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ABSTRACT

With the advancement of AIGC, video frame interpolation (VFI) has
become a crucial component in existing video generation frame-
works, attracting widespread research interest. For the VFI task,
the motion estimation between neighboring frames plays a crucial
role in avoiding motion ambiguity. However, existing VFI meth-
ods always struggle to accurately predict the motion information
between consecutive frames, and this imprecise estimation leads
to blurred and visually incoherent interpolated frames. In this pa-
per, we propose a novel diffusion framework,Motion-Aware latent
Diffusion models (MADiff), which is specifically designed for the
VFI task. By incorporating motion priors between the conditional
neighboring frames with the target interpolated frame predicted
throughout the diffusion sampling procedure, MADiff progres-
sively refines the intermediate outcomes, culminating in generating
both visually smooth and realistic results. Extensive experiments
conducted on benchmark datasets demonstrate that our method
achieves state-of-the-art performance significantly outperforming
existing approaches, especially under challenging scenarios involv-
ing dynamic textures with complex motion.
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1 INTRODUCTION

Video frame interpolation (VFI) aims to generate intermediate
frames between two consecutive video frames. It is commonly
used to increase the frame resolution, e.g., to produce slow-motion
content [29]. VFI has also been applied to video compression [69],
video generation [21] and animation production [57].

Existing VFI methods [29, 31, 37, 48, 71] are mostly based on
deep neural networks. The early deep learning methods always rely
on 3D convolution [28] or RNNs [9] to model the contextual correla-
tions of conditional neighboring frames. Inspired by the success of
generative adversarial networks (GANs) in image synthesis, more
recent attempts have been made to develop video frame interpola-
tion methods by incorporating the adversarial loss. Owing to the
remarkable generative capabilities of GANs, these methods exhibit
significant efficacy in predicting interpolated video frames that
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Figure 1: Overview of the diffusion processes in MADiff.

The encoder and decoder enable projection between image

and latent spaces, and the diffusion processes take place in

the latent space. 𝐼2𝐸 denotes image-to-event generator [78]

which have capability of generating event volume by taking

two continuous frames as input. And𝑚 denotes motion hints

extracted from 𝐼2𝐸.

possess natural and consistent content, holding the state-of-the-art
in the literature. However, these deep learning-based methods for
VFI always tend to generate unrealistic texture, artifacts and low-
perceptual results. The reason is that the primary contributor to the
optimization objective — and consequently the final performance
of the model — remains the L1/L2-based distortion loss between
their outputs and the ground-truth interpolated frames [15]. This
type of loss may not accurately reflect the perceptual quality of
the interpolated videos. Consequently, [14] indicates that current
techniques, despite attaining elevated PSNR scores, often fall short
in terms of perceptual quality, particularly in demanding situations
characterized by dynamic textures and complex motion patterns.

Recently, de-noising diffusion probabilistic models (DDPMs)
have been gaining widespread interest and have risen to promi-
nence as state-of-the-art solutions across various areas [20, 21,
23, 24, 61, 72]. These diffusion models have demonstrated excep-
tional capabilities in creating realistic and perceptually-enhanced
images and videos, reportedly outperforming other generative mod-
els. [15, 67] are among the early methods that have explored the
application of diffusion models for VFI tasks. Specifically, they ad-
dress the VFI tasks as a form of conditional image generation by
taking neighboring frames into the de-noising network for the
target interpolated frame generation.

However, these methods fail to explicitly model the inter-frame
motions between the interpolated frames and the given neighboring
conditional frames, a crucial factor in preventing the generation
of blurred interpolated frames due to motion ambiguity. This is
particularly important in complex dynamic scenes that involve
intricate motions, occlusions, or abrupt changes in brightness.

To tackle these challenges, in this paper, we propose a novel
latent diffusion framework, Motion-Aware latent Diffusion model
(MADiff) for the video frame interpolation task. Specifically, we
follow [15] to build uponMADiff by adopting recently proposed la-
tent diffusion models (LDMs) [55]. LDMs consist of an autoencoder
that maps images into a latent space and a de-noising U-net, which

carries out the reverse diffusion process within that latent space,
forming the foundation of our framework. To incorporate the inter-
frame motion priors between given conditional neighboring frames
with the interpolated frames intoMADiff, we propose a novel vec-
tor quantized motion-aware generative adversarial network, named
VQ-MAGAN. In particular, we initially utilize a pre-trained Event-
GAN [78] to predict the event volume which reflects the pixel-level
intensity changes between two consecutive frames. Subsequently,
the event volumes between the interpolated frame and the two
neighboring conditional frames are employed as motion hints to
enhance image reconstructions within the decoder of VQ-MAGAN.
In this design, VQ-MAGAN possesses the capability to predict the
target interpolated frame by aggregating contextual details from
the given neighboring frames under the guidance of inter-frame
motion hints. Furthermore, for the de-noising process in LDMs, we
also incorporate motion hints between the interpolated frame and
the two neighboring frames as additional conditions.

