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A Additional Evaluations491

In this section, we highlight the scale of our evaluations, additional findings from stress-testing492

RT-Sketch on sketches drawn by different individuals, and results from extending our policy to493

accommodate sketch+language conditioning.494

A.1 Experiments At A Glance495

Cumulatively, our results encompass the following: H1 experiments comprise 270 rollouts (6 skills496

x 15 trials x 3 methods), H2 comprises 40 rollouts (2 skills x 5 trials x 4 sketch types), H3 comprises497

30 rollouts (15 trials x 2 methods), and H4 comprises 30 rollouts (15 trials x 2 methods). All rollouts498

are cumulatively evaluated across 62 labelers (split across H1-4).499

A.2 Robustness to Input Sketches500

To test whether RT-Sketch generalizes to sketches drawn by different individu-501

als, we collect 30 line sketches (drawn via tracing) by 6 different annotators (whose502

sketches were never seen during training) on 5 trials of the move near scenario.503

Figure 4: Sketches Drawn by Other Annotators

We obtain the resulting rollouts produced by RT-504

Sketch with these sketches as input. Across rat-505

ings, RT-Sketch achieves high spatial alignment on506

sketches drawn by other annotators. Notably, the507

performance between sketches drawn by different508

annotators is similar, as well as the average across509

annotators compared to original policy performance510

on our original sketches (Fig. 4).511

A.3 Multimodal Goal Specification: Sketches + Language512

We train a sketch-and-language conditioned model by modifying the RT-1 architecture to use FiLM513

along with EfficientNet layers to tokenize both visual input and language, and concatenate them at514

the input. In H1 experiments (Fig. 3), we evaluate all policies on the upright skill, where the robot515

must place a can or bottle from a sideways orientation initially to an upright orientation at a desired516

location on the table. While RT-1 typically can reorient the can/bottle properly, it struggles to place517

the item in the intended location on the table, as reflected in this policy’s spatial imprecision in518

Table 1. Meanwhile, RT-Sketch struggles to reorient the can/bottle, since an imperfect sketch may519

fail to specify the exact desired orientation, but often places the can/bottle in the desired location.520

In Fig. 5, we see that while language alone (i.e. ”place the can upright”) can be ambiguous in terms521

of spatial placement, and a sketch alone does not encourage reorientation, we empirically see that522

the joint policy is better able to address the limitations of either modality alone. A similar pattern523

emerges for pick drawer (Fig. 5).

Figure 5: Multimodal Goal Specification: Sketch+Language: Empirically, we find that while a language-
only policy can struggle with spatial precision, and a sketch-only policy can fail to interpret intended object
orientations from a sketch alone, a multimodal policy is better able to address the limitations of both.524

B Additional Results: Goal Alignment525

In addition to the goal alignment results reported in Fig. 3 which are based on average Likert ratings,526

we additionally conduct a non-parametric Mann-Whitney U (MWU) test with ↵ = 0.05 for H1-4527
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to evaluate the differences in goal alignment ratings across methods. This kind of statistical test is528

suitable for ordinal data and does not make specific assumptions on the normality or variance of the529

data distributions.530

B.1 H1 Findings531

The H1 experiments aim to evaluate how RT-Sketch compares to RT-1 and RT-Goal-Image on the532

standard RT-1 tabletop manipulation benchmark [1]. We conduct a MWU test under the null hy-533

pothesis that there is no difference in the goal alignment ratings from labelers across the methods.534

In Appendix Table 3 and Appendix Table 4, we report the pairs of methods for which the ratings535

yield a p-value of < 0.05, rejecting the null hypothesis, along with their U -statistic.536

Table 3: H1: RT-1 Benchmark - Semantic Alignment
Skill Method Pair Stat. p-value
Move Near
Pick Drawer (RT-1, RT-Goal Img) 5298.0 1.49⇥ 10�3

