=1 7=0

S| =

Hence we can sample ¥ ~ PLD(Pc,,Q,) by first sampling X ~ Pc, and computing ¥ =

Qs
pling independent of o, we can instead sample ¢ ~ Uni([b]) and Z ~ N(0,I) then for any o compute

log (PC"’ (X )) Note that computing Y is efficient since Pc  has only b modes. To make the sam-
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Y = log (Pg’” (m; +o0-Z )) This process is summarized in Algorithm which uses the function & to

estimate the § at a fixed 0. The inner computation of §is easily parallelizable, as it is a simple average over
a given sample size. On top of this, a bisection algorithm is run, which can converge® to within A additive
error in only O(log(1/A)) many iterations because o is a scalar.

Algorithm 2 Finding o

Inputs: Target (¢, 6)-DP guarantee, sample size m, matrix C.

1 iy i S Uni([b))

2% Zi,... Zm SN0, )

3: Define Y; (o) := log (PS;” (mg, +o0- Zj))

4: Define the function § as 8(c; C, &, i1.m, Z1:m) = 1 Z;"':l(l —exp(e —Y;(0)))+

5: 0* < solution to §(o; C, €, 41.;m, Z1.m) = 0 obtained by some 1-d bisection algorithm
6: return o*

4.2 OPTIMIZING OVER MATRICES

In the previous section, we outlined the procedure Algorithm [2] for estimating the noise multiplier o for a
given matrix C. We now show that we can optimize C for a given utility metric that is a function of C, o.
We will choose the utility metric to be the RMSE (root mean squared error) of prefix sums of x achieved
by x + C~1z, which was also the metric optimized by (Choquette-Choo et al.; [2022; [2024a). The RMSE
is given by o - HA‘lC , where ||-|| is the Frobenius norm and A is the all-ones lower-triangular matrix.
While we focus on RMSE in this paper, our optimization framework is easily extended to any differentiable
function of C and o.

Algorithm 2] computes o (as a function of C) using bisection, hence we cannot e.g. apply automatic differ-
entiation to find partial derivatives of o. However, via implicit differentiation we can still obtain gradients
of the RMSE with respect to C using only quantities computable via automatic differentiation (see Ap-
pendix [D] for details). We then simply plug these gradients into an optimization algorithm; for simplicity,
we use gradient descent. Finally, for efficiency, we choose to restrict to Toeplitz C to optimize over a lower
dimensional space.

5 EXPERIMENTS

We implement Algorithm [2] for calibrating a noise multiplier for a given mechanism under balls-in-bins
batching. In this section, we look at both the problem of minimizing RMSE and a deep learning setting,
and compare results enabled by our accounting and optimization routines to past work. For all results we
fix § = 10~°, and for balls-in-bins batching we use Theorem in conjunction with Theorem to geta
formal (g, 10~°)-DP guarantee after choosing C and . See Appendix[ﬂfer details.

3To show bisection search converges, if 0maz is the o achieving the target DP guarantee without amplification
(which we easily can compute using existing accounting libraries), 6(0;...) = 1 > § and §(0maz;...) < 0 (whp). In
turn, 4(o;...) = 0 for some o € [0, Omae] and bisection converges to this point by continuity of 0.
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Figure 2: Comparisons using fixed C.

5.1 RMSE RESULTS

5.1.1 ANALYSIS OF THE AMPLIFICATION SCHEMES

We first focus on the RMSE metric o - ||A~1C||. We compare our balls-in-bins batching analysis, Poisson
sampling (using the analysis of (Choquette-Choo et al 2024a) for b-banded matrices where b > 1, and
standard PLD accounting for DP-SGD), and no amplification (i.e., we do multiple passes using a fixed batch
size over a dataset). To simplify presentation in this section we will restrict to the setting with 2048 total
iterations and 16 epochs, i.e. 128 iterations per epoch or B = |D|/128. In Appendix [f| we provide results
for other settings of the number of epochs and number of iterations per epoch; while the exact numbers differ
in other settings, the high-level conclusions hold in all settings we tested.

Amplification of DP-SGD: In Fig. we plot the percentage improvement in RMSE due to balls-in-bins
and Poisson sampling over the unamplified RMSE of DP-SGD, i.e. C = I. We observe that the improvement
from the two sampling schemes is similar for smaller € and Poisson performs substantially better than balls-
in-bins for larger €. Since balls-in-bins resembles shuffling, this mirrors the results of |(Chua et al.| (2024)).

Amplification of banded matrix factorization: We next consider non-identity choices of C. In particular,
we look at b-banded matrices where b > 1. Recall that a weakness of the sampling scheme of |Choquette-
Choo et al.|(2024a) is that the amount of randomness in the sampling scheme, i.e. the degree of benefit from
amplification, decreases as the number of bands b in the matrix increases. In contrast, the randomness in
sampling from balls-in-bins is independent of the matrix structure. We then may expect that balls-in-bins
amplification outperforms the amplification of [Choquette-Choo et al.| (2024a). We verify this in Fig. 2b}
We again plot the percentage reduction in RMSE due to amplification but for a 64-banded matrix instead
of C = 1. As predicted, due to using a higher-randomness sampling scheme, balls-in-bins consistently
outperforms Poisson sampling until € = 16.

While the previous experiment shows that balls-in-bins is preferable when using a fixed large number of
bands, a better strategy is to choose the number of bands b to minimize the RMSE rather than fix b in
advance. In Fig.[3a] we reproduce Figure[2b|but instead of fixing the number of bands b in advance, we sweep
b e {1,2,4,8,16,32,64, 128,256} and for balls-in-bins batching pick the value of b which minimizes the
RMSE. For banded matrices and Poisson sampling, we do the same but restrict to b < 64, i.e. the regime
where (Choquette-Choo et al.|(2024a)’s result gives a non-zero amount of amplification. For the unamplified
baseline, there is no benefit to reducing the number of bands b so we pick b = 256.
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Figure 3: Comparisons for variable C.

For ¢ < 4, the best RMSE under Poisson sampling slightly outperforms balls-in-bins batching and for
€ > 8, we see a deterioration in the RMSE improvements from Poisson. At e = 16, we see that it is better
to forgo amplification and use the unamplified baseline. In contrast, because the distinguishing problem for
balls-in-bins for a fixed C is always strictly harder than the unamplified baseline, the best C combined with
balls-in-bins batching always strictly improves over the unamplified baseline.

5.1.2 IMPROVEMENTS DUE TO OPTIMIZATION

We now look at the benefits of using our optimization procedure to choose C. We compare two variants of
our optimization scheme, one which optimizes over general Toeplitz matrices, and another which optimizes
over the BLT matrix family defined by [Dvijotham et al.| (2024). We use the 3-buffer variant of BLTs, i.e.
they can be specified using 6 parameters and only require a memory overhead of 3 times the model size. In
Figure[3b]we plot the improvement in RMSE for both these variants relative to the best b-banded C amplified
using the sampling scheme and analysis of |(Choquette-Choo et al.| (2024a)).

We observe that for most € values, our optimization procedure for C can give a reduction in RMSE compared
to the previous state-of-the-art of |(Choquette-Choo et al.| (2024a). For extreme values of ¢, the banded
baseline still outperforms our optimized matrices. We note that despite BLT matrices being a subset of
Toeplitz matrices, our optimized BLTs matrices sometimes outperform our optimized Toeplitz matrices. We
believe this is because BLTs lie in a lower-dimensional space which may make it easier to optimize over
them, i.e. the suboptimality of our solution to the optimization problem over BLTs may be smaller than the
suboptimality of our solution to the problem over Toeplitz matrices.

We also conducted experiments to understand the scalability of our optimization procedure. Due to space
constraints, we defer these to Appendix

5.2 CIFAR RESULTS

We next compare different choices of the correlation matrix C and amplification schemes in a deep learn-
ing setting. We replicate the CIFAR10 image recognition setting considered by (Choquette-Choo et al.|
2024a)): we also use the same VGG model, 20 epochs of 100 iterations with batch size 500, and mo-
mentum of 0.95 and a learning rate cooldown from 7 to 7/20 across iterations 500 to 2000. We vary
e € {0.5,1.0,2.0,4.0,8.0}. We fix the clip norm to 1.0 and tune the learning rate separately for each com-
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CIFAR Accuracy

—$— Band MF + Poisson (baseline)
Optimized BLT + Balls-in-Bins
+  —$— Optimized Toeplitz + Balls-in-Bins
—$— Band MF + Balls-in-Bins

—
—H
F

—o—+i

P

0.5 1.0 2.0 4.0 8.0
E@6=10"°

Test acc. minus test acc.
of Band MF + Poisson

Figure 4: Comparison of accuracy on CIFAR of different correlated noise strategies and amplification meth-
ods, relative to the baseline of banded C + Poisson sampling, with 95% confidence intervals over 100 trials.
We give a non-normalized plot in Appendix

bination of € and correlation matrix/amplification method, and then report the average of 100 training runs
for each combination. The different correlation matrix choices and amplification methods we consider are:

* Our baseline is the SOTA of banded matrices of |(Choquette-Choo et al.| (2024a)) using their Pois-
son sampling-based amplification scheme. We also consider banded matrices and balls-in-bins
batching. Following |Choquette-Choo et al.| (2024al), for each choice of the number of bands b, we
optimize C without accounting for amplification. Then for each amplification method, we use the
choice of b in each setting of ¢ that gives the lowest RMSE under amplification.

— We do not separately consider multi-epoch MEMF of |(Choquette-Choo et al.| (2022) or DP-
SGD with Poisson sampling as they are subsumed by this approach.

e BLT matrices of [Dvijotham et al.|(2024)). We restrict to 4 buffers and use our optimization frame-
work to optimize C for the RMSE under balls-in-bins batching for each value of .

* General Toeplitz lower-triangular matrices. Again we use our optimization framework to optimize
C for the RMSE under balls-in-bins batching for each value of ¢.

For all methods, in the implementation we shuffle the dataset and use a fixed batch size, but calculate the
noise multiplier assuming the corresponding amplification method was properly implemented. This is a
standard practice for simplifying implementations in the literature (e.g., Choquette-Choo et al.| (2024a))). In
Appendix [l we discuss the pitfalls of this practice, and do a training run where we actually implement a
practical variant of balls-in-bins batching that also uses fixed batch sizes for gradient computations.

In Fig. @ we plot the test accuracy achieved by each combination of correlation matrix and amplification
analysis. We can conclude the following:

* Banded matrix factorization + balls-in-bins is always at least as good as the baseline, and sometimes
gives up to 1% accuracy improvements. As argued earlier, the baseline assumes Poisson sampling
which is a stronger/less practical assumption.

e Qur ability to optimize BLT matrices makes them also always at least as good as the baseline, but
with smaller improvements than the previous bullet. The baseline uses up to 16 bands depending
on €, so BLTs are also up to 4x more memory efficient than the baseline.

* Optimized Toeplitz matrices are incomparable to the baseline; we believe their weak performance
relative to the other methods is due to the difficulty of the optimization problem.

10
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A MORE FUTURE DIRECTIONS

To be able to use Monte Carlo sampling to analyze the privacy amplification of the balls-in-bins sampling
scheme, we needed to first provide a PLD-dominating pair of distributions. In Lemma [3.2] we obtain this
pair by taking the modes of P to be sums of certain columns of |C|. This is potentially too loose, and we
may hope to instead use sums of columns of C, thereby reducing the norm of each mode. In the unamplified
setting, this loosening of the assumption is possible whenever C[:, ] - C[:, j] for any pair of rounds i, j a
user can participate in. However, amplification through sampling complicates this, and standard techniques
for reducing dimensionality and adaptivity don’t work anymore, see Appendix [J|for an example.

While we were able to implement a practical variant of balls-in-bins batching that was compatible with XLA
compilation, we only used our variant to train a small-scale model. We leave it to future work to implement
balls-in-bins batching at larger scales, and in particular compare the scalability of balls-in-bins to that of
unamplified training and Poisson sampling.

B MORE BACKGROUND ON PRIVACY AMPLIFICATION AND CORRELATED NOISE

Privacy amplification: Though randomness in data processing reduces the variance of noise required, the
main challenge with privacy amplification is giving tight privacy analysis of the amplified mechanism, which
for DP-SGD usually requires computing a divergence between two mixtures of Gaussians. There are several
forms of privacy amplification, but the two most popular are sampling (Abadi et al.,|2016} Balle et al.,|2018))
and shuffling (Balle & Wang|, 2018}, |[Erlingsson et al., 2019bza; |[Feldman et al.||[2022).

Privacy amplification by (Poisson) sampling assumes the batches are formed by including each element in-
dependently with some probability p. Because the sampling randomness is independent across rounds, tight
privacy analyses of DP training with independent noise (DP-SGD) are well-known (Koskela et al.| 2021,
and supported by open-source libraries (DP Team, 2022). However, Poisson sampling is often impractical
to implement, especially when working with larger datasets (Ponomareva et al., | 2023)).

Privacy amplification by shuffling in the context of DP-SGD usually assumes the batches are formed by
shuffling the dataset (a single time) and then forming fixed-size batches using the shuffled order. In some
limited settings its privacy analysis is well-understood (Feldman et al.,[2022), but in the setting of DP-SGD,
for example, tight privacy analyses remain elusive. Technically, the difficulty is that the participations of
different examples are dependent, unlike with Poisson sampling. In addition to being challenging to analyze,
Chua et al.|(2024) demonstrated that shuffling often gives much smaller improvements in privacy compared
to sampling. Despite these difficulties, as |(Chua et al.| (2024) note, shuffling is used much more widely in
practice since it can be implemented, e.g., in a single pre-processing pass over the dataset, whereas sampling
requires random access to potentially very large datasets which is often infeasible.

Correlated noise: [Kairouz et al.| (2021) proposed DP-FTRL, the first DP training algorithm with correlated
noise, where the update at each step are the rows of x + z;,... Where z;,... is sampled using the binary tree
mechanism of (Dwork et al., 2010). [Denisov et al.| (2022)) showed this was a special case of the updates
being rows of x + C~ 1z, giving a more expressive definition for C~* called the “correlation matrix”. They
showed these matrices could be optimized via a convex optimization program to maximize noise cancellation
(i.e., minimize total noise variance). Choquette-Choo et al. (2022) proposed a “multi-participation” gener-
alization, leading to the first correlated noise DP training algorithm to (substantially) outperform DP-SGD
with practical €’s.|Choquette-Choo et al.| (2024a) showed that correlated noise algorithms Pareto-dominated
DP-SGD in privacy-utility tradeoffs; (Choquette-Choo et al.| (2023) showed that these algorithms provably
outperformed DP-SGD.
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For simplicity, these works assume C is non-negative and lower-triangular. The privacy guarantee of cor-
related noise is the same as that of the matrix mechanism Cx + z by post-processing, hence based on how
batches are formed we can usually give privacy guarantees in terms of an appropriate norm of C. To op-
timize the matrix C, the convex program usually minimizes the root-mean-squared-error (RMSE) of the
prefix sums of x, given by ||AC_1 H2 - o where A is the lower-triangular all-ones matrix and o is the noise
multiplier needed for Cx + z to satisfy the target privacy guarantee.

C PROOF OF LEMMA[3.2

We use Lemma 4.5 of (Choquette-Choo et al.l 2024b), restated here for convenience:

Lemma C.1. Letcy,...,c, € R"*P. Letc),...,c; € R™ be such that ||c;[j,:]||, < c;(j) foralli,j. Then
letting
P=N(0,0 I[(n><p)><(n><p Zpt (ci,o ’1 n><p)><(n><p))
P = N(0,0%,xn), sz ci, 0% Lyxn),

Sorall « we have H, (P, Q) < H,(P',Q’). Furthermore, this holds even if the jth row of each c; is chosen
as a function of the first j — 1 rows of P, Q (subject to ||c;[j, ]|l < c;(j)) while ¢ remain fixed.

Proof. We give the proof for the add adjacency. Proving P, is a dominating pair for the add adjacency
implies @, P is a dominating pair for the remove adjacency by Lemma 29 of (Zhu et al., [2022).

Because each user is assigned to their batch independently, we can assume without loss of generality that
contributions from all users other than the differing user are always 0. In more detail, by post-processing, we
can assume that we release the contributions to the input matrix of all examples except the differing user’s.
Let x be these contributions, and x’ be x plus the contribution of the differing user. Then distinguishing
Cx + z and Cx’ + z is equivalent to distinguishing z and C(x’ — x) + z, exactly the setting where all users
except the differing user only contribute 0.

Now, for the input matrix x € R™*P, the rows have at most unit norm in the entries where the differing
user participates and 0 everywhere else. If the differing user is assigned to the ith batch, it is immediate by
triangle 1nequa11ty that ||(Cx)g,.|| < Z |C|k b-j+i- Because every user participates in each batch with

probability 1 3> we can apply Lemma 4.5 of Choquette-Choo et al.| (2024b) to exactly get that the correlated
noise mechanism with balls-with-bins batching is dominated by the pair P, ). U

D FINDING THE DERIVATIVE OF RMSE

By chain rule:

oo Jatcl) _ ojail

gl 2
ac = s TIATCl 55

Let 4 denote the function as defined in Algorithm i.e. the function that takes a given ¢, o, C and set of
Monte Carlo samples, and outputs the corresponding estimated § value. Given a set of Monte Carlo samples,

we want to take a gradient step while preserving 5 =9. Taking derivative of both sides of this constraint
with respect to C:
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06 i oo or (05 (db
oC  do 0C oC oC do

So to optimize the RMSE w.r.t. C we can now use Algorithm [2|to find o for a given C, and then apply
gradient descent using the gradient

oo -||A'cl)  ofaTIC| 4 ) do
aC =0~ —IIA7Cll 56 )/ & )-

Since 4 is computed using only differentiable functions of C and o (i.e., not via bisection), all partial deriva-
tives in the above expression can be evaluated at the given C, o pair using automatic differentiation.

E CONFIDENCE INTERVALS FOR MONTE CARLO ACCOUNTING

In this section we prove Theorem which allows one to derive the required tail bounds on the error of )
in Theorem 2.1

Proof of Theorem2.2} 1f H.(P,Q) > 70, then we can express 0 = - >°_| 4;, where each 4; is an i.i.d.
random variable in the range [0, 1] with mean p > 7. By the Bhatia-Davis inequality, we have Var (51> <

(1 — p)p. So E[62] = E[62]? + Var (51) = u? + Var (6}) < p.

Now we can apply Bernstein’s inequality to get that:

. st?/2 st*/2
Pro < p—t] <exp <_E[512]+t/3> < oxp (_u+t/3) '

Setting t = p — 6:

Pr(d < 4] Sexp< S(u_é)z/z)

C4u/3—46/3

Since p > 76 > 4, we have:

d s(p—109)%/2 _ 3s(p—0)(2u—9)
dp 4p/3 —6/3 (4 — 36)2

>0,

i.e. the bound Pr[(§ < ¢] is decreasing in i, so it is minimized by setting ;1 = 7. Plugging this value of p
in gives as desired:

. s(t—1)2
Pr[d < d] <exp <87('/3—1;/(;> .
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For our empirical results, we use § = 8 - 1076, 7 = 1.25, s = 108. For this set of values, Theoremgives
a failure probability less than 7.2 - 1072, We use Algorithm [1|to verify the DP guarantee for both the add
and remove adjacencies, but by a union bound the failure probability increases to at most 1.5 - 10~® once
accounting for both adjacencies, much smaller than 76 = 10~°. So, we can apply Theorem to show
(¢,107°)-DP for all our empirical results.

F RMSE PLOTS FOR OTHER SETTINGS

F.1 VARYING SAMPLING PROBABILITY

In Figure [5] we compare Poisson sampling and balls-in-bins batching. We fix 128 rounds of training, and
fix a target DP guarantee of (1,10°)-DP. We vary the sampling probability p and compare the RMSE
achieved by the best banded matrix with either balls-in-bins sampling + our amplification analysis or the
sampling scheme and analysis of (Choquette-Choo et al.| (2024a)). For balls-in-bins, we treat 1/b where b
is the iterations per epoch as the sampling probability for the purpose of plotting, i.e. at each point on the
x-axis both algorithms have the same expected batch size.

% Reduction in RMSE vs Sampling Probability

o
o

—e— Poisson

Balls in bins //.

o
o

vs Best Unamplified
o o
N a

% Reduction in RMSE

O
o
*

1 2 4 8 16 32 64 128
1 / Sampling Probability

Figure 5: Comparison of improvement due to as a function of sampling probability.

F.2 GRID OF EPOCHS AND ITERATIONS

Here we plot the RMSE improvements through amplification and optimization for number of epochs in
{8,16, 32} and iterations per epoch in {32, 64, 128}.
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F.3 NUMBER OF EPOCHS = 8 AND ITERATIONS PER EPOCH = 32

RMSE improvement on BandMF through amplification

—_— === Best BandMF unamplified RMSE (baseline)
1 "'---..,______ —— Best BandMF RMSE wy balls-in-bins
™~ Best BandMF RMSE w/ Poisson

25

20

-5

% improvement in RMSE over best unamplified BandMF
]

Figure 6: Improvement in RMSE over unamplified b-banded matrix factorization due to different amplifica-
tion schemes. All curves optimize the choice of b at each point.

RMSE improvement over Best BandMF

10.0 { === Best BandMF (baseline)
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% improvement in RMSE over Best BandMF
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Figure 7: Improvement from optimizing C using objective accounting for amplification.

17



Published as a conference paper at ICLR 2025

F.4 NUMBER OF EPOCHS = 8 AND ITERATIONS PER EPOCH = 64

RMSE improvement on BandMF through amplification

— N === Best BandMF unamplified RMSE (baseline)
£ T —— Best BandMF RMSE w/ balls-in-bins
Best BandMF RMSE w/ Poisson

25

20

% improvement in RMSE over best unamplified BandMF

Figure 8: Improvement in RMSE over unamplified b-banded matrix factorization due to different amplifica-
tion schemes. All curves optimize the choice of b at each point.

RMSE improvement over Best BandMF

=== Best BandMF {baseline)
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Figure 9: Improvement from optimizing C using objective accounting for amplification.
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F.5 NUMBER OF EPOCHS = 8 AND ITERATIONS PER EPOCH = 128

RMSE improvement on BandMF through amplification
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Figure 10: Improvement in RMSE over unamplified b-banded matrix factorization due to different amplifi-
cation schemes. All curves optimize the choice of b at each point.
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Figure 11: Improvement from optimizing C using objective accounting for amplification.
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F.6 NUMBER OF EPOCHS = 16 AND ITERATIONS PER EPOCH = 32

RMSE improvement on BandMF through amplification
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Figure 12: Improvement in RMSE over unamplified b-banded matrix factorization due to different amplifi-
cation schemes. All curves optimize the choice of b at each point.
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Figure 13: Improvement from optimizing C using objective accounting for amplification.

20



Published as a conference paper at ICLR 2025

F.7 NUMBER OF EPOCHS = 16 AND ITERATIONS PER EPOCH = 64

RMSE improvement on BandMF through amplification
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Figure 14: Improvement in RMSE over unamplified b-banded matrix factorization due to different amplifi-
cation schemes. All curves optimize the choice of b at each point.
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Figure 15: Improvement from optimizing C using objective accounting for amplification.
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F.8 NUMBER OF EPOCHS = 16 AND ITERATIONS PER EPOCH = 128

RMSE improvement on BandMF through amplification

30 — - === Best BandMF unamplified RMSE (baseline)

—— Best BandMF RMSE w/ balls-in-bins
Best BandMF RMSE w/ Poisson

25
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% improvement in RMSE over best unamplified BandMF

Figure 16: Improvement in RMSE over unamplified b-banded matrix factorization due to different amplifi-
cation schemes. All curves optimize the choice of b at each point.
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Figure 17: Improvement from optimizing C using objective accounting for amplification.
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F.9 NUMBER OF EPOCHS = 32 AND ITERATIONS PER EPOCH = 32

RMSE improvement on BandMF through amplification
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Figure 18: Improvement in RMSE over unamplified b-banded matrix factorization due to different amplifi-
cation schemes. All curves optimize the choice of b at each point.
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Figure 19: Improvement from optimizing C using objective accounting for amplification.
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F.10 NUMBER OF EPOCHS = 32 AND ITERATIONS PER EPOCH = 64

RMSE improvement on BandMF through amplification
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Figure 20: Improvement in RMSE over unamplified b-banded matrix factorization due to different amplifi-
cation schemes. All curves optimize the choice of b at each point.
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Figure 21: Improvement from optimizing C using objective accounting for amplification.
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F.11 NUMBER OF EPOCHS = 32 AND ITERATIONS PER EPOCH = 128

RMSE improvement on BandMF through amplification
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Figure 22: Improvement in RMSE over unamplified b-banded matrix factorization due to different amplifi-
cation schemes. All curves optimize the choice of b at each point.
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Figure 23: Improvement from optimizing C using objective accounting for amplification.
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Number of Samples = 131072

Number of Epochs
16 32 64
Tterations 376.88 384.44 311.55
per epoch 383.19 323.56 658.95
128 | 389.37 770.18 3594.55
Number of Samples = 1048576
Number of Epochs
16 32 64
Tterations 37433 39450  468.48
per epoch 52525 66423  804.56
128 | 1060.45 1435.47 Out of memory

Figure 24: Time (in seconds) to optimize C for different values of Monte Carlo samples used per gradient
descent iteration, number of epochs, and iterations per epoch.

G SCALABILITY OF OUR OPTIMIZATION PROCEDURE

G.1 TIMING ANALYSIS

In this section, to understand the scalability of our optimization procedure, we analyze how long it takes to
optimize for the matrix C as well and how it depends on the various parameters.

In Figure [24] we give the time, in seconds, for completing 300 iterations of gradient descent while varying
the number of epochs, iterations per epoch, and number of samples per gradient descent iteration. We use
a v100 GPU to perform the gradient steps. Here we fix § = 107° and ¢ = 1. We make the following
observations:

* Increasing the number of samples multiplicatively by 8 does not cause the runtime to increase by
the same amount.

* On average, the runtime seems to have a sublinear dependence in the number of epochs.

* In contrast, in most settings for a large enough number of iterations per epoch the runtime seems to
grow linearly or worse in the iterations per epoch.

For the largest number of samples, epochs, and iterations per epoch we ran into memory issues. In the next
section, we show that using a very small number of samples in the optimization loop still yields good RMSE,
i.e. these memory issues can generally be avoided. Combined with these observations, we believe this is
evidence the optimization procedure is scalable in the number of epochs, although it may be infeasible to
run the procedure for a large number of iterations per epoch.

G.2 EFFECT OF THE NUMBER OF SAMPLES

When optimizing over the matrix C, we use a Monte Carlo sampler to estimate . However, for privacy
purposes we only need the estimate of ¢ to be accurate for the final C output by the optimization procedure,
since that is the only correlation matrix we will actually use during model training. For intermediate values
of C in the gradient descent procedure, it is not a privacy violation to compute inaccurate o values for these
matrices.

In turn, to make the optimization procedure more efficient, we can use a smaller number of samples per
iteration. A natural question is then if the number of samples needed for the Monte Carlo estimator to
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RMSE vs. number of samples
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Figure 25: Percentage increase in RMSE due to using a smaller number of samples per iteration in the
optimization procedure, when compared to the RMSE achieved by using 22° samples per iteration.

concentrate is comparable to the number of samples needed for the optimization to achieve reasonable
RMSE.

We run our optimization procedure for a varying number of samples per iteration, and in Fig. 25| for each
of these numbers we plot the suboptimality of the final C value in terms of RMSE achieved compared to
using the maximum number of samples. We vary ¢ and fix § = 107°. For this choice of J, we need at
least 1/ ~ 217 samples are needed for the Monte Carlo estimator of § to guarantee an error smaller than §
with, say, constant probability. However, in Figure we see that for e = 0.5, 1,2 using e.g. ~ 2% samples
per iteration suffices for achieving similar RMSE as 220 samples per iteration, and at £ = 4 this number of
samples only leads to a & 10% increase in RMSE. In other words, our optimization procedure can use a
much smaller number of samples (compared to the final verification of C and o) at little to no cost in utility.
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H ADDITIONAL FIGURES FOR SECTION
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Figure 26: For each of the amplification methods in Figure the best choice of b at each value of €.

CIFAR Accuracy

70
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Figure 27: Comparison of accuracy on CIFARI10 of different correlated noise strategies and amplification
methods, with 95% confidence intervals over 100 trials.
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Method / 0.5 1.0 2.0 4.0 8.0
BandMF + Poisson 1.018 | 0.778 | 0.606 | 0.481 | 0.388
BandMF + Balls-in-Bins 2.829 | 2.071 | 1.455 | 0.802 | 0.470

Optimized BLT + Balls-in-Bins 2.609 | 1.598 | 1.079 | 0.694 | 0.448
Optimized Toeplitz + Balls-in-Bins | 2.003 | 1.182 | 0.864 | 0.639 | 0.445

Figure 28: Noise multiplier o used in the CIFAR10 experiments for different correlated noise strategies and
amplification methods. Note that different strategies which have higher noise cancellation require higher o,
so a lower noise multiplier alone does not imply better learning performance.

Method / 0510|2040 80
BandMF + Poisson 2 4 8 16 | 32
BandMF + Balls-in-Bins | 16 | 32 | 64 | 64 | 64

Figure 29: Number of bands used in the CIFAR10 experiments for BandMF combined with different ampli-
fication methods.

I PRACTICAL IMPLEMENTATION OF BALLS-IN-BINS BATCHING

In Section [5.2] and in most empirical research on DP model training, an amplification method like Poisson
sampling is assumed when computing the noise multiplier, but for convenience a simpler sampling scheme
is actually implemented. The most common case of this is assuming Poisson sampling when instead doing
shuffling, even though shuffling can produce much larger ¢ values than sampling (Chua et al., 2024). A
notable exception is research built on Opacus (Yousefpour et al.,[2021)) which implements Poisson sampling.

The main issue with implementing such sampling schemes properly is that they usually lead to unequal batch
sizes (as schemes like shuffling which enforce equal batch sizes are usually hard to analyze tightly), which
can lead to several inefficiencies:

* Modern model training pipelines are optimized for a fixed batch size. For example, XL A, which
is used to e.g. compile gradient computations implemented in libraries like TensorFlow and JAX,
requires a static input shape. To use variable batch sizes, one would naively need to forgo the use
of XL A which could heavily slow down training in large-scale settings.

— For example, consider Opacus which correctly implements Poisson sampling and supports
variable batch sizes. In the benchmarking experiments of (Yousefpour et al.l 2021), Opa-
cus was shown to have runtime competitive with JAX for small-scale DP training. However,
they observed that e.g. JAX pays a large up-front cost for compilation but after compilation
achieves better runtime per iteration than Opacus. We expect that for larger scale the training
the time spent on compilation is a smaller fraction of training time, hence variable batch size
training with Opacus would be less scalable than XL A-based training using fixed batch sizes.

» Sampling a slightly larger batch can lead to disproportionately longer gradient computation times.
As an extreme case, suppose we use an expected batch size of B, and we have B accelerators that
can each process a single gradient in parallel in time 7". Hence computing a batch gradient on B
examples takes time 7'. However, if we have B + 1 samples instead, we will need time 27" instead.

* Sampling a smaller batch leads to wasted computational resources. For example, in the above
setting, if we sampled 9B/10 examples, then we would have B/10 accelerators being unused,
which may be undesirable.
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Figure 30: Comparison of implementing balls-in-bins batching to shuffling and assuming balls-in-bins in
the analysis, and the unamplified baseline.

To this end we propose and implement the following practical variant of balls-in-bins batching: We do
balls-in-bins batching, but:

« If a batch has size less than B, we pad it with some examples that have gradient O so its batch size
becomes B.

« If a batch has size greater than B, we truncate it to have size exactly B.

* We compute the average gradient over the padded/truncated batch (i.e. our normalization in the
average is always 1/B).

Recall that balls-in-bins (without padding and truncating) can be implemented by shuffling the dataset, sam-
pling a batch size schedule, and then taking batches according to this schedule. Hence even with padding
and truncating balls-in-bins requires minimal overhead on top of shuffling, and indeed we were easily able
to implement it in our CIFAR training code using only a single shuffle on the dataset and numpy’s multi-
nomial sampler and pad operations, and use XLA to compile gradient computations in the resulting code.
Furthermore, none of these changes affects the privacy analysis. This is because (i) the fixed normalization
is compatible with the privacy analysis which is implicitly analyzing at the sum rather than the average, (ii)
truncating a batch is equivalent to some of the examples in that batch having gradient 0, and DP-SGD’s
privacy analysis allows arbitrary clipped gradient.

We next demonstrate that the loss in utility due to truncating examples or not saturating the batch size in
every iteration is acceptable. We rerun the training procedure from the previous section using BLT matrices
(we focus on BLT matrices as they are the most scalable choice of correlated noise (McMahan et al.,2024)),
but implement our practical variant of balls-in-bins batching. We pad/truncate to the same batch size of 500,
i.e. in terms of gradient computations our practical variant of balls-in-bins is no more costly than shuffling
the dataset and using fixed batch sizes instead.

In Figure 30| we compare this implementation to (i) the same implementation but using shuffling instead
of balls-in-bins batching, and (ii) the state-of-the-art unamplified baseline of MEMF. We see that the im-
provements from amplification over the unamplified baseline are far larger than the loss in utility due to
the suboptimal batching introduced by the sampling scheme. To the best of our knowledge, this is the first
DP model training result that simultaneously (i) implements the sampling scheme assumed when computing
the noise multiplier, (ii) does so at a negligible cost in efficiency and in a manner compatible with modern
machine learning frameworks, and (iii) still demonstrates improvements over the unamplified baseline.
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J  DIMENSIONALITY REDUCTION AND ADAPTIVITY

To find a dominating pair for a matrix C, we typically wish to argue that the worst case PLD is generated by
a user that only ever inputs the same entry every iteration. This simultaneously handles dimension reduction
and adaptivity and is the strategy for unamplified privacy analyses (see, e.g.,|Choquette-Choo et al.| (2022)).
In the MEMF case, for it to be the case that the worst-case PLD is achieved by a user always outputting the
same vector, it suffices to require C. ;-C. ; > 0 for all indices ¢, j for which a user can simultaneously appear
in. However, this is no longer the case for balls-in-bins sampling, even in a very simple case. Consider the
matrix

with 1 epoch. Then, the user only participates in exactly one of the first column or the second. Say the user’s
inputs are x = (a, b), where a,b € {—1, 1}, which means that the MoG representing it

%N((a, —a),0%I) + %./\/((O7 b),o%I).

Then, maximizing the inner product between (a, —a) and (0, b) will dominate the PLD w.r.t. N(0,021).
This is then maximized at b = —a, rather than b = a. Thus, for balls-in-bins sampling, the inner products
across columns that a user cannot simultaneously participate in matters. Noting that this example hinged
on the inner product between the two columns being negative, it is possible that CTC > 0 entry-wise is
sufficient to show that a user may as well only input the same vector.
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