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Abstract

Off-policy evaluation (OPE) aims to estimate the performance of hypothetical
policies using data generated by a different policy. Because of its huge potential
impact in practice, there has been growing research interest in this field. There is,
however, no real-world public dataset that enables the evaluation of OPE, making
its experimental studies unrealistic and irreproducible. With the goal of enabling
realistic and reproducible OPE research, we present Open Bandit Dataset, a public
logged bandit dataset collected on a large-scale fashion e-commerce platform,
ZOZOTOWN. Our dataset is unique in that it contains a set of multiple logged
bandit datasets collected by running different policies on the same platform. This
enables experimental comparisons of different OPE estimators for the first time.
We also develop Python software called Open Bandit Pipeline to streamline and
standardize the implementation of batch bandit algorithms and OPE. Our open
data and software will contribute to fair and transparent OPE research and help the
community identify fruitful research directions. We provide extensive benchmark
experiments of existing OPE estimators using our dataset and software. The results
open up essential challenges and new avenues for future OPE research.

1 Introduction

Interactive bandit systems such as personalized medicine and recommendation platforms produce
log data valuable for evaluating and redesigning the system. For example, the logs of a news
recommendation system records which news article was presented and whether the user read it,
giving the system designer a chance to make its recommendations more relevant. Exploiting log
bandit data is, however, more difficult than conventional supervised machine learning, as the result is
only observed for the action chosen by the system, but not for all the other actions that the system
could have taken. The logs are also biased in that they overrepresent the actions favored by the
system. A potential solution to this problem is an A/B test, which compares the performance of
counterfactual systems in an online environment. However, A/B testing counterfactual systems is
often difficult because deploying a new policy is time- and money-consuming and entails the risk
of failure. This leads us to the problem of off-policy evaluation (OPE), which aims to estimate
the performance of a counterfactual (or evaluation) policy using only log data collected by a past
(or behavior) policy. OPE allows us to evaluate the performance of candidate policies without
implementing A/B tests and contributes to safe policy improvement. Its applications range from
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contextual bandits [4, 25, 26, 32, 37, 38, 40, 43, 44, 45, 51] and reinforcement learning in the web
industry [10, 17, 20, 28, 47, 48, 52] to other social domains such as healthcare [31] and education [29].

Issues with current experimental procedures. Although the research community has produced
theoretical breakthroughs over the past decade, the experimental evaluation of OPE remains primitive.
Specifically, it lacks a public benchmark dataset for comparing the performance of different estimators.
Researchers often validate their estimators using synthetic simulation environments [20, 28, 50, 52].
A version of the synthetic approach is to modify multiclass classification datasets and treat supervised
machine learning methods as bandit policies to evaluate the estimation accuracy of OPE estimators [8,
10, 18, 49, 51]. An obvious problem with these studies is that they are unrealistic because there is
no guarantee that their simulation environment is similar to real-world settings. To solve this issue,
some previous studies use proprietary real-world datasets [12, 14, 32, 33]. Because these datasets are
not public, however, the results are irreproducible, and it remains challenging to compare existing
estimators with new ideas in a fair manner. The lack of a public real-world benchmark makes it hard
to identify critical research challenges and the bottleneck of the literature. This contrasts with other
domains of machine learning, where large-scale open datasets, such as the ImageNet dataset [7], have
been pivotal in driving objective progress [9, 13, 15, 16].

Contributions. Our goal is to implement and evaluate OPE in realistic and reproducible ways.
To this end, we release Open Bandit Dataset, a set of logged bandit datasets collected on the
ZOZOTOWN platform.2 ZOZOTOWN is the largest fashion e-commerce platform in Japan. When
the platform produced the data, it used Bernoulli Thompson Sampling (Bernoulli TS) and uniform
random (Random) policies to recommend fashion items to users. The dataset thus includes a set of
two logged bandit datasets collected during an A/B test of these bandit policies. Having multiple (at
least two) log datasets is essential because it enables the evaluation of the estimation accuracy of
OPE estimators as we describe in detail in Section 5.

In addition to the dataset, we implement Open Bandit Pipeline, an open-source Python software
including a series of modules for implementing dataset preprocessing, policy learning methods, and
OPE estimators. Our software provides a complete, standardized experimental procedure for OPE
research, ensuring that performance comparisons are fair, transparent, and reproducible. It also
enables fast and accurate OPE implementation through a single unified interface, simplifying the
practical use of OPE.

Using our dataset and software, we perform comprehensive benchmark experiments on existing
estimators. We implement this OPE experiment by using the log data of one of the policies (e.g.,
Bernoulli TS) to estimate the policy value of the other policy (e.g., Random) with each OPE estimator.
We then assess the accuracy of the estimator by comparing its estimation with the policy value
obtained from the data in an on-policy manner. Through the experiments, we showcase the utility of
Open Bandit Dataset and Pipeline by using them to analyze the challenges that we face when we try
applying OPE to real-world scenarios.

Our key contributions are summarized as follows:

• Public Dataset: We build and release Open Bandit Dataset, a set of two logged bandit data
to enable realistic and reproducible research on OPE.

• Software Implementation: We implement Open Bandit Pipeline, an open-source Python
software that helps practitioners utilize OPE to evaluate their bandit systems. It also helps
researchers compare different OPE estimators in a standardized manner.

• Benchmark Experiment: We perform comprehensive benchmark experiments on existing
OPE estimators and indicate critical challenges in future research.

2 Off-Policy Evaluation

2.1 Setup

We consider a general contextual bandit setting. Let r ∈ [0, rmax] denote a reward variable (e.g.,
whether a fashion item as an action results in a click). We let x ∈ X be a context vector (e.g., the

2https://corp.zozo.com/en/service/
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user’s demographic profile) that the decision maker observes when picking an action. We also let
a ∈ A be a discrete action such as a fashion item in a recommender system. Rewards and contexts
are sampled from unknown distributions p(r | x, a) and p(x), respectively. We call a function
π : X → ∆(A) a policy. It maps each context x ∈ X into a distribution over actions, where π(a | x)
is the probability of taking action a given context x. We describe some examples of such decision
making policies in Appendix A.

Let D := {(xi, ai, ri)}ni=1 be logged bandit dataset with n observations. ai is a discrete variable
indicating which action in A is chosen for i. ri and xi denote the reward and the context observed for
each data, respectively. We assume that the logged dataset is generated by behavior policy πb as

{(xi, ai, ri)}ni=1 ∼
n∏
i=1

p(xi)πb(ai | xi)p(ri | xi, ai),

where each triplet is sampled independently from the product distribution. We sometimes use
En[f ] := n−1

∑
(xi,ai,ri)∈D f(xi, ai, ri) to denote the empirical expectation over n observations

in D. We also use q(x, a) := Er∼p(r|x,a)[r | x, a] and g(x, π) := Ea∼π(a|x)[g(x, a) | x] to define
estimators.

2.2 Estimation Target and Estimators

We are interested in using logged bandit data to estimate the following policy value of any given
evaluation policy πe, which might be different from πb:

V (πe) := E(x,a,r)∼p(x)πe(a|x)p(r|x,a)[r].

An OPE estimator V̂ estimates V (πe) using only D as V (πe) ≈ V̂ (πe;D). We define three standard
estimators in the following.3

Direct Method (DM). DM [2] first estimates q using a supervised machine learning model, such
as random forest or ridge regression. It then plugs it in to estimate the policy value as

V̂DM(πe;D, q̂) := En[q̂(xi, πe)],

where q̂(x, a) is a reward estimator. If q̂(x, a) is accurate, DM also estimates the policy value
accurately. If q̂(x, a) is inaccurate, however, the final estimator is no longer consistent. The model
misspecification issue is problematic because the extent of misspecification cannot be easily quantified
from data [10, 50].

Inverse Probability Weighting (IPW). To alleviate the issue with DM, IPW is often used [35, 40].
This estimator weighs the observed rewards by the importance weights as

V̂IPW(πe;D) := En[w(xi, ai)ri],

where w(x, a) := πe(a | x)/πb(a | x). When the behavior policy is known, IPW is unbiased and
consistent. However, it can have a large variance, especially when the evaluation policy deviates
significantly from the behavior policy.

Doubly Robust (DR). DR [8] combines DM and IPW as follows.

V̂DR(πe;D, q̂) := En[q̂(xi, πe) + w(xi, ai)(ri − q̂(xi, ai))].
DR mimics IPW to use a weighted version of rewards, but it also uses q̂ as a control variate to
decrease the variance. It preserves the consistency of IPW if either the importance weight or the
reward estimator is consistent (a property called double robustness). Moreover, DR is semiparametric
efficient when the reward estimator is correctly specified [32]. However, when it is misspecified, this
estimator can have a larger asymptotic mean-squared-error than that of IPW [20].

3 Open-Source Dataset and Software

Motivated by the paucity of real-world datasets and implementations enabling the evaluation of OPE,
we release the following open-source dataset and software.

3We define some other advanced estimators in Appendix B.
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Figure 1: Fashion items as actions displayed in ZOZOTOWN recommendation interface.

Table 1: Statistics of Open Bandit Dataset
Campaigns Data Collection Policies #Data #Items #Dim CTR (V (π)) ±95% CI Relative-CTR

ALL
Random 1,374,327

80 84
0.35% ±0.010 1.00

Bernoulli TS 12,168,084 0.50% ±0.004 1.43

Men’s
Random 452,949

34 38
0.51% ±0.021 1.48

Bernoulli TS 4,077,727 0.67% ±0.008 1.94

Women’s
Random 864,585

46 50
0.48% ±0.014 1.39

Bernoulli TS 7,765,497 0.64% ±0.056 1.84

Note: Bernoulli TS stands for Bernoulli Thompson Sampling. #Data is the total number of user impressions
observed during the 7-day experiment. #Items is the total number of items having a non-zero probability of
being recommended by each policy. #Dim is the number of dimensions of the raw context vectors. CTR is the
percentage of a click being observed in the log data, and this is the performance of the data collection policies in
each campaign. 95% confidence interval (CI) of CTR is calculated based on the normal approximation of the
Bernoulli sampling. Relative-CTR is CTR relative to that of the Random policy for the “ALL” campaign.

