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The appendix is organized as follows:

• Appendix A introduces the details of datasets and experimental settings for each task.

• Appendix B provides the theoretical proofs for the low-pass filter used in MDSF.

• Appendix C provides analyses for MCSF.

• Appendix D compares our method with other algorithms from a statistical perspective.

• Appendix E shows additional results for desnowing and defocus deblurring.

• Appendix F exhibits additional visual comparisons for five image restoration tasks.

A DATASETS AND EXPERIMENTAL DETAILS

We summarize the datasets in Tab. 1. We detail individual datasets and training settings as follows:

Image Motion Deblurring. Consistent with recent methods (Wang et al., 2022b; Zamir et al., 2021),
we train SFNet using the GoPro dataset (Nah et al., 2017), which consists of 2103 blurry/sharp im-
age pairs for training and 1111 pairs for evaluation. To validate the generalization capacity of our
method, we directly apply the GoPro-trained model to HIDE dataset (Shen et al., 2020), which
contains 2025 image pairs for evaluation. The images in GoPro and HIDE are both generated syn-
thetically. To test the performance of our method on real-world images, we further evaluate on
the newly proposed RSBlur (Rim et al., 2022). It has 8878 and 3360 image pairs for training and
evaluation. On GoPro and RSBlur, we train out network for 3000 and 710 epochs, respectively.

Image Defocus Deblurring. We utilize the DPDD dataset (Abuolaim & Brown, 2020) to verify the
effectiveness of our method following (Lee et al., 2021; Ruan et al., 2022). This dataset consists of
images in 500 indoor/outdoor scenes, each with four images, labeled as right, left, center view and
the all-in-focus ground truth. DPDD is split into training, validation and testing sets with 350, 74 and
76 scenes. For this task, there are two training patterns. One is to train using the center view image
and corresponding ground truth, called single-image defocus deblurring task. The other one, dual-
pixel defocus deblurring task, takes images from both left and right views as training samples. It is
challenging to obtain all-in-focus and defocused image pairs with accurate correspondence in two
shots (Ruan et al., 2022). To alleviate this issue, LFDOF is proposed by using refocusing techniques
and light field synthetic aperture to get a large number of image pairs (Ruan et al., 2021).

For single-image defocus deblurring, we train SFNet following DRBNet (Ruan et al., 2022). Re-
garding the dual-pixel setting, SFNet is trained on DPDD for 200 epochs. Due to dual-pixel input
images, we alter the convolution layers related to the input from 3-channel to 6-channel and use
convolution to adjust the channel dimension for skip connections following (Zamir et al., 2022).

Image Deraining. Following (Jiang et al., 2020; Tu et al., 2022), we leverage a composite train-
ing dataset containing 13712 image pairs collected from various datasets. SFNet is evaluated on
Rain100H (Yang et al., 2017), Rain100L (Yang et al., 2017), Test100 (Zhang et al., 2019a), Test1200
(Zhang & Patel, 2018a) and Test2800 (Fu et al., 2017b). The network is trained for 300 epochs.
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Table 1: Details of the datasets for image restoration tasks.
Task Dataset Train Sample Test Sample Testset Rename

Motion GoPro (Nah et al., 2017) 2103 1111
Deblurring HIDE (Shen et al., 2020) 0 2025

RSBlur (Rim et al., 2022) 8878 3360

Defocus DPDD (Abuolaim & Brown, 2020) 350 76
Deblurring LFDOF (Ruan et al., 2021) 11261 725

Rain14000 (Fu et al., 2017b) 11200 2800 Test2800
Rain1800 (Yang et al., 2017) 1800 0
Rain800 (Zhang et al., 2019a) 700 100 Test100

Deraining Rain100H (Yang et al., 2017) 0 100 Rain100H
Rain100L (Yang et al., 2017) 0 100 Rain100L

Rain1200 (Zhang & Patel, 2018a) 0 1200 Test1200
Rain12 (Li et al., 2016) 12 0

RESIDE/ITS (Li et al., 2018a) 13990 500 SOTS-Indoor
Dehazing RESIDE/OTS (Li et al., 2018a) 313950 500 SOTS-Outdoor

Dense-Haze (Ancuti et al., 2019) 45 5

CSD (Chen et al., 2021b) 8000 2000 CSD (2000)
Desnowing SRRS (Chen et al., 2020) 15005 15005 SRRS (2000)

Snow100K (Liu et al., 2018) 50000 50000 Snow100K (2000)

