
Appendix
We present more experiments and provide all missing proofs in the appendix. Concretely, Appendix A
describes the experiment setup and contains additional numerical experiments. Appendix B and C
provide the detailed proofs for our unified privacy guarantee in Theorem 2 and unified utility and
communication complexity analysis in Theorem 3, respectively. Appendix D provides the proof for
CDP-SGD (Theorem 1). Finally, Appendix E provides the proofs for Section 5, including Lemma 1
(showing that several local gradient estimators satisfy the generic Assumption 3) and Corollaries 1–3
(instantiating Lemma 1 in the unified Theorem 3) for the proposed SoteriaFL-style algorithms.

A Experiments

We describe the problem definition and provide more experiments for logistic regression with
nonconvex regularization in Appendix A.1 and shallow neural network training in Appendix A.2.

Experiment setup. In our experiments, we use random-k sparsification (see Example 1 in Section 2)
as the compression operator, and we set k = b d

20c, i.e., randomly select 5% coordinates over
d dimension to communicate. In other words, the number of communication bits per round of
uncompressed algorithms equals to that of 20 rounds of compressed algorithms. The number of
nodes n is 10. For the algorithmic parameters, we tune the stepsizes (learning rates) for all algorithms
for each nonconvex problem and select their best ones from the set {0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1}.
Other parameters are set according to their theoretical values. We would like point out that, in
order to achieve privacy guarantee, bounded gradient (Assumption 2) is required. However, it
is not easy to obtain this upper bound G or it is somewhat large especially for neural networks.
Thus, following experiments in previous works [73, 76, 17, 54], we also apply gradient clipping
(i.e. clip

G
(g) = min(1, G

kgk) · g) in our experiments. In particular, we choose G = 0.5 for logistic
regression with nonconvex regularization in Appendix A.1 and G = 1 for shallow neural network
training in Appendix A.2. For the Gaussian perturbation ⇠, we will run experiments for different
levels of (✏, �)-LDP guarantee, and compute the variance of ⇠ according to the theory.

A.1 Logistic regression with nonconvex regularization

The first task is the logistic regression with a nonconvex regularizer, where the objective function
over a data sample (a, b) 2 D is defined as

f(x; (a, b)) := log
�
1 + exp(�ba>x)

�
+ �

dX

j=1

x
2
j

1 + x2
j

.

Here, a 2 Rd denotes the features, b is its label, and � is the regularization parameter. We choose
� = 0.2 and run the experiments on the standard a9a dataset [10]. To demonstrate the privacy-utility-
communication trade-offs, we consider three levels of (✏, �)-LDP with different ✏ = 1, 5, 10 and a
common � = 10�3, where the experimental results are reported in Figure 3.

Remark. From the experimental results in Figure 3, it can be seen that the two uncompressed
algorithms (LDP-SGD and LDP-SVRG) converge faster than the three compressed algorithms
(CDP-SGD, SoteriaFL-SGD, SoteriaFL-SVRG) in terms of communication rounds (see left
columns). However, in terms of communication bits (see right columns), compressed algorithms
perform better than the uncompressed algorithms. This validates that communication compression
indeed provide significant savings in terms of communication cost. The figure also confirms that
shifted compression based SoteriaFL typically performs better than direct compression based CDP-
SGD. For SoteriaFL-style algorithms, it turns out that SoteriaFL-SVRG performs slightly better
than SoteriaFL-SGD in the utility. This is quite consistent with our theoretical results.

17

0 5 10 15 20 25

0.2

0.4

0.6

0.8

Communication rounds

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 0.2 0.4 0.6 0.8 1

·105

0.2

0.4

0.6

0.8

Communication bits

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

(a). (✏, �)-LDP with ✏ = 1 and � = 10�3

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Communication rounds

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 1 2 3 4

·105

0.2

0.4

0.6

0.8

Communication bits

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

(b). (✏, �)-LDP with ✏ = 5 and � = 10�3

0 50 100 150

0.2

0.4

0.6

0.8

Communication rounds

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 1 2 3 4 5 6

·105

0.2

0.4

0.6

0.8

Communication bits

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

(c). (✏, �)-LDP with ✏ = 10 and � = 10�3

Figure 3: Logistic regression with nonconvex regularization on the a9a dataset under (✏, �)-LDP with
✏ = 1, 5, 10 and � = 10�3. The left (resp. right) column is for utility vs. communication rounds
(resp. communication bits).

A.2 Shallow neural network training

We consider a simple 1-hidden layer neural network training task, with 64 hidden neurons, sigmoid
activation functions, and the cross-entropy loss. The objective function over a data sample (a, b) is
defined as

f(x; (a, b)) = `(softmax(W2 sigmoid(W1a+ c1) + c2), b),

where `(·, ·) denotes the cross-entropy loss, the optimization variable is collectively denoted by
x = vec(W1, c1,W2, c2), with the dimensions of the network parameters W1, c1, W2, c2 being
64⇥ 784, 64⇥ 1, 10⇥ 64, and 10⇥ 1, respectively. Here, we run the experiments on the standard
MNIST dataset [44]. To demonstrate the privacy-utility-communication trade-offs, we consider five
levels of (✏, �)-LDP with ✏ = 1, 2, 4, 8, 16 and a common � = 10�3, where the experimental results
are reported in Figures 4–8, respectively.

18

0 50 100 150
0

0.5

1

1.5

Communication rounds

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 0.5 1 1.5 2 2.5

·108

0.5

1

1.5

Communication bits

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 50 100 150

0.2

0.4

0.6

0.8

Communication rounds

Te
st

ac
cu

ra
cy

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 0.5 1 1.5 2 2.5

·108

0.2

0.4

0.6

0.8

Communication bits

Te
st

ac
cu

ra
cy

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

Figure 4: Shallow neural network training on the MNIST dataset under (✏, �)-LDP with ✏ = 1 and
� = 10�3. The top (resp. bottom) row is for utility (resp. test accuracy) vs. communication rounds
and communication bits.

0 50 100 150 200
0

0.5

1

1.5

Communication rounds

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 1 2 3

·108

0.5

1

1.5

Communication bits

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 50 100 150 200

0.2

0.4

0.6

0.8

Communication rounds

Te
st

ac
cu

ra
cy

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 1 2 3

·108

0.2

0.4

0.6

0.8

Communication bits

Te
st

ac
cu

ra
cy

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

Figure 5: Shallow neural network training on the MNIST dataset under (✏, �)-LDP with ✏ = 2 and
� = 10�3. The top (resp. bottom) row is for utility (resp. test accuracy) vs. communication rounds
and communication bits.

19

0 50 100 150 200 250 300

0

0.5

1

1.5

Communication rounds

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 1 2 3 4 5

·108

0

0.5

1

1.5

Communication bits

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

Communication rounds

Te
st

ac
cu

ra
cy

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 1 2 3 4 5

·108

0.2

0.4

0.6

0.8

Communication bits

Te
st

ac
cu

ra
cy

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

Figure 6: Shallow neural network training on the MNIST dataset under (✏, �)-LDP with ✏ = 4 and
� = 10�3. The top (resp. bottom) row is for utility (resp. test accuracy) vs. communication rounds
and communication bits.

0 100 200 300 400 500

0

0.5

1

1.5

Communication rounds

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 2 4 6 8

·108

0

0.5

1

1.5

Communication bits

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

Communication rounds

Te
st

ac
cu

ra
cy

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 2 4 6 8

·108

0.2

0.4

0.6

0.8

Communication bits

Te
st

ac
cu

ra
cy

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

Figure 7: Shallow neural network training on the MNIST dataset under (✏, �)-LDP with ✏ = 8 and
� = 10�3. The top (resp. bottom) row is for utility (resp. test accuracy) vs. communication rounds
and communication bits.

20

0 200 400 600 800 1,000

0

0.5

1

1.5

Communication rounds

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 0.5 1 1.5

·109

0

0.5

1

1.5

Communication bits

U
til

ity

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 200 400 600 800 1,000

0.2

0.4

0.6

0.8

1

Communication rounds

Te
st

ac
cu

ra
cy

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

0 0.5 1 1.5

·109

0.2

0.4

0.6

0.8

1

Communication bits

Te
st

ac
cu

ra
cy

LDP-SGD
LDP-SVRG
CDP-SGD
SoteriaFL-SGD
SoteriaFL-SVRG

Figure 8: Shallow neural network training on the MNIST dataset under (✏, �)-LDP with ✏ = 16 and
� = 10�3. The top (resp. bottom) row is for utility (resp. test accuracy) vs. communication rounds
and communication bits.