Open Bandit Dataset. Our open-source dataset is a set of two logged bandit datasets provided by
ZOZO, Inc., the largest fashion e-commerce company in Japan. The company uses multi-armed
bandit algorithms to recommend fashion items to users in their fashion e-commerce platform called
ZOZOTOWN. We present examples of displayed fashion items in Figure 1. We collected the data in
a 7-day experiment in late November 2019 on three “campaigns,” corresponding to “ALL”, “Men’s”,
and “Women’s” items, respectively. Each campaign randomly uses either the Random policy or the
Bernoulli TS policy for each user impression. These policies select three of the candidate fashion
items for each user. Figure 1 shows that there are three positions in our dataset. We assume that the
reward (click indicator) depends only on the item and its position, which is a general assumption
on the click generative process used in the web industry [27]. Under this assumption, we can apply
the OPE setup in Section 2 to our dataset. We provide some statistics of the dataset in Table 1. The
dataset is large and contains many millions of recommendation instances. Each row of the data has
feature vectors such as age, gender, and past click history of the users. These feature vectors are
hashed, thus the dataset does not contain any personally identifiable information. Moreover, the
dataset includes some item-related features such as price, fashion brand, and item categories. It also
includes the probability that item a is displayed at each position by the data collection policies. This
probability is used to calculate the importance weights.4 We share the full version of our dataset
at https://research.zozo.com/data.html.5 Small-sized example data are also available at
https://github.com/st-tech/zr-obp/tree/master/obd.

To our knowledge, our open-source dataset is the first to include logged bandit datasets collected
by running multiple (at least two) different policies and the exact policy implementations used in
real production, enabling realistic and reproducible evaluation of OPE for the first time. Indeed,
Open Bandit Dataset is already actively used by multiple research papers to benchmark new bandit
algorithms and OPE estimators [6, 22, 23, 39, 46].

4We computed the action choice probabilities by Monte Carlo simulations based on the policy parameters
(e.g., parameters of the beta distribution used by Bernoulli TS) used during the data collection process.

5The dataset is licensed under CC BY 4.0.
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Open Bandit Pipeline. To facilitate the use of OPE in practice and standardize its experimental
procedures, we implement a Python software called Open Bandit Pipeline.6 Our software contains
the following main modules:

• The dataset module provides a data loader to preprocess Open Bandit Dataset and tools
to generate synthetic bandit datasets. It also implements functions to handle multiclass
classification datasets as bandit data, which is useful when we conduct OPE experiments in
research papers.

• The policy module implements several online bandit algorithms and off-policy learning
methods such as a neural network-based off-policy learning method. This module also
implements interfaces that allow practitioners to easily evaluate their own policies in their
business using OPE.

• The ope module implements several existing OPE estimators including DM, IPW, DR, and
some advanced ones such as Switch [51], More Robust Doubly Robust (MRDR) [10], and
DR with Optimistic Shrinkage (DRos) [41]. This module also provides generic abstract
interfaces to support custom implementations so that researchers can evaluate their own
estimators easily.

Appendix E describes how the software facilitates the evaluation of OPE and bandit algorithms.
We also prepare plenty of tutorial contents at https://github.com/st-tech/zr-obp/tree/
master/examples/quickstart to help users grasp the usage of the software easily. We also
provide the thorough documentation at https://zr-obp.readthedocs.io/en/latest/.

Every core function of the software is tested and thus are well maintained.7 It currently has five
core contributors.8 The active development and maintenance will continue over a long period.
Users can follow our progress at the following mailing list: https://groups.google.com/g/
open-bandit-project.

We believe that the software allows researchers to focus on building their OPE estimator and to easily
compare it with other methods in a standardized manner. It will also help practitioners implement
cutting-edge estimators in their applications and improve their decision making systems.

4 Related Work

Here, we summarize the existing related work and resources, and clarify the advantages of ours.

Related Datasets. Our dataset is closely related to those of [24] and [25]. Lefortier et al. [24] intro-
duce a large-scale logged bandit data (Criteo Data9) from a leading company in display advertising,
Criteo. The dataset contains context vectors of user impressions, advertisements (ads) as actions,
and click indicators as rewards. It also provides the ex-ante probability of each ad being selected
by the behavior policy. Therefore, this dataset can be used to compare different off-policy learning
methods, which aim to learn a new policy using only logged bandit data. In contrast, Li et al. [25]
introduce a dataset (Yahoo! R6A&B10) collected on a news recommendation interface of the Yahoo!
Today Module. The dataset contains context vectors of user impressions, presented news as actions,
and click indicators as rewards. The dataset was collected by running a uniform random policy on
the news recommendation platform, allowing researchers to evaluate their (online or offline) bandit
algorithms.

However, the existing datasets have several limitations, which we overcome as follows:

• The existing datasets include only a single logged bandit dataset collected by running only a
single policy. Moreover, the previous datasets do not provide the implementation to replicate
the policies used during data collection. As a result, these datasets cannot be used for

6https://github.com/st-tech/zr-obp
7https://github.com/st-tech/zr-obp/tree/master/tests
8https://github.com/st-tech/zr-obp/graphs/contributors
9https://www.cs.cornell.edu/ãdith/Criteo/

10https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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Table 2: Comparison of currently available bandit datasets

Criteo Data [24] Yahoo! R6A&B [25] Open Bandit Dataset (ours)

Domain Display Advertising News Recommendation Fashion E-Commerce
Dataset Size ≈ 103M ≈ 40M ≈ 26M

#Data Collection Policies 1 1 2
Uniform Random Data % " "

Data Collection Policy Code % % "

Evaluation of Bandit Algorithms " " "

Evaluation of OPE % % "

Pipeline Implementation % % "

Note: Dataset Size is the total number of samples included in the whole dataset. #Data Collection Policies is
the number of policies that were used to collect the data. Uniform Random Data indicates whether the dataset
contains a subset of data generated by the uniform random policy. Data Collection Policy Code indicates
whether the code to replicate data collection policies is publicized. Evaluation of Bandit Algorithms indicates
whether it is possible to use the data to evaluate bandit algorithms. Evaluation of OPE indicates whether it is
possible to use the dataset to evaluate OPE estimators. Pipeline Implementation indicates whether a pipeline
tool to handle the dataset is available.

Table 3: Comparison of currently available packages of bandit algorithms and OPE

Vowpal Wabbit [3] contextualbandits [5] RecoGym [36] Open Bandit Pipeline (ours)

Synthetic Data Generator % % " "

Classification Data Handler % % % "

Support for Real-World Data % % % "

Bandit Algorithms " " " "

Basic OPE Estimators " " % "

Advanced OPE Estimators % % % "

Evaluation of OPE % % % "

Note: Synthetic Data Generator indicates whether it is possible to generate synthetic bandit data with the
package. Classification Data Handler indicates whether it is possible to transform multiclass classification
data to bandit data with the package. Support for Real-World Data indicates whether it is possible to handle
real-world bandit data with the package. Bandit Algorithms indicates whether the package includes
implementations of online and offline bandit algorithms. Basic OPE Estimators indicates whether the package
includes implementations of basic OPE estimators such as DM, IPW, and DR described in Section 2. Advanced
OPE Estimators indicates whether the package includes implementations of advanced OPE estimators such as
Switch and More Robust Doubly Robust described in Appendix B. Evaluation of OPE indicates whether it is
possible to evaluate the accuracy of OPE estimators with the package.

the comparison of different OPE estimators, although they can be used to evaluate policy
learning methods.

→ In contrast, we provide the code to replicate the data collection policies in our software,
which allows researchers to rerun the same policies on the log data. Without the code of the
exact algorithms, we could not implement the evaluation of OPE experiments. Therefore,
the code and algorithm release is an essential component of our open-source. Moreover,
our dataset consists of a set of two different logged bandit datasets generated by running
two different policies on the same platform. It enables the comparison of different OPE
estimators, as we show in Section 5.

• The existing datasets do not provide a tool to handle their data. Researchers have to
reimplement the experimental environment by themselves before implementing their own
OPE estimators. This can lead to inconsistent experimental conditions across different
studies, potentially causing reproducibility issues.

→ We implement Open Bandit Pipeline to simplify and standardize the experimental
processing of bandit algorithms and OPE. This tool thus contributes to the reproducible and
transparent use of our dataset.

Table 2 summarizes the key differences between our dataset and the existing ones.
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Related Packages. There are several existing packages related to Open Bandit Pipeline. Vowpal
Wabbit11 is a library for fast machine learning, online learning, contextual bandits, and reinforcement
learning [3]. It handles learning problems with any number of sparse features, achieving great
scaling. The contextualbandits package12 contains implementations of several contextual bandit
algorithms [5]. It aims to provide an easy procedure to compare bandit algorithms to reproduce
research papers that do not provide easily available implementations. There is also RecoGym13, which
focuses on providing simulation bandit environments imitating the e-commerce recommendation
setting [36].