During the training process of both VQ-MAGAN and the de-
noising U-net, we directly utilize the ground-truth interpolated
frame for extracting inter-frame motion hints between interpolated
frame and neighboring conditional frames. Since the ground-truth
interpolated frame is unknown during the sampling process of
LDM, extracting motion hints between the interpolated frame and
the conditional neighboring frames is not feasible. To eliminate the
discrepancy of motion hints extraction between the sampling phase
and the training phase, making the motion hints in the sampling
process available, we propose a novel motion-aware sampling pro-
cedure (MA-Sampling). Specifically, during the sampling process,
we use the coarse interpolated frame predicted in the previous time
step to extract inter-frame motion hints in conjunction with the
conditional neighboring frames. The extracted motion hints are
then fed into both VQ-MAGAN and the de-noising U-net for the
prediction of the interpolated frame in the current time step. By
refining the interpolated frames progressively, our MADiff can
effectively integrate the inter-frame motion hints into the sampling
process, resulting in visually smooth and realistic frames.

Extensive experiments on various VFI benchmark datasets, en-
compassing both low and high resolution content (up to 4K), demon-
strate that ourMADiff achieves the state-of-the-art performance
significantly outperforming existing approaches, especially under
challenging scenarios involving dynamic textures with complex
motion. Our contributions are summarized as follows:

• We propose a novel vector quantized motion-aware genera-
tive adversarial network, named VQ-MAGAN, which fully
incorporates the inter-framemotion hints between the target
interpolated frame and the given neighboring conditional
frames into the prediction of the interpolated frame.

• Wepropose a novelmotion-aware sampling procedure, named
MA-Sampling, to eliminate the discrepancy ofmotion hints
extraction between the sampling phase and the training
phase, making the extraction of motion hints in the sam-
pling process feasible and refine the predicted interpolated
frames progressively.

• We demonstrate, through quantitative and qualitative exper-
iments, that the proposed method achieves the state-of-the-
art performance outperforming existing approaches.
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2 RELATEDWORK

2.1 Image-to-Event Generation

Event cameras are a novel bio-inspired asynchronous sensor [18, 41]
with advantages such as high dynamic range, high temporal res-
olution, and low power consumption [4, 18, 41]. Event cameras
have the potential to provide solutions for a wide range of visually
challenging scenarios and has already found extensive applications
[2, 5, 22, 33, 38–40, 46, 54, 63, 64, 70, 77]. However, acquiring event
stream data is expensive and requires specific devices. Recently, sev-
eral studies have exploited the event simulation from the standard
camera, i.e. simulating the event stream from continuous images or
video sequences. Kaiser et al. [30] generate events by simply apply-
ing a threshold on the image difference. A positive or negative event
is generated depending on the pixel’s intensity difference. Pix2NVS
[3] computes per-pixel luminance from conventional video frames.
The technique generates synthetic events with inaccurate times-
tamps clustered to frame timestamps. [76, 78] propose a GAN-based
method to generate the event volume by simply taking two contin-
uous image frames as input. By modeling the correlation between
continuous frames and event volumes, image-to-event generation
models can capture inter-frame motion hints, which can serve as
auxiliary guidance for the VFI task. In our MADiff, we directly
utilized the pre-trained EventGAN [78] to extract motion hints for
guiding the interpolation process.

2.2 Video Frame Interpolation

Current approaches to video frame interpolation (VFI) that leverage
deep learning can typically be divided into two main categories:
those that are based on flow estimation and those that rely on ker-
nel methods. Existing flow-based methods [29, 35, 42, 44, 47, 48, 50,
51, 56, 71] primarily generate intermediate frames by analyzing the
pixel motion between consecutive frames. Specifically, these meth-
ods use optical flow estimation to capture the movement of objects
within the scene, and then synthesize intermediate frames based
on these estimations. These methods can be founded on various as-
sumptions and algorithms, such as assuming uniformmotionwithin
the scene or employing machine learning models to predict the opti-
cal flow field, thereby enhancing the accuracy and visual quality of
the interpolated frames. On the other hand, Existing kernel-based
video frame interpolation methods [7, 8, 11, 16, 37, 49] typically
utilize kernel functions to estimate the relationships between pixels
across different frames, generating intermediate frames by perform-
ing a weighted average of pixel values based on known frames.
These methods can flexibly adapt to various motion patterns in
the scene by selecting appropriate kernel sizes and shapes, thus
effectively smoothing the visual transitions between frames while
preserving details. In addition to these two main categories, there
are also some methods integrate flow-based and kernel-based ap-
proaches to better synthesis performance [10, 31].

Meanwhile, several works attempt to introduce the event stream
as a supplemental conditions for guiding accurate models between
the neighboring frames and interpolated frames. However, almost
event-based methods require taking the accurate ground-truth
event streams as inputs which is inconvenient for practical ap-
plication. In contrast, our MADiff directly utilizes off-the-shelf
pre-trained image-to-event models for providing the motion hints

in the subsequent interpolated frame generation process. Besides,
our MADiff refines the target interpolated frame in a progressive
manner, which is quite different from previous VFI methods that
predict interpolated frame in a one-shot manner.

Recently, denoising diffusion probabilistic models (DDPMs) have
gained increasing attention and emerged as a new state-of-the-art
in several areas of computer vision. [15, 67] are the most early meth-
ods exploiting the application of DDPMs for VFI tasks. Compared to
previous VFI methods, diffusion-based methods show satisfactory
perceptual performance, especially on dynamic textures with com-
plex motions. However, existing diffusion-based methods simply
define the VFI task as a conditional image generation task by consid-
ering the neighboring frames as conditions, neglecting to explicitly
model inter-frame motions which are a crucial factor for generating
realistic and visually smooth interpolated frames. Compared with
these methods, we propose a novel diffusion framework, MADiff,
to effectively incorporate motion hints from existing motion-related
models into diffusion models in a progressive manner.