Remark. Note that here we not only report utility (similar as Figure 3) but also include the the test
accuracy for training the neural networks (see bottom rows in Figures 4–8). The takeaways from
the experimental results are similar to previous experiments on logistic regression with nonconvex
regularization (Figure 3). Again, the two uncompressed algorithms (LDP-SGD and LDP-SVRG)
converge faster than the three compressed algorithms (CDP-SGD, SoteriaFL-SGD, SoteriaFL-
SVRG) in terms of communication rounds (see left columns in each figure), but the gap becomes
smaller when the privacy level ✏ gets larger (i.e. less privacy guarantee). However, in terms of
communication bits (see right columns in each figure), compressed algorithms again perform much
better than the uncompressed algorithms, validating the advantage of communication compression
schemes. Last but not least, shifted compression based SoteriaFL-SGD performs better than direct
compression based CDP-SGD in both utility and test accuracy. However, it turns out that SoteriaFL-
SVRG may perform worse than CDP-SGD for training this shallow neural network.

B Proof of Theorem 2

In the proof of Theorem 2, we apply a moment argument (similar to [1]) to prove the local differential
privacy guarantees. Before going into the detailed proof, we first define some concepts.

Moment generating function. Assume that there is a mechanism M : D ! R. For neighboring
datasets D,D

0 2 D, a mechanism M, auxiliary inputs aux, and an outcome o 2 R, we define the
private loss at o as

c(o;M, aux, D,D
0) := log

Pr{M(aux, D) = o}
Pr{M(aux, D0) = o} .

We also define
↵
M(�; aux, D,D

0) := logEo⇠M(aux,D) [exp (� · c(o;M, aux, D,D
0))]

and
↵
M
i
(�) := max

aux,D,D0
↵
M(�; aux, D,D

0),

21

where D = (D�i, Di), D0 = (D�i, D
0
i
) are neighboring datasets that differ only at client i, D�i

denoting all the data at clients other than client i. We call ↵M(�; aux, D,D
0) and ↵M

i
(�) the log

moment generating functions.

Sub-mechanisms. We assume that there are n⇥ T sub-mechanisms {Mt

i
}i2[n],tT in M, where

Mt

i
corresponds to the mechanism for client i in round t. We further let Mt

i
:= A � Mt

i
be the

composition of mechanism Mt

i
and the mechanism A. Here, A : R ! R is a random mechanism

that maps an outcome to another outcome, and Mt

i
is possibly an adaptive mechanism that takes

the input of all the outputs before time t, i.e. o
s

i
for all s < t and i 2 [n]. We assume that given

all the previous outcomes os
i

for s < t, the random mechanisms Mt

i
for all i 2 [n] are independent

w.r.t. each other (this is satisfied in SoteriaFL). In SoteriaFL (Algorithm 2), A corresponds to the
compression step, and Mt

i
corresponds the Gaussian perturbation.

Before proving Theorem 2, we first state the following result from [1].
Proposition 1 (Theorem 2 in [1]). For any ✏ > 0, the mechanism M is (✏, �)-LDP for client i with
� = min� exp

�
↵
M
i
(�)� �✏

�
.

According to Proposition 1, we know that if the log moment generating function ↵M
i
(�) is bounded,

then we can show that the mechanism M satisfies (✏, �)-LDP with some parameters ✏ and �. To
prove that the log moment generating function ↵M

i
(�) is bounded, we divide it into two parts: 1) the

log moment generating function ↵M
i
(�) for the whole mechanism can be bounded by the summation

of the log moment generating function of all sub mechanisms ↵Mt
i

i
(�) from t = 1 to T ; and 2) the

log moment generating function for each sub mechanism is bounded, i.e. ↵Mt
i

i
(�) is bounded. To

this end, we provide the following two lemmas to formalize these two parts respectively.
Lemma 2 (Privacy for composition). For any client i and any �, the following holds

↵
M
i
(�) 

TX

t=1

↵
Mt

i(�).

Lemma 3 (Privacy for sub mechanism). Suppose that Assumption 2 and 3 are satisfied. For any
client i, let �p � 1 and let Ib be a random minibatch from local dataset Di = {di,j}mj=1 where each
data sample di,j is chosen independently with probability q = b

m
<

GA
16b�p

. Then for any positive

integer �  2b2�2
p

3G2
A

log GA
qb�p

, the sub mechanism Mt

i
satisfies

↵
Mt

i(�)  6�(�+ 1)(G2
A
/4 +G

2
B
)

(1� q)m2�2
p

+O

✓
q
3
�
3

�3
p

◆
.

The detailed proofs for Lemmas 2 and 3 are provided in Appendix B.1 and B.2, respectively.

Proof of Theorem 2. Now, we are ready to prove our privacy guarantee in Theorem 2 using
Proposition 1, and Lemmas 2 and 3.

Proof of Theorem 2. Assume for now that �p,� satisfy the conditions in Lemma 3, namely

� 
2b2�2

p

3G2
A

log
GA

q�pb
. (7)

By Lemmas 3 and 2, there exists some constant ĉ such that for small enough q, the log moment
generating function of Algorithm 2 can be bounded as follows

↵
M
i
(�)  ĉ

T�
2(G2

A
/4 +G

2
B
)

m2�2
p

, 8i 2 [n].

Combining the above bound and Proposition 1, to guarantee Algorithm 2 to be (✏, �)-LDP, it suffices
to establish that there exists some � that satisfies (7) and the following two conditions:

ĉ
T�

2(G2
A
/4 +G

2
B
)

m2�2
p

 �✏

2
or equivalently � 

✏m
2
�
2
p

2ĉT (G2
A
/4 +G2

B
)
, (8)

22

exp

✓
��✏

2

◆
 � or equivalently � � 2

✏
log

1

�
. (9)

It is now easy to verify that when ✏ = c
0
q
2
T for some constant c0, we can satisfy all these conditions

by setting

�
2
p
= c

(G2
A
/4 +G

2
B
)T log(1/�)

m2✏2

for some constant c.

B.1 Proof of Lemma 2

Before embarking on the proof of Lemma 2, we begin with an observation that connects the log
moment generation function with the Rényi divergence of distributions Pr{M(aux, D) = o} and
Pr{M(aux, D0) = o}.

Lemma 4. Denote the Rényi divergence between any two distributions P and Q with parameter
�+ 1 as

D
Rényi
�+1 (PkQ) =

1

�
logEP

✓
dP
dQ

◆�

.

Then, the log moment generating function has the following form

↵
M(�; aux, D,D

0) = �D
Rényi
�+1 (M(aux, D)kM(aux, D0)) . (10)

Proof of Lemma 4. By direct computation, we have

↵
M(�; aux, D,D

0) = logEo⇠M(aux,D) [exp (� · c(o;M, aux, D,D
0))]

= logEo⇠M(aux,D)


exp

✓
� · log Pr{M(aux, D) = o}

Pr{M(aux, D0) = o}

◆�

= logEo⇠M(aux,D)

"✓
Pr{M(aux, D) = o}
Pr{M(aux, D0) = o}

◆�
#

= �D
Rényi
�+1 (M(aux, D)kM(aux, D0)) .

We will also need the following data processing inequality for Rényi divergence.

Lemma 5 (Data processing inequality for Rényi divergence [68]). Let P,Q be two distributions
over R, S : R ! R be a random mapping, and D

Rényi
�

denote the Rényi Divergence, then we have

D
Rényi
�+1 (S(P)kS(Q))  D

Rényi
�+1 (PkQ),

where S(P) stands for the resulting distribution of applying random mapping S on distribution P .

Proof of Lemma 2. We divide the proof of Lemma 2 into two steps: 1) ↵M
i
(�) 

P
T

t=1 ↵
Mt

i(�);
and 2) ↵Mt

i(�)  ↵
Mt

i(�). Combining these two steps directly leads to the declared bound, namely

↵
M
i
(�) 

TX

t=1

↵
Mt

i(�) 
TX

t=1

↵
Mt

i(�).

The rest of this proof is thus dedicated to establishing the two steps. For simplicity, we use o
1:T
1:n to

denote the outcomes {ot
i
}i2[n],t2[T], and M1:T

1:n to denote the mechanisms {Mt

i
}i2[n],t2[T].

23

Step 1: establishing ↵M
i
(�) 

P
T

t=1 ↵
Mt

i(�). For neighboring datasets D = (D�i, Di), D0 =
(D�i, D

0
i
) that differ only on client i, we have

c(o1:T1:n ;M1:T
1:n , o

1:T�1
1:n , D,D

0) = log
Pr{M1:T

1:n (o
1:T�1
1:n , D) = o

1:T
1:n}

Pr{M1:T
1:n (o

1:T�1
1:n , D0) = o1:T1:n}

= log
TY

t=1

nY

j=1

Pr{Mt

j
(o1:T�1

1:n , D) = o
t

j
}

Pr{Mt

j
(o1:T�1

1:n , D0) = ot
j
}

= log
TY

t=1

Pr{Mt

i
(o1:T�1

1:n , D) = o
t

i
}

Pr{Mt

i
(o1:T�1

1:n , D0) = ot
i
}

=
TX

t=1

log
Pr{Mt

i
(o1:T�1

1:n , D) = o
t

i
}

Pr{Mt

i
(o1:T�1

1:n , D0) = ot
i
}

=
TX

t=1

c(ot
i
;Mt

i
, o

1:T�1
1:n , D,D

0).

Here, the second line comes from the fact that the mechanisms of different clients at the same round
are independent, and the third line comes from the fact that for any client j 6= i, Dj = D

0
j
, and thus

Pr{Mt
j(o

1:T�1
1:n ,D)=o

t
j}

Pr{Mt
j(o

1:T�1
1:n ,D0)=otj}

= 1. Then we have

Eo1:T1:n⇠M1:T
1:n

⇥
exp

�
�c(o1:T1:n ;M1:T

1:n , o
1:T�1
1:n , D,D

0)
�⇤

= Eo1:T1:n⇠M1:T
1:n

"
exp

�

TX

t=1

c(ot
i
;Mt

i
, o

1:T�1
1:n , D,D

0)

!#

= Eo1:T1:n⇠M1:T
1:n

"
TY

t=1

exp
�
�c(ot

i
;Mt

i
, o

1:T�1
1:n , D,D

0)
�
#

=
TY

t=1

Eo1:T1:n⇠M1:T
1:n

⇥
exp

�
�c(ot

i
;Mt

i
, o

1:T�1
1:n , D,D

0)
�⇤

=
TY

t=1

exp
⇣
↵
Mt

i(�; o1:T�1
1:n , D,D

0)
⌘

= exp

TX

t=1

↵
Mt

i(�; o1:T�1
1:n , D,D

0)

!
.

Taking logarithm on both sides and maximizing over o1:T�1
1:n , D,D

0, we can show that

↵
M
i
(�) 

TX

t=1

↵
Mt

i(�).

Step 2: establishing ↵Mt
i(�)  ↵

Mt
i(�). This step follows directly from Lemma 5. Namely, for

fixed i and t, we can compute

↵
Mt

i(�; o1:T�1
1:n , D,D

0) = �D
Rényi
�+1

�
Mt

i
(o1:T�1

1:n , D)kMt

i
(o1:T�1

1:n , D
0)
�

= �D
Rényi
�+1

⇣
(A �Mt

i
)(o1:T�1

1:n , D)k(A �Mt

i
)(o1:T�1

1:n , D
0)
⌘

 �D
Rényi
�+1

⇣
Mt

i
(o1:T�1

1:n , D)kMt

i
(o1:T�1

1:n , D
0)
⌘

= ↵
Mt

i(�; o1:T�1
1:n , D,D

0).

Then, taking the maximum over o1:T�1
1:n , D,D

0, we have

↵
Mt

i(�)  ↵
Mt

i(�).

24

B.2 Proof of Lemma 3

It is worth noting that the proof does not requires f(x; di,j) to be a function with respect to the
data sample di,j at point x, it can be any function related to di,j , for example, �i,j in Assumption
3. Inspired by [69], we decompose the gradient estimator into two parts and bound the privacy
respectively. Now we provide the detailed proofs below.

Proof of Lemma 3. From Assumption 3, we first write out and decouple the sub-mechanism Mt

i

(corresponding to the Gaussian perturbation) as

1

b

X

j2Ib

'
t

i,j
+

1

m

mX

j=1

t

i,j
+ ⇠t

i
=

0

@1

b

X

j2Ib

'
t

i,j
+ ⇠t

i,1

1

A+

0

@ 1

m

mX

j=1

t

i,j
+ ⇠t

i,2

1

A , (11)

where ⇠t
i

is generated from N (0,�2
p
I) and ⇠t

i,1, ⇠
t
2,1 are generated from N (0,

2�2
p

3 I), N (0,
�
2
p

3 I)

independently. Now, Mt

i
can be viewed as a composition of two mechanisms Mt

i,1 and Mt

i,2, where
Mt

i,1 denote the first term and Mt

i,2 denote the second term in the right-hand-side (RHS) of (11).
From [1, Theorem 2.1], we have

↵
Mt

i(�)  ↵
Mt

i,1(�) + ↵
Mt

i,2(�). (12)

For the first term of (12), according to [1, Lemma 3], we have

↵
Mt

i,1(�)  3�(�+ 1)G2
A

2(1� q)m2�2
p

+O

✓
q
3
�
3

�3
p

◆
, (13)

for q = b

m
<

GA
16�pb

and any positive integer �  2b2�2
p

3G2
A

log GA
q�pb

, where we set �2 in [1, Lemma 3] to

be 2b2�2
p

3G2
A

.

For the second term of (12), according to Lemma 4 (the relationship between Rényi divergence and
the moment generating function), we have

↵
Mt

i,2(�) = �D
Rényi
�+1 (PkQ), (14)

where P = 1
m

P
m

j=1
t

i,j
+N (0,

2�2
p

3 I) and Q = 1
m

P
m

j=1(
t

i,j
)0 +N (0,

�
2
p

3 I). Here, { t

i,j
, j 2

[m]} contains the functions corresponding to the data in dataset D, and {(t

i,j
)0, j 2 [m]} contains

the functions corresponding to the data in dataset D0. We note that all functions except one in
{ t

i,j
, j 2 [m]} and {(t

i,j
)0, j 2 [m]} are the same, since the datasets D and D

0 only differ by one
element. According to [8, Lemma 17], we have

�D
Rényi
�+1 (PkQ) =

3�(�+ 1)
��� 1
m

P
m

j=1
t

i,j
� 1

m

P
m

j=1(
t

i,j
)0
���
2

2�2
p

 6�(�+ 1)G2
B

m2�2
p

. (15)

The proof is finished by combining (12)–(15).

C Proof of Theorem 3

We now provide the detailed proofs for our unified Theorem 3. First, according to the update rule
xt+1 = xt � ⌘tvt (Line 9 in Algorithm 2) and the smoothness assumption (Assumption 1), we have

Et[f(x
t+1)]  Et


f(xt)� ⌘thrf(xt),vti+ L⌘

2
t

2
kvtk2

�
, (16)

where Et takes the expectation conditioned on all history before round t. To begin, we show that vt

is unbiased as follows:

Et[v
t] = Et

"
st +

1

n

nX

i=1

vt

i

#
= Et

"
1

n

nX

i=1

st
i
+

1

n

nX

i=1

Ct

i
(gt

i
� st

i
)

#

25

= Et

"
1

n

nX

i=1

gt

i

#
= Et

"
1

n

nX

i=1

(g̃t

i
+ ⇠t

i
)

#
(17)

= Et

"
1

n

nX

i=1

g̃t

i

#
(18)

= Et

"
1

n

nX

i=1

rfi(x
t)

#
= rf(xt), (19)

where (17) follows from (2), (18) holds due to ⇠t
i
⇠ N (0,�2

p
I), and (19) is due to Et[g̃t

i
] = rfi(xt)

from Assumption 3.

Plugging (18) into (16), we get

Et[f(x
t+1)]  Et


f(xt)� ⌘tkrf(xt)k2 + L⌘

2
t

2
kvtk2

�
. (20)

We then bound the last term Et[kvtk2] in the follow lemma, whose proof is provided in Appendix C.1.
Lemma 6. Suppose that vt is defined and computed in Algorithm 2, we have

Et[kvtk2]  Et

"
(1 + !)

n2

nX

i=1

kg̃t

i
�rfi(x

t)k2
#
+

!

n2

nX

i=1

krfi(x
t)� st

i
k2

+ krf(xt)k2 +
(1 + !)d�2

p

n
. (21)

To continue, we need to bound the first two terms in the right-hand-side of (21). The first term can be
controlled via (3b) of Assumption 3. Now we show that the second term will shrink in the following
lemma, whose proof is provided in Appendix C.2.
Lemma 7. Suppose that Assumption 1 holds and the shift st+1

i
is defined and computed in Algo-

rithm 2. Then letting �t =
q

1+2!
2(1+!)3 , we have

Et

"
1

n

nX

i=1

krfi(x
t+1)� st+1

i
k2
#
 Et

⇣
1� 1

2(1 + !)

⌘ 1
n

nX

i=1

��rfi(x
t)� st

i

��2

+
1

(1 + !)n

nX

i=1

kg̃t

i
�rfi(x

t)k2

+ 2(1 + !)L2
��xt+1 � xt

��2 +
d�

2
p

1 + !

⌘�
. (22)

To facilitate presentation, let us introduce the short-hand notation St := 1
n

P
n

i=1 krfi(xt)� st
i
k2.