Drawer Open (RT-1, RT-Goal Img) 4797.0 1.22⇥ 10�3

Drawer Close (RT-1, RT-Goal Img) 4089.5 2.01⇥ 10�8

Knock
Upright (RT-1, RT-Sketch) 16855.0 9.49⇥ 10�29

(RT-1, RT-Goal Img) 10052.0 2.80⇥ 10�18

(RT-Sketch, RT-Goal Img) 7210.5 5.62⇥ 10�7

Table 4: H1: RT-1 Benchmark - Spatial Alignment
Skill Method Pair Stat. p-value
Move Near
Pick Drawer
Drawer Open (RT-1, RT-Goal Img) 4761.5 4.59⇥ 10�3

Drawer Close (RT-1, RT-Sketch) 7780.0 1.82⇥ 10�5

(RT-1, RT-Goal Img) 4869.0 3.62⇥ 10�10

Knock
Upright (RT-1, RT-Sketch) 15085.0 1.55⇥ 10�14

(RT-1, RT-Goal Img) 10656.0 1.32⇥ 10�23

We conclude that for 5 of 6 and 4 of 6 skills, the null hypothesis is confirmed for semantic and spa-537

tial alignment ratings, respectively, suggesting that there is no dropoff in performance with sketches538

compared to traditional modalities. We do observe that for the upright skill, the rating difference539

between RT-Sketch and RT-1 is significant, and RT-Sketch suffers a slight performance drop as re-540

orientation is particularly difficult to infer from a sketch alone. However, we have since addresses541

this challenge with a policy conditioned on both sketches and language, which performs reorienta-542

tion better than sketches-alone and with more spatial precision than language-alone (Section 4.2).543

The highlighted rows above indicate when the goal alignment ratings for RT-Sketch compared to544

either RT-1 or RT-Goal-Image were found to be statistically significant. Notably, there are very few545

such findings, in alignment with H1. This is in accordance with what we observe Fig. 3: nearly546

no noticeable difference in performance between methods for most of the skills, and the slightly547

better performance of RT-1 compared to RT-Sketch (and the slightly better performance of RT-548

Sketch compared to RT-Goal-Image) for the upright skill.549

Table 5: H2: Robustness to Sketch Specificity - Semantic Alignment
Pair Stat. p-value

Free-Hand, Line Sketch 1059.0 9.58⇥ 10�12

Free-Hand, Colored Sketch 960.0 2.54⇥ 10�10

Free-Hand, Sobel Edges 1099.5 9.16⇥ 10�11

Line Sketch, Colored Sketch - -
Line Sketch, Sobel Edges - -

Colored Sketch, Sobel Edges - -
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Table 6: H2: Robustness to Sketch Specificity - Spatial Alignment
Pair Stat. p-value

Free-Hand, Line Sketch 478.0 5.18⇥ 10�17

Free-Hand, Colored Sketch 567.5 3.49⇥ 10�13

Free-Hand, Sobel Edges 629.0 3.09⇥ 10�14

Line Sketch, Colored Sketch - -
Line Sketch, Sobel Edges - -

Colored Sketch, Sobel Edges - -

B.2 H2 Findings550

For H2 experiments, we evaluate RT-Sketch’s robustness to the input specificity of the sketch. We551

find that across the 4 sketch types, the only pairings which garner statistically significant differences552

in ratings are free-hand sketches as compared to other types (Appendix Table 5 and Appendix Ta-553

ble 6). This is natural given the drastic perspective and geometric differences of free-hand sketches554

compared to those which are traced or derived from a transform of the goal image itself (edge555

detection).556

However, there are notably no statistically significant pairings between line-sketches and even the557

most detailed type of input representation we evaluate (Sobel Edges). This suggests that RT-Sketch is558

indeed able to handle a range of input specificity levels, and more importantly that RT-Sketch can559

deal with representations that are minimal and imperfect.560

Table 7: H3: Visual Distractors
Alignment Method Pair Stat. p-value
Semantic RT-Sketch, RT-Goal Img. 20622.5 4.62⇥ 10�8