Image Dehazing. We train our model on the commonly used dataset RESIDE (Li et al., 2018a) for
dehazing. It consists of two training subsets, indoor training set (ITS) and outdoor training set (OTS),
and a synthetic objective testing set (SOTS). We train our models on ITS and OTS separately, and
test on the corresponding testsets. SFNet is trained for 300 epochs on ITS and 30 for OTS, and we
change the batch size from 4 to 8 for OTS. Moreover, we also include the real-world Dense-Haze
(Ancuti et al., 2019) as the experimental dataset, which contains 45 training images, 5 validation
images and 5 testing images. Images are obtained in the homogeneous and dense hazy scenes. The
network is trained for 2000 epochs with the patch size of 512× 512.

Image Desnowing. We use CSD (Chen et al., 2021b), SRRS (Chen et al., 2020) and Snow100K
(Liu et al., 2018) datasets for desnowing. The dataset settings follow previous works (Chen et al.,
2020; 2022c), where we randomly sample 2500 image pairs from the training set for training, and
2000 images from testing set for evaluation. The model is trained for 800 epochs on each dataset.

B PROOF FOR LOW-PASS FILTER

Our proof is established on the knowledge that if we iteratively apply a low-pass filter to an image
infinitely, only the extreme low frequency can be remained. Here we consider the low frequency as
the lowest frequency. We first provide the formal computational process of low- and high-frequency
signals, and then prove that the resulting filter of Eq. 1 in Sec. 3.2 is a low-pass filter.

Since the computational method of the lowest frequency component in a spectrum is dimension-
agnostic, without loss of generality, we consider 1D Fourier transform for simplicity. For an input
signal X ∈ Rn, the matrix for discrete Fourier transform is given by,

Fn =



1 1 1 1 · · · 1
1 ω1 ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

1 ω3 ω6 ω9 · · · ω3(n−1)

...
...

...
...

. . .
...

1 ωn−1 ω2(n−1) ω3(n−1) · · · ω(n−1)(n−1)


(1)

where n is the length of the input signal, and ω = e−j 2π
n . Accordingly, the matrix for inverse discrete

Fourier transform can be described as F−1
n = 1

nFn. Then we can apply Fn and F−1
n successively
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to obtain the low-frequency operator by,

L[X] = F−1
n diag(1, 0, 0, ...0)FnX

=
1

n
MX

(2)

in which, M is the matrix with all values as 1, diag(·) denotes the diagonal matrix. Then the high-
frequency operator can be described as,

H[X] = F−1
n diag(0, 1, 1, ...1)FnX

= F−1
n (E − diag(1, 0, 0, ...0))FnX

= (E − 1

n
M)X

(3)

where E is the unit matrix.

Before providing the proof of the filter, we first model the filtering operation. Recall that in MDSF
we utilize the convolution operation to apply the filter to the input feature map within a region of
size k × k, where the value of the central pixel is the sum of all re-weighted pixel values in the
region. Then this operation is used iteratively across the spatial dimension in a sliding manner with
a specific stride. Given a region of size k×k, some pixels contributing to the edge values are outside
this region. To make the problem feasible, we only consider a scope with the size of k×k, and each
pixel is computed restrictedly by the k2 pixels in this scope with its individual filter. Next, based
on this simplification and above operators, we prove the validity of the low-pass filter (Wang et al.,
2022a).

Theorem 1. Given W , D ∈ Rn×n, Wi = softmax(Di), i = 0, 1, ..., n− 1. Then W is a low-pass
filter. For all m ∈ Rn,

lim
t→∞

∥H[W tm]∥2
∥W tm∥2

= 0.

In our case, n is equal to k2.

Proof. Note that after Softmax operation, W is a positive matrix, and each line adds up to 1. Thus
We = e implies that it has an eigenvalue of 1, and the corresponding eigenvector is e ∈ Rn with all
values being 1. Let scalars λ1, λ2,..., λs denote the eigenvalues of W , in which λ1 = 1. According
to Perron-Frobenius Theorem (Meyer, 2000), λ1 is the spectral radius of the matrix W , and absolute
values of other eigenvalues are less than λ1.

To compute the high-order equation of W , the Jordan canonical form of W is given as,

W = PJP−1 = [a1 a2 ... an]


λ1

J2(λ2)
. . .