Then we define the following potential function

�t := f(xt)� f
⇤ + ↵L�t +

�

L
St

, (23)

for some ↵ � 0,� � 0. With the help of Lemmas 6 and 7, we show that this potential function
decreases in each round in the following lemma, whose proof is provided in Appendix C.3.
Lemma 8. Under Assumptions 1 and 3, if we choose the stepsize as

⌘t ⌘ ⌘  min

(
1

(1 + 2↵C4 + 4�(1 + !) + 2↵C3/⌘
2)L

,

p
�np

1 + 2↵C4 + 4�(1 + !)(1 + !)L

)
,

where ↵ = 3�C1

2(1+!)✓L2 , 8� > 0, and the shift stepsize as �t ⌘
q

1+2!
2(1+!)3 , then we have for any round

t � 0,

Et[�t+1]  �t �
⌘t

2
krf(xt)k2 + 3�

2(1 + !)L
(C2 + d�

2
p
). (24)

26

Given Lemma 8 and Theorem 2, now we are ready to prove Theorem 3 regarding the utility and
communication complexity for SoteriaFL.

Proof of Theorem 3. First, we sum up (24) (Lemma 8) from round t = 0 to T � 1,
T�1X

t=0

⌘t

2
Ekrf(xt)k2  �0 +

3�

2(1 + !)L

�
C2 + d�

2
p

�
T. (25)

Then by choosing the stepsize ⌘t as in Lemma 8 and the privacy variance �2
p
= c(G2

A/4+G
2
B)T log(1/�))

m2✏2

according to Theorem 2, we obtain

1

T

T�1X

t=0

Ekrf(xt)k2  2�0

⌘T
+

3�

(1 + !)L⌘

✓
C2 +

c(G2
A
/4 +G

2
B
)dT log(1/�)

m2✏2

◆
, (26)

and SoteriaFL (Algorithm 2) satisfies (✏, �)-LDP.

Finally, the total number of communication rounds T in (5) comes from the following relations in
RHS of (26)

2�0

⌘T
 3�

(1 + !)L⌘

c(G2
A
/4 +G

2
B
)dT log(1/�)

m2✏2
,

C2  c(G2
A
/4 +G

2
B
)dT log(1/�)

m2✏2
.

The utility guarantee (6) directly follows from (26) by choosing T as in (5).

C.1 Proof of Lemma 6

According to the definition of vt, we have

Et[kvtk2] = Et

2

4
�����
1

n

nX

i=1

st
i
+

1

n

nX

i=1

Ct

i
(gt

i
� st

i
)

�����

2
3

5

= Et

2

4
�����
1

n

nX

i=1

Ct

i
(gt

i
� st

i
)� 1

n

nX

i=1

(gt

i
� st

i
) +

1

n

nX

i=1

gt

i

�����

2
3

5

 Et

"
!

n2

nX

i=1

kgt

i
� st

i
k2
#
+ Et

2

4
�����
1

n

nX

i=1

gt

i

�����

2
3

5 , (27)

where the last line is due to the definition of the compression operator (2). To continue, we bound
each term in (27) respectively.

• For the first term, we have

Et

"
!

n2

nX

i=1

kgt

i
� st

i
k2
#

= Et

"
!

n2

nX

i=1

kg̃t

i
� st

i
+ ⇠t

i
k2
#

= Et

"
!

n2

nX

i=1

(kg̃t

i
� st

i
k2 + d�

2
p
)

#

= Et

"
!

n2

nX

i=1

kg̃t

i
� st

i
k2
#
+
!d�

2
p

n

= Et

"
!

n2

nX

i=1

kg̃t

i
�rfi(x

t) +rfi(x
t)� st

i
k2
#
+
!d�

2
p

n

27

= Et

"
!

n2

nX

i=1

kg̃t

i
�rfi(x

t)k2
#
+

!

n2

nX

i=1

krfi(x
t)� st

i
k2 +

!d�
2
p

n
, (28)

where the last line is due to Et[g̃t

i
] = rfi(xt) from Assumption 3.

• Similarly, for the second term, we have

Et

2

4
�����
1

n

nX

i=1

gt

i

�����

2
3

5 = Et

2

4
�����
1

n

nX

i=1

(g̃t

i
+ ⇠t

i
)

�����

2
3

5

= Et

2

4
�����
1

n

nX

i=1

g̃t

i

�����

2

+
d�

2
p

n

3

5

= Et

2

4
�����
1

n

nX

i=1

(g̃t

i
�rfi(x

t) +rfi(x
t))

�����

2
3

5+
d�

2
p

n

= Et

"
1

n2

nX

i=1

kg̃t

i
�rfi(x

t)k2
#
+ krf(xt)k2 +

d�
2
p

n
. (29)

The proof is completed by plugging (28) and (29) into (27).

C.2 Proof of Lemma 7

According to the shift update (Line 6 in Algorithm 2), we have

Et

"
1

n

nX

i=1

krfi(x
t+1)� st+1

i
k2
#

= Et

"
1

n

nX

i=1

��rfi(x
t+1)� st

i
� �tCt

i
(gt

i
� st

i
)
��2
#

= Et

"
1

n

nX

i=1

��rfi(x
t+1)�rfi(x

t) +rfi(x
t)� st

i
� �tCt

i
(gt

i
� st

i
)
��2
#

 Et


1

n

nX

i=1

⇣
(1 +

1

�t
)
��rfi(x

t+1)�rfi(x
t)
��2 + (1 + �t)

��rfi(x
t)� st

i
� �tCt

i
(gt

i
� st

i
)
��2

⌘�

(30)

 Et


(1 +

1

�t
)L2

��xt+1 � xt
��2 + (1 + �t)

1

n

nX

i=1

��rfi(x
t)� st

i
� �tCt

i
(gt

i
� st

i
)
��2

�
, (31)

where (30) uses Young’s inequality with any �t > 0 (its choice will be specified momentarily), and
(31) uses Assumption 1. The second term of (31) can be further bounded as follows:

Et

"
1

n

nX

i=1

��rfi(x
t)� st

i
� �tCt

i
(gt

i
� st

i
)
��2
#

= Et


1

n

nX

i=1

⇣
(1� 2�t)

��rfi(x
t)� st

i

��2 + �
2
t
kCt

i
(gt

i
� st

i
)k2

⌘�

(2)
 Et


1

n

nX

i=1

⇣
(1� 2�t)

��rfi(x
t)� st

i

��2 + �
2
t
(1 + !)kgt

i
� st

i
k2
⌘�

= Et


1

n

nX

i=1

⇣�
1� 2�t + �

2
t
(1 + !)

� ��rfi(x
t)� st

i

��2

+ �
2
t
(1 + !)kg̃t

i
�rfi(x

t)k2 + �
2
t
(1 + !)d�2

p

⌘�
, (32)

28

where the first equality follows from

Et

⇥⌦
rfi(x

t)� st
i
, Ct

i
(gt

i
� st

i
)
↵⇤

= Et

h��rfi(x
t)� st

i

��2
i
,

and the last line follows from (28). The proof is completed by plugging (32) into (31) and choosing
�t =

1
1+2! and �t =

q
1+2!

2(1+!)3 .

C.3 Proof of Lemma 8

Recalling St := 1
n

P
n

i=1 krfi(xt)� st
i
k2, St can be recursively bounded by Lemma 7 as

Et[St+1]  Et

�
1� 1

2(1 + !)

�
St +

1

(1 + !)n

nX

i=1

kg̃t

i
�rfi(x

t)k2

+ 2(1 + !)L2
��xt+1 � xt

��2 +
d�

2
p

1 + !

�
. (33)

Note that the second term can be bounded by (3b) of Assumption 3, namely

Et

h 1
n

nX

i=1

kg̃t

i
�rfi(x

t)k2
i
 C1�

t + C2,

leading to

Et[St+1]  Et

�
1� 1

2(1 + !)

�
St +

C1�t + C2

(1 + !)n
+ 2(1 + !)L2

��xt+1 � xt
��2 +

d�
2
p

1 + !

�
.

Combined with (20), we can bound the potential function (23) as

Et[�t+1] := Et


f(xt+1)� f

⇤ + ↵L�t+1 +
�

L
St+1

�

 Et


f(xt)� f

⇤ � ⌘tkrf(xt)k2 + L⌘
2
t

2
kvtk2 + ↵L�t+1

+
�

L

⇣�
1� 1

2(1 + !)

�
St +

C1�t + C2

1 + !
+ 2(1 + !)L2

��xt+1 � xt
��2 +

d�
2
p

1 + !