Spatial RT-Sketch, RT-Goal Img. 22233.0 3.07⇥ 10�12

Table 8: H4: Language Ambiguity
Alignment Method Pair Stat. p-value
Semantic RT-Sketch, RT-1 4756.0 1.34⇥ 10�24

Spatial RT-Sketch, RT-1 3680.5 3.53⇥ 10�30

B.3 H3 and H4 Findings561

Finally, we conduct a MWU test over the semantic/spatial goal alignment ratings between RT-562

Sketch and RT-Goal-Image in the setting of visual distractors (H3, Appendix Table 7) as well as563

RT-Sketch and RT-1 in the setting of language ambiguity (H4, Appendix Table 8). We hypothe-564

size that RT-Sketch does indeed achieve higher ratings than baselines in these settings, as sketches565

are by nature 1) minimal, which may enable emergent robustness to distractors, and 2) agnostic to566

language.567

We do find a statistically significant difference across semantic and spatial ratings (highlighted in568

orange), concluding that RT-Sketch is favorable to traditional modalities in these particular settings.569

B.4 Summary of Mann-Whitney U Findings570

In short, the additional findings from conducting more thorough MWU testing over H1-4 align very571

closely with what we observe and report in Fig. 3 and suggest the merits of sketches across a range572

of scenarios.573

C Future Directions574

Learning a policy conditioned on view-invariant sketches can be an initial step before moving to575

even more abstract representations like schematics or diagrams for assembly tasks. Additionally,576

alternative ways to condition on sketches is a powerful avenue for future work. RT-Sketch currently577

only considers goal observations in sketch space, but projecting all observations to a sketch-based578
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or latent space is another underexplored but promising direction. Sketches are not without their579

own limitations, however, as ambiguity due to omitted details or poor quality sketches are persistent580

challenges. In the future, we are excited to continue exploring multimodal goal specification which581

can leverage the benefits of language, sketches, and other modalities to jointly resolve ambiguity582

from any single modality alone. This may include both end-to-end approaches that can jointly583

condition on multiple modalities, or hierarchical strategies that can leverage the spatial awareness584

of sketches and the summarization capabilities of VLMs to supplement ambiguous language with585

more informed descriptions derived from visual observations of a sketch. Lastly, exploring what586

combination of modalities humans prefer to use when providing goals, and how best they capture587

intent, is an important future direction not addressed in this work.588

D Sketch Goal Representations589

Since the main bottleneck to training a sketch-to-action policy like RT-Sketch is collecting a dataset590

of paired trajectories and goal sketches, we first train an image-to-sketch translation network T591

mapping image observations oi to sketch representations gi, discussed in Section 3. To train T , we592

first take a pre-trained network for sketch-to-image translation [37] trained on the ContourDrawing593

dataset of paired images and edge-aligned sketches (Fig. 6). This dataset contains L(i) = 5 crowd-594

sourced sketches per image for 1000 images. By pre-training on this dataset, we hope to embed a595

strong prior in T and accelerate learning on our much smaller dataset. Next, we finetune T on a596

dataset of 500 manually drawn line sketches for RT-1 robot images. We visualize a few examples of597

our manually sketched goals in Fig. 7 under ‘Line Drawings’.598

Figure 6: ContourDrawing Dataset: We visualize 6 samples from the ContourDrawing Dataset from [37]. For
each image, 5 separate annotators provide an edge-aligned sketch of the scene by outlining on top of the original
image. As depicted, annotators are encouraged to preserve main contours of the scene, but background details
or fine-grained geometric details are often omitted. Li et al. [37] then train an image-to-sketch translation
network T with a loss that encourages aligning with at least one of the given reference sketches.