However, the following features differentiate our software from the previous ones:

• The previous packages focus on implementing and comparing online bandit algorithms or
off-policy learning methods. However, they cannot be used to implement several advanced
OPE estimators. They also do not help conduct benchmark experiments of OPE estimators.
→Our software implements a wide variety of OPE estimators, including advanced ones such
as Switch, MRDR, and DRos. In addition, Open Bandit Pipeline provides estimators that
can address continuous actions or combinatorial actions, which cannot be handled by other
packages. It also provides flexible interfaces for implementing new OPE estimators, allowing
researchers to plug in their own estimators and compare them with existing estimators easily.

• The previous packages accept their own interface and data formats. Thus, they are not
user-friendly.
→ Our software follows the prevalent scikit-learn style interface and provides sufficient ex-
ample codes at https://github.com/st-tech/zr-obp/tree/master/examples so
that anyone, including practitioners and students, can follow the usage.

• The previous packages cannot handle real-world bandit datasets.
→ Our software comes with Open Bandit Dataset and includes the dataset module. This
facilitates the evaluation of bandit algorithms and OPE estimators using real-world data.

Table 3 summarizes the key differences between our software and the existing ones.

Related Benchmarks. There are several studies conducting benchmark experiments on OPE
estimators. Fu et al. [11] provide the Deep Off-Policy Evaluation (DOPE) benchmark, which is
designed to evaluate the performance of OPE estimators on several control tasks. The notable
contribution of DOPE is that it evaluates the OPE performance across a range of evaluation policies
with different policy values and measures performance on ranking and selection as well as policy
evaluation. Evaluating the ranking and policy selection performance is challenging with real-world
bandit data due to the difficulty of deploying many policies during data collection. Voloshin et al. [50]
provide a benchmark study on a variety of tasks ranging from tabular problems to image-based
tasks in Atari. A wide variety of OPE estimators are compared in the benchmark, including recent
variants of DR such as MRDR and Self-Normalized DR (SNDR), producing a holistic summary of
the challenges one should address in OPE applications.

Our work differentiates itself from these previous benchmark studies in several ways. First, our bench-
mark and implementation cover relevant methods that are not included in the previous benchmarks.
For example, we evaluate some advanced estimators such as Switch Doubly Robust (Switch-DR),
and DRos, which are not compared in DOPE. Moreover, we evaluate how a recent hyperparameter
tuning method proposed in [41] works with real-world bandit data. Tuning hyperparameters of OPE
estimators is a critical component in OPE application, as it can greatly affect the OPE performance.
However, the previous benchmarks do not evaluate the performance of the tuning method. Moreover,
we release the real-world bandit dataset that allows benchmarking of OPE estimators in a realistic
scenario. Our public dataset makes it possible to identify what matters in applying OPE to real-world
scenarios. This is in contrast to the previous benchmarks using only synthetic environments. Indeed,
we found some critical bottlenecks, which have not yet been pointed out in the literature. Specifically,
we found that it is necessary to develop a reliable method to choose and tune OPE estimators in a
data-driven manner (discussed in Sections 5 and 6). We would also emphasize that the previous

11https://github.com/VowpalWabbit/vowpal_wabbit
12https://github.com/david-cortes/contextualbandits
13https://github.com/criteo-research/reco-gym
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benchmarks focus on conducting comprehensive empirical studies. They do not provide implementa-
tions that allow researchers to add their own estimators to the benchmark, generate synthetic data,
and handling real bandit data.

5 Benchmark Experiments

We perform benchmark experiments of OPE estimators using Open Bandit Dataset and Pipeline.
We first describe an experimental protocol to evaluate OPE estimators and use it to compare a wide
variety of existing estimators. We then discuss the initial findings from the experiments. We share the
code to replicate the benchmark experiments at https://github.com/st-tech/zr-obp/tree/
master/benchmark/ope.

5.1 Experimental Protocol

We can empirically evaluate OPE estimators’ performance by using two sources of logged bandit
data collected by running two different policies. In the protocol, we regard one policy as behavior
policy πb and the other as evaluation policy πe. We denote log data generated by πb and πe as
D(b) := {(x(b)

i , a
(b)
i , r

(b)
i )}n(b)

i=1 and D(e) := {(x(e)
i , a

(e)
i , r

(e)
i )}n(e)

i=1 . Then, by applying the following
protocol to several different OPE estimators, we compare their estimation performance:

1. Estimate the policy value of πe using D(b) by OPE estimator V̂ . We represent a policy value
estimated by V̂ as V̂ (πe;D(b)).

2. Evaluate the estimation accuracy of V̂ using the following squared error (SE):

SE(V̂ ;D(b)) :=
(
V̂ (πe;D(b))− Von(πe)

)2

,

where Von(πe) := (1/n(e))
∑n(e)

i=1 r
(e)
i is the Monte-Carlo estimate (on-policy estimate) of

V (πe) based on D(e).
3. Repeat the above process T times with different bootstrap samples and calculate the follow-

ing root mean-squared-error (RMSE) as the estimators’ performance measure.

RMSE(V̂ ;D(b)) :=

√√√√ 1

T

T∑
t=1

SE(V̂ ;D(b,∗)
t ),

where D(b,∗)
t is the t-th bootstrapped sample of D(b).

Algorithm 1 in Appendix C describes the experimental protocol to evaluate OPE estimators in detail.

5.2 Compared Estimators

We compare the following OPE estimators: DM, IPW, Self-Normalized Inverse Probability Weighting
(SNIPW), DR, SNDR, Switch-DR, and DRos. We tune the built-in hyperparameter of Switch-DR
and DRos using a data-driven hyperparameter tuning method described in Su et al. [41]. The details
of the above estimators and data-driven hyperparameter tuning method are given in Appendix B.

For estimators except for DM, we use the true action choice probability πb(a|x) contained in Open
Bandit Dataset. For estimators except for IPW and SNIPW, we need to obtain a reward estimator q̂.
We do this by using gradient boosting14 (implemented in scikit-learn [34]) and training it on D(b).
We also use cross-fitting [19, 33] to avoid substantial bias from overfitting when obtaining q̂.

5.3 Results

The results of the benchmark experiments with n = 300, 000 are given in Table 4. We describe
Bernoulli TS → Random to represent the OPE situation where we use Bernoulli TS as πb and
Random as πe. Please see Appendix C for additional results.

14Specifically, we use ‘sklearn.ensemble.HistGradientBoostingClassifier(learning_rate=0.01, max_iter=100,
max_depth=5, min_samples_leaf=10, random_state=12345)’ to obtain q̂.
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Table 4: RMSE (×103) of OPE estimators (Bernoulli TS→ Random)

OPE Estimators (V̂ ) ALL Men’s Women’s

IPW1 0.493 (1.560)3 0.789 (1.719) 0.776 (1.382)3

SNIPW2 0.507 (1.602)3 0.644 (1.403)1/3 0.804 (1.433)3

DM3 1.026 (3.244) 0.773 (1.685) 0.816 (1.455)
DR4 0.482 (1.526)3 0.613 (1.336)1/3 0.803 (1.430)3

SNDR5 0.482 (1.526)3 0.659 (1.436)1/3 0.791 (1.408)3

Switch-DR6 0.482 (1.526)3 0.613 (1.336)1/3 0.803 (1.430)3

DRos7 0.316 (1.000)1/2/3/4/5/6 0.459 (1.000)1/2/3/4/5/6 0.561 (1.000)1/2/3/4/5/6

Table 5: RMSE (×103) of DRos with different hyperparameter values (ALL Campaign)

λ of DRos Random→ Bernoulli TS Bernoulli TS→ Random

1 1.384 (2.906) 0.963 (3.920)
5 1.247 (2.619) 0.837 (3.407)

10 1.162 (2.439) 0.770 (3.135)
50 0.896 (1.881) 0.589 (2.398)

100 0.778 (1.634) 0.498 (2.029)
500 0.574 (1.206) 0.294 (1.199)

1,000 0.482 (1.106) 0.245 (1.000)
5,000 0.476 (1.000) 0.270 (1.101)

10,000 0.476 (1.000) 0.323 (1.315)

tuning 0.476 (1.000) 0.323 (1.315)

Note: Root mean squared errors (RMSEs) estimated with 200 different bootstrapped iterations are reported
(n = 300, 000). RMSEs normalized by the best (lowest) RMSE are reported in parentheses. 1/2/3/4/5/6/7

denote a significant difference compared to the indicated estimator (Wilcoxon rank-sum test, p < 0.05). The
red bold is used when the best results outperform the second bests in a statistically significant level. The
blue bold is used when the worst results underperform the second worsts in a statistically significant level.
πb → πe represents the OPE situation where the estimators aim to estimate the policy value of πe using logged
bandit data collected by πb.

Performance comparisons. Table 4 shows that DRos (with automatic hyperparameter tuning)
performs best for the three campaigns, achieving about 30-60% more accurate OPE than the second-
best estimators. We then evaluate several values for the hyperparameter λ of DRos. Table 5 shows the
OPE performance (RMSE) of DRos with different values of λ (∈ {1, 5, 10, 50, . . . , 10000}). This
table also includes the OPE performance of DRos with automatic hyperparameter tuning of Su et
al. [41]. First, we observe that the choice of λ greatly affects the performance of DRos. Specifically,
for Random→ Bernoulli TS, a larger value of λ leads to a better OPE performance. In contrast,
for Bernoulli TS→ Random, λ = 1, 000 is the best setting. Second, we observe that the automatic
hyperparameter tuning procedure prefers a large value of λ. This means that the tuning procedure
puts emphasis on the bias of the estimator, as a large value of λ leads to a low bias, but a high variance
estimator. This strategy succeeds for Random→ Bernoulli TS. However, we observe that there is
room for improvement for Bernoulli TS→ Random in terms of automatic hyperparameter tuning.
This suggests opportunities for further investigations on the quality of automatic hyperparameter
tuning for achieving more accurate OPE in practice.