⌘�

(3c)
 Et


f(xt)� f

⇤ � ⌘tkrf(xt)k2 + L⌘
2
t

2
kvtk2

+ ↵L

⇣
(1� ✓)�t + C3krf(xt)k2 + C4kxt+1 � xtk2

⌘

+
�

L

⇣�
1� 1

2(1 + !)

�
St +

C1�t + C2

1 + !
+ 2(1 + !)L2

��xt+1 � xt
��2 +

d�
2
p

1 + !

⌘�

= Et


f(xt)� f

⇤ � ⌘tkrf(xt)k2 +
⇣1
2
+ ↵C4 + 2�(1 + !)

⌘
L⌘

2
t
kvtk2

+ ↵L

⇣
(1� ✓)�t + C3krf(xt)k2

⌘

+
�

L

⇣�
1� 1

2(1 + !)

�
St +

C1�t + C2

1 + !
+

d�
2
p

1 + !

⌘�
, (34)

where the last line follows from the update rule xt+1 = xt � ⌘tvt (Line 9 of Algorithm 2). To
continue, we invoke Lemma 6, which gives

Et[kvtk2]  Et

"
(1 + !)

n2

nX

i=1

kg̃t

i
�rfi(x

t)k2 + !

n
St + krf(xt)k2 +

(1 + !)d�2
p

n

#

 Et

"
(1 + !)

n
C1�

t +
!

n
St + krf(xt)k2 +

(1 + !)(C2 + d�
2
p
)

n

#
,

29

where the second line uses again (3b) of Assumption 3. Plugging this back into (34), we arrive at

Et[�t+1]  f(xt)� f
⇤ +


↵(1� ✓) +

�C1

(1 + !)L2
+
⇣1
2
+ ↵C4 + 2�(1 + !)

⌘ (1 + !)C1⌘
2
t

n

�
L�t

+


�
�
1� 1

2(1 + !)

�
+
⇣1
2
+ ↵C4 + 2�(1 + !)

⌘
!L

2
⌘
2
t

n

�
St

L

�

⌘t � ↵LC3 �

⇣1
2
+ ↵C4 + 2�(1 + !)

⌘
L⌘

2
t

�
krf(xt)k2

+


�

(1 + !)L
+
⇣1
2
+ ↵C4 + 2�(1 + !)

⌘ (1 + !)L⌘2
t

n

�
(C2 + d�

2
p
). (35)

Now we choose the appropriate parameters satisfying

↵(1� ✓) +
�C1

(1 + !)L2
+
⇣1
2
+ ↵C4 + 2�(1 + !)

⌘ (1 + !)C1⌘
2
t

n
 ↵, (36)

�
�
1� 1

2(1 + !)

�
+
⇣1
2
+ ↵C4 + 2�(1 + !)

⌘
!L

2
⌘
2
t

n
 �, (37)

so that the RHS of (35) can lead to the potential function �t := f(xt)� f
⇤ + ↵L�t + �

L
St. It is

not hard to verify that the following choice of ↵,�, ⌘t satisfy (36) and (37):

↵ � 3�C1

2(1 + !)L2✓
, 8� > 0, (38)

⌘t ⌘ ⌘ 
p
�np

1 + 2↵C4 + 4�(1 + !)(1 + !)L
. (39)

Note that (39) implies
⇣1
2
+ ↵C4 + 2�(1 + !)

⌘ (1 + !)⌘2
t

n
 �

2(1 + !)L2
. (40)

If we further choose the stepsize

⌘t ⌘ ⌘  1

(1 + 2↵C4 + 4�(1 + !) + 2↵C3/⌘
2)L

, (41)

then the proof is finished by combining (35)–(41) since (35) simplifies to

Et[�t+1]  �t �
⌘t

2
krf(xt)k2 + 3�

2(1 + !)L
(C2 + d�

2
p
).

D Proof of Theorem 1

We now give the detailed proof for Theorem 1. We first show the privacy guarantee of CDP-SGD
and then derive the utility guarantee.

D.1 Privacy guarantee of CDP-SGD

Theorem 4 (Privacy guarantee for CDP-SGD). Suppose Assumption 2 holds. There exist constants
c
0 and c so that given the sampling probability q = b/m and the number of steps T , for any ✏ < c

0
q
2
T

and � 2 (0, 1), CDP-SGD (Algorithm 1) is (✏, �)-LDP if we choose

�
2
p
= c

G
2
T log(1/�)

m2✏2
.

The proof of Theorem 4 is very similar to the proof of Theorem 2. Thus here we just point out some
differences between the proof of Theorem 4 and 2.

30

Sub-mechanisms. Similar to Theorem 2, we define the sub-mechanisms in the following way. We
assume that there are n⇥ T sub-mechanisms {Mt

i
}i2[n],tT in M, where Mt

i
corresponds to the

mechanism for client i in round t. We further let Mt

i
:= A �Mt

i
be the composition of mechanism

Mt

i
and the mechanism A. Here, A : R ! R is a random mechanism that maps an outcome to

another outcome, and Mt

i
is possibly an adaptive mechanism that takes the input of all the outputs

before time t, i.e. os
i

for all s < t and i 2 [n]. We assume that given all the previous outcomes os
i

for
s < t, the random mechanisms Mt

i
for all i 2 [n] are independent w.r.t. each other (this is satisfied

in CDP-SGD). In CDP-SGD (Algorithm 1), A corresponds to the compression operator, and Mt

i

corresponds the Gaussian perturbation. The difference between the sub-mechanisms for SoteriaFL
and CDP-SGD is the presence of the shift. However as the shift is known to the central server, we
can omit that during the analysis of privacy.

Privacy for composition (Lemma 2). Here CDP-SGD can use exactly the same previous
Lemma 2 since the relationship between the final mechanism and the sub-mechanism does not
change.

Privacy for sub-mechanisms (Lemma 3). The privacy guarantee for sub-mechanisms of Theorem
4 is simpler than that for Theorem 2, since we can simply apply Lemma 3 of [1] to obtain the
following bound

↵
Mt

i(�)  �(�+ 1)G2

(1� q)m2�2
p

+O

✓
q
3
�
3

�3
p

◆
.

D.2 Utility guarantee of CDP-SGD

To prove the convergence result, we first give the following lemma providing the mean and variance
of the stochastic gradient g̃t

i
= 1

b

P
j2Ib

rfi,j(xt) (Line 4 in Algorithm 1).

Lemma 9 (Variance). Under Assumption 2, for any client i, the stochastic gradient estimator
g̃t

i
= 1

b

P
j2Ib

rfi,j(xt) is unbiased, i.e.

Et

"
1

b

X

j2Ib

rfi,j(x
t)

#
= rfi(x

t),

where Et takes the expectation conditioned on all history before round t. Also, we have

Et

2

64

������
1

b

X

j2Ib

rfi,j(x
t)�rfi(x

t)

������

2
3

75  (1� q)G2

b
, (42)

where q = b/m.

Proof. We first show that the estimator is unbiased. Define m independent Bernoulli random variables
Xi,j , where Pr{Xi,j = 1} = q = b

m
. Then,

Et

"
1

b

X

j2Ib

rfi,j(x
t)

#
= Et

"
1

b

mX

j=1

Xi,jrfi,j(x
t)

#
=

1

m

mX

j=1

rfi,j(x
t) = rfi(x

t).

Moving onto the variance bound, we have

Et

2

64

������
1

b

X

j2Ib

rfi,j(x
t)�rfi(x

t)

������

2
3

75 = Et

2

64

������
1

b

mX

j=1

Xi,jrfi,j(x
t)�rfi(x

t)

������

2
3

75

= Et

2

64

������

mX

j=1

✓
1

b
Xi,jrfi,j(x

t)� 1

m
rfi,j(x

t)

◆������

2
3

75

31

= Et

2

4
mX

j=1

����
1

b
(Xi,j � q)rfi,j(x

t)

����
2
3

5 (43)

=
mX

j=1

(1� q)q

b2

��rfi,j(x
t)
��2  (1� q)G2

b
,

where (43) comes from the fact that random variables Xi,j are independent, and the last line follows
from the variance of Bernoulli random variables as well as Assumption 2.

With the help of the above lemma, we now prove Theorem 1.

Proof of Theorem 1. First, from the smoothness Assumption 1, we have

f(xt+1)  f(xt)� ⌘t

⌦
rf(xt),vt

↵
+

L⌘
2
t

2

��vt
��2 .

Taking the expectation on both sides of the above inequality, we have (note that we choose constant
stepsize ⌘t ⌘ ⌘ for simplicity)

Et[f(x
t+1)]  f(xt)� ⌘Et

⌦
rf(xt),vt

↵
+

L⌘
2

2
Et

��vt
��2 . (44)

To control Et hrf(xt),vti, notice that

Et

⌦
rf(xt),vt

↵
= Et

*
rf(xt),

1

n

nX

i=1

vt

i

+
= Et

*
rf(xt),

1

n

nX

i=1

Ct

i
(gt

i
)

+

(2)
= Et

*
rf(xt),

1

n

nX

i=1

gt

i

+

= Et

*
rf(xt),

1

n

nX

i=1

(g̃t

i
+ ⇠t

i
)

+

=
��rf(xt)

��2 ,

where the last line follows from Lemma 9 as well as the independence of the added Gaussian
perturbation. Next, using the definition vt

i
= Ct

i
(gt

i
) and the properties of the compression operator,

we compute Et kvtk2 as follows,

Et

��vt
��2 = Et

�����
1

n

nX

i=1

vt

i

�����

2

= Et

2

4
�����
1

n

nX

i=1

(vt

i
� gt

i
)

�����

2

+

�����
1

n

nX

i=1

gt

i

�����

2
3

5

(2)
 Et

2

4 1

n2

nX

i=1

!
��gt

i

��2 +

�����
1

n

nX

i=1

gt

i

�����

2
3

5

 1

n2

nX

i=1

!

��rfi(x

t)
��2 + (1� q)Et kg̃t

i
�rfi(xt)k2

b
+ d�

2
p

!

+
��rf(xt)

��2 + (1� q)Et kg̃t

i
�rfi(xt)k2

bn
+

d�
2
p

n

(42)
 1

n2

nX

i=1

!

✓��rfi(x
t)
��2 + (1� q)G2

b
+ d�

2
p

◆
+
��rf(xt)

��2 + (1� q)G2

bn
+

d�
2
p

n


��rf(xt)

��2 + 1

n

✓
!G

2 + (1 + !)
(1� q)G2

b
+ (1 + !)d�2

p

◆
, (45)

32

where the last inequality (45) follows from Assumption 2.

Plugging the above two relations back to (44), we obtain

Et[f(x
t+1)]  f(xt)�

✓
⌘ � L⌘

2

2

◆��rf(xt)
��2+L⌘

2

2n

✓
!G

2 + (1 + !)
(1� q)G2

b
+ (1 + !)d�2

p

◆
.

By choosing ⌘  1
L

, we have

Et[f(x
t+1)]  f(xt)� ⌘

2

��rf(xt)
��2 + L⌘

2

2n

✓
!G

2 + (1 + !)
(1� q)G2

b
+ (1 + !)d�2

p

◆
.

Plugging in �p (Theorem 4), telescoping over the iterations t = 1, . . . , T , and rearranging terms, we
can prove

1

T

TX

t=1

E
��rf(xt)

��2

 2(f(x0)� f
⇤)

⌘T
+

L⌘

n


!G

2 + (1 + !)
(1� q)G2

b
+

(1 + !)cdG2
T log(1/�)

m2✏2

�

 2Df

⌘T
+

L⌘

n


(1 + ! + !b)

b
G

2 +
(1 + !)cdG2

T log(1/�)

m2✏2

�
, (46)

where we use the notation Df := f(x0)� f
⇤. We choose T and ⌘ to satisfy

⌘T =
m✏

p
nDf

G
p

L(1 + !)cd log(1/�)
, T � m

2
✏
2

cd log (1/�)
. (47)

According to the relation (47) and stepsize ⌘  1
L

, we set T = max
n

m✏

p
nLDf

G

p
(1+!)cd log(1/�)

,
m

2
✏
2

cd log(1/�)

o

and ⌘ = min
n

1
L
,

p
nDf cd log(1/�)

Gm✏

p
(1+!)L

o
. Then (46) turns out as

1

T

TX

t=1

E
��rf(xt)

��2  2Df

⌘T
+

L⌘

n


2(1 + !)G2 +

(1 + !)cdG2
T log(1/�)

m2✏2

�

(47)
 2Df

⌘T
+

L⌘

n
· 3(1 + !)cdG2

T log(1/�)

m2✏2

(47)


2G
p
DfL(1 + !)cd log(1/�)

m✏
p
n

+
3G

p
DfL(1 + !)cd log(1/�)

m✏
p
n

= O

G
p
L(1 + !)d log(1/�)

m✏
p
n

!
.

E Proofs for Section 5

Now we provide the proofs for the proposed SoteriaFL-style algorithms. Appendix E.1 gives the
proofs for Lemma 1 which shows that some classical local gradient estimators (SGD/SVRG/SAGA)
satisfy our generic Assumption 3. Appendix E.2 provides the proofs for Corollaries 1–3 which instan-
tiate Lemma 1 in the unified Theorem 3 for obtaining detailed results for the proposed SoteriaFL-style
algorithms.

E.1 Proof of Lemma 1

We shall prove each case one by one.

33

The SGD estimator. For the local SGD estimator g̃t

i
= 1

b

P
j2Ib

rfi,j(xt) (Option I in Algo-
rithm 3), we first show that it is unbiased. To facilitate analysis, for client i, we introduce m

independent Bernoulli random variables Xi,j , where Pr{Xi,j = 1} = b

m
. We have

Et

2

41

b

X

j2Ib

rfi,j(x
t)

3

5 = Et

2

41

b

mX

j=1

Xi,jrfi,j(x
t)

3

5 =
1

m

mX

j=1

rfi,j(x
t) = rfi(x

t).

Then we show that (3a)–(3c) are satisfied for some concrete parameters. For (3a), let

At

i
=

1

b

X

j2Ib

rfi,j(x
t), and Bt

i
= 0,

i.e., 't

i,j
= rfi,j(xt) and t

i,j
= 0. Then, GA = G (Assumption 2) and Gb = 0. For (3b), we have

Et

"
1

n

nX

i=1

kg̃t

i
�rfi(x

t)k2
#
= Et

2

4 1

n

nX

i=1

���
1

b

X

j2Ib

rfi,j(x
t)�rfi(x

t)
���
2

3

5

= Et

2

4 1

n

nX

i=1

���
1

b

mX

j=1

Xi,jrfi,j(x
t)�rfi(x

t)
���
2

3

5

= Et

2

4 1

n

nX

i=1

���
1

m

mX

j=1

⇣
m

b
Xi,j � 1

⌘
rfi,j(x

t)
���
2

3

5

=
1

n

nX

i=1

m� b

m2b

mX

j=1

���rfi,j(x
t)
���
2

 (m� b)G2

mb
, (48)

where (48) uses Assumption 2. According to (48), we know that the SGD estimator g̃t

i
satisfies (3b)

and (3c) with

C1 = C3 = C4 = 0, C2 =
(m� b)G2

mb
, ✓ = 1, �t ⌘ 0.

The SVRG estimator. For the local SVRG estimator g̃t

i
= 1

b

P
j2Ib

(rfi,j(xt) �rfi,j(wt)) +

rfi(wt) (Option II in Algorithm 3), similarly we first show that it is unbiased as follows,

Et

2

41

b

X

j2Ib

(rfi,j(x
t)�rfi,j(w

t)) +rfi(w
t)

3

5

= Et

2

41

b

mX

j=1

Xi,j(rfi,j(x
t)�rfi,j(w

t)) +rfi(w
t)

3

5

=
1

m

mX

j=1

(rfi,j(x
t)�rfi,j(w

t)) +rfi(w
t)

= rfi(x
t)�rfi(w

t) +rfi(w
t)

= rfi(x
t).

Then we show that (3a)–(3c) are satisfied for some concrete parameters. For (3a), let

At

i
=

1

b

X

j2Ib

(rfi,j(x
t)�rfi,j(w

t)), and Bt

i
=

1

m

mX

j=1

rfi,j(w
t),

34

i.e., 't

i,j
= rfi,j(xt) � rfi,j(wt) and t

i,j
= rfi,j(wt). Then, GA = 2G and Gb = G due to

Assumption 2. For (3b), we have

Et

"
1

n

nX

i=1

kg̃t

i
�rfi(x

t)k2
#

= Et

2

4 1

n

nX

i=1

���
1

b

X

j2Ib

�
rfi,j(x

t)�rfi,j(w
t)
�
+rfi(w

t)�rfi(x
t)
���
2

3

5

= Et

2

4 1

n

nX

i=1

���
1

b

mX

j=1

Xi,j

�
rfi,j(x

t)�rfi,j(w
t)
�
�
�
rfi(x

t)�rfi(w
t)
����

2

3

5

= Et

2

4 1

n

nX

i=1

���
1

m

mX

j=1

⇣
m

b
Xi,j � 1

⌘ �
rfi,j(x

t)�rfi,j(w
t)
����

2

3

5

=
1

n

nX

i=1

m� b

m2b

mX

j=1

���rfi,j(x
t)�rfi,j(w

t)
���
2

 L
2

b
kxt �wtk2, (49)

where (49) uses Assumption 1. According to (49), we know that the SVRG estimator g̃t

i
satisfies (3b)

with

C1 =
L
2

b
, C2 = 0, �t = kxt �wtk2.

Finally, for (3c), we have

Et

⇥
�t+1

⇤
= Et

⇥
kxt+1 �wt+1k2

⇤

= Et

⇥
pkxt+1 � xtk2 + (1� p)kxt+1 �wtk2

⇤
(50)

= Et

⇥
pkxt+1 � xtk2 + (1� p)kxt+1 � xt + xt �wtk2

⇤

= Et

⇥
kxt+1 � xtk2

⇤
+ Et

⇥
(1� p)kxt �wtk2 + 2(1� p)

⌦
xt+1 � xt

,xt �wt
↵⇤

= Et

⇥
kxt+1 � xtk2

⇤
+ Et

⇥
(1� p)kxt �wtk2 + 2(1� p)

⌦
�⌘tvt

,xt �wt
↵⇤

(19)
= Et

⇥
kxt+1 � xtk2

⇤
+ Et

⇥
(1� p)kxt �wtk2 + 2(1� p)

⌦
�⌘trf(xt),xt �wt

↵⇤

 Et

⇥
kxt+1 � xtk2

⇤

+ Et


(1� p)kxt �wtk2 + (1� p)p

2
kxt �wtk2 + 2(1� p)⌘2

t

p
krf(xt)k2

�

(51)


�
1� p

2

�
kxt �wtk2 + 2(1� p)⌘2

p
krf(xt)k2 + Et

⇥
kxt+1 � xtk2

⇤
(52)

where (50) uses the update rule of wt+1 (Line 7 of Algorithm 3), (51) uses Young’s inequality, and
the last inequality holds by choosing ⌘ � ⌘t. According to (52), we know that the SVRG estimator
g̃t

i
satisfies (3c) with

✓ =
p

2
, C3 =

2(1� p)⌘2

p
, C4 = 1.

The SAGA estimator. For the local SAGA estimator g̃t

i
= 1

b

P
j2Ib

(rfi,j(xt)�rfi,j(wt

i,j
)) +

1
m

P
m

j=1 rfi,j(wt

i,j
) (Option III in Algorithm 3), similarly we first show that it is unbiased as

follows,

Et

2

41

b

X

j2Ib

(rfi,j(x
t)�rfi,j(w

t

i,j
)) +

1

m

mX

j=1

rfi,j(w
t

i,j
)

3

5

35

= Et

2

41

b

mX

j=1

Xi,j(rfi,j(x
t)�rfi,j(w

t

i,j
)) +

1

m

mX

j=1

rfi,j(w
t

i,j
)

3

5

=
1

m

mX

j=1

(rfi,j(x
t)�rfi,j(w

t

i,j
)) +

1

m

mX

j=1

rfi,j(w
t

i,j
)

=
1

m

mX

j=1

rfi,j(x
t) = rfi(x

t).

Then we show that (3a)–(3c) are satisfied for some concrete parameters. For (3a), let

At

i
=

1

b

X

j2Ib

(rfi,j(x
t)�rfi,j(w

t

i,j
)) and Bt

i
=

1

m

mX

j=1

rfi,j(w
t

i,j
),

i.e., 't

i,j
= rfi,j(xt)�rfi,j(wt

i,j
) and t

i,j
= rfi,j(wt

i,j
). Then, GA = 2G and Gb = G due to

Assumption 2. For (3b), we have

Et

"
1

n

nX

i=1

kg̃t

i
�rfi(x

t)k2
#

= Et

2

4 1

n

nX

i=1

���
1

b

X

j2Ib

�
rfi,j(x

t)�rfi,j(w
t

i,j
)
�
+

1

m

mX

j=1

�
rfi,j(w

t

i,j
)�rfi,j(x

t)
����

2

3

5

= Et

2

4 1

n

nX

i=1

���
1

b

mX

j=1

Xi,j

�
rfi,j(x

t)�rfi,j(w
t)
�
� 1

m

mX

j=1

�
rfi,j(x

t)�rfi,j(w
t

i,j
)
����

2

3

5

= Et

2

4 1

n

nX

i=1

���
1

m

mX

j=1

⇣
m

b
Xi,j � 1

⌘ �
rfi,j(x

t)�rfi,j(w
t

i,j
)
����

2

3

5

=
1

n

nX

i=1

m� b

m2b

mX

j=1

���rfi,j(x
t)�rfi,j(w

t

i,j
)
���
2

 L
2

b

1

nm

nX

i=1

mX

j=1

kxt �wt

i,j
k2, (53)

where (53) uses Assumption 1. According to (53), we know that the SAGA estimator g̃t

i
satisfies (3b)

with

C1 =
L
2

b
, C2 = 0, �t =

1

nm

nX

i=1

mX

j=1

kxt �wt

i,j
k2.

Finally, for (3c), we have

Et

⇥
�t+1

⇤
= Et

2

4 1

nm

nX

i=1

mX

j=1

kxt+1 �wt+1
i,j

k2
3

5

= Et

2

4 1

nm

nX

i=1

mX

j=1

⇣
b

m
kxt+1 � xtk2 +

⇣
1� b

m

⌘
kxt+1 �wt

i,j
k2
⌘
3

5 (54)

= Et

2

4 1

nm

nX

i=1

mX

j=1

⇣
b

m
kxt+1 � xtk2 +

⇣
1� b

m

⌘
kxt+1 � xt + xt �wt

i,j
k2
⌘
3

5

= Et

2

4
⇣
1� b

m

⌘ 1

nm

nX

i=1

mX

j=1

⇣
kxt �wt

i,j
k2 + 2

⌦
xt+1 � xt

,xt �wt

i,j

↵ ⌘
3

5

36

+ Et

⇥
kxt+1 � xtk2

⇤

= Et

2

4
⇣
1� b

m

⌘ 1

nm

nX

i=1

mX

j=1

⇣
kxt �wt

i,j
k2 + 2

⌦
�⌘tvt

,xt �wt

i,j

↵ ⌘
3

5

+ Et

⇥
kxt+1 � xtk2

⇤

(19)
= Et

2

4
⇣
1� b

m

⌘ 1

nm

nX

i=1

mX

j=1

⇣
kxt �wt

i,j
k2 + 2

⌦
�⌘trf(xt),xt �wt

i,j

↵ ⌘
3

5

+ Et

⇥
kxt+1 � xtk2

⇤

 Et

2

4
⇣
1� b

m

⌘ 1

nm

nX

i=1

mX

j=1

⇣�
1 +

b

2m

�
kxt �wt

i,j
k2 + 2m⌘2

t

b
krf(xt)k2

⌘
3

5

+ Et

⇥
kxt+1 � xtk2

⇤
(55)


⇣
1� b

2m

⌘ 1

nm

nX

i=1

mX

j=1

kxt �wt

i,j
k2 + 2(m� b)⌘2

b
krf(xt)k2

+ Et

⇥
kxt+1 � xtk2

⇤
, (56)

where (54) uses the update rule of wt+1
i,j

(Line 10 of Algorithm 3), (55) uses Young’s inequality, and
the last inequality holds by choosing ⌘ � ⌘t. According to (56), we know that the SAGA estimator
g̃t

i
satisfies (3c) with

✓ =
b

2m
, C3 =

2(m� b)⌘2

b
, C4 = 1.

E.2 Proofs for SoteriaFL-style Algorithms

We provide detailed corollaries and their proofs for the proposed SoteriaFL-style algorithms
(SoteriaFL-GD, SoteriaFL-SGD, SoteriaFL-SVRG, and SoteriaFL-SAGA). These corollar-
ies are obtained by plugging their corresponding parameters given in Lemma 1 into our unified
Theorem 3.

Analysis of SoteriaFL-SGD / SoteriaFL-GD (Proof of Corollary 1). We first show that the step-
size ⌘t chosen in this corollary satisfies the conditions in Theorem 3. According to the corresponding
parameters for the SGD estimator in Lemma 1

GA = G, GB = C1 = C3 = C4 = 0, C2 =
(m� b)G2

mb
, ✓ = 1, �t ⌘ 0, (57)

we have ↵ = 3�C1

2(1+!)✓L2 = 0. Then the stepsize ⌘t ⌘ ⌘ required in Theorem 3 reads

⌘t ⌘ ⌘  min

(
1

(1 + 2↵C4 + 4�(1 + !) + 2↵C3/⌘
2)L

,

p
�np

1 + 2↵C4 + 4�(1 + !)(1 + !)L

)

= min

(
1

(1 + 4�(1 + !))L
,

p
�np

1 + 4�(1 + !)(1 + !)L

)
. (58)

Let ⌧ := (1+!)3/2

n1/2 . If we set � = ⌧

2(1+!) , then ⌘t ⌘ ⌘  1
(1+2⌧)L satisfies (58). Then according

to Theorem 3 and the parameters in (57), if we choose the shift stepsize �t ⌘
q

1+2!
2(1+!)3 , and the

privacy variance �2
p
= O

�
G

2
T log(1/�)
m2✏2

�
, SoteriaFL-SGD satisfies (✏, �)-LDP and the following

1

T

T�1X

t=0

Ekrf(xt)k2  2�0

⌘T
+

3�

(1 + !)L⌘

✓
(m� b)G2

mb
+

cG
2
dT log(1/�)

4m2✏2

◆
.

37

By further choosing T as

T = max

(
m✏

p
8(1 + !)L�0p

3�cdG2 log(1/�)
,
4(m� b)m2

✏
2

cmbd log(1/�)

)
, (59)

SoteriaFL has the following utility (accuracy) guarantee:

1

T

T�1X

t=0

Ekrf(xt)k2  O

max

(p
�dG2 log(1/�)

⌘m✏
p
(1 + !)L

,
(m� b)�G2

(1 + !)mbL⌘

)!
.

If we further set the minibatch size b = min
n

m✏G
p
�p

(1+!)Ld log(1/�)
,m

o
, we have (m�b)�G2

(1+!)mbL⌘


p
�dG2 log(1/�)

⌘m✏

p
(1+!)L

and thus

1

T

T�1X

t=0

Ekrf(xt)k2  O

 p
�dG2 log(1/�)

⌘m✏
p
(1 + !)L

!
. (60)

Then by plugging the parameters �, ⌘, and b into (59) and (60), we obtain T =

O

⇣ p
nLm✏

G

p
(1+!)d log(1/�)

(1 +
p
⌧)
⌘
, and 1

T

P
T�1
t=0 Ekrf(xt)k2  O

⇣
G

p
(1+!)Ld log(1/�)p

nm✏
(1 +

p
⌧)
⌘
.

For SoteriaFL-GD in which the minibatch size b = m, we have (m�b)�G2

(1+!)mbL⌘
= 0 

p
�dG2 log(1/�)

⌘m✏

p
(1+!)L

,

thus the same results hold for SoteriaFL-GD as well.

Analysis of SoteriaFL-SVRG (Proof of Corollary 2). We first show that the stepsize ⌘t chosen
in this corollary satisfies the conditions in Theorem 3. According to the corresponding parameters for
the SVRG estimator in Lemma 1

GA = 2G, GB = G, C1 =
L
2

b
, C2 = 0, C3 =

2(1� p)⌘2

p
, C4 = 1, ✓ =

p

2
, �t = kxt �wtk2,

(61)

we have ↵ = 3�C1

2(1+!)✓L2 = 3�
(1+!)pb . Then the stepsize ⌘t ⌘ ⌘ required in Theorem 3 reads

⌘  min

(
1

(1 + 2↵C4 + 4�(1 + !) + 2↵C3/⌘
2)L

,

p
�np

1 + 2↵C4 + 4�(1 + !)(1 + !)L

)

= min

8
<

:
1

�
1 + 6�

(1+!)pb + 4�(1 + !) + 12(1�p)�
(1+!)p2b

�
L

,

p
�nq

1 + 6�
(1+!)pb + 4�(1 + !)(1 + !)L

9
=

; .

(62)

Let ⌧ := (1+!)3/2

n1/2 . If we set � = p
4/3

b
2/3(1+!)2 min{1,1/⌧2}

n
, p2/3b1/3  1/4 and p  1/4, then

⌘t ⌘ ⌘  p
2/3

b
1/3min{1,1/⌧}

2L satisfies (62). Then according to Theorem 3 and the parameters in

(61), if we choose the shift stepsize �t ⌘
q

1+2!
2(1+!)3 , and privacy variance �2

p
= O

�
G

2
T log(1/�)
m2✏2

�
,

SoteriaFL-SVRG satisfies (✏, �)-LDP and the following

1

T

T�1X

t=0

Ekrf(xt)k2  2�0

⌘T
+

6�cG2
dT log(1/�)

(1 + !)L⌘m2✏2
.

If we further choose the minibatch size b = m
2/3

4 , the probability p = b/m, and the number of
communication round

T =
m✏

p
(1 + !)L�0p

3�cdG2 log(1/�)
= O

 p
nLm✏

G
p
(1 + !)d log(1/�)

max
�
1, ⌧

!
,

we obtain

1

T

T�1X

t=0

Ekrf(xt)k2  O

⇣
G
p

(1 + !)Ld log(1/�)p
nm✏

⌘
.

38

Corollary 3 (SoteriaFL-SAGA). Suppose that Assumptions 1 and 2 hold and we combine The-

orem 3 and Lemma 1, i.e., choosing stepsize ⌘t ⌘ ⌘  min{1,
p

n/(1+!)3}
3L , where we set

� = (1+!)2 min{1,n/(1+!)3}
3n , minibatch size b = 3m2/3, shift stepsize �t ⌘

q
1+2!

2(1+!)3 , and

privacy variance �
2
p

= O
�
G

2
T log(1/�)
m2✏2

�
. If we further let the communication rounds T =

O

⇣ p
nLm✏

G

p
(1+!)d log(1/�)

max
�
1, ⌧

 ⌘
, where ⌧ := (1+!)3/2

n1/2 , then SoteriaFL-SAGA satisfies (✏, �)-

LDP and the following utility guarantee 1
T

P
T�1
t=0 Ekrf(xt)k2  O

⇣
G

p
(1+!)Ld log(1/�)p

nm✏

⌘
.

Analysis of SoteriaFL-SAGA (Proof of Corollary 3). We first show that the stepsize ⌘t chosen
in this corollary satisfies the conditions in Theorem 3. According to the corresponding parameters for
the SAGA estimator in Lemma 1

GA = 2G, GB = G, C1 =
L
2

b
, C2 = 0, C3 =

2(m� b)⌘2

b
, C4 = 1,

✓ =
b

2m
, �t =

1

nm

nX

i=1

mX

j=1

kxt �wt

i,j
k2,

(63)

we have ↵ = 3�C1

2(1+!)✓L2 = 3�m
(1+!)b2 . Then the stepsize ⌘t ⌘ ⌘ required in Theorem 3 becomes

⌘  min

(
1

(1 + 2↵C4 + 4�(1 + !) + 2↵C3/⌘
2)L

,

p
�np

1 + 2↵C4 + 4�(1 + !)(1 + !)L

)

= min

8
<

:
1

�
1 + 6�m

(1+!)b2 + 4�(1 + !) + 12�m(m�b)
(1+!)b3

�
L

,

p
�nq

1 + 6�m
(1+!)b2 + 4�(1 + !)(1 + !)L

9
=

; .

(64)

Let ⌧ := (1+!)3/2

n1/2 . If we set � = (1+!)2 min{1,1/⌧2}
3n and b = 3m2/3, then ⌘t ⌘ ⌘  min{1,1/⌧}

3L
satisfies (64). Then according to Theorem 3 and the parameters in (63), if we choose the shift stepsize
�t ⌘

q
1+2!

2(1+!)3 , and the privacy variance �2
p
= O

�
G

2
T log(1/�)
m2✏2

�
, SoteriaFL-SAGA satisfies (✏, �)-

LDP and the following

1

T

T�1X

t=0

Ekrf(xt)k2  2�0

⌘T
+

2(1 + !)cG2
dT log(1/�)min{1, 1/⌧2}
nL⌘m2✏2

.

If we further choose the number of communication round

T =
m✏

p
nL�0p

(1 + !)cdG2 log(1/�)min{1, 1/⌧2}
= O

 p
nLm✏

G
p
(1 + !)d log(1/�)

max
�
1, ⌧

!
,

we obtain

1

T

T�1X

t=0

Ekrf(xt)k2  O

⇣
G
p

(1 + !)Ld log(1/�)p
nm✏

⌘
.

39

	Introduction
	Motivation: privacy-utility-communication trade-offs
	Our contributions

	Preliminaries
	Warm-up: Plain Compressed Differentially-Private SGD
	SoteriaFL: A Unified Private FL Framework with Shifted Compression
	A unified SoteriaFL framework
	Generic assumption and unified theory

	Some Algorithms within SoteriaFL Framework
	Numerical Experiments
	Conclusion
	Experiments
	Logistic regression with nonconvex regularization
	Shallow neural network training

	Proof of Theorem 2
	Proof of Lemma 2
	Proof of Lemma 3

	Proof of Theorem 3
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8

	Proof of Theorem 1
	Privacy guarantee of CDP-SGD
	Utility guarantee of CDP-SGD

	Proofs for Section 5
	Proof of Lemma 1
	Proofs for SoteriaFL-style Algorithms