Notably, while we only train T to map an image to a black-and-white line sketch ĝi, we consider599

various augmentations A on top of generated goals to simulate sketches with varied colors, affine600

and perspective distortions, and levels of detail. Fig. 7 visualizes a few of these augmentations,601

such as automatically colorizing black-and-white sketches by superimposing a blurred version of602

the original RGB image, and treating an edge-detected version of the original image as a generated603

sketch to simulate sketches with a lot of details. We generate a dataset for training RT-Sketch by604

‘sketchifying’ hind-sight relabeled goal images via T and A.605

Although RT-Sketch is only trained on generated line sketches, colorized line sketches, edge-606

detected images, and goal images, we find that it is able to handle sketches of even greater diversity.607
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Figure 7: Visual Goal Diversity: RT-Sketch is capable of handling a variety of visual goals at both train and test
time. RT-Sketch is trained on generated and augmented images like those shown on the right below ’Generated
Goals’. But it can also interpret free-hand, line sketches, and colored sketches at test time such as those on the
left below ’Manually Sketched Goals’.

This includes non-edge aligned free-hand sketches and sketches with color infills, like those shown608

in Fig. 7.609

D.1 Alternate Image-to-Sketch Techniques610

The choice of image-to-sketch technique we use is critical to the overall success of the RT-Sketch611

pipeline. We experiment with various other techniques before converging on the above approach.612

Recently, two recent works, CLIPAsso [34] and CLIPAScene [35] explore methods for automatically613

generating a sketch from an image. These works pose sketch generation as inferring the parameters614

of Bezier curves representing ”strokes” in order to produce a generated sketch with maximal CLIP-615

similarity to a given input image. These methods perform a per-image optimization to generate a616

plausible sketch, rather than a global batched operation across many images, limiting their scalabil-617

ity. Additionally, they are fundamentally more concerned with producing high-quality, aesthetically618

pleasing sketches which capture a lot of extraneous details.619

Figure 8: Alternate Image-to-Sketch Techniques

We, on the other hand, care about producing a minimal but reasonable-quality sketch. The second620

technique we explore is trying the pre-trained Photosketching GAN [37] on internet data of paired621

images and sketches. However, this model output does not capture object details well, likely due622

to not having been trained on robot observations, and contains irrelevant sketch details. Finally, by623

finetuning this PhotoSketching GAN on our own data, the outputs are much closer to real, hand-624

drawn human sketches that capture salient object details as minimally as possible. We visualize625

these differences in Fig. 8.626

E Evaluation Visualizations627

To further interpret RT-Sketch’s performance, we provide visualizations of the precision metrics628

and experimental rollouts. In Fig. 9, we visualize the degree of alignment RT-Sketch achieves,629

as quantified by the pixelwise distance of object centroids in achieved vs. given goal images. In630

Fig. 10, Fig. 11, Fig. 12, and Fig. 14, we visualize each policy’s behavior for H1, H2, H3 and H4,631

respectively. Fig. 13 visualizes the four tiers of difficulty in language ambiguity that we analyze for632

H4.633
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Figure 9: Spatial Precision Visualization: We visualize four trials of RT-Sketch on the Move Near skill, along
with the measured spatial precision in terms of RMSE. To evaluate spatial precision, we have a human annotator
annotate the frame that is visually most aligned, and then keypoints for the object that was moved in this frame
and in the provided reference goal image. For each of the four trials, we visualize the rollout frames until
alignment is achieved, along with the labeled object centroids and the offset in achieved vs. desired positions.
The upper right example shows a failure of RT-Sketch in which the apple is moved instead of the chip bag,
incurring a high RMSE. These visualizations are intended to better contextualize the numbers from Table 1.

F RT-Sketch Failure Modes and Limitations634

While RT-Sketch is performant at several manipulation benchmark skills, capable of handling dif-635

ferent levels of sketch detail, robust to visual distractors, and unaffected by ambiguous language, it636

is not without failures and limitations.637

In Fig. 16, we visualize the failure modes of RT-Sketch. One failure mode we see with RT-Sketch is638

occasionally re-trying excessively, as a result of trying to align the scene as closely as possible. For639

instance, in the top row, Rollout Image 3, the scene is already well-aligned, but RT-Sketch keeps640

shifting the chip bag which causes some misalignment in terms of the chip bag orientation. Still,641

this kind of failure is most common with RT-Goal-Image (Table 1), and is not nearly as frequent642

for RT-Sketch. We posit that this could be due to the fact that sketches enable high-level spatial643

reasoning without over-attending to pixel-level details.644

One consequence of spatial reasoning at such a high level, though, is an occasional lack of precision.645

This is noticeable when RT-Sketch orients items incorrectly (second row) or positions them slightly646

off, possibly disturbing other items in the scene (third row). This may be due to the fact that sketches647

are inherently imperfect, which makes it difficult to reason with such high precision.648

Finally, we see that RT-Sketch occasionally manipulates the wrong object (rows 4 and 5). Interest-649

ingly, we see that a fairly frequent pattern of behavior is to manipulate the wrong object (orange in650

row 4) to the right target location (near green can in row 4). This may be due to the fact that the651

sketch-generating GAN has occasionally hallucinated artifacts or geometric details missing from652

the actual objects. Having been trained on some examples like these, RT-Sketch can mistakenly653

perceive the wrong object to be aligned with an object drawn in the sketch. However, the sketch still654

indicates the relative desired spatial positioning of objects in the scene, so in this case RT-Sketch still655

attempts to align the incorrect object with the proper place.656

Finally, the least frequent failure mode is manipulating the wrong object to the wrong target location657

(i.e. opening the wrong drawer handle). This is most frequent when the input is a free-hand sketch,658

and could be mitigated by increasing sketch detail (Table 2).659
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Figure 10: H1 Rollout Visualization: We visualize the performance of RT-1, RT-Sketch, and RT-Goal-
Image on two skills from the RT-1 benchmark (upright and knock). For each skill, we visualize the goal
provided as input to each policy, along with the policy rollout. We see that for both skills, RT-1 obeys the se-
mantic task at hand by successfully placing the can upright or sideways, as intended. Meanwhile, RT-Sketch and
RT-Goal-Image struggle with orienting the can upright, but successfuly knock it sideways. Interestingly, both
RT-Sketch and RT-Goal-Image are able to place the can in the desired location (disregarding can orientation)
whereas RT-1 does not pay attention to where in the scene the can should be placed. This is indicated by the
discrepancy in position of the can in the achieved versus goal images on the right. This trend best explains
the anomalous performance of RT-Sketch and RT-Goal-Image in perceived Likert ratings for the upright task
(Fig. 3), but validates their comparably higher spatial precision compared to RT-1 across all benchmark skills
(Table 1).

G Evaluation and Assessment Interfaces660
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Figure 11: H2 Rollout Visualization: For the open drawer skill, we visualize four separate rollouts of RT-
Sketch operating from different input types. Free-hand sketches are drawn without outlining over the original
image, such that they can contain marked perspective differences, partially obscured objects (drawer handle),
and roughly drawn object outlines. Line sketches are drawn on top of the original image using the sketching
interface we present in Appendix Fig. 17. Color sketches merely add color infills to the previous modality,
and Sobel Edges represent an upper bound in terms of unrealistic sketch detail. We see that RT-Sketch is able
to successfully open the correct drawer for any sketch input except the free-hand sketch, without a noticeable
performance gain or drop. For the free-hand sketch, RT-Sketch still recognizes the need for opening a drawer,
but the differences in sketch perspective and scale can occasionally cause the policy to attend to the wrong
drawer, as depicted.
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Figure 12: H3 Rollout Visualization: We visualize qualitative rollouts for RT-Sketch and RT-Goal-Image for
3 separate trials of the move near skill subject to distractor objects. In Column 2, we highlight the relevant
non-distractor objects that the policy must manipulate in order to achieve the given goal. In Trial 1, we see
that RT-Sketch successfuly attends to the relevant objects and moves the blue chip bag near the coke can.
Meanwhile, RT-Goal-Image is confused about which blue object to manipulate, and picks up the blue pepsi
can instead of the blue chip bag (A). In Trial 2, RT-Sketch successfully moves an apple near the fruit on the
left. A benefit of sketches is their ability to capture instance multimodality, as any of the fruits highlighted in
Column 2 are valid options to move, whereas this does not hold for an overspecified goal image. RT-Goal-
Image erroneously picks up the green chip bag (B) instead of a fruit. Finally, Trial 3 shows a failure for both
policies. While RT-Sketch successfully infers that the green can must be moved near the red one, it accidentally
knocks over the red can (C) in the process. Meanwhile, RT-Goal-Image prematurely drops the green can and
instead tries to pick the green chip bag (D).
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Figure 13: H4 Tiers of Difficulty: To test H4, we consider language instructions that are either ambiguous
due the presence of multiple similar object instances (T1), are somewhat out-of-distribution for RT-1 (T2), or
are far out-of-distribution and difficult to specify concretely without lengthier descriptions (T3). Each image
represents the ground truth goal image paired with the task description.
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Figure 14: H4 Rollout Visualization (T1 as visualized in Fig. 13): One source of ambiguity in language
descriptions is mentioning an object for which there are multiple instances present. For example, we can easily
illustrate three different desired placements of an orange in the drawer via a sketch, but an ambiguous instruction
cannot easily specify which orange is relevant to pick and place. In all rollouts, RT-Sketch successfully places
the correct orange in the drawer, while RT-1 either picks up the wrong object (A), fails to move to the place
location (B), or knocks off one of the oranges (C). Although in this case, the correct orange to manipulate
could easily be specified with a spatial relation like pick up the h left/middle/right i orange, we show below in
Appendix Fig. 15 that this type of language is still out of the realm of RT-1’s semantic familiarity.
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Figure 15: H4 Rollout Visualization (T2-3 as visualized in Fig. 13): For T2, we consider language with
spatial cues that intuitively should help the policy disambiguate in scenarios like the oranges in Fig. 14. How-
ever, we find that RT-1 is not trained to handle such spatial references, and this kind of language causes a
large distribution shift leading to unwanted behavior. Thus, for the top rollout of trying to move the chip bag
to the left where there is an existing pile, RT-Sketch completes the skill without issues, but RT-1 attempts to
open the drawer instead of even attempting to rearrange anything on the countertop (A). For T3, we consider
language goals that are even more abstract in interpretation, without explicit objects mentioned or spatial cues.
Here, sketches are advantageous in their ability to succinctly communicate goals (i.e. visual representation of
a rainbow), whereas the corresponding language task string is far too underspecified and OOD for the policy to
handle (B).
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Figure 16: RT-Sketch Failure Modes
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Figure 17: Sketching UI: We design a custom sketching interface for manually collecting paired robot images
and sketches with which to train T , and for sketching goals for evaluation. The interface visualizes the current
robot observation, and provides the ability to draw on a digital screen with a stylus. The above visualization
shows the color-sketching modality, which is a traced representation with color shading. The interface supports
different colors and erasure, along with either tracing over the image (line-sketching) or drawing free-form over
a blank canvas (free-hand sketches). We note that intuitively, drawing on top of the image is not an unreasonable
assumption to make, since current agent observations are typically readily available compared to a goal image,
for instance. Additionally, the overlay is intended to make the sketching interface easy for the user to provide,
without having to eyeball edges for the drawers or handles blindly. This provides helpful guides for sketching
and is an easy way to obtain sketches that more closely align with current observations for free.
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Figure 18: Assessment UI: For all skills and methods, we ask labelers to assess semantic and spatial alignment
of the recorded rollout relative to the ground truth semantic instruction and visual goal. We show the interface
above, where labelers are randomly assigned to skills and methods (anonymized). The results of these surveys
are reported in Fig. 3.
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