OPE performance with different sample sizes. Next, we compare the small-sample setting (n =
10, 000) and large-sample setting (n = 300, 000) to evaluate how the OPE performance changes with
the sample size. We observe in Table 6 that the estimators’ performance can change significantly
depending on the size of the logged bandit data. In particular, for the Men’s and Women’s campaigns,
the most accurate estimator changes with the sample size. The table shows that DM outperforms
the other estimators in the small-sample setting, while DRos is the best for the large-sample setting.
These observations suggest that practitioners have to choose an appropriate OPE estimator carefully
for their specific application. It is thus necessary to develop a reliable method to choose and tune OPE
estimators in a data-driven manner. Specifically, in real applications, we have to tune the estimators’
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Table 6: Comparison of small-sample and large-sample OPE performance (RMSE ×103)

ALL Men’s Women’s

OPE Estimators small-sample large-sample small-sample large-sample small-sample large-sample

IPW1 1.899 0.4933 3.6835 0.789 3.156 0.7763

SNIPW2 1.641 0.5073 3.6614/5/6 0.6441/3 3.0381/5 0.8043

DM3 0.7971/2/4/5/6 1.026 3.0411/2/4/5/6/7 0.773 2.6651/2/4/5/6/7 0.8163

DR4 1.2031/2 0.4823 3.747 0.6131/3 3.0551/2 0.8033

SNDR5 1.1591/2 0.4823 3.757 0.659 1/3 3.069 1 0.7913

Switch-DR6 1.2031/2 0.4823 3.747 0.613 1/3 3.055 5 0.803 3

DRos7 0.7651/2/4/5/6 0.316 1/2/3/4/5/6 3.727 0.4591/2/3/4/5/6 3.0511/5 0.5611/2/3/4/5/6

Note: Root mean squared errors (RMSEs) estimated with 200 different bootstrapped iterations are reported
(Bernoulli TS → Random). n = 10, 000 for the small-sample setting, while n = 300, 000 for the
large-sample setting. 1/2/3/4/5/6/7 denote a significant difference compared to the indicated estimator
(Wilcoxon rank-sum test, p < 0.05). The red bold is used when the best results outperform the second bests in
a statistically significant level. The blue bold is used when the worst results underperform the second worsts in
a statistically significant level.

hyperparameters or identify an accurate estimator without the ground-truth or on-policy policy value
of the evaluation policy.

6 Conclusion, Limitations, and Future Work

To enable a realistic and reproducible evaluation of OPE, we presented Open Bandit Dataset, a set
of logged bandit datasets collected on a fashion e-commerce platform. The dataset comes with
Open Bandit Pipeline, Python software that makes it easy to evaluate and compare different OPE
estimators. We aim to facilitate understanding of the empirical properties of OPE estimators and
address experimental inconsistencies in the literature. We also perform extensive experiments on
a variety of OPE estimators and analyze the effects of hyperparameter choice and sample size in a
real-world setting. Our experiments highlight that an appropriate estimator can change depending
on a problem setting such as the sample size. The results also suggest that there is room to improve
the OPE performance in terms of automatic hyperparameter tuning and estimator selection. These
observations call for a new estimator selection method and a hyperparameter tuning procedure to be
developed.

A limitation is that we assume that the reward of an item at a position does not depend on other
simultaneously presented items. This assumption might not hold, as an item’s attractiveness can have
a significant effect on the expected reward of another item in the same recommendation list [27]. To
address more realistic situations, we have implemented some OPE estimators for the slate action
setting [30, 45] in Open Bandit Pipeline. Comparing the standard OPE estimators and those for the
slate action setting on our dataset is a valuable and interesting research direction.

Open Bandit Dataset is currently the only public dataset allowing OPE experiments. Therefore,
it might lead to an overfitting issue. Moreover, Open Bandit Dataset includes only two policies.
Here, we emphasize that there has never been any public real-world data that allow realistic and
reproducible OPE research before. Our open-source project is an initial step towards this goal. Having
many policies would be even more valuable, but releasing data with two different data collection
policies is distinguishable enough from the prior work. We believe that our work will inspire other
researchers and companies to create follow-up benchmark datasets to advance OPE research further.

Acknowledgments and Disclosure of Funding

We thank Haruka Kiyohara, Ryo Kuroiwa, Richard Liu, Kazuki Mogi, Masahiro Nomura, Kyohei
Okumura, Ayumi Sudo, and Koichi Takayama for their thoughtful comments on the manuscript and
help in developing the software. We would also like to thank anonymous reviewers for their helpful
feedback.

10



References
[1] Aman Agarwal, Soumya Basu, Tobias Schnabel, and Thorsten Joachims. Effective evaluation

using logged bandit feedback from multiple loggers. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 687–696, 2017.

[2] Alina Beygelzimer and John Langford. The offset tree for learning with partial labels. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 129–138, 2009.

[3] Alberto Bietti, Alekh Agarwal, and John Langford. A contextual bandit bake-off. arXiv preprint
arXiv:1802.04064, 2018.

[4] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max Chickering,
Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual Reasoning and
Learning Systems: The Example of Computational Advertising. Journal of Machine Learning
Research, 14(1):3207–3260, 2013.

[5] David Cortes. Adapting multi-armed bandits policies to contextual bandits scenarios. arXiv
preprint arXiv:1811.04383, 2018.

[6] Jin Dai. Offline Evaluation of Multi-Armed Bandit Algorithms Using Bootstrapped Replay on
Expanded Data. University of California, Los Angeles, 2021.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[8] Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. Doubly Robust Policy
Evaluation and Optimization. Statistical Science, 29:485–511, 2014.

[9] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

[10] Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust doubly robust
off-policy evaluation. In International Conference on Machine Learning, volume 80, pages
1447–1456. PMLR, 2018.

[11] Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Ziyu Wang, Alexander Novikov,
Mengjiao Yang, Michael R Zhang, Yutian Chen, Aviral Kumar, et al. Benchmarks for deep
off-policy evaluation. arXiv preprint arXiv:2103.16596, 2021.

[12] Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham, and Simon
Dollé. Offline a/b testing for recommender systems. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, pages 198–206, 2018.

[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587, 2014.

[14] Alois Gruson, Praveen Chandar, Christophe Charbuillet, James McInerney, Samantha Hansen,
Damien Tardieu, and Ben Carterette. Offline evaluation to make decisions about playlist
recommendation algorithms. In Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining, pages 420–428, 2019.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[16] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020.

[17] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning.
In International Conference on Machine Learning, volume 48, pages 652–661. PMLR, 2016.

11



[18] Nathan Kallus, Yuta Saito, and Masatoshi Uehara. Optimal off-policy evaluation from multiple
logging policies. In Proceedings of the 38th International Conference on Machine Learning,
volume 139, pages 5247–5256. PMLR, 2021.

[19] Nathan Kallus and Masatoshi Uehara. Efficiently breaking the curse of horizon: Double
reinforcement learning in infinite-horizon processes. arXiv preprint arXiv:1909.05850, 2019.

[20] Nathan Kallus and Masatoshi Uehara. Intrinsically efficient, stable, and bounded off-policy
evaluation for reinforcement learning. In Advances in Neural Information Processing Systems,
volume 32, pages 3325–3334, 2019.

[21] Nathan Kallus and Angela Zhou. Policy evaluation and optimization with continuous treatments.
In International Conference on Artificial Intelligence and Statistics, pages 1243–1251. PMLR,
2018.

[22] Masahiro Kato, Kenshi Abe, Kaito Ariu, and Shota Yasui. A practical guide of off-policy
evaluation for bandit problems. arXiv preprint arXiv:2010.12470, 2020.

[23] Junpei Komiyama, Edouard Fouché, and Junya Honda. Finite-time analysis of globally nonsta-
tionary multi-armed bandits. arXiv preprint arXiv:2107.11419, 2021.

[24] Damien Lefortier, Adith Swaminathan, Xiaotao Gu, Thorsten Joachims, and Maarten de Ri-
jke. Large-scale validation of counterfactual learning methods: A test-bed. arXiv preprint
arXiv:1612.00367, 2016.

[25] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A Contextual-bandit Approach
to Personalized News Article Recommendation. In Proceedings of the 19th International
Conference on World Wide Web, pages 661–670. ACM, 2010.

[26] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased Offline Evaluation of
Contextual-bandit-based News Article Recommendation Algorithms. In Proceedings of the
Fourth ACM International Conference on Web Search and Data Mining, pages 297–306, 2011.

[27] Shuai Li, Yasin Abbasi-Yadkori, Branislav Kveton, S Muthukrishnan, Vishwa Vinay, and Zheng
Wen. Offline evaluation of ranking policies with click models. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1685–1694,
2018.

[28] Yao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski, Aldo A Faisal, Finale
Doshi-Velez, and Emma Brunskill. Representation balancing mdps for off-policy policy
evaluation. In Advances in Neural Information Processing Systems, volume 31, pages 2644–
2653, 2018.

[29] Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran Popovic. Offline
policy evaluation across representations with applications to educational games. In Proceedings
of the 2014 international conference on Autonomous agents and multi-agent systems, pages
1077–1084, 2014.

[30] James McInerney, Brian Brost, Praveen Chandar, Rishabh Mehrotra, and Benjamin Carterette.
Counterfactual evaluation of slate recommendations with sequential reward interactions. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1779–1788, 2020.

[31] Susan A Murphy, Mark J van der Laan, James M Robins, and Conduct Problems Prevention Re-
search Group. Marginal mean models for dynamic regimes. Journal of the American Statistical
Association, 96(456):1410–1423, 2001.