3 PRELIMINARY

3.1 Representation of Event Volume

Each event e can be represented by a tuple (𝑥,𝑦, 𝑡, 𝑝), where 𝑥

and 𝑦 represent the spatial position of the event, 𝑡 represents the
timestamp, and 𝑝 = ±1 indicates its polarity.

As described in [78], the event are presented for easily processing:
events are scattered into a fixed size 3D spatio-temporal volume,
where each event, (𝑥,𝑦, 𝑡, 𝑝) is inserted into the volume, which has
𝐵 = 9 temporal channels, with a linear kernel:

𝑡∗𝑖 = (𝐵 − 1) · 𝑡𝑖 − 𝑡1
𝑡𝑁 − 𝑡1

(1)

𝑉 (𝑥,𝑦, 𝑡) =
∑︁
𝑖

𝑚𝑎𝑥 (0, 1 − |𝑡 − 𝑡∗𝑖 |) (2)

This retains the distribution of the events in 𝑥-𝑦-𝑡 space, and has
shown success in a number of tasks [6, 53, 79].

Since the event volume generated by EventGAN [78] are the
concatenation of event volumes of different polarity along the time
dimension, the final event volume which is strictly non-negative.
In our MADiff, we directly utilize the event volume generated by
EventGAN as the inter-frame motion hints.

3.2 Latent Diffusion Models

Latent diffusion models (LDMs) [55] is variant of de-noising diffu-
sion probabilistic models which executes the de-noising process in
the latent space of an autoencoder, namely E(·) and D(·), imple-
mented as pre-trained VQ-GAN [17] or VQ-VAE [65]. Compared
with executing de-noising process in the pixel-level data, LDM can
reduce computational costs while preserving high visual quality.

For the training of LDM, the given latent code 𝑧 for a randomly
sampled training image 𝑥 is converted to noise with a Markov
process defined by the transition kernel:

𝑞(𝑧𝑡 | 𝑧𝑡−1) = N(𝑧𝑡 ;
√
𝛼𝑡𝑧𝑡−1, (1 − 𝛼𝑡 )I) (3)

where 𝑡 = 1, 2, · · · ,𝑇 , 𝑧0 = 𝑧, and 𝛼𝑡 is a hyper-parameter that
controls the rate of noise injection. When the amount of noise is
sufficiently large, 𝑧𝑇 becomes approximately distributed according



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Zhilin Huang, et al.

to N(0, I). In order to convert noise back to data for sample gen-
eration, the reverse diffusion process is estimated by learning the
reverse transition kernel:

𝑝𝜃 (𝑧𝑡−1 | 𝑧𝑡 ) = N(𝜇𝜃 (𝑧𝑡 ), Σ𝜃 (𝑧𝑡 )) (4)

and then take it as an approximation to 𝑞(𝑧𝑡−1 | 𝑧𝑡 ). Following Ho
et al. [20], 𝜇𝜃 (𝑧𝑡 ) is parameterized with a neural network 𝜖𝜃 (𝑧𝑡 , 𝑡)
(called the score model [59, 60]) and Σ𝜃 is fixed to be a constant.
The score model can be optimized with de-noising score matching
[26, 66]. During sample generation, within each time step, the de-
noising U-net initially predicts the 𝑧0. Finally, the decoder of VQ-
GAN or VQ-VAE generates the image 𝐼0 from the de-noised latent
representation 𝑧0, disregarding any contextual information.

4 METHODS

4.1 Motion Hints Extraction

InMADiff, we utilize the pre-trained EventGAN [78] to capture
inter-frame motion hints between the interpolated frame with the
conditional neighboring frames. Specifically, given the interpo-
lated frame 𝐼0 ∈ R𝐻×𝑊 ×3 and two conditional neighboring frames
𝐼−1, 𝐼+1 ∈ R𝐻×𝑊 ×3, where 𝐼−1 denotes the previous frame and 𝐼+1
denotes the next frame. The motion hints extraction process are
formulated as follows:

𝑚−1�0 = 𝑓𝐼2𝐸 (𝐼−1, 𝐼0) (5)
𝑚0�+1 = 𝑓𝐼2𝐸 (𝐼0, 𝐼+1) (6)

where 𝑓𝐼2𝐸 (·) is the pre-trained EventGAN,𝑚𝑖�𝑗 denotes the ex-
tracted motion hints from the frame 𝑖 to the frame 𝑗 . In practice,
we directly use the predicted event volume 𝐸𝑉𝑖�𝑗 ∈ R𝐻×𝑊 ×(2×𝐵)

as 𝑚𝑖�𝑗 . Besides, MADiff we proposed is a general framework
which can incorporate different motion-related models easily. More
details please refer to Section 5.5.2.

4.2 VQ-MAGAN

Implementation Details. For the consideration of motion infor-
mation between the interpolated frame and neighboring frames
is crucial for the VFI task, we propose a novel VQ-GAN, namely
VQ-MAGAN as presented in Figure 2.