Js(λs)



bT1
bT2
...
bTn

 (4)

where P is the transition matrix, a, b ∈ Rn, a1 = e, J(λ) is the Jordan block. Then W tm can be
rewritten as,

W tm = PJ tP−1m = P


λt
1

J2(λ2)
t

. . .
Js(λs)

t

P−1m (5)

For a Jordan block Ji(λi) ∈ Rzi×zi , i ∈ [2, s], Ji(λi)
t can be computed by,

Ji(λi) =



λt
i (λt

i)
′ (λt

i)
′′

2! . . .
(λt

i)
(zi−1)

(zi−1)!

. . . . . . . . .
...

. . . . . . (λt
i)

′′

2!
. . . (λt

i)
′

λt
i


zi

(6)
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For arbitrary 1 ≤ q ≤ zi and |λi| < 1, the limit of the values except the main diagonal is,

lim
t→∞

t(t− 1)...(t− q + 1)

q!
λt−q
i = lim

t→∞

t(t− 1)...(t− q + 1)

q!λq
i (

1
λi
)t

= 0 (7)

The above limit stands due to the the larger growing rate of exponential function (denominator) than
that of power function (numerator). It is easy to obtain that the limit of the main diagonal is equal
to zero by lim

t→∞
λt
i = 0. As a consequence, for Jordan blocks Ji(λi)

t, i ∈ [2, s], the limits of their

elements are zeros. Therefore, based on Eq. 5, the limit of W tm is,
lim
t→∞

W tm = Pdiag(λt
1, 0, ..., 0)P

−1m

= λt
1a1b

T
1 m

= ebT1 m

(8)

The limit in the theorem 1 can be computed as,

lim
t→∞

∥H[W tm]∥2
∥W tm∥2

= lim
t→∞

∥(E − 1
nM)W tm∥2

∥W tm∥2

= lim
t→∞

∥(E − 1
nM)ebT1 m∥2

∥W tm∥2

= lim
t→∞

∥EebT1 m− 1
nMebT1 m∥2

∥W tm∥2

= lim
t→∞

∥EebT1 m− ebT1 m∥2
∥W tm∥2

= 0

(9)

C ANALYSIS FOR MCSF

Figure 1: The probability density curve of the dif-
ference between blurry/sharp image pairs in the
GoPro (Nah et al., 2017) dataset.

In this part, we analyze the validity of our
MCSF, where we use average pooling to de-
compose the feature into different frequency
parts. It is known that degraded/sharp image
pairs have similar low-frequency components
(Liu et al., 2020), while high-frequency sig-
nals are more informative for high-quality im-
age. A natural question is that which thresh-
old in the frequency domain should we select
for frequency separation. We consider that
the qualified threshold should satisfy the re-
quirement: after being split with this threshold,
there should a big difference between the im-
age pair’s high-frequency discrepancies and low-frequency discrepancies. In our case, we choose
the lowest frequency and its complementary counterpart as the low and high frequency, respectively.
Next, we provide the analysis to demonstrate that our choice meets the above requirement in the con-
text of image restoration tasks, instead of obtaining this threshold via blindly testing in the frequency
domain. Without loss of generality, we carry out analyses based on motion deblurring task.

As we all know, the lowest frequency component of Fourier transform is equal to the mean value in
the spatial domain. We firstly compare the low-frequency differences between sharp/blurry image
pairs by computing the mean difference in Fig. 1 (Right). From the figure we can see that, the
mean difference between image pair is very small. Next, we explore the discrepancies between high
frequency, the opposite of lowest frequency. Based on the low-frequency feature, given any input
xh,w, where h, w are the spatial coordinates and we omit the channel dimension for simplicity, we
can generate the relative high-frequency map via xH = x − f0, in which f0 is the mean value or
lowest frequency component in the frequency domain. Since bigger variance value means more
high-frequency signals, we then resort to the tool of variance to demonstrate that the so-called high-
frequency map of the sharp image indeed has more high-frequency signals than that of the blurry
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（a） （b）

Figure 2: The probability density curves of the differences between degraded/sharp image pairs in
the (a) RESIDE-Outdoor (Li et al., 2018a), (b) CSD (Chen et al., 2021b) datasets.