[32] Yusuke Narita, Shota Yasui, and Kohei Yata. Efficient counterfactual learning from bandit
feedback. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4634–4641, 2019.

[33] Yusuke Narita, Shota Yasui, and Kohei Yata. Debiased off-policy evaluation for recommendation
systems. In Fifteenth ACM Conference on Recommender Systems, RecSys ’21, page 372–379,
New York, NY, USA, 2021. Association for Computing Machinery.

12



[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[35] Doina Precup, Richard S. Sutton, and Satinder Singh. Eligibility Traces for Off-Policy Policy
Evaluation. In Proceedings of the 17th International Conference on Machine Learning, pages
759–766, 2000.

[36] David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros Karatzoglou.
Recogym: A reinforcement learning environment for the problem of product recommendation
in online advertising. arXiv preprint arXiv:1808.00720, 2018.

[37] Yuta Saito. Doubly robust estimator for ranking metrics with post-click conversions. In 14th
ACM Conference on Recommender Systems, pages 92–100, 2020.

[38] Yuta Saito and Thorsten Joachims. Counterfactual learning and evaluation for recommender
systems: Foundations, implementations, and recent advances. In Fifteenth ACM Conference on
Recommender Systems, RecSys ’21, page 828–830, New York, NY, USA, 2021. Association for
Computing Machinery.

[39] Yuta Saito, Takuma Udagawa, Haruka Kiyohara, Kazuki Mogi, Yusuke Narita, and Kei Tateno.
Evaluating the robustness of off-policy evaluation. In Fifteenth ACM Conference on Recom-
mender Systems, RecSys ’21, page 114–123, New York, NY, USA, 2021. Association for
Computing Machinery.

[40] Alex Strehl, John Langford, Lihong Li, and Sham M Kakade. Learning from Logged Implicit
Exploration Data. In Advances in Neural Information Processing Systems, volume 23, pages
2217–2225, 2010.

[41] Yi Su, Maria Dimakopoulou, Akshay Krishnamurthy, and Miroslav Dudík. Doubly robust
off-policy evaluation with shrinkage. In International Conference on Machine Learning, volume
119, pages 9167–9176. PMLR, 2020.

[42] Yi Su, Lequn Wang, Michele Santacatterina, and Thorsten Joachims. Cab: Continuous adaptive
blending for policy evaluation and learning. In International Conference on Machine Learning,
pages 6005–6014, 2019.

[43] Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback
through counterfactual risk minimization. The Journal of Machine Learning Research,
16(1):1731–1755, 2015.

[44] Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual
learning. In Advances in Neural Information Processing Systems, volume 28, pages 3231–3239,
2015.

[45] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John Langford,
Damien Jose, and Imed Zitouni. Off-policy Evaluation for Slate Recommendation. In Advances
in Neural Information Processing Systems, volume 30, pages 3635–3645, 2017.

[46] Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, and Hisashi Kashima. Causal combina-
torial factorization machines for set-wise recommendation. In PAKDD (2), pages 498–509.
Springer, 2021.

[47] Philip Thomas and Emma Brunskill. Data-efficient Off-policy Policy Evaluation for Reinforce-
ment Learning. In Proceedings of the 33rd International Conference on Machine Learning,
pages 2139–2148, 2016.

[48] Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High confidence policy
improvement. In Proceedings of the 32th International Conference on Machine Learning,
volume 37, pages 2380–2388, 2015.

13



[49] Nikos Vlassis, Aurelien Bibaut, Maria Dimakopoulou, and Tony Jebara. On the design of
estimators for bandit off-policy evaluation. In International Conference on Machine Learning,
pages 6468–6476, 2019.

[50] Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy
policy evaluation for reinforcement learning. arXiv preprint arXiv:1911.06854, 2019.

[51] Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudik. Optimal and Adaptive Off-policy
Evaluation in Contextual Bandits. In Proceedings of the 34th International Conference on
Machine Learning, pages 3589–3597, 2017.

[52] Tengyang Xie, Yifei Ma, and Yu-Xiang Wang. Towards optimal off-policy evaluation for rein-
forcement learning with marginalized importance sampling. In Advances in Neural Information
Processing Systems, volume 32, pages 9665–9675, 2019.

14



Contents

1 Introduction 1

2 Off-Policy Evaluation 2

2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Estimation Target and Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Open-Source Dataset and Software 3

4 Related Work 5

5 Benchmark Experiments 8

5.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2 Compared Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Conclusion, Limitations, and Future Work 10

A Examples of Bandit Algorithms 16

B OPE Estimators and Related Techniques 17

C Additional Experimental Setups and Results 19

C.1 Computational Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C.2 Estimation Performance of Reward Estimator (q̂) . . . . . . . . . . . . . . . . . . 19

C.3 Additional Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D Open Bandit Dataset 22

E Open Bandit Pipeline (OBP) Package 24

E.1 Core Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E.2 Example Code (OPE Experiment with Open Bandit Dataset) . . . . . . . . . . . . 25

E.2.1 Data Loading and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 26

E.2.2 Production Policy Replication . . . . . . . . . . . . . . . . . . . . . . . . 26

E.2.3 Off-Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

E.3 Example Code (Bandit Experiment with Open Bandit Dataset) . . . . . . . . . . . 27

E.4 Example Code (OPE Experiment with Synthetic Data) . . . . . . . . . . . . . . . 28

E.5 Example Code (OPE Experiment with Multiclass Classification Data) . . . . . . . 29

15



A Examples of Bandit Algorithms

Our setup allows for many popular multi-armed bandit algorithms and off-policy learning methods,
as the following examples illustrate.
Example 1 (Random A/B testing). We always choose each action uniformly at random, i.e.,
πUniform(a | x) = |A|−1 always holds for any given a ∈ A and x ∈ X .

Example 2 (Bernoulli Thompson Sampling). We sample the potential reward r̃(a) from the beta
distribution Beta(Sta +α, Fta +β) for each action inA, where Sta :=

∑t−1
t′=1 rt′ , Fta := (t− 1)−

Sta. (α, β) are the parameters of the prior Beta distribution. We then choose the action with the
highest sampled potential reward, a :∈ argmax

a′∈A
r̃(a′) (ties are broken arbitrarily). As a result, this

algorithm chooses actions with the following probabilities:

πBernoulliTS(a | x) = Pr{a ∈ argmax
a′∈A

r̃(a′)}

for any given a ∈ A and x ∈ X . When implementing the data collection experiment on the
ZOZOTOWN platform, we modified TS to adjust to our top-3 recommendation setting shown in
Figure 1. The modified TS selects three actions with the three highest sampled rewards which create
a nonrepetitive set of item recommendations for each coming user.

Example 3 (IPW Learner). When D is given, we can train a deterministic policy πdet : X → A by
maximizing the IPW estimator as follows:

πdet(x) ∈ argmax
π∈Π

V̂IPW(π;D)

= argmax
π∈Π

ED
[
I {π (xt) = at}
πb (at | xt)

rt

]
= argmin

π∈Π
ED
[

ri
πb (at | xt)

I {π (xt) 6= at}
]

, which is equivalent to the cost-sensitive classification problem that can be solved with an arbitrary
machine learning classifier.
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B OPE Estimators and Related Techniques

Here we define some advanced OPE estimators compared in Section 5.

Self-Normalized Estimators. Self-Normalized Inverse Probability Weighting (SNIPW) is an ap-
proach to address the variance issue with the original IPW. It estimates the policy value by dividing
the sum of weighted rewards by the sum of importance weights as follows.

V̂SNIPW(πe;D) :=
En[w(xi, ai)ri]

En[w(xi, ai)]
.

SNIPW is more stable than IPW, because the policy value estimated by SNIPW is bounded in the
support of rewards and its conditional variance given action and context is bounded by the conditional
variance of the rewards [20]. IPW does not have these properties. We can define Self-Normalized
Doubly Robust (SNDR) in a similar manner as follows.

V̂SNDR(πe;D) := En
[
q̂(xi, πe) +

w(xi, ai)

En[w(xi, ai)]
(ri − q̂(xi, ai))

]
.

Switch Estimator. The original DR estimator can still be subject to the variance issue, particularly
when the importance weights are large due to weak overlap. Switch-DR aims to alleviate the variance
issue by using DM where the importance weights are large as:

V̂SwitchDR(πe;D, q̂, τ) := En [q̂(xi, πe) + w(xi, ai)(ri − q̂(xi, ai))I{w(xi, ai) ≤ τ}] ,

where I{·} is the indicator function and τ ≥ 0 is a hyperparameter. Switch-DR interpolates between
DM and DR. When τ = 0, it is identical to DM, while τ →∞ yields DR.

Doubly Robust with Optimistic Shrinkage (DRos). Su et al. [41] propose DRos based on a new
weight function ŵ : X × A → R+, which directly minimizes sharp bounds on the MSE of the
resulting estimator. DRos is defined as

V̂DRos(πe;D, q̂, λ) := En[q̂(xi, πe) + ŵ(xi, ai;λ)(ri − q̂(xi, ai))],

where λ ≥ 0 is a pre-defined hyperparameter and the new weight is

ŵ(x, a;λ) :=
λ

w2(x, a) + λ
w(x, a).

When λ = 0, ŵ(x, a;λ) = 0 leads to DM. On the other hand, as λ → ∞, ŵ(x, a;λ) = w(x, a)
leading to DR.

Cross-Fitting Procedure. We sometimes use cross-fitting to avoid the overfitting issue in obtaining
q̂ from logged bandit data [33]. We describe the cross-fitting procedure below.

1. Take a K-fold random partition (Dk)
K
k=1 of size n of D such that the size of each fold is

nk = n/K. We also define Dck := D\Dk for k = 1, 2, . . .K.

2. For each k = 1, 2, . . .K, obtain reward estimators {q̂k}Kk=1 with Dck.

3. Given reward estimators {q̂k}Kk=1, estimate V (πe) by K−1
∑K
k=1 V̂ (πe;Dk, q̂k) where V̂

is a model-dependent estimator.

K(≥ 2) is the number of folds and we use K = 2 in the benchmark experiments.

Automatic Hyperparameter Tuning. As we have summarized, many estimators in the OPE
community depend on hyperparameters such as λ and τ . Recently, an automatic hyperparameter
tuning procedure is proposed by Su et al. [41], which tunes the hyperparameter values as follows.

θ̂ ∈ argmin
θ∈Θ

Bias(θ;D)2 + V̂(θ;D),
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where Bias(θ;D) is the bias upper bound estimable with D, and V̂(θ;D) is the sample variance.
Su et al. [41] describe some variants of the bias upper bound including the following direct bias
estimation:

Bias(θ;D) := |En[(ŵ (xi, ai; θ)− w (xi, ai)) (ri − q̂ (xi, ai))]|

+

√
2E [w(x, a)2] log(2/δ)

n
+

2wmax log(2/δ)

3n

where δ ∈ (0, 1] defines a confidence in deriving a high probability upper bound, and wmax :=
maxx,a w(x, a) is the maximum importance weight. ŵ(x, a; θ) is the importance weight modified
by a hyperparameter. For example, DRos use ŵ(x, a;λ) = λ

w2(x,a)+λw(x, a), while Switch-DR is
based on ŵ(x, a; τ) = w(x, a)I{w(x, a) ≤ τ}. In Section 5, we use this direct bias estimation with
δ = 0.05 to conduct automatic hyperparameter tuning.
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Algorithm 1 Experimental protocol for evaluating OPE estimators

Input: policy πe; two different logged bandit datasets D(e) = {(x(e)
i , a

(e)
i , r

(e)
i )}n(e)

i=1 and D(b) =

{(x(b)
i , a

(b)
i , r

(b)
i )}n(b)

i=1 where D(e) is collected by πe and D(b) is collected by a different one πb;
an off-policy estimator to be evaluated V̂ ; a number of bootstrap iterations T ; sample size n

Output: some statistics of SE(V̂ ) (such as the root mean squared error)

1: Von(πe) = (1/n(e))
∑n(e)

i=1 r
(e)
i (on-policy estimation of V (πe))

2: for t = 1, . . . , T do
3: D(b,∗)

t = Bootstrap(D(b), n) (sample data of size n from D(b) with replacement)

4: SE(V̂ ;D(b)) :=
(
V̂ (πe;D(b))− Von(πe)

)2

, (calculate the squared error in OPE)

5: S ← S ∪ {SE(V̂ ;D(b,∗)
ev )}

6: end for

Table 7: Elapsed Time (minutes)

Sample Size (n) ALL Men’s Women’s

10,000 22.38 10.22 12.96
30,000 48.73 19.23 24.18
50,000 107.84 29.00 39.25

100,000 208.91 57.58 89.70
300,000 750.34 220.53 332.56

Note: This table presents the time (in minutes) needed to run the evaluation of OPE experiment using
Algorithm 1 with T = 200 and different sample size n ∈ {10000, 30000, 50000, 100000, 300000}.

Table 8: Estimation performance of reward estimator q̂ with different machine learning methods

Random→ Bernoulli TS Bernoulli TS→ Random

Models (q̂) ALL Men’s Women’s ALL Men’s Women’s

GB 0.2954 ±0.1000 0.1871 ±0.0756 0.2598 ±0.0555 0.0854 ±0.0751 0.1028 ±0.1337 0.0910 ±0.0422

LR 0.1091 ±0.0313 0.0745 ±0.0194 0.0821 ±0.0250 0.0338 ±0.0145 0.0641 ±0.0202 0.0232 ±0.0110

Note: This table presents the relative cross-entropy (RCE) of the reward estimator for each campaign. The averaged
results and their unbiased standard deviations estimated using 200 different bootstrapped samples are reported. GB
and LR stand for Gradient Boosting and Logistic Regression, respectively. πb → πe represents the OPE situation
where the estimators aim to estimate the policy value of πe using logged bandit data collected by πb, meaning that q̂
is trained on data collected by πb.

C Additional Experimental Setups and Results

In this section, we describe some additional experimental setups and results.

C.1 Computational Resource

All experiments were conducted on MacBook Pro (2.4 GHz Intel Core i9, 64 GB). Table 7 summarizes
the time needed to run the evaluation of OPE experiments with T = 200 and varying sample size
n ∈ {10000, 30000, 50000, 100000, 300000}.

C.2 Estimation Performance of Reward Estimator (q̂)

We evaluate the performance of the reward estimators by using relative cross entropy (RCE). RCE is
defined as the improvement of an estimation performance relative to the naive estimation, which uses
the mean CTR for every prediction. We calculate this metric using a size n of validation samples
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{(xi, ai, ri)}ni=1 as:

RCE (q̂) := 1−
∑n
i=1 ri log(q̂(xi, ai)) + (1− ri) log(1− q̂(xi, ai))∑n

i=1 ri log(q̂naive) + (1− ri) log(1− q̂naive)

where q̂naive := n−1
∑n
i=1 ri is the naive estimation using the mean CTR for every estimation. A

larger value of RCE means a better performance of a predictor. We use RCE as an evaluation metric
to evaluate q̂, as in OPE, the estimation accuracy of q̂ (not Recall or Precision) matters.

Table 8 reports the estimation accuracy of logistic regression and gradient boosting as a reward estima-
tor q̂. Specifically, we use ‘sklearn.linear_model.LogisticRegression(C=100, random_state=12345)’
as logistic regression and ‘sklearn.ensemble.HistGradientBoostingClassifier(learning_rate=0.01,
max_iter=100, max_depth=5, min_samples_leaf=10, random_state=12345)’ as gradient boosting
to obtain q̂. Note that we use action-related feature vectors to represent action variables to train
reward estimators. The action-related feature vectors used in the benchmark experiments are avail-
able at https://github.com/st-tech/zr-obp/blob/master/obd/bts/all/item_context.
csv. Note also that, in the evaluation of OPE experiments, we use gradient boosting (with cross-
fitting) to obtain q̂. Table 8 contains the estimation accuracy of logistic regression as a baseline. The
table shows that gradient boosting is more accurate in estimating q than logistic regression.

C.3 Additional Experimental Results

Table 9 shows the benchmark results (RMSE) for the three campaigns when the OPE situation is
Random→ Bernoulli TS. Table 10 compares small-sample and large-sample OPE performance on
the three campaigns when the OPE situation is Random→ Bernoulli TS. Table 11 compares the
OPE performance of the model-dependent estimators (i.e., DM, DR, SNDR, Switch-DR, and DRos)
with different reward estimators. The results show that the choice of machine learning method to
construct q̂ greatly affects the OPE performance. Specifically, gradient boosting leads to a better OPE
than logistic regression as its reward estimation is relatively accurate (see Table 8). We also observe
the similar trend for Men’s and Women’s campaigns.
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Table 9: RMSE (×103) of OPE estimators (Random→ Bernoulli TS)

OPE Estimators (V̂ ) ALL Men’s Women’s

IPW1 0.474 (1.012)3 1.298 (1.145)3 1.645 (2.817)
SNIPW2 0.468 (1.000)3 1.133 (1.000)1/3 1.585 (2.713)

DM3 1.499 (3.201) 1.758 (1.551) 0.584 (1.000)1/2/4/5/6/7

DR4 0.501 (1.070)3 1.169 (1.032)1/3 1.539 (2.636)1

SNDR5 0.500 (1.067)3 1.151 (1.032)1/3 1.524 (2.609)1

Switch-DR6 0.501 (1.070)3 1.169 (1.032)1/3 1.539 (2.036)1

DRos7 0.508 (1.085)3 1.171 (1.033)1/3 1.524 (2.609)1

Table 10: Comparison of small-sample and large-sample OPE performance (RMSE ×103)

ALL Men’s Women’s

OPE Estimators small-sample large-sample small-sample large-sample small-sample large-sample

IPW1 1.104 0.4743 3.156 1.2983 6.789 1.645
SNIPW2 1.1003/5 0.4683 3.038 1.1331/3 5.6851 1.585

DM3 1.128 1.499 2.6651/2/4/5/6/7 1.758 2.9861/2/4/5/6/7 0.5841/2/4/5/6/7

DR4 1.133 0.5013 3.055 1.1691/3 5.7241 1.5391

SNDR5 1.148 0.5003 3.069 1.1511/3 5.4761 1.5241

Switch-DR6 1.133 0.5013 3.055 1.1691/3 5.7241 1.5391

DRos7 1.125 0.5003 3.051 1.1711/3 5.6941 1.5241

Note: Root mean squared errors (RMSEs) estimated with 200 different bootstrapped iterations are reported
(Random → Bernoulli TS). RMSEs normalized by the best (lowest) RMSE are reported in parentheses. n is
the sample size of D(b,∗), which is used in OPE. n = 10, 000 for the small-sample setting, while n = 300, 000

for the large-sample setting. 1/2/3/4/5/6/7 denote a significant difference compared to the indicated estimator
(Wilcoxon rank-sum test, p < 0.05). The red bold is used when the best results outperform the second bests in
a statistically significant level. The blue bold is used when the worst results underperform the second worsts in
a statistically significant level.

Table 11: Comparison of OPE performance (RMSE ×103) with different reward estimators

OPE Estimators LR GB Improvement of GB over LR

DM 1.597 1.026 64.2%
DR 2.250 0.482 78.5%

SNDR 2.255 0.482 78.7%
Switch-DR 2.250 0.482 78.5%

DRos 2.065 0.316 84.7%

Note: Root mean squared errors (RMSEs) estimated with 200 different bootstrapped iterations are reported
(n = 300, 000, ALL campaign, Bernoulli TS → Random). GB and LR stand for Gradient Boosting and
Logistic Regression, respectively.
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Figure 2: Schema of Open Bandit Dataset.

D Open Bandit Dataset

We publish Open Bandit Dataset at: https://research.zozo.com/data.html. It is our priority
to protect the privacy of third parties. We bear all responsibility in case of violation of rights, etc.,
and confirmation of the data license.

Overview The dataset currently consists of a total of about 26M rows, each representing a user
impression with some feature values, selected items as actions, true action choice probabilities by the
data collection policies, and click indicators as reward variables. Specifically, Figure 2 describes the
schema of Open Bandit Dataset, where

• timestamp: timestamp of impressions.
• item_id: index of items as arms (index ranges from 0-79 in "ALL" campaign, 0-33 for

"Men" campaign, and 0-45 "Women" campaign).
• position: the position of an item being recommended (1, 2, or 3 correspond to the left, center,

and right positions of the ZOZOTOWN recommendation interface in Figure 1, respectively).
• click_indicator: a reward variable that indicates if an item was clicked (1) or not (0).
• action_prob: the probability of an item being recommended at the given position by a data

collection policy.
• user features (categorical): user-related feature values such as age and gender. User features

are anonymized using a hash function.
• user-item affinity (numerical): user-item affinity scores induced by the number of past clicks

observed between each user-item pair.

Dataset Documentation We include the dataset documentation and intended uses in the dataset
website.

Terms of use and License. Open Bandit Dataset is published under CC BY 4.0. license, which
means everyone can use this dataset for non-commercial research purposes.

Dataset maintenance. We will maintain the dataset for a long time at the same website and check
the data accessibility in a regular basis. We will also maintain the small size example data at the Open
Bandit Pipeline repository: https://github.com/st-tech/zr-obp/tree/master/obd. This
will help potential users grasp how the dataset works with Open Bandit Pipeline. We also maintain
the data loader class implemented in Open Bandit Pipeline.15 When a function of the package is
updated, we will let the users know the changes via the project mailing list.

Benchmark and code. https://github.com/st-tech/zr-obp/tree/master/benchmark/
ope provides scripts and instructions to reproduce the benchmark results using Open Bandit Dataset.
We utilize tools such as Hydra16 and Poetry17 to ensure the reproducibility of the benchmark results.

15https://github.com/st-tech/zr-obp/blob/master/obp/dataset/real.py
16https://hydra.cc/
17https://python-poetry.org/
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ALL

Men’s Women’s
Table 12: Empirical Action Distribution (Bernoulli TS vs Random)

ALL Men’s Women’s
Table 13: Empirical Action Distribution (Random only)

Dataset statistics. Figure 12 shows the empirical action distributions in Open Bandit Dataset. We
see that the action distribution is uniform when the dataset is collected under the Random policy (see
also Figure 13). In contrast, we can see that some actions are much more frequently observed than
others when the dataset is collected under the Bernoulli TS policy, producing the bias in OPE.

Potential Negative Societal Impacts and General Ethical Conduct

Our open data and pipeline contribute to fair and transparent machine learning research, especially
bandit algorithms and off-policy evaluation. By setting up a common ground for credibly evaluating
the performance of bandit and off-policy evaluation methods, our work is expected to foster their
real-world applications. A limitation is that it is difficult to generalize the experimental results
and conclusions based on our data to other important domains, such as education, healthcare, and
the social sciences. To enable generalizable comparison and evaluation of bandit algorithms and
off-policy evaluation, it is desired to construct public benchmark datasets from a broader range of
domains.

As we have touched on in Section 3, we hashed the feature vectors related to the users included in the
dataset. Therefore, our dataset does not contain any personally identifiable information or sensitive
personally identifiable information.
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Figure 3: Open Bandit Pipeline Overview.

E Open Bandit Pipeline (OBP) Package

As described in Section 3, Open Bandit Pipeline contains implementations of dataset preprocessing,
several policy learning methods, and a variety of OPE estimators including several advanced methods.

E.1 Core Functions

Modules Open Bandit Pipeline consists of the following three main modules.

• dataset module18: This module provides a data loader for Open Bandit Dataset and a
flexible interface for handling logged bandit data. It also provides tools to generate synthetic
bandit data and transform multiclass classification data to bandit data.

• policy module19: This module provides interfaces for implementing new online and offline
bandit policies. It also implements several standard policy learning methods.

• ope module20: This module provides interfaces for implementing OPE estimators. It also
implements several standard and advanced OPE estimators.

Supported Estimators and Algorithms Open Bandit Pipeline implements the following bandit
algorithms and OPE estimators.

Bandit Algorithms

• Online Bandit Algorithms

– Non-contextual

* Uniform Random
* Epsilon Greedy
* Bernoulli Thompson Sampling

– Contextual

* Linear/Logistic Epsilon Greedy
* Linear/Logistic Thompson Sampling
* Linear/Logistic Upper Confidence Bound

• Offline (Batch) Bandit Algorithms

• IPW Learner (used with a scikit-learn classifier)

• Neural Network Policy Learner (implemented with PyTorch)

18https://github.com/st-tech/zr-obp/tree/master/obp/dataset
19https://github.com/st-tech/zr-obp/tree/master/obp/policy
20https://github.com/st-tech/zr-obp/tree/master/obp/ope
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OPE Estimators

• Standard OPE (formulated in Section 2)

– Direct Method

– Inverse Probability Weighting [35]

– Self-Normalized Inverse Probability Weighting [44]

– Doubly Robust [8]

– Self-Normalized Doubly Robust

– Switch Doubly Robust [51]

– Doubly Robust with Optimistic Shrinkage [41]

• OPE for Slate Recommendation

– Independent Inverse Propensity Score [27]

– Reward Interaction Inverse Propensity Score [30]

• OPE for Continuous Action

– Kernelized Inverse Probability Weighting [21]

– Kernelized Self-Normalized Inverse Probability Weighting [21]

– Kernelized Doubly Robust [21]

Please refer to the package documentation for the basic formulation of OPE and the definitions of
the estimators.21 Note that, in addition to the above algorithms and estimators, the pipeline also
provides flexible interfaces. Therefore, researchers can easily implement their own algorithms or
estimators and evaluate them with our data and pipeline. Moreover, the pipeline provides an interface
for handling real-world logged bandit data. Thus, practitioners can combine their own data with the
pipeline and easily evaluate bandit algorithms’ performance in their settings with OPE.

E.2 Example Code (OPE Experiment with Open Bandit Dataset)

Below, we show an example of conducting an OPE of the performance of BernoulliTS using IPW as
an OPE estimator and the Random policy as a behavior policy. We see that only ten lines of code are
sufficient to complete the standard OPE procedure from scratch (Code Snippet 1).

21https://zr-obp.readthedocs.io/en/latest/
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# implementing OPE of BernoulliTS using log data generated by Random
>>> from obp.dataset import OpenBanditDataset
>>> from obp.policy import BernoulliTS
>>> from obp.ope import OffPolicyEvaluation, InverseProbabilityWeighting as IPW

# (1) Data Loading and Preprocessing
>>> dataset = OpenBanditDataset(behavior_policy="random", campaign="all")
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback()

# (2) Production Policy Replication
>>> evaluation_policy = BernoulliTS(

n_actions=dataset.n_actions,
len_list=dataset.len_list,
is_zozotown_prior=True, # replicate policy used in the ZOZOTOWN production
campaign="all",
random_state=0

)
>>> action_dist = evaluation_policy.compute_batch_action_dist(

n_sim=100000, n_rounds=bandit_feedback["n_rounds"]
)

# (3) Off-Policy Evaluation
>>> ope = OffPolicyEvaluation(

bandit_feedback=bandit_feedback,
ope_estimators=[IPW()]

)
>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)

# estimate the performance improvement of BernoulliTS over Random
>>> ground_truth_random = bandit_feedback["reward"].mean()
>>> print(estimated_policy_value["ipw"] / ground_truth_random)
1.198126...

Code Snippet 1: Overall Flow of Off-Policy Evaluation using Open Bandit Pipeline

In the following subsections, we explain some important features in the example flow.

E.2.1 Data Loading and Preprocessing

We prepare easy-to-use data loader for Open Bandit Dataset. obp.dataset.OpenBanditDataset
will download and preprocess the original data.

# load and preprocess raw data in the "ALL" campaign collected by the Random policy
>>> dataset = OpenBanditDataset(behavior_policy="random", campaign="all")
# obtain logged bandit feedback generated by the behavior policy
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback()

Code Snippet 2: Data Loading and Preprcessing

Users can implement their own feature engineering in the pre_process method
of obp.dataset.OpenBanditDataset. Moreover, by following the interface of
BaseBanditDataset in the dataset module, one can handle future open datasets for bandit
algorithms and OPE. The dataset module also provides a class to generate synthetic bandit datasets
and to modify multiclass classification data to bandit data.

E.2.2 Production Policy Replication

After preparing the logged bandit data, we now replicate BernoulliTS used during the data collection
in the ZOZOTOWN production. Then, we can use it as the evaluation policy.
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# define evaluation policy (the Bernoulli TS policy here)
>>> evaluation_policy = BernoulliTS(

n_actions=dataset.n_actions,
len_list=dataset.len_list,
is_zozotown_prior=True, # replicate BernoulliTS in the ZOZOTOWN production
campaign="all",
random_state=0

)
# compute action choice probabilities of the evaluation policy by running simulation
# action_dist is an array of shape (n_rounds, n_actions, len_list)
# representing action choice probabilities of the evaluation policy
>>> action_dist = evaluation_policy.compute_batch_action_dist(

n_sim=100000, n_rounds=bandit_feedback["n_rounds"]
)

Code Snippet 3: Production Policy Replication

The compute_batch_action_dist method of BernoulliTS computes action choice probabilities
based on given hyperparameters of the beta distribution. By activating the is_zozotown_prior
argument, one can replicate BernoulliTS used in the ZOZOTOWN production. action_dist is
an array representing the distribution over actions (i.e., action choice probabilities) made by the
evaluation policy.

E.2.3 Off-Policy Evaluation

Our final step is OPE, which attempts to estimate the performance of bandit policies using only the
log data generated by a behavior policy. Our pipeline provides an easy procedure to implement OPE
as follows.

# estimate the policy value of BernoulliTS based on its action choice probabilities
# it is possible to set multiple OPE estimators to the ‘ope_estimators‘ argument
>>> ope = OffPolicyEvaluation(

bandit_feedback=bandit_feedback,
ope_estimators=[IPW()]

)
>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)
>>> print(estimated_policy_value)
{"ipw": 0.004553...} # dictionary containing policy values estimated by each

estimator

# compare the estimated performance of BernoulliTS with the performance of Random
# our OPE procedure suggests that BernoulliTS improves Random by 19.81%
>>> ground_truth_random = bandit_feedback["reward"].mean()
>>> print(estimated_policy_value["ipw"] / ground_truth_random)
1.198126...

Code Snippet 4: Off-Policy Evaluation

Users can implement their own OPE estimator by following the interface of
BaseOffPolicyEstimator class. OffPolicyEvaluation class summarizes and compares
the policy values estimated by several OPE estimators. bandit_feedback["reward"].mean() is
the empirical mean of factual rewards (on-policy estimate of the policy value) in the log and thus is
the performance of the Random policy during the data collection period.

E.3 Example Code (Bandit Experiment with Open Bandit Dataset)

By using Open Bandit Dataset, we can evaluate the performance of (online and offline) bandit
algorithms. Here is an example of using Open Bandit Dataset to evaluate the performance of
IPWLearner, which is an offline bandit learning method described in Appendix A.
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# implementing the evaluation of IPWLearner using log data generated by Random
>>> from sklearn.linear_model import LogisticRegression
# import open bandit pipeline (obp)
>>> from obp.dataset import OpenBanditDataset
>>> from obp.policy import IPWLearner
>>> from obp.ope import OffPolicyEvaluation, InverseProbabilityWeighting as IPW

# (1) Data Loading and Preprocessing
>>> dataset = OpenBanditDataset(behavior_policy="random", campaign="all")
>>> bandit_feedback_train, bandit_feedback_test =

dataset.obtain_batch_bandit_feedback(is_timeseries_split=True)

# (2) Off-Policy Learning
>>> eval_policy = IPWLearner(

n_actions=dataset.n_actions, base_classifier=LogisticRegression()
)

>>> eval_policy.fit(
context=bandit_feedback_train["context"],
action=bandit_feedback_train["action"],
reward=bandit_feedback_train["reward"],
pscore=bandit_feedback_train["pscore"]

)
>>> action_dist = eval_policy.predict(context=bandit_feedback_test["context"])

# (3) Off-Policy Evaluation
>>> ope = OffPolicyEvaluation(

bandit_feedback=bandit_feedback,
ope_estimators=[IPW()]

)
>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)

# performance improvement of IPWLearner over Random (baseline)
>>> ground_truth_random = bandit_feedback["reward"].mean()
>>> print(estimated_policy_value["ipw"] / ground_truth_random)
1.198126...

Code Snippet 5: Bandit Experiment with Open Bandit Dataset

By following the above flow, researchers can evaluate the performance of their (online or offline)
bandit algorithms with Open Bandit Dataset and Pipeline.

A formal quickstart example with synthetic classification data is available at https://github.
com/st-tech/zr-obp/blob/master/examples/quickstart/opl.ipynb. We also prepare a
script to conduct the evaluation of bandit algorithms with synthetic data in https://github.
com/st-tech/zr-obp/tree/master/examples/opl (evaluation of offline bandit algorithms)
and https://github.com/st-tech/zr-obp/tree/master/examples/online (evaluation of
online bandit algorithms).

E.4 Example Code (OPE Experiment with Synthetic Data)

With Open Bandit Pipeline, we can use synthetic data to evaluate the performance of OPE estimators.
Here is an example of conducting OPE of the performance of IPWLearner using Inverse Probability
Weighting (IPW) as an OPE estimator. We then evaluate the OPE performance of IPW based on the
squared error.
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# implementing OPE of IPWLearner using synthetic bandit data
>>> from sklearn.linear_model import LogisticRegression
# import open bandit pipeline (obp)
>>> from obp.dataset import SyntheticBanditDataset
>>> from obp.policy import IPWLearner
>>> from obp.ope import (

OffPolicyEvaluation,
RegressionModel,
InverseProbabilityWeighting as IPW,

)

# (1) Generate Synthetic Bandit Data
dataset = SyntheticBanditDataset(n_actions=10, reward_type="binary")
>>> bandit_feedback_train = dataset.obtain_batch_bandit_feedback(n_rounds=1000)
>>> bandit_feedback_test = dataset.obtain_batch_bandit_feedback(n_rounds=1000)

# (2) Off-Policy Learning
>>> eval_policy = IPWLearner(

n_actions=dataset.n_actions, base_classifier=LogisticRegression()
)

>>> eval_policy.fit(
context=bandit_feedback_train["context"],
action=bandit_feedback_train["action"],
reward=bandit_feedback_train["reward"],
pscore=bandit_feedback_train["pscore"]

)
>>> action_dist = eval_policy.predict(context=bandit_feedback_test["context"])

# (3) Off-Policy Evaluation and Evaluation of OPE
>>> ope = OffPolicyEvaluation(

bandit_feedback=bandit_feedback,
ope_estimators=[IPW()]

)
# evaluate the estimation performance (accuracy) of IPW by the squared error ("se")
>>> squared_errors = ope.evaluate_performance_of_estimators(

ground_truth_policy_value=ground_truth,
action_dist=action_dist,
metric="se",

)
>>> print(squared_errors)
{’ipw’: 0.00267235896316153} # the accuracy of IPW in OPE

Code Snippet 6: OPE Experiment with Synthetic Data

By following the above flow, researchers can evaluate the performance of their OPE esti-
mators on synthetic data. A formal quickstart example with synthetic classification data is
available at https://github.com/st-tech/zr-obp/blob/master/examples/quickstart/
synthetic.ipynb. We also prepare a script to conduct the evaluation of OPE experiments with syn-
thetic data in https://github.com/st-tech/zr-obp/tree/master/examples/synthetic.

E.5 Example Code (OPE Experiment with Multiclass Classification Data)

Researchers often use multiclass classification data to evaluate the estimation accuracy of OPE
estimators [1, 8, 10, 20, 41, 42, 51]. Appendix G of Farajtabar et al. [10] describes how to modify
classification datasets into bandit data in detail. Open Bandit Pipeline facilitates this kind of OPE
experiments with multiclass classification data as follows.
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# implementing evaluation of OPE using classification data
>>> from sklearn.datasets import load_digits
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.linear_model import LogisticRegression
# import open bandit pipeline (obp)
>>> from obp.dataset import MultiClassToBanditReduction
>>> from obp.ope import OffPolicyEvaluation, InverseProbabilityWeighting as IPW

# (1) Data Loading and Bandit Reduction
>>> X, y = load_digits(return_X_y=True)
>>> dataset = MultiClassToBanditReduction(

X=X,
y=y,
base_classifier_b=LogisticRegression(random_state=0)

)
>>> dataset.split_train_eval(eval_size=0.7, random_state=0)
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback(random_state=0)

# (2) Evaluation Policy Derivation
# obtain action choice probabilities of an evaluation policy
>>> action_dist = dataset.obtain_action_dist_by_eval_policy(

base_classifier_e=RandomForestClassifier(random_state=0)
)

# calculate the ground-truth performance of the evaluation policy
>>> ground_truth = dataset.calc_ground_truth_policy_value(action_dist=action_dist)
>>> print(ground_truth)
0.9634340222575517

# (3) Off-Policy Evaluation and Evaluation of OPE
>>> ope = OffPolicyEvaluation(

bandit_feedback=bandit_feedback,
ope_estimators=[IPW()]

)
# evaluate the estimation performance (accuracy) of IPW by the squared error ("se")
>>> squared_errors = ope.evaluate_performance_of_estimators(

ground_truth_policy_value=ground_truth,
action_dist=action_dist,
metric="se",

)
>>> print(squared_errors)
{’ipw’: 0.01827255896321327} # the accuracy of IPW in OPE

Code Snippet 7: OPE Experiment with Classification Data

By following the above flow, researchers can evaluate the performance of their OPE estimators by
transforming classification data into bandit data.

A formal quickstart example with multiclass classification data is available at https://github.
com/st-tech/zr-obp/blob/master/examples/quickstart/multiclass.ipynb. We also
prepare a script to conduct the evaluation of OPE experiments with multiclass classification data in
https://github.com/st-tech/zr-obp/tree/master/examples/multiclass.
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