The encoder E produces the latent encoding 𝑧0 = E(𝐼0) by taking
the given ground-truth target frame 𝐼0 ∈ R𝐻×𝑊 ×3 as the input,
where 𝑧0 ∈ R

𝐻
𝑓
×𝑊

𝑓
×3, and 𝑓 is a hyper-parameter. In practice, we

set 𝑓 = 32 following [15].
Then the decoderD reconstruct target frame 𝐼0 by taking 𝑧0 and

the feature pyramids 𝜙−1, 𝜙+1 which are extracted by E from two
neighboring frames 𝐼−1, 𝐼+1 following [15]. Moreover, we utilize
the motion hints extractor to capture the inter-frame motion hints
𝑚−1�0 and𝑚0�+1 between the ground-truth target frame 𝐼0 with
the neighboring frames 𝐼−1 and 𝐼+1. And then we take the𝑚−1�0
and𝑚0�+1 as an additional guidance for the layer-wisely contextual
aggregation in the decoder D through a motion-aware warp (MA-
Warp) module. Specifically, for the feature ℎ𝑙0 ∈ R𝑈 ×𝑉 ×𝐶 of inter-
polated frame and themotion hints𝑚−1�0,𝑚0�+1 ∈ R𝐻×𝑊 ×(2×𝐵) ,
theMA-Warp in 𝑙-th decoder layer firstly reshape the motion hints
to the resolution of𝑈 ×𝑉 , obtained𝑚𝑙

−1�0,𝑚
𝑙
0�+1 ∈ R𝑈 ×𝑉 ×(2×𝐵) .

Then for each motion hints, a 2-channel offset map Ω𝑙
−1�0 and

Ω𝑙
0�+1, respectively, which reflects the pixel-level feature correla-

tions from the neighboring frame to the target interpolated frame
is generated through a learnable neural networks: 𝑓Ω (·)

Ω𝑙
0�−1 = 𝑓Ω (ℎ𝑙0,𝑚

𝑙
−1�0, 𝜙

𝑙
−1) (7)

Ω𝑙
0�+1 = 𝑓Ω (ℎ𝑙0,𝑚

𝑙
0�+1, 𝜙

𝑙
+1) (8)

After that, a warp function 𝑓𝑤𝑎𝑟𝑝 (·) proposed in [25] is intro-
duced and serves as a aggregation mechanism:

ℎ𝑙0�−1 = 𝑓𝑤𝑎𝑟𝑝 (Ω𝑙
0�−1, 𝜙

𝑙
−1) (9)

ℎ𝑙0�+1 = 𝑓𝑤𝑎𝑟𝑝 (Ω𝑙
0�+1, 𝜙

𝑙
+1) (10)

The MA-Warp also generates a gate map 𝑔 ∈ [0, 1]𝑈 ×𝑉 ×1 to
account for occlusion [29], and a residual map 𝛿 ∈ R𝑈 ×𝑉 ×𝐶 to
further enhance the performance:

ℎ̃𝑙0 = 𝑔 · ℎ𝑙0�−1 + (1 − 𝑔) · ℎ𝑙0�+1 + 𝛿, (11)

𝑔 = 𝑓𝑔 (ℎ𝑙0�−1, ℎ
𝑙
0�+1), (12)

𝛿 = 𝑓𝛿 (ℎ𝑙0). (13)

where both 𝑓𝑔 (·) and 𝑓𝛿 (·) are learnable neural networks, ℎ̃𝑙0 is
the output of MA-Warp in 𝑙-th decoder layer. By hierarchically
applyingMA-Warp in the decoder layer,VQ-MAGAN is able to fully
utilize themotion hints for accurately aggregating pyramid contexts
from neighboring frames. Compared with VQ-FIGAN proposed in
[15], our VQ-MAGAN has capability of incorporating the inter-
frame motions between the target interpolated frames with the
conditional neighboring frames.

Training VQ-MAGAN. For the training of VQ-MAGAN, we fol-
low the original training settings of VQGAN in [17, 55], where
the loss function consists of an LPIPS-based [75] perceptual loss, a
patch-based adversarial loss [27] and a latent regularization term
based on a vector quantization (VQ) layer [65]. Particularly, we use
the ground-truth interpolated frame to extract motion hints with
given conditional neighboring frames.

Since the ground-truth target frame are provided for extract-
ing motion hints during the training process of VQ-MAGAN, the
reconstruction task may becomes much easier for VQ-MAGAN,
potentially degrading the performance of reconstruction in the
inference stage. To address this issue, we only utilize the motion
hints with a probability of 0.5 during the training stage to assist
in the reconstruction process of VQ-MAGAN. The pseudo code
is provided in the Appendix. While we replace the ground-truth
interpolated frame with the predicted one from the previous time
step during the sampling procedure as described in Section 4.4.

4.3 De-noising with Conditional Motion Hints

Implementation Details. The encoder of trained VQ-MAGAN
allows us to access a compact latent space in which we perform for-
ward diffusion by gradually adding Gaussian noise to the latent 𝑧0
of the target frame 𝐼0 according to a pre-defined noise schedule, and
learn the reverse (de-noising) process to perform conditional gen-
eration. Moreover, compared with previous methods, we addition-
ally incorporate the dynamic inter-frame motion hints into the de-
noising process. To this end, we adopt the noise-prediction parame-
terization [20] of diffusion models and train a de-noising U-Net by
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Figure 2: The architecture of the vector quantized motion-aware generative adversarial network, VQ-MAGAN. In practice, the

motion extractor is image-to-event generator [78],𝑚𝑖�𝑗 denotes the inter-frame motion hints between frame 𝑖 and 𝑗 .

minimizing the re-weighted variational lower bound on the condi-
tional log-likelihood log𝑝𝜃 (𝑧0 |𝑧−1, 𝑧+1,𝑚−1�0,𝑚0�+1),where 𝑧−1
and 𝑧+1 are the latent representations of the two conditional neigh-
boring frames, and𝑚𝑖�𝑗 denotes the motion hints between frame
𝑖 and 𝑗 as described in Section 4.1.

Specifically, the de-noising U-Net 𝜖𝜃 takes as input the noisy
latent representation 𝑧𝑡 for the target frame 𝐼0 (sampled from the
𝑡-th step in the forward diffusion process of length𝑇 ), the diffusion
step 𝑡 , as well as the conditioning latent representations 𝑧−1, 𝑧+1
for the neighboring frames 𝐼−1, 𝐼+1. It is trained to predict the noise
added to 𝑧0 at each time step 𝑡 by minimizing

L = E
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑧−1, 𝑧+1,𝑚−1�0,𝑚0�+1 ) ∥2 ] (14)

where 𝑡 ∼ U(1,𝑇 ). The derivation and full details of the training
procedure of 𝜖𝜃 are provide in Appendix. Intuitively, the training
is performed by alternately adding a random Gaussian noise to
𝑧0 according to a pre-defined noising schedule, and having the
network 𝜖𝜃 predict the noise added given the step 𝑡 , conditioning
on 𝑧−1, 𝑧+1 and𝑚𝑖�𝑗 .

Training of De-noising U-net. It is worth noting that during the
training of de-noising U-net, we directly utilize the ground-truth
interpolated frame for extracting inter-frame motion hints which is
the same as the extraction process in the training of VQ-MAGAN.

4.4 MA-Sampling of MADiff

As described above, both VQ-MAGAN and de-noising U-net are
conditioned on the inter-frame motion hints extracted from the
interpolated frame and the conditional neighboring frames. During
the training stage of both VQ-MAGAN and de-noising U-net we
directly using the ground-truth interpolated frame for the motion
hints extraction in a teach-forcing manner. However, the inter-
polated frame is unknown in the sampling phase, rendering the
extraction of inter-frame motion hints between the interpolated
frame and neighboring frames infeasible. While the motion hints
directly extracted from given neighboring frames are often inaccu-
rate and cannot provide sufficient guidance, leading to sub-optimal
performance as described in Table 5. For eliminating this discrep-
ancy of motion hints extraction between the training and sampling

phase, making the motion hints in the sampling process available,
we propose a novel MA-Sampling.

Before introducingMA-Sampling, we provide a review of the
sampling process within traditional LDM for VFI tasks [15]: Within
each time step, firstly the de-noising U-net 𝜖𝜃 predicts the noise 𝜖
conditioned on the latent representations 𝑧−1, 𝑧+1 of neighboring
frames 𝐼−1, 𝐼+1. Then 𝑧0 |𝑡 is obtained as follows:

𝜖 =𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑧−1, 𝑧+1) (15)

𝑧0 |𝑡 =
1

√
𝛼𝑡

(
𝑧𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖
)

(16)

where 𝜖𝜃 (·) is the de-noising U-net, 𝑧0 |𝑡 denotes the predicted 𝑧0 at
time step 𝑡 (particularly, we denote 𝑧0 |1 as 𝑧0 for simplification), 𝑧𝑡
is the noisy latent representation of the predicted 𝑧0 |𝑡+1 obtained
at previous time step 𝑡 + 1 during the sampling process. And 𝑧𝑡 can
be calculated by using 𝜖 and relevant parameters of the pre-defined
forward process as eq (3). Finally, the decoder of VQ-GAN produces
the image 𝐼0 from 𝑧0 |1 with the help of feature pyramids 𝜙−1, 𝜙+1
extracted by the encoder E from 𝐼−1, 𝐼+1. Compared with the tradi-
tional sampling process mentioned above, ourMA-Sampling has
capability of incorporating accurate motion hints between the inter-
polated frame and the neighboring frames for progressively refining
the predicted target frame. Specifically, at time step 𝑡 , firstly the
de-noising U-net 𝜖𝜃 predicts the noise 𝜖 conditioned on the latent
representations 𝑧−1, 𝑧+1 of neighboring frames and additional mo-
tion hints �̂�0�+1 |𝑡+1, �̂�−1�0 |𝑡+1. Then 𝑧0 |𝑡 is obtained as follows:

𝜖 = 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑧−1, 𝑧+1, �̂�−1�0 |𝑡+1, �̂�0�+1 |𝑡+1) (17)

𝑧0 |𝑡 =
1

√
𝛼𝑡

(
𝑧𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖
)

(18)

where �̂�−1�0 |𝑡+1, �̂�0�+1 |𝑡+1 are extracted from the predicted in-
terpolated frame 𝐼0 |𝑡+1 and neighboring frames 𝐼−1, 𝐼+1:

𝐼0 |𝑡+1 = D(𝑧0 |𝑡+1) (19)

�̂�−1�0 |𝑡+1 = 𝑓𝐼2𝐸 (𝐼−1, 𝐼0 |𝑡+1) (20)

�̂�0�+1 |𝑡+1 = 𝑓𝐼2𝐸 (𝐼0 |𝑡+1, 𝐼+1) (21)

And 𝑧𝑡−1 can be calculated using 𝜖 and relevant parameters
of the pre-defined forward process as sampling process of pre-
vious methods eq (3). Particularly, at time step 𝑇 , motion hints
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�̂�−1�0 |𝑇+1 and �̂�0�+1 |𝑇+1 are both replaced with empty features
O ∈ R𝐻×𝑊 ×(2×𝐵) . Finally, the decoder D produces the interpo-
lated frame 𝐼0 |1 (for simplification we denote it as 𝐼0) from the
de-noised latent representation 𝑧0 |𝑡+1 i.e. 𝑧0, by fully considering
feature pyramids 𝜙−1, 𝜙+1 extracted by the encoder E from 𝐼−1, 𝐼+1
as contexts under the guidance of motion hints �̂�−1�0 |1, �̂�0�+1 |1.
Full details and pseudo code are provided in the Appendix.

5 EXPERIMENTS

5.1 Implementation Details

Regarding the diffusion processes, following [15], we adopt a linear
noise schedule and a codebook size of 8192 for vector quantization
in VQ-MAGAN. We sample from all baseline diffusion models with
the DDIM [58] sampler for 200 steps. We also follow [15] to train
the VQ-MAGAN using the Adam optimizer [34] and the de-noising
U-net using the Adam-W optimizer [43], with the initial learning
rates set to 10−5 and 10−6 respectively. Single NVIDIA V100 GPU
were used for all training and evaluation.

5.2 Experimental Setup

5.2.1 Datasets. In our experiments, we strictly follow the dataset
configuration specified in [15] for both training and evaluation.
For training MADiff, we utilize the widely adopted Vimeo90k
dataset [71]. And additional samples from the BVI-DVC dataset [45]
are adopted to better evaluate our VFI methods across a broader
range of scenarios. The overall training set comprises 64,612 frame
triplets from Vimeo90k-septuplets and 17,600 frame triplets from
BVI-DVC, utilizing only the central three frames. For data augmen-
tation, we randomly crop 256 × 256 patches and perform random
flipping and temporal order reversing following [15]. For evalua-
tion, MADiff is validated on four widely recognized VFI bench-
marks, including Middlebury [1], UCF-101 [62], DAVIS [52] and
SNU-FILM [10]. The resolutions of these test datasets vary from
225 × 225 up to 4K, covering various levels of VFI complexity.

5.2.2 Evaluation. Following [15], we adopt a perceptual image
quality metric LPIPS [75], FloLPIPS [12] for performance evaluation.
These metrics exhibit a stronger correlation with human assess-
ments of VFI quality in contrast to the traditionally utilized quality
metrics, such as PSNR and SSIM [68]. We also evaluate FID [19]
which measures the similarity between the distributions of inter-
polated and ground-truth frames. FID was previously used as a
perceptual metric for video compression [74], enhancement [73]
and colorization [32]. We also provide benchmark results based on
PSNR and SSIM in the Appendix, noting that these are limited in
reflecting the perceptual quality of interpolated content [14] and
are therefore not the focus of this paper.

5.2.3 Baseline Methods. MADiff was compared against 11
recent SOTA VFI methods, including BMBC [50], AdaCoF [37],
CDFI [16], XVFI [56], ABME [51], IFRNet [35], VFIformer [44], ST-
MFNet [13], FLAVR [31], MCVD [67] and LDMVFI [15]. It it noted
that MCVD and LDMVFI are diffusion-based VFI method.

5.3 Quantitative Comparison

Table 1 shows the performance of the evaluated methods on the
Middlebury, UCF-101 and DAVIS test sets. It can be observed that
MADiff consistently outperforms all the other VFI methods includ-
ing both non-diffusion or diffusion-based methods. Moreover, we
evaluate the performance on the four splits of the SNU-FILM dataset
(the average motion magnitude increases from Easy to Extreme),
as summarized in Table 2, which further demonstrates the superior
perceptual quality of MADiff, especially in the scenes including
complex motions (SNU-FILM-Hard and Extreme). Notably, the per-
formance of other diffusion-based VFI methods, namely MCVD and
LDMVFI, are generally unsatisfactory, which suggests that simply
defining the VFI task as a conditional image generation task, with-
out explicitly modeling inter-frame motions, may not be adequate
for generating realistic and visually smooth results. As presented
in Table 1, the number of parameters in MADiff is large. This is
because we adopted the existing de-noising U-net [55] designed for
generic image generation following [15] and introduced adapters
for fusing motion hints into the VQ-MAGAN and de-noising U-net.

5.4 Qualitative Comparison

Figure 3 shows the comparison between example frames interpo-
lated byMADiffwith the competing methods. We can observe that,
non-diffusion-based methods (BMBC [50], VFIformer [44], IFRNet
[35] and ST-MFNet [13]) tend to predict blurry results due to the
L1/L2-based distortion loss. On the contrary, diffusion-based VFI
method (LDMVFI [15]) is able to generate more realistic results,
while it also produces several artifacts leads by motion ambiguity.
By incorporating inter-frame motion hints as the guidance, our
MADiff has capability of predicting realistic results.

5.5 Ablation Study

In this section we experimentally validate and study the main com-
ponents including the VQ-MAGAN and MA-Sampling in MADiff.

5.5.1 Effectiveness of VQ-MAGAN and MA-SAMPLING. To
validate the effectiveness of the proposed VQ-MAGAN and MA-
Sampling, we conduct 4 experiments: (1) Exp0: without introduc-
ing the extracted motion hints from the pre-trained motion-related
model into the VQ-MAGAN, and replacing the MA-Sampling with
the original sampling procedure from LDMs; (2) Exp1: without in-
troducing the extracted motion hints from the pre-trained motion-
related model into the VQ-MAGAN, while still usingMA-Sampling
for extracting inter-frame motion hints as additional conditions
of the de-nosing U-net; (3) Exp2: introducing the extracted mo-
tion hints from the pre-trained motion-related model into the VQ-
MAGAN, while replacing MA-Sampling with original sampling
procedure in LDMs; (4) Exp3: MADiff equipped with both VQ-
MAGAN andMA-Sampling. The experimental results are presented
in Table 3. By comparing Exp0, Exp1 and Exp2, we can observe
that simply introducing MA-Sampling can only brings slightly
performance improvements, while simply introducing motion hints
to guide the contexts warping process in VQ-MAGAN can signifi-
cantly improve the performance of MADiff. Moreover, the results
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Middlebury UCF-101 DAVIS #P
(M)LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓

BMBC 0.023 0.037 12.974 0.034 0.045 33.171 0.125 0.185 15.354 11.0
AdaCoF 0.031 0.052 15.633 0.034 0.046 32.783 0.148 0.198 17.194 21.8
CDFI 0.022 0.043 12.224 0.036 0.049 33.742 0.157 0.211 18.098 5.0
XVFI 0.036 0.070 16.959 0.038 0.050 33.868 0.129 0.185 16.163 5.6
ABME 0.027 0.040 11.393 0.058 0.069 37.066 0.151 0.209 16.931 18.1
IFRNet 0.020 0.039 12.256 0.032 0.044 28.803 0.114 0.170 14.227 5.0
VFIformer 0.031 0.065 15.634 0.039 0.051 34.112 0.191 0.242 21.702 5.0
ST-MFNet N/A N/A N/A 0.036 0.049 34.475 0.125 0.181 15.626 21.0
FLAVR N/A N/A N/A 0.035 0.046 31.449 0.209 0.248 22.663 42.1
MCVD 0.123 0.138 41.053 0.155 0.169 102.054 0.247 0.293 28.002 27.3
LDMVFI 0.019 0.044 16.167 0.026 0.035 26.301 0.107 0.153 12.554 439.0

MADiff w/o MS 0.016 0.034 13.649 0.024 0.032 24.677 0.098 0.143 11.764 447.8
MADiff 0.016 0.034 11.678 0.024 0.033 24.289 0.096 0.142 11.089 448.8

Table 1: Quantitative comparison of MADiff (𝑓 = 32) and 11 tested methods on Middlebury, UCF-101 and DAVIS. Note ST-MFNet

and FLAVR require four input frames so cannot be evaluated on Middlebury dataset which contains frame triplets. For each

column, we highlight the best result in red and the second best in blue.

SNU-FILM-Easy SNU-FILM-Medium SNU-FILM-Hard SNU-FILM-Extreme

LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓
BMBC 0.020 0.031 6.162 0.034 0.059 12.272 0.068 0.118 25.773 0.145 0.237 49.519
AdaCoF 0.021 0.033 6.587 0.039 0.066 14.173 0.080 0.131 27.982 0.152 0.234 52.848
CDFI 0.019 0.031 6.133 0.036 0.066 12.906 0.081 0.141 29.087 0.163 0.255 53.916
XVFI 0.022 0.037 7.401 0.039 0.072 16.000 0.075 0.138 29.483 0.142 0.233 54.449
ABME 0.022 0.034 6.363 0.042 0.076 15.159 0.092 0.168 34.236 0.182 0.300 63.561
IFRNet 0.019 0.030 5.939 0.033 0.058 12.084 0.065 0.122 25.436 0.136 0.229 50.047
ST-MFNet 0.019 0.031 5.973 0.036 0.061 11.716 0.073 0.123 25.512 0.148 0.238 53.563
FLAVR 0.022 0.034 6.320 0.049 0.077 15.006 0.112 0.169 34.746 0.217 0.303 72.673
MCVD 0.199 0.230 32.246 0.213 0.243 37.474 0.250 0.292 51.529 0.320 0.385 83.156
LDMVFI 0.014 0.024 5.752 0.028 0.053 12.485 0.060 0.114 26.520 0.123 0.204 47.042

MADiff w/o MS 0.013 0.021 5.157 0.025 0.048 10.919 0.058 0.110 23.143 0.125 0.210 49.435
MADiff 0.013 0.021 5.334 0.027 0.049 11.022 0.058 0.107 22.707 0.118 0.198 44.923

Table 2: Quantitative comparison results on SNU-FILMwhich contains 4 subsets with different motion complexities (the average

motion magnitude increases from Easy to Extreme). And VFIformer is not included because the GPU goes out of memory. For

each column, we highlight the best result in red and the second best in blue.

Exps VQ-MAGAN MA-Sampling
Middlebury UCF-101 DAVIS

LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓

Exp0 ✘ ✘ 0.022 0.043 17.202 0.027 0.036 25.578 0.113 0.157 12.250
Exp1 ✘ ✔ 0.020 0.037 11.632 0.028 0.037 26.885 0.109 0.153 11.558
Exp2 ✔ ✘ 0.016 0.034 13.649 0.024 0.032 24.677 0.098 0.143 11.764
Exp3 ✔ ✔ 0.016 0.034 11.678 0.024 0.033 24.289 0.096 0.142 11.089

Table 3: Ablation study of main components of MADiff. For each column, we highlight the best result in red and the second

best in blue.

of Exp3 demonstrate that simultaneously applying VQ-MAGAN
and MA-Sampling can help MADiff achieve optimal performance.

5.5.2 Influence of Different Types of Motion Hints. InMADiff,
we propose a novel framework to bridge the motion-related predic-
tion models and the diffusion-based VFI models. To demonstrate
the generalizations of MADiff, we conduct ablation study on the
effect of different motion hints. Specifically, we utilize two types
of motion hints for guiding the interpolated generation process

in VQ-MAGAN and MA-Sampling of MADiff: (1) Flow-based

motion hints: flow maps between the interpolated frame with
the neighboring frames estimated by the pre-trained FastFlowNet
[36]; (2) Event-based motion hints: event volumes between the
interpolated frame with the neighboring frames predicted by the
pre-trained EventGAN [78] as described in Section 4.1.

Experimental results are presented in Table 4, where the base-
line refers to theMADiff without incorporating motion hints in
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BMBC VFIformer IFRNet ST-MFNet LDMVFI MADiffMADiff w/o MS

Figure 3: Visual examples of frames interpolated by the state-of-the-art methods and the proposed MADiff. Under large and

complex motions, our method preserves the most high-frequency details, delivering superior perceptual quality.

Exps
Middlebury UCF-101 DAVIS

LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓

baseline 0.022 0.043 17.202 0.027 0.036 25.578 0.113 0.157 12.250
Flow-based Motion Hints 0.016 0.037 16.294 0.025 0.034 23.793 0.104 0.152 12.647
Event-based Motion Hints 0.016 0.034 11.678 0.024 0.033 24.289 0.096 0.142 11.089

Table 4: Ablation study of different type of motion hints in MADiff. For each column, we highlight the best result in red and

the second best in blue.

Exps
Middlebury UCF-101 DAVIS

LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓

baseline 0.022 0.043 17.202 0.027 0.036 25.578 0.113 0.157 12.250
Global Motion Hints 0.018 0.034 11.990 0.025 0.034 23.757 0.104 0.150 11.865
Dynamic Motion Hints 0.016 0.034 11.678 0.024 0.033 24.289 0.096 0.142 11.089

Table 5: Effectiveness of extracting motion hints between interpolated frames with neighboring frames instead of directly

extracting motion hints from two continuous neighboring frames. For each column, we highlight the best result in red and the

second best in blue.

both VQ-MAGAN and MA-Sampling. The results indicate that our
MADiff can effectively integrate various types of motion hints,
thereby enhancing the performance of video frame interpolation.
This demonstrates that our MADiff constitutes a flexible frame-
work, allowing for the straightforward replacement of the motion
hint extractor to incorporate diverse motion hints into diffusion
models for the VFI task. Moreover, we conduct two additional ex-
periments to ascertain the superiority of motion hints between
the interpolated frame and the neighboring frames (referred to as
Dynamic Motion Hints in Table 5) over motion hints between
two neighboring frames (referred to as Global Motion Hints in
Table 5). The results presented in Table 5 demonstrate that motion
hints extracted between the interpolated frame and the neighboring
frames offer more precise guidance and help to mitigate motion am-
biguity in the VFI task, compared to motion hints directly extracted
from two consecutive neighboring frames.

6 CONCLUSION

In this paper, for the VFI task, we propose a novel motion-aware
latent diffusion model (MADiff) which can fully leverage rich inter-
frame motion priors from readily available and pre-trained motion-
related models during the generation of interpolated frames. Specif-
ically, our MADiff consist of a vector quantized motion-aware
generative adversarial network (VQ-MAGAN) and a de-noising
U-net. And VQ-MAGAN is adept at aggregating contextual de-
tails under the guidance of inter-frame motion hints between the
interpolated and given neighboring frames. Additionally, we pro-
pose a novel motion-aware sampling procedure (MA-Sampling)
that progressively refines the predicted frame throughout the sam-
pling process of the diffusion model. Comprehensive experiments
conducted on benchmark datasets demonstrate that ourMADiff
achieves the state-of-the-art performance, significantly surpass-
ing existing approaches, particularly in scenarios characterized by
dynamic textures and complex motions.
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