(a) (b)

Figure 3: The differences between ground truth and input/results of several methods. (a) Compar-
isons between HDCW-Net (Chen et al., 2021a) and SFNet on CSD (Chen et al., 2021b). (b) Com-
parisons between DRBNet (Ruan et al., 2022) and SFNet on DPDD (Abuolaim & Brown, 2020).

image. The variance differences between image pairs are given in Fig. 1 (Left) and we can obtain
the variance relationships for the most image pairs,∑H−1

h=0

∑W−1
w=0 (xSH

h,w)
2

HW
>

∑H−1
h=0

∑W−1
w=0 (xBH

h,w)
2

HW
(10)

where xSH
h,w and xBH

h,w indicate so-called high-frequency maps of the sharp and blurry images, re-
spectively. As xSH

h,w and xBH
h,w are computed by subtracting f0, and thus they become zero-centered.

Eq. 10 actually shows the variance relationship between the high-frequency feature of image pair.

Based on Eq. 10 and the amplitude differences between x-axes of mean and variance (Fig. 1), we
can draw two conclusions: (1) The discrepancies between high-frequency maps of image pairs are
larger than that of low-frequency maps. (2) The so-called high-frequency part of sharp image really
has more high-frequency signals than that of blurry image, obtained by the property of variance.

Till now, we have shown that our choice meets the presupposed requirement to serve the threshold
for low- and high-frequency separation in the context of motion deblurring. In Fig. 2, we provide
statistic differences between image pairs for more tasks1. We can see that there is a large gap
between the data distribution of variance (high-frequency) and mean (low-frequency) difference in
terms of sign, scope and amplitude, demonstrating that our MCSF is reasonable.

D STATISTIC ANALYSIS OF PRODUCED IMAGES

In this section, we verify the effectiveness of our method by comparing the data distributions of
degraded images and outcomes of several methods. The variance and mean differences are computed
between degraded/output images and ground-truth images. For desnowing (Fig. 3a), our method
obtains the resulting images closer to the ground truth of CSD (Chen et al., 2021b) testset in terms
of variance and mean than wavelet transform based method HDCW-Net (Chen et al., 2021a). In Fig.
3b, we compare SFNet with DRBNet (Ruan et al., 2022) on the single-image defocus deblurring
task. DRBNet narrows down the distribution difference of variance compared to the degraded input,
while its center line shifts to the right. By contrast, our result is closer to the ground truth.

1We randomly select 2000 images from the training set to produce the results.
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Table 2: Desnowing results on SRRS (Chen et al., 2020) and Snow100K (Liu et al., 2018) datasets.
SRRS (2000) Snow100K (2000)

Method PSNR↑ SSIM↑ PSNR↑ SSIM↑
DesnowNet (Liu et al., 2018) 20.38 0.84 30.50 0.94
CycleGAN (Engin et al., 2018) 20.21 0.74 26.81 0.89
All in One (Li et al., 2020) 24.98 0.88 26.07 0.88
JSTASR (Chen et al., 2020) 25.82 0.89 23.12 0.86
HDCW-Net (Chen et al., 2021a) 27.78 0.92 31.54 0.95
TransWeather (Valanarasu et al., 2022) 28.29 0.92 31.82 0.95
MSP-Former (Chen et al., 2022c) 30.76 0.95 33.43 0.96
NAFNet (Chen et al., 2022a) 29.72 0.94 32.41 0.95

SFNet 32.40 0.98 33.79 0.95

Table 3: Dual-pixel defocus deblurring results on DPDD (Abuolaim & Brown, 2020).
Method PSNR↑ SSIM↑ MAE↓ LPIPS↓
DPDNet (Abuolaim & Brown, 2020) 25.13 0.786 0.041 0.223
RDPD (Abuolaim et al., 2021) 25.39 0.772 0.040 0.255
Uformer (Wang et al., 2022b) 25.65 0.795 0.039 0.243
IFAN (Lee et al., 2021) 25.99 0.804 0.037 0.207
DRBNet (Ruan et al., 2022) 26.33 0.811 - 0.154
SFNet 26.34 0.817 0.037 0.207

E MORE EXPERIMENTS

In Tab. 2, we provide more desnowing results on two datasets, SRRS (Chen et al., 2020) and
Snow100K (Liu et al., 2018). Our method shows superiority over other algorithms. Specifically,
compared to the recent algorithm MSP-Former (Chen et al., 2022c), SFNet achieves a significant
gain of 1.64 dB PSNR on SRRS. Furthermore, we provide experimental results on DPDD (Abuo-
laim & Brown, 2020) for dual-pixel defocus deblurring. As reported in Tab. 3, our method out-
performs DRBNet (Ruan et al., 2022), obtaining 0.01 dB higher PSNR, although DRBNet needs
additional central view images for training.

F ADDITIONAL VISUAL RESULTS

We provide images recovered by various methods for different image restoration tasks, organised as,

• Image motion deblurring: Fig. 4, 5, 6.
• Image deraining: Fig. 7, 8, 9, 10.
• Image defocus deblurring: Fig. 11.
• Image dehazing: Fig. 12.
• Image desnowing: Fig. 13.
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Figure 4: Image motion deblurring comparisons on GoPro (Nah et al., 2017) among DBGAN
(Zhang et al., 2020), DMPHN (Zhang et al., 2019b), MIMO-UNet++ (Cho et al., 2021), MPRNet
(Zamir et al., 2021), Restormer (Zamir et al., 2022), Stripformer (Tsai et al., 2022), and SFNet.
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Figure 5: Image motion deblurring comparisons on the RSBlur dataset (Rim et al., 2022)among
MPRNet (Zamir et al., 2021), MIMO-UNet (Cho et al., 2021), MIMO-UNet+ (Cho et al., 2021),
Restormer (Zamir et al., 2022), Uformer-B (Wang et al., 2022b), and SFNet.
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Figure 6: Image motion deblurring comparisons on the HIDE dataset (Shen et al., 2020) among
DMPHN (Zhang et al., 2019b), RADN (Purohit & Rajagopalan, 2020), Suin et al. (Suin et al.,
2020), MPRNet (Zamir et al., 2021), Restormer (Zamir et al., 2022), and SFNet.
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Figure 7: Image deraining comparisons on the Rain100H dataset (Yang et al., 2017) among De-
rainNet (Fu et al., 2017a), PreNet (Ren et al., 2019), RESCAN (Li et al., 2018b), SEMI (Wei et al.,
2019), UMRL (Yasarla & Patel, 2019), MIXIM-2S (Tu et al., 2022), and SFNet.
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Figure 8: Image deraining comparisons on the Rain100L dataset (Yang et al., 2017) among PreNet
(Ren et al., 2019), RESCAN (Li et al., 2018b), SEMI (Wei et al., 2019), UMRL (Yasarla & Patel,
2019), MPRNet (Zamir et al., 2021), MIXIM-2S (Tu et al., 2022), and SFNet.
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Figure 9: Image deraining comparisons on the Test100 dataset (Zhang et al., 2019a) among PreNet
(Ren et al., 2019), RESCAN (Li et al., 2018b), SEMI (Wei et al., 2019), UMRL (Yasarla & Patel,
2019), DerainNet (Fu et al., 2017a), MPRNet (Zamir et al., 2021), and SFNet.
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Figure 10: Image deraining comparisons on the Test1200 dataset (Zhang & Patel, 2018b) among
PreNet (Ren et al., 2019), RESCAN (Li et al., 2018b), SEMI (Wei et al., 2019), UMRL (Yasarla &
Patel, 2019), MPRNet (Zamir et al., 2021), MIXIM-2S (Tu et al., 2022), and SFNet.
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Figure 11: Image defocus deblurring comparisons on DPDD (Abuolaim & Brown, 2020) among
KPAC (Son et al., 2021), DRBNet (Ruan et al., 2022), Restormer(Zamir et al., 2022), and SFNet.
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Figure 12: Image dehazing comparisons on the SOTS-Outdoor dataset (Li et al., 2018a) among
GridDehazeNet (Liu et al., 2019), FFA-Net (Qin et al., 2020), MAXIM-2S (Tu et al., 2022), De-
Hamer (Song et al., 2022), and SFNet.

18



Published as a conference paper at ICLR 2023

PSNR

Reference

16.83 dB

Input

18.10 dB

JSTASR

18.29 dB

DesnowNet

28.76 dB

HDCW-Net

38.04 dB

SFNet

PSNR

Reference

14.05 dB

Input

25.35 dB

JSTASR

14.80 dB

DesnowNet

28.72 dB

HDCW-Net

40.44 dB

SFNet

PSNR

Reference

13.96 dB

Input

15.76 dB

JSTASR

28.31 dB

HDCW-Net

37.16 dB

SnowFormer

37.77 dB

SFNet

Figure 13: Image desnowing comparisons on the CSD dataset (Chen et al., 2021b) among JSTASR
(Chen et al., 2020), HDCW-Net (Chen et al., 2021a), DesnowNet (Liu et al., 2018), SnowFormer
(Chen et al., 2022b), and SFNet.
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