
A JOB HIRING 𝑓MDP
For the job hiring setting, we create a simulator for building a team of employees that supplies at each timestep a new candidate to the agent.
To apply RL, we define the job hiring setting as a Markov Decision Process (MDP) [6]. The MDP is represented by the tuple {S,A,R, 𝑝},
consisting of a set of states S, a set of actions A, a set of rewards R and a transition function 𝑝 .

State. Each timestep 𝑡 , the agent is presented with the current state s𝑡 ∈ S, which specifies the company’s current composition 𝑝𝑡 of hired
applicants and a new job applicant 𝑐𝑡 to assess. A job applicant 𝑐𝑡 is represented by the following set of features: their gender, age, years of
experience, degree, extra degree, marital status, nationality and their ability to speak four languages {𝑙𝑑𝑢𝑡𝑐ℎ, 𝑙𝑓 𝑟𝑒𝑛𝑐ℎ, 𝑙𝑒𝑛𝑔𝑙𝑖𝑠ℎ, 𝑙𝑔𝑒𝑟𝑚𝑎𝑛}. For
the purpose of this study, we consider gender, nationality, age and marital status sensitive features, which should not be taken into account
when hiring a job applicant. To generate realistic applicants, we sample from the distribution of the Belgian active employed and unemployed
population provided by the Belgian federal government [3]. For the context of our job hiring scenario, we exclude individuals younger than 18
years from this data. To assign spoken languages to the candidates, we sample based on the most known foreign languages of adults [5]. We
define the maximum experience of each applicant in function of their age and obtained degrees:𝑚𝑎𝑥𝑒 = 𝑎𝑔𝑒−18−3∗𝑑𝑒𝑔𝑟𝑒𝑒−2∗𝑒𝑥𝑡𝑟𝑎_𝑑𝑒𝑔𝑟𝑒𝑒 .
We assume a linearly increasing probability for each possible year of experience 𝑦𝑒𝑎𝑟 ∈ [0,𝑚𝑎𝑥𝑒 ] for the applicant, equal to

𝑃 (𝑦𝑒𝑎𝑟 ) = 𝑦𝑒𝑎𝑟 + 1∑𝑚𝑎𝑥𝑒
𝑦=0 (𝑦 + 1)

(1)

The company’s state 𝑝 is represented by a set of features focusing on the employees’ skills. These features consist of the average employee
potential 𝑃 , the percentage of collected degrees, extra degrees, the combined years of experience and language entropy. We normalise all
features based on the desired final team size 𝐾 , such that each applicant can impact the team as much as they would in a full team. We
further normalise the combined years of experience such that all features lie in the interval [0, 1]. Based on hired applicants, the company’s
team composition 𝑝𝑡 is implemented as the proportions of skill and diversity features. For example, the language diversity is represented by
four values [0.6, 0.4, 0.2, 0.1] indicating 60% of the spoken languages is Dutