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ABSTRACT

The in-context learning (ICL) capability of large language models (LLMs) en-
ables them to perform challenging tasks using provided demonstrations. However,
ICL is highly sensitive to the ordering of demonstrations, leading to instability in
predictions. This paper shows that this vulnerability can be exploited to design
a natural attack—difficult for model providers to detect—that achieves nearly
80% success rate on LLaMA-3 by simply permuting the demonstrations. Exist-
ing mitigation methods primarily rely on post-processing and fail to enhance the
model’s inherent robustness to input permutations, raising concerns about safety
and reliability of LLMs. To address this issue, we propose Permutation-resilient
learning (PEARL), a novel framework based on distributionally robust optimization
(DRO), which optimizes model performance against the worst-case input permu-
tation. Specifically, PEARL consists of a permutation-proposal network (P-Net)
and the LLM. The P-Net generates the most challenging permutations by treating
it as an optimal transport problem, which is solved using an entropy-constrained
Sinkhorn algorithm. Through minimax optimization, the P-Net and the LLM
iteratively optimize against each other, progressively improving the LLM’s robust-
ness. Experiments on synthetic pre-training and real-world instruction tuning tasks
demonstrate that PEARL effectively mitigates permutation attacks and enhances
performance. Notably, despite being trained on fewer shots and shorter contexts,
PEARL achieves performance gains of up to 40% when scaled to many-shot and
long-context scenarios, highlighting its efficiency and generalization capabilities.

1 INTRODUCTION

A hallmark of human intelligence is the ability to learn and execute new tasks by reasoning from
a few examples. Mirroring this, in-context learning (Brown et al., 2020), as a crucial supplement
to zero-shot prompting, has shown promising results across a spectrum of complex tasks (Cobbe
et al., 2021; Chen et al., 2023a; OpenAI et al., 2023). Despite these advancements, the in-context
learning capabilities of LLMs remain fragile. LLMs exhibit sensitivity to permutations of provided
demonstrations (Lu et al., 2022; Zhao et al., 2021; Reynolds & McDonell, 2021), posing challenges
for prompt engineering and leaving a significant gap in achieving human-like adaptability.

Most existing studies on ICL primarily aim to enhance normal-case performance (Min et al., 2022;
Wei et al., 2023), with limited attention to improving permutation robustness. Current approaches
to addressing this issue typically involve modifying training objectives to mitigate the limitations
of transformers’ unidirectional attention (Xiang et al., 2024) or designing permutation-equivariant
architectures (Chen et al., 2023b). However, these methods often lack scalability. Alternatively,
decoding-stage techniques such as output calibration (Zhao et al., 2021) and demonstration order
optimization (Lu et al., 2022) introduce additional computational overhead per inference call, further
limiting their practicality. Thus, a critical need remains for methods that fundamentally enhance
LLMs’ inherent robustness to input permutations.

In this work, we conduct extensive experiments on LLaMA-3, an advanced open-source LLM, to
reassess its vulnerability to permutation-based attacks from an adversarial perspective (§2). Our
findings reveal that even LLaMA-3 remains highly susceptible to simple attacks that alter only
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Figure 1: Performance and attack success rates of Llama-3 on CurDial and TMW datasets. Left
panels: Random, average and worst-case performance as a function of shot number. Right panels:
Attack success rates for exhaustive and neural search attack methods at different thresholds.

the order of ICL demonstrations. These attacks preserve the semantic content of examples and
introduce no adversarial modifications, yet they degrade performance with success rates exceeding
80%. Consequently, they are difficult for model providers to detect but significantly undermine LLM
performance, highlighting a critical vulnerability concern.

To counteract the vulnerability to input permutations, we introduce a novel Permutation-resilient
learning (PEARL) framework, which is based on distributionally robust optimization (DRO) (Ben-Tal
et al., 2011). Unlike standard empirical risk minimization training, adopted by most supervised
fine-tuning (SFT) methods, which views each training instance merely in terms of its one or several
permutations observed during training, DRO conceptualizes each instance as part of a broader
distribution that includes all conceivable permutations. This comprehensive set of all possible
permutations is termed the ambiguity set. By explicitly identifying and optimizing the worst-case
within this ambiguity set, our strategy substantially enhances the resilience of LLMs against all
different permutations. This paradigm shift—from considering training instances as single data points
to viewing them within a distribution of potential permutations—equips the model to better prepare
for and generalize to combinatorial input scenarios.

Specifically, PEARL operationalizes DRO as a two-player game, consisting of a permutation-proposal
network (P-Net) as the adversary and the LLM as the target model. For each training instance, P-Net
identifies a challenging permutation of given demonstrations, aiming to maximize the LLM’s loss.
Conversely, the LLM strives to minimize its loss under the P-Net’s manipulation, thereby performing
well on these difficult examples. P-Net treats the generation of the adversarial ICL permutation as
an optimal transport (OT) (Monge, 1781) problem between the distribution over input permutations
and the distribution of challenging permutations for LLMs. We solve the OT problem using the
Sinkhorn algorithm (Sinkhorn, 1966) with an element-wise entropy constraint designed to prevent
trivial solutions. Through adversarial training (AT), both networks improve iteratively. Ideally, at
convergence, the P-Net represents a uniform distribution across all permutations, as the LLM handles
all possible permutations equally well.

We validate our method in two scenarios: (1) pretraining a transformer to in-context learn linear
functions (Garg et al., 2022), and (2) instruction tuning of LLMs on the Super-Natural Instructions
(Wang et al., 2022). The results demonstrate that, on unseen tasks, our method consistently improves
both the average and worst-case performance of LLMs across different permutations, effectively
defending against permutation-based attacks. Furthermore, despite being trained with much smaller
configurations, our method generalizes effectively to many-shot ICL and long sequences, achieving
performance gains of 24% to 40%. These results highlight the efficiency and generalization capabili-
ties of our approach. The code is available at https://github.com/ChanLiang/PEARL.

2 REVISITING PERMUTATION VULNERABILITY IN LLMS

This section investigates performance fluctuations in SOTA open-source LLMs when presented with
different permutations of given demonstrations. Additionally, from an adversarial perspective, we
explore whether this vulnerability can be exploited to devise an effective attack on LLMs.
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Experimental Setups To conduct evaluations, we select two tasks from Super-NaturalInstructions
(Wang et al., 2022), including Curiosity-based Dialog (CurDial) and TellMeWhy QA (TMW). We
test 100 samples for each task, with each sample structured as a quadruple consisting of (instruction,
demonstrations, input, output). The number of demonstrations (shots) ranges from two to six.
Following Wang et al. (2022), the performance is measured using the ROUGE-L (Lin, 2004). We
analyze the permutation vulnerability of LLaMA-3-8B on two settings as follows:

1) Permutation Vulnerability on Different Number of Demonstrations We first examine the
average and worst-case performance of the model across different permutations of input demonstra-
tions and the effect of scaling the number of demonstrations. As shown in the left of Figure 1, there
is a notable observation: adding demonstrations is a double-edged sword. Increasing the number of
demonstrations (shots) generally enhances the model’s average performance due to richer contextual
information. However, it can simultaneously worsen the worst-case performance. This suggests
that while additional demonstrations provide useful context, the exponentially growing number of
permutations (n!) increases the risk of the model performing poorly on certain input configurations.

2) Input Permutation as Attack We then consider a two-party adversarial scenario between a
malicious user (attacker) and a model provider (defender). The attacker aims to induce compromised
responses from LLMs by permuting ICL demonstrations, making the attack less detectable. Given
a task D = {(pi, xi, yi)}, a sample is successfully attacked if its relative performance degradation,
induced by the attacker, exceeds a threshold δ ∈ [0%, 100%]. Here, pi is an ICL prompt with n
demonstrations. The set of all possible demonstration permutations is P = {Π0, . . . ,Πn!−1}, where
|P| = n!. Let g be a performance metric (e.g., ROUGE-L). The attack success rate (ASR) for task D
is defined as:

ASR(D, δ) =
1

|D|

|D|∑
i=1

I
(
(µi − ωi)/µi ≥ δ

)
(1)

where I denotes the indicator function, |D| is the size of the dataset, and δ is the threshold. The
average performance of the i-th sample, µi, is defined by:

µi = EΠ∼P[g(Π · pi, xi; yi)] =
1

n!

n!∑
j=1

g(Πj · pi, xi; yi) (2)

and ωi is the compromised performance induced by the attack strategy adopted by the malicious user.
Here, we analyze two attack method:

• Exhaustive Search Attack: To calculate the upper bound of the effect the permutation-based attack
can achieve, we assume that the malicious user has unlimited attempts and conducts an exhaustive
search. For each sample (pi, xi, yi), this process involved testing all possible permutations of
demonstrations in Qi and identifying the permutation that yields the poorest performance. In this
case, the attacked performance is calculated as follows:

ωi = min
Π∈P

g(Π · pi, xi; yi) (3)

• Neural Search Attack: To approximate the upper bound established by the exhaustive search when
the number of attempts is limited, we employ a meta-learning approach to optimize a permutation-
proposal network (P-Net). As illustrated in Figure 3 (details are in the Methods section), during
training, this network takes the standard sample (pi, xi, yi) as input and outputs a permutation
matrix Πi. The permuted samples (Πi · pi, xi, yi) are then fed into the LM to maximize its loss
function. During testing, the network generates the most challenging permutation Πi for each
sample (pi, xi, yi). Then the attacked performance is calculated as follows:

ωi = g(Πi · pi, xi; yi), s.t. Πi ∼ P-Net(pi, xi, yi) (4)

As shown in the right of Figure 1, the results indicate that permutation attacks are effective and
approachable. Leveraging this characteristic, the exhaustive search attack successfully attacks over
50% and 80% of the samples with δ = 50% on two datasets respectively, and the neural attack
achieved a successful rate close to this upper bound across different shots. These results demonstrate
that this vulnerability poses a real concern, even for advanced LLMs like LLaMA-3.

Remark These deficiencies may directly stem from the fundamental limitations of standard Empir-
ical Risk Minimization (ERM) training, which focuses on optimizing average performance while
neglecting worst-case performance. We discuss this issue in depth in the next section and propose a
method to address the model’s improper behavior on unseen but practically valid input spaces.
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3 PERMUTATION-RESILIENT LEARNING (PEARL)

3.1 INSTRUCTION TUNING VIA DRO

Our objective is to train a LLM to perform well across all possible permutations of given demonstra-
tions when prompted with few-shot instructions.

In supervised fine-tuning for few-shot learning, the LLM is trained to predict an output y ∈ Y given
an input x ∈ X and a few-shot instruction p ∈ P , where p typically consists of a sequence of
demonstrations, each being an input-output pair. Let Θ denote the parameter space of the language
model, and let ℓ : Θ× (P ×X ×Y) → R+ be a nonnegative loss function measuring the discrepancy
between the model’s prediction and the true output. The standard approach is to find parameters
θ ∈ Θ that minimize the empirical loss over the training data via empirical risk minimization:

θ̂ERM := argmin
θ∈Θ

E(p,x,y)∼P̂ [ℓ(θ; p, x, y)] (5)

where P̂ denotes the empirical distribution derived from the training dataset.

Under appropriate assumptions, learning theory (Vapnik, 1999; Shalev-Shwartz & Ben-David, 2014)
guarantees that models trained via ERM perform well on the test distribution given sufficient training
data. However, in practice, models trained using ERM often fail to generalize well to different
permutations of the same set of demonstrations. This occurs because the training set covers only
a subset of all possible permutations of the demonstrations, and during testing, the model may
encounter permutations not seen during training, leading to a significant degradation in performance.

To systematically address the permutation sensitivity issue, we propose fine-tuning under the frame-
work of distributionally robust optimization, which optimizes the risk under the worst-case distribution
within a specified ambiguity set. Specifically, we aim to solve:

θ̂DRO := argmin
θ∈Θ

{
sup

QΠ∈Q
E(p,x,y)∼QΠ

[ℓ(θ; p, x, y)]
}

(6)

The ambiguity set Q is constructed as the convex hull of all distributions obtained by permuting the
prompts in the empirical distribution P̂ . Specifically, we define:

Q :=

{∑
Π∈P

qΠ QΠ

∣∣∣ q ∈ ∆|P|−1

}
, where QΠ :=

{(
Π · p, x, y

) ∣∣∣ (p, x, y) ∼ P̂
}
. (7)

Here, Π is a permutation matrix that reorders the sequence of demonstrations in p, and P denotes the
set of all such matrices. The vector q lies in the |P| − 1-dimensional probability simplex ∆|P|−1.

0 1 2 3 4 5
Permutation Index

P

(a) ERM

0 1 2 3 4 5
Permutation Index

(b) DRO

P

Figure 2: Comparison of models trained under ERM
and DRO paradigms. The blue bars represent the empir-
ical distribution P̂ of training data, showing different
frequencies of six permutations in the training set. The
purple curves denote the learned distribution Pθ by (a)
ERM and (b) DRO models, illustrating their different
behaviors on less appeared but valid permutations.

To illustrate the advantages of DRO over
ERM in handling different permutations,
consider the example in Figure 2. For a 3-
shot training example (p, x, y) with prompt
p containing three demonstrations, there
are six possible permutations denoted as
(p0, x, y), . . . , (p5, x, y), indexed from 0 to
5. P̂ denotes the empirical distribution of
permutations in training data, represented
by blue bars. The bars show that permuta-
tion indices 0, 1, and 4 appear in training
data with frequencies, while permutations 2,
3, and 5 do not appear. Pθ represents the dis-
tribution learned by the LLM, represented
by purple curves. In panel (a), the ERM-
trained model assigns higher probabilities to
frequently occurring permutations (0, 1, 4)
and lower probabilities to less frequent ones (2, 3, 5), leading to poor performance on unseen permuta-
tions during testing. In contrast, panel (b) shows that the DRO-trained model distributes probabilities
more uniformly across all possible permutations, as it explicitly considers them all (Equation (6))
during learning. This demonstrates how DRO mitigates ERM’s limitations by encouraging models to
assign reasonable probabilities to all valid permutations, regardless of their frequency in training data.
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Figure 3: An overview of the learning framework. The P-Net is a small model incorporating the
Sinkhorn operator, trained jointly with the LLM under the adversarial optimization algorithm. Note
that the permutation matrix operates on the input sequence’s embeddings (simplified here as text
sequences for clarity). After training, only the LLM is retained while the P-Net is discarded.

3.2 LEARNING TO GENERATE PERMUTATIONS VIA P-NET

To enable our DRO framework to function effectively, we need to efficiently find the worst-case
scenario within the ambiguity set (solve the max step in Equation (6)). Directly addressing this
problem through exhaustive search is computationally infeasible due to the exponential search space.

We address this challenge by drawing inspiration from optimal transport, treating the problem as
transportation between permutation distributions. We introduce the Permutation-proposal Network
(P-Net), denoted as P-Net: (P × X × Y) → ∆(Π), which learns a distribution over permutations
to increase task difficulty for the LLM given input examples. As shown in Figure 3, we sample
challenging permutations from this distribution to reorder the given demonstrations.

Specifically, P-Net consists of two components: a parameter part that extracts features and models
the relationships between demonstrations, a non-parameter part using the Sinkhorn algorithm to build
the distribution ∆(Π), and Gumbel sampling for differentiable sampling from it (Π ∼ ∆(Π)).

Parameter component. The parameter component consists of a feature extractor and a cross-
relationship modeling layer. The feature extractor is an encoder model that takes an ICL prompt
composed of n demonstration pairs p = {(xi, yi)}ni=1 and a predicting sample (x, y), and produces
their representations as follows:

([CLS], (x1, y1), . . . , [CLS], (xn, yn), [CLS], (x, y))
Encoder−−−−→ (h1,h2, . . . ,hn,hn+1) , (8)

where hi is the representation corresponding to the i-th [CLS] token, which is often used to segment
and extract the representation of sequences (Devlin et al., 2019b; Lu et al., 2021).

After extracting the representations of n demonstrations, we have H = (h1,h2, . . . ,hn) ∈ Rn×h.
We then model the pairwise relationships among the demonstrations. Specifically, we design a simple
cross-demonstration layer to obtain a relationship matrix R ∈ Rn×n that captures the pairwise
relationships between each pair of demonstrations, defined as:

R = g
(
HWH⊤

)
, (9)

where W ∈ Rh×h is a weight matrix, and g denotes a nonlinear activation function.

The matrix R can be interpreted as an adjacency matrix in graph theory, where demonstrations
serve as nodes, and Rij represents the relationship between demonstrations i and j. Specifically,
we define Rij as the potential increase in task difficulty for the LLM if demonstrations i and j are
swapped; higher values of Rij indicate that swapping these two demonstrations may significantly
impact prediction. Thus, this parameterized component models an edge prediction process.

However, while R captures the potential for swapping between demonstrations, it is not yet suitable
for sampling permutations because its elements can take any real values and do not necessarily form
a valid probability distribution. To convert R into a distribution over permutations ∆(Π) that we can
sample from, we introduce a non-parameter component.
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Non-parameter component. The non-parameter component aims to transform the adjacency
matrix R into a doubly stochastic matrix, representing a probability distribution over permutations.
Specifically, following Adams & Zemel (2011); Mena et al. (2018), we adopt the Sinkhorn operator
S(·) to obtain such matrices through an iterative process of row and column normalization:

S(R) = lim
l→∞

(Tc (Tr (exp(R)))) , (10)

Tr(R) = R⊘
(
R1n1

⊤
n

)
, Tc(R) = R⊘

(
1n1

⊤
nR

)
, (11)

where Tr(R) and Tc(R) represent the row and column normalization operators, respectively; ⊘
indicates element-wise division; and 1n is a column vector of ones. As established by (Sinkhorn,
1966), the Sinkhorn operator S(R) strictly converges to a doubly stochastic matrix as the number of
iterations l approaches infinity.

To ensure a differentiable process when sampling permutations from the distribution, the Gumbel
trick (Jang et al., 2017) is applied:

Π = lim
τ→0

S ((R+G)/τ) , (12)

Gij = − log
(
− logG′

ij

)
, G′

ij ∼ U(0, 1), (13)

Where G ∈ Rn×n is the Gumbel noise and τ the temperature. As τ approaches zero, the result
approximates a permutation matrix Π. Hyperparameters are studied in Appendix C.

By regarding permutation generation as an optimal transport problem and implementing it through
P-Net, we transform the input permutation distribution into a target distribution. Next, we introduce
how P-Net is co-optimized with the LLM to make the target permutation distribution the most
challenging for the current LLM.

3.3 ADVERSARIAL OPTIMIZATION

As illustrated in Figure 3, we adopt an adversarial optimization framework to jointly train the LLM
and the P-Net. Let θ and ϕ denote the parameters of the LLM and P-Net, respectively. For each sample
(p, x, y) drawn from the empirical distribution P̂ , the P-Net generates an adversarial permutation
Π that maximizes the LLM’s loss. In response, the LLM aims to minimize its loss, adversarially
influenced by the P-Net. The LLM’s loss function is defined as:

Llm(ϕ; θ) = E(p,x,y)∼P̂ ,Π∼P-Net(ϕ;p,x,y)[ℓ(θ; (Π · p, x, y))] (14)

To prevent the P-Net from collapsing to trivial solutions, such as producing uniform permutations
that degrade demonstration semantics, we introduce an entropy-based regularization term:

Lent(ϕ) = E(p,x,y)∼P̂ ,Π∼P-Net(ϕ;p,x,y)[H(Π)], (15)

where H(·) denotes the element-wise entropy function.

This results in a two-player min-max optimization problem with the following objective:
min
θ

max
ϕ

(Llm(ϕ; θ)− βLent(ϕ)) , (16)

where β is a hyperparameter controlling the strength of entropy regularization.

We employ alternating optimization to iteratively update θ and ϕ. The full training procedure is
detailed in Algorithm 1.

Algorithm 1: Adversarial Optimization Algorithm for PEARL

Input: θ, ϕ (LLM, P-Net); ηθ, ηϕ (learning rates); m (inner steps); β (entropy coefficient)
repeat

for t = 1 to m do
(p, x, y) ∼ P̂ ; // Sample training examples
Π ∼ P-Net(ϕ, p, x, y) ; // Generate permutations
Llm(ϕ, θ)← ℓ(θ; Π · p, x, y) ; // Compute LLM loss
Lent(ϕ)← H(Π) ; // Compute entropy regularization
ϕ← ϕ+ ηϕ∇ϕ(Llm − βLent) ; // Update P-Net

end
θ ← θ − ηθ∇θLlm(ϕ, θ) ; // Update LLM

until convergence;
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4 IN-CONTEXT LEARNING WITH LINEAR FUNCTIONS

4.1 DATASETS AND EVALUATION METRICS

We investigate in-context learning on linear functions f(x) = w⊤x, where w ∈ Rd, follow-
ing Garg et al. (2022); Guo et al. (2024b). For each w, we construct each example pi =
(x1, f(x1), . . . , xi, f(xi), xi+1) containing i input-output demonstration pairs and a query input
xi+1. A language model LM is trained to minimize:

min
θ

Ep

[
1

k + 1

∑k

i=0
ℓ(θ; pi, f(xi+1))

]
, (17)

where ℓ(·) is the MSE loss and k is the number of demonstrations. During testing, we evaluated
performance using the same MSE metric. We report the normalized squared error ((LM(p) −
w⊤xquery)

2/d), where d is the problem dimension. Detailed settings are in Appendix A.1.

4.2 IMPLEMENTATION DETAILS AND BASELINES

Architecture and Training. We implement Lθ using a GPT-2 base model (Radford et al., 2019)
and train it from scratch on a generated dataset using the AdamW (Loshchilov & Hutter, 2019).
Key training parameters include a batch size of 128 and 500k training steps. In the PEARL frame-
work, the P-Net is initialized as a BERT-base (Devlin et al., 2019a) and also trained from scratch.
Implementation details are in Appendix A.2.

Baselines. Consistent with Garg et al. (2022), we adopt an empirical risk minimization method
with curriculum learning (Bengio et al., 2009; Wu et al., 2020) (ERM+CL) to train the model. The
training process gradually increase the number of demonstrations presented to the model, allowing
for progressive learning of more complex patterns and making the training more stable.

4.3 EVALUATION RESULTS

We evaluate the effect of permutations on the worst-case and average performance of different
methods, as well as each method’s defence capability against permutation attacks.

Table 1: Normalized MSE across permutations.

Shot Method Avg. Worst.

3 ERM+CL 1.45 2.67
PEARL 0.86 (+40.7) 0.92 (+65.5)

4 ERM+CL 1.20 3.34
PEARL 0.79 (+34.1) 1.11 (+66.8)

5 ERM+CL 1.28 5.03
PEARL 0.87 (+32.0) 1.33 (+73.6)
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Figure 4: Comparison of attack success rates.

As shown in Table 1, the performance gap between average and worst-case performance across
permutations for the baseline methods was significant, indicating substantial vulnerability to permu-
tations. Specifically, the worst-case performance of the baseline methods decreased dramatically
compared to their average performance, with the relative performance drop increasing from 74.6% at
3 shots to 84.1% at 4 shots, effectively losing most of the performance gains achieved by increasing
the number of shots. In contrast, our method, PEARL, not only improved the average performance
but also significantly enhanced the worst-case generalization performance compared to the baselines.
While the average performance gains tend to plateau as the number of shots increases, the worst-case
performance gains continue to rise, increasing from 65.5% at 3 shots to 73.6% at 5 shots.

Figure 4 depicts the proportion of successfully attacked samples in terms of (1) different attack
success thresholds and (2) number of demonstrations (shots). The former considers more pessimistic
scenarios (attacked samples drop a large margin), while the latter examines larger input spaces. We
observed that PEARL’s advantage increased as the threshold grew. At δ > 50%, the defence success
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rate for PEARL across all shots was approximately double that of the baseline methods. This indicates
that PEARL can effectively prevent pessimistic scenarios (samples attacked with a large threshold).
Moreover, PEARL’s performance improved with an increasing number of shots, suggesting better
scalability compared to baseline methods.

5 INSTRUCTION FINE-TUNING OF LARGE LANGUAGE MODELS

5.1 EXPERIMENTAL SETUPS

Table 2: Summary of datasets.

Split Category # Tasks # Samples

Training NLG 7 1050
NLU 6 900

Testing NLG 2 200
NLU 2 200

Datasets. Our instruction tuning data are derived from
Super-Natural Instructions (Wang et al., 2022), which are
part of the FLAN v2 benchmark (Chung et al., 2024).
We selected 17 representative tasks, comprising 9 natural
language generation (NLG) tasks and 8 natural language
understanding (NLU) tasks. Following the methodology
of Wang et al. (2022), we randomly designated 4 datasets
as held-out test sets and used the remaining 13 datasets for
training. Each training dataset contains 150 examples, and
each test dataset contains 100 examples, resulting in a training set of 1,950 examples and a test set of
400 examples, as summarized in Table 2.

Evaluation Metrics. Following the practice in Super-Natural Instructions (Mishra et al., 2022; Wang
et al., 2022), we adopt ROUGE-L (Lin, 2004) for reporting performance results, due to the diversity
of our tasks and the open-ended nature of instruction tuning. We also report a single "average" metric
across all datasets, following the methodology in FLAN (Wei et al., 2022; 2023).

Baselines and Models. We evaluate our framework against several learning algorithms: Empirical
Risk Minimization (ERM) (Min et al., 2022), ERM with Demonstration Shuffling (ERM+DS) and
ERM with Instance Mixup (ERM+IM) (Zhang et al., 2018), and InfoAC (Xiang et al., 2024). We
implement FLAN-large as the P-Net and evaluate across five LLMs: Llama3-8B, Llama2-7B/13B,
Mistral-7B, and Gemma-7B. The implementation details are provided in Appendix B.

5.2 EVALUATION RESULTS

We evaluate PEARL from three perspectives: (1) comparison with training-stage methods, (2)
generalization to diverse type of LLMs, and (3) scalability to many-shot in-context learning (Agarwal
et al., 2024) and long sequences.

Table 3: Average and Worst-Case Performance of Llama3-8B on four held-out tasks: Common-
senseQA (CSQA), Curiosity Dialogue (CurDial), CoLA, and Tell Me Why (TMW). Performance
improvements (%) over ERM shown in blue. Worst-case performance tested using exhaustive search.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

2 ERM 57.3 49.4 58.0 54.0 57.9 43.4 62.0 58.0 51.1 42.0
ERM+DS 57.5 (-0.2) 48.6 (-1.6) 62.0 54.0 54.1 37.8 61.0 60.0 51.5 42.7
ERM+IM 53.5 (-6.6) 44.4 (-10.1) 63.0 54.0 44.7 28.1 57.0 56.3 49.4 39.2
INFOAC 55.7 (-2.9) 47.6 (-3.7) 57.5 56.0 53.4 36.4 63.0 61.5 48.7 37.3
PEARL 62.9 (+9.8) 56.4 (+14.2) 65.0 62.0 60.3 50.7 71.0 68.0 55.1 44.8

3 ERM 57.8 38.3 57.7 47.0 61.4 25.9 61.9 52.0 50.3 29.4
ERM+DS 56.1 (-2.9) 39.7 (+3.7) 60.0 46.0 54.1 25.4 60.0 56.0 50.3 31.5
ERM+IM 55.3 (-4.3) 39.8 (+3.9) 59.0 46.0 54.6 28.0 57.6 53.1 50.0 31.9
INFOAC 56.3 (-2.6) 39.5 (+3.1) 59.3 49.0 55.2 24.3 62.1 55.8 48.4 28.8
PEARL 63.1 (+9.2) 46.9 (+22.5) 68.4 62.0 66.7 34.8 64.7 56.0 52.4 34.7

4 ERM 59.7 30.6 61.3 38.0 62.9 21.3 63.3 45.8 51.1 17.5
ERM+DS 57.7 (-3.4) 31.8 (+3.9) 63.3 40.0 57.3 17.6 60.1 52.0 49.9 17.8
ERM+IM 56.0 (-6.2) 32.4 (+5.9) 63.2 42.0 53.7 17.8 57.6 48.5 49.6 21.3
INFOAC 58.6 (-1.8) 33.0 (+7.8) 63.7 44.0 58.7 19.0 63.9 51.0 48.1 17.0
PEARL 63.1 (+5.7) 39.6 (+29.4) 68.4 52.0 69.2 31.3 64.7 52.0 50.1 23.0
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Table 3 presents the comparative performance of PEARL against other learning methods. PEARL
consistently improves both average and worst-case performance across all unseen tasks. As the
number of shots increases, the worst-case performance gain relative to ERM progressively increases
from 14.2% at two shots to 29.4% at four shots. Notably, while optimized for worst-case performance,
PEARL also achieves superior average performance with gains of 5.7% to 9.8%. This improvement
may stem from the rapid convergence observed during Llama-7B’s fine-tuning, where the training
loss plateaus within one epoch. The rapid convergence suggests that for advanced LLMs like LLama3,
focusing on challenging permutations during training is more effective than using random ones—an
observation consistent with Xu et al. (2024).
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Figure 5: Generalization performance of our method across different types of LLMs and many-shot
settings. Left: Performance gains on 3-shot across different LLMs (Mistral-7B, Gemma-7B, Llama
2-7B, and Llama3-8B). Right: Scaling behavior across many-shot settings (8, 16, 32, and 64 shots)
and longer sequences (8k tokens) when trained with 5 shots and a sequence length of 512 tokens.

To validate the general applicability of our method, we expanded our experiments to include three
additional LLMs: Mistral-7B, Gemma-7B and Llama 2-7B. As shown in the left panel of Figure 5,
our method consistently improves worst-case performance by more than 10% in three-shot settings.
Additional results for higher-shot settings are provided in Appendix D. We also observed that different
LLM families exhibit varying sensitivity to input permutations, with Llama models being the most
sensitive, followed by Gemma and Mistral. Despite these differences, the phenomenon remains
significant, with performance drops exceeding 10% in most cases. Notably, our method achieves
consistent worst-case performance improvements of over 10% for three or more shots, demonstrating
its robustness across diverse model families.

We scale our evaluation to the many-shot ICL setting (up to 64 shots) and longer sequences (up
to 8,000 tokens) after training with 5 shots and a sequence length of 512 tokens. As shown in the
right panel of Figure 5, PEARL achieves substantial worst-case performance gains ranging from
24% to 40% when generalizing to larger shot numbers and longer sequences, despite being trained
on a smaller setup. These results suggest that PEARL enables LLMs to learn robust features that
generalize effectively to both many-shot in-context learning and longer sequences, demonstrating the
strong generalization capability of our method. Detailed results are provided in Appendix E.

Table 4: Shot Efficiency: Average Performance with and without PEARL.

# Shots 2 4 8 16 32 64

ERM 57.3 59.7 61.8 66.9 67.4 68.1
PEARL 62.9 63.1 66.5 70.5 70.0 70.4

As we scale to the many-shot setting, we also observe notable trends in shot efficiency, which
quantifies the number of shots a baseline model would require to match the average performance of a
PEARL-trained model. As shown in Table 4, PEARL-trained models achieve comparable average
performance while requiring two to four times fewer shots, highlighting the efficiency of our approach.
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6 RELATED WORK

Order Sensitivity in In-context Learning Despite the huge success of ICL, its robustness to
demonstration permutations remains an unresolved challenge (Zhao et al., 2021).

Most training-stage methods focus on improving general performance in ICL (Min et al., 2022; Wei
et al., 2023) while neglecting the lack of robustness to the permutations of demonstrations. Recent
studies suggest that this phenomenon stems from the autoregressive nature of transformer language
models (Chen et al., 2023b; Xiang et al., 2024). InfoAC (Xiang et al., 2024) introduces contrastive
learning during fine-tuning to break the autoregressive constraint and enable bidirectional token
visibility; however, their approach achieves limited success and is restricted to classification tasks.
Preliminary work of Chen et al. (2023b) shows the DeepSet architecture exhibits better permutation
invariance than transformer; however, this MLP-based new architecture is too small to solve complex
language modeling tasks. Our approach falls within the category of training-stage methods but
proposes a general learning framework that enhances permutation robustness in LLMs without
modifying the Transformer architecture or its autoregressive objective, thereby preserving scalability.

Inference-stage methods can be categorized into four types: (1) demonstration selection (Chang & Jia,
2023; Peng et al., 2024), which improves normal-case performance but lacks worst-case guarantees
under permutations; (2) output calibration (Zhao et al., 2021; Li et al., 2023; Guo et al., 2024a), which
are effective for classification but is less applicable to generation tasks due to sequence calibration
challenges; (3) order optimization (Lu et al., 2022), which finds the best ordering during inference
but suffers from exponential complexity; and (4) prediction ensembling: A recent work (Zhang
et al., 2024) transforms n-shot ICL into n one-shot predictions and ensembles results—effective for
classification but harms generation. In summary, inference-stage methods mitigate order sensitivity
via pre/post-processing, often introducing additional inference overhead. Moreover, most methods
target classification and underperform on generation tasks. In contrast, our training-stage solution
complements inference-stage methods, enhancing LLM robustness without additional inference costs
while remaining broadly applicable to various tasks.

Distributionally Robust Optimization. Distributionally robust optimization optimizes the objective
function over ambiguity sets, often defined as balls centered on the empirical distribution (Ben-Tal
et al., 2013; Lam & Zhou, 2015; Duchi et al., 2016; Miyato et al., 2018). Prior applications of DRO
have primarily addressed distributional shifts, including label shift (Hu et al., 2018) and data source
shift (Oren et al., 2019) and group shift (Sagawa et al., 2020). To the best of our knowledge, we are
the first to apply DRO to enhance the ICL robustness of LLMs by defining the ambiguity set over all
possible permutations of the empirical distribution, thereby providing performance guarantees.

Optimal Transport. Optimal transport is a fundamental mathematical discipline established by
Monge (1781); Kantorovich (1942). It defines a metric for measuring distances between probability
distributions, known as the Wasserstein distance, and has been widely employed in machine learning
for distribution matching (Montesuma et al., 2024; Xiao et al., 2024). Our work extends the concept
of learning permutation structures through neural networks, as explored in (Mena et al., 2018) for
learning to sort numbers or solve jigsaw puzzles. However, we apply OT in the context of LLMs
and design a neural network, P-Net, equipped with the Sinkhorn operator to generate challenging
permutations, enabling LLMs to undergo DRO training and thereby enhancing their ICL robustness.

7 CONCLUSION

We introduce a novel permutation-resilient learning framework, PEARL, designed to enhance the
robustness of LLMs against different permutations. PEARL employs a permutation-proposal network,
which leverages the Sinkhorn algorithm to generate challenging permutations, optimized under the
DRO to systematically improve LLM’s robustness. Through empirical evaluations on both synthetic
tasks and real-world instruction-tuning tasks, our framework has demonstrated effectiveness in
mitigating the permutation-based attacks and enhancing average performance.

While PEARL primarily focuses on improving in-context learning, it provides a general framework
for handling set-structured inputs with order-independent elements, such as multiple documents,
images, or videos. We hope this work inspires further research on permutation-resilient learning,
contributing to the development of more robust and trustworthy language models.
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APPENDIX

A DETAILED SETUP OF ICL WITH LINEAR FUNCTIONS

A.1 DATASETS CONSTRUCTION

We investigate training a language model to perform in-context learning on linear functions, following
Garg et al. (2022); Guo et al. (2024b). The function class is defined as F = {f | f(x) = w⊤x,w ∈
Rd}, where d is the input dimension. Each data sample is constructed as follows:

(a) Function sampling: A weight vector w ∼ N (0, Id) is sampled, defining a linear function
f(x) = w⊤x.

(b) Input sampling: Inputs x1, x2, . . . , xk+1 ∼ N (0, Id) are independently drawn.

(c) Output generation: For each input, the corresponding output is computed as yi = f(xi) = w⊤xi

for i = 1, 2, . . . , k + 1.

The input prompt pi consists of i demonstrations and the (i + 1)-th example as the query: pi =
(x1, f(x1), x2, f(x2), ..., xi, f(xi), xi+1). We trained a language model Lθ, parameterized by θ, to
minimize the expected loss over all input prompts:

min
θ

Ep

[
1

k + 1

∑k

i=0
ℓ(θ; pi, f(xi+1))

]
, (18)

where l(·) is the mean squared error (MSE) loss. During testing, we evaluated performance using the
same MSE metric. We report the normalized squared error ((LM(p)− w⊤xquery)

2/d), where d is
the problem dimension.

A.2 IMPLEMENT DETAILS

Architecture. Following Garg et al. (2022), we implement Lθ using a GPT-2 architecture (Radford
et al., 2019) with 12 layers, 8 attention heads, and a hidden dimension of 256. The model takes as
input a sequence of vectors in its embedding space and predicts the next vector in the sequence within
the same space.
Training. We pre-train the model from scratch on a generated dataset of 40k linear functions using
the AdamW (Loshchilov & Hutter, 2019). We employ a batch size of 128 and trained for 500k steps,
selecting the best checkpoint based on validation set performance. In the PEARL framework, we
randomly initialize the P-Net with a BERT-base-sized transformer encoder, also pre-training it from
scratch. During testing, we sample novel functions to assess the model’s ability to infer new weights
w through in-context demonstrations.

B DETAILED SETUP OF INSTRUCTION FINE-TUNING

B.1 DETAILS OF DATASETS

The details of datasets used in instruction tuning is presented in Table 5.

B.2 BASELINE AND IMPLEMENTATION DETAILS

To evaluate the performance of our trained model, we compare it with other learning algorithms.

Empirical Risk Minimization (ERM) (Min et al., 2022): Standard approach minimizing the average
loss over the training dataset, adopted by mainstream instruction tuning models such as FLAN (Chung
et al., 2024), Natural Instructions (Mishra et al., 2022; Wang et al., 2022), and MetaICL (Min et al.,
2022).

ERM with Demonstration Shuffling (ERM+DS) (Zhang et al., 2018): Enhances ERM by randomly
shuffling the order of in-context demonstrations within each sample at each training step. This
introduces robustness by exposing the model to different permutations of demonstrations during
training. It can be considered a form of epoch-level data augmentation.
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Table 5: Details of datasets used in instruction tuning from natural instructions.

Task ID Task Name Source Category
1297 QASC Question Answering QASC Question Answering
442 COM_QA Paraphrase Question Generation COM_QA Question Rewriting
908 DialogRE Identify Familial Relationships DialogRE Speaker Relation Classification
288 Gigaword Summarization Gigaword Title Generation
582 Natural Questions Answer Generation Natural Questions Question Answering
151 TOMQA Find Location Easy Clean TOM_QA Question Answering
1714 ConvAI3 Sentence Generation ClariQ Dialogue Generation
379 AGNews Topic Classification AG News Text Categorization
639 MultiWOZ User Utterance Generation MultiWOZ 2.2 Dialogue Generation
209 Stance Detection Classification StarCon Stance Detection
1516 IMPPRES Natural Language Inference IMPPRES Textual Entailment
589 Amazon Food Summary Text Generation Amazon Reviews Summarization
1285 KPA Keypoint Matching ArgKP Text Matching

ERM with Instance Mixup (ERM+IM)(Zhang et al., 2018): Incorporates Instance Mixup technique
during each training step. For each data point, we generate multiple augmented versions by randomly
selecting different in-context demonstrations. We perform multiple forward passes to compute the loss
for each augmented version, average these losses, and then perform a single backward pass using the
averaged loss. This approach provides finer-grained data augmentation compared to demonstration
shuffling. Notably, by comparing this baseline with our method, we contrast min-mean optimization
(ERM+IM) with min-max optimization (our method).

InfoAC: (Xiang et al., 2024) is a training-stage method that employs contrastive learning to enable
earlier tokens to access information from later tokens, amining to mitigate the order sensitivity of
ICL inherent in autoregressive LM.

By including these baselines we provide a comprehensive evaluation of our proposed method.

As for the proposed PEARL framework, we select the LLaMA3-8B model as our LLM and the
FLAN-large encoder as the P-Net. Both models are fine-tuned using LoRA (Hu et al., 2022), with
the number of finetuned parameters of P-Net being 1/20 that of the LLM. We train the models on
the instruction dataset for two epochs using a single NVIDIA A40 GPU, with a batch size of 16,
resulting in a total of 246 training steps. The optimizer used was AdamW. The learning rates for the
P-Net and the LLM are set to 1× 10−4 and 3× 10−4, respectively. For the Sinkhorn algorithm, we
use 80 iterations, a temperature parameter of 0.1, and an entropy constraint coefficient β = 1.0.

B.3 DETAILS OF HYPERPARAMETER SETTINGS

In this section, we provide a comprehensive overview of the hyperparameter settings used in our
experiments (Table 6). The hyperparameters can be categorized into three groups: (1) basic LLM
training parameters, such as learning rate and batch size; (2) LoRA configuration parameters; and (3)
P-Net optimization parameters. These hyperparameters were selected based on average validation
performance and kept consistent across comparative experiments to ensure fair comparison.

C ANALYSIS OF HYPERPARAMETERS IN INSTRUCTION FINETUNING

We conduct analysis to understand the impact of key hyperparameters on P-Net learning and our
overall framework. Our analysis focuses on two main aspects: the effect of the entropy constraint
strength, and the influence of iteration number and temperature in the Sinkhorn algorithm.

Influence of Entropy Regularization in OT We examine the impact of the entropy regularization
coefficient in OT, testing values of 0.3, 1.0, 3.0, and 10.0 (Figure 7). At a low coefficient (0.3),
P-Net’s gradient norm remained small, indicating minimal learning and potential generation of
simple semantic overlaps to satisfy adversarial training requirements. Concurrently, the LLM’s
gradient norm struggled to decrease. The gradient norm for P-Net peaked at 1.0, suggesting optimal
learning conditions. As coefficients increased to 3.0 and 10.0, P-Net’s gradient norm decreased
again, suggesting excessive restrictions. The range of 1.0-3.0 provided an ideal balance, encouraging
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Category Hyperparameter Value

LLMs

Learning rate 3e-5
Batch size 16
Max sequence length 512
Weight decay coefficient 0.1
Epoch 2

LoRA

Rank 8
Alpha 32
Dropout 0.1
P-Net target modules q, v

LLMs target modules
q_proj, k_proj, v_proj,
o_proj, gate_proj,
up_proj, down_proj

P-Net

Temperature 0.1
Iteration coefficient 80
Entropy constraint 1.0
Noise 0.3
Learning rate 1e-4
Batch size 16
Max sequence length 512

Table 6: Hyperparameter settings used in our main experiment.

Figure 6: Impact of number of iterations and temper-
ature on the average/worst-case performance.

# Iter. Temperature

0.03 0.1 0.3

80 55.7 / 40.0 55.7 / 40.0 55.4 / 39.6
200 55.7 / 40.0 55.8 / 40.0 55.8 / 40.6

0.3 1.0 3.0 10.0
0

1

2

3

4

5

6

7

Gr
ad

ie
nt

 N
or

m
Gradient Norm vs 

P-Net
LLM

Figure 7: Impact of entropy coefficient.

P-Net to extract meaningful information from the LLM without oversimplifying or overcomplicating
the task. In contrast, the LLM’s gradient norm decreased consistently with increasing coefficients,
indicating a distinct response to entropy regularization.

Effect of Sinkhorn Algorithm Parameters We investigate the interplay between two critical
parameters in the Sinkhorn algorithm: number of iterations and temperature. Intuitively, these
parameters are positively correlated; higher iteration counts typically allow for higher temperatures.
Our experiments, however, reveal an unexpected robustness to parameter variations. With the entropy
regularization coefficient fixed at 1, we vary the number of iterations (80, 200) and temperature
(0.03, 0.1, 0.3). As presented in Table 6, surprisingly, these substantial parameter changes result in
minimal performance variation. This suggests that the Sinkhorn algorithm in our framework is less
sensitive to these parameters than initially hypothesized, potentially indicating a wider range of stable
configurations for practical applications.

D EXTENDED INSTRUCTION FINETUNING ACROSS DIVERSE LLMS

We expanded our evaluation to more LLMs: Mistral-7B, Gemma-7B, and earlier generations such as
Llama2-7B and Llama2-13B, as detailed in the tables from Table (7) to Table (10).

Sensitivity to Permutations Across LLM Families Our analysis reveals that different LLM
families exhibit varying degrees of sensitivity to permutations. The sensitivity ranking, from highest
to lowest, is as follows: Llama, Gemma, and Mistral. Notably, all examined families showed
significant performance declines, typically exceeding 10 %.
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Table 7: Instruction fine-tuning results for Mistral-7B evaluated on four held-out tasks. Performance
gains (%) over the ERM baseline are indicated in blue.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

2 ERM 64.1 58.1 67.0 64.0 54.6 41.8 81.0 78.0 53.7 48.5
PEARL 67.0 (+4.5) 62.4 (+7.5) 68.0 66.0 59.4 49.0 82.0 78.0 58.4 56.7

3 ERM 66.6 56.1 67.0 62.0 63.7 38.9 80.0 76.0 55.6 47.3
PEARL 69.5 (+4.3) 62.8 (+12.0) 70.0 66.0 70.1 60.1 83.6 78.0 54.1 47.0

4 ERM 66.7 50.4 68.9 60.0 67.6 47.8 74.2 52.0 55.9 41.6
PEARL 68.3 (+2.5) 57.1 (+13.4) 69.9 62.0 71.6 54.8 74.9 66.0 56.8 45.5

5 ERM 67.9 50.7 67.5 56.0 70.7 52.6 76.0 56.0 57.4 38.2
PEARL 70.2 (+3.4) 58.1 (+14.5) 70.4 64.0 76.7 59.3 73.3 66.0 60.4 43.0

Table 8: Instruction fine-tuning results for Gemma-7B evaluated on four held-out tasks. Performance
gains (%) over the ERM baseline are indicated in blue.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

2 ERM 66.2 59.5 71.0 70.0 59.1 46.1 77.0 70.0 57.8 52.0
PEARL 66.3 (+0.0) 60.7 (+2.0) 74.0 68.0 47.3 39.2 82.0 78.0 61.7 57.6

3 ERM 64.7 52.5 70.7 64.0 67.1 45.2 70.3 60.0 50.5 40.7
PEARL 68.4 (+5.8) 59.3 (+13.0) 74.7 68.0 59.2 42.5 78.7 76.0 61.0 50.6

4 ERM 65.0 46.5 65.0 54.0 71.4 41.1 72.5 58.0 51.1 32.9
PEARL 67.2 (+3.4) 52.5 (+13.0) 71.4 60.0 60.7 38.9 75.9 66.0 60.8 45.2

5 ERM 64.3 46.3 65.9 54.0 73.4 48.3 65.6 50.0 52.3 32.9
PEARL 66.3 (+3.1) 51.0 (+10.2) 70.3 60.0 63.4 43.6 71.3 60.0 60.2 40.4

Table 9: Instruction fine-tuning results for Llama2-7B evaluated on four held-out tasks. Performance
gains (%) over the ERM baseline are indicated in blue.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

2 ERM 56.6 46.3 56.0 50.0 61.3 50.2 58.2 42.0 50.7 43.1
PEARL 57.4 (+1.5) 46.5 (+0.4) 58.0 48.0 55.2 44.7 62.0 48.0 54.4 45.4

3 ERM 58.2 34.0 52.7 34.0 64.0 36.4 66.0 36.0 50.1 29.4
PEARL 59.6 (+2.3) 40.4 (+19.1) 56.3 40.0 66.2 46.2 67.0 42.0 48.7 33.5

4 ERM 58.9 19.9 60.0 26.0 68.1 24.4 60.2 14.0 47.3 15.1
PEARL 60.5 (+2.7) 31.6 (+59.1) 61.2 40.0 69.4 40.1 62.4 24.0 48.9 22.4

5 ERM 61.9 25.8 59.0 32.0 74.2 43.9 65.7 10.0 48.6 17.1
PEARL 62.9 (+1.6) 32.1 (+24.7) 62.4 38.0 73.3 43.4 64.8 24.0 51.0 23.0

Table 10: Instruction fine-tuning results for Llama2-13B evaluated on four held-out tasks. Perfor-
mance gains (%) over the ERM baseline are indicated in blue.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

2.0 ERM 66.3 56.6 56.0 46.0 72.6 56.2 83.0 76.0 53.4 48.0
PEARL 67.9 (+2.4) 60.7 (+7.3) 64.0 58.0 73.8 64.2 81.0 76.0 52.6 44.4

3.0 ERM 65.7 46.2 55.7 38.0 76.4 51.3 77.7 56.0 53.1 39.6
PEARL 68.5 (+4.2) 50.3 (+8.7) 62.7 44.0 81.0 58.4 76.7 56.0 53.5 42.6

4.0 ERM 65.8 33.2 58.2 28.0 79.6 41.6 73.7 38.0 51.8 25.0
PEARL 66.4 (+0.9) 40.2 (+21.1) 63.3 42.0 80.4 45.5 69.4 42.0 53.1 29.1
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Adaptation of the Proposed Method In scenarios with three or more examples, our method
consistently demonstrated substantial improvements, often enhancing worst-case performance by
more than 10%. These results confirm the robustness and effectiveness of our approach.

E SCALING TO MANY-SHOT IN-CONTEXT LEARNING

We evaluate the scalability of PEARL by extending our analysis to many-shot scenarios, testing
performance with 8 to 64 in-context examples (Table 11). Notably, despite being trained solely on
5-shot demonstrations, PEARL exhibits strong generalization to settings with substantially more
examples. Using Llama3-8B as our base model, we compare PEARL and ERM training approaches
across four held-out tasks. Our analysis reveals persistent performance advantages of PEARL over
the ERM baseline across all shot regimes.

Table 11: Performance evaluation across 8-, 16-, 32-, and 64-shot settings comparing PEARL and
ERM learning algorithm for Llama3-8B on four held-out tasks, with gains (%) relative to the ERM.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

8 ERM 61.8 21.3 61.4 36.0 68.3 22.7 62.7 16.0 54.8 10.6
PEARL 66.5 (+7.6) 29.7 (+39.2) 67.7 44.0 77.1 28.7 65.0 32.0 56.2 14.0

16 ERM 66.9 21.3 67.3 36.0 76.5 31.4 67.2 8.0 56.5 9.7
PEARL 70.5 (+5.3) 26.3 (+23.7) 70.9 46.0 83.9 37.5 70.1 12.0 56.9 9.8

32 ERM 67.4 19.3 67.5 32.0 77.8 30.7 68.2 6.0 56.1 8.6
PEARL 70.0 (+3.8) 26.4 (+36.4) 70.0 44.0 82.6 40.3 70.6 12.0 56.6 9.1

64 ERM 68.1 20.6 68.1 38.0 76.9 27.7 72.2 8.7 55.0 8.0
PEARL 70.4 (+3.5) 28.2 (+36.7) 69.5 46.0 82.9 38.9 74.2 19.6 55.1 8.1

F BEST-CASE PERFORMANCE

Although our methodology was initially designed to optimize for pessimistic (worst-case) scenarios,
we have also included an evaluation of the best-case performance for both PEARL and ERM to
provide a balanced perspective. The results are shown in the Table 12.

Table 12: Best performance comparison between ERM and PEARL

#Shot Method Average Gain CSQA CurDial CoLA TMW
2 ERM 64.1 - 68.8 64.4 64.1 59.2

PEARL 68.8 7.2% 73.4 69.2 70.3 62.1

3 ERM 72.8 - 70.3 85.0 65.6 70.3
PEARL 77.0 5.7% 73.4 87.9 79.7 66.9

4 ERM 82.9 - 81.3 92.4 78.1 79.7
PEARL 84.3 1.7% 82.8 93.6 81.2 79.5

5 ERM 86.8 - 84.4 95.3 81.3 86.2
PEARL 89.3 2.9% 87.5 96.5 85.9 87.3

Surprisingly, the results show that across all datasets and in every shot condition, PEARL’s best
performance consistently exceeded that of ERM. This indicates that our method not only optimizes
performance in worst-case scenarios but also slightly enhances best-case performance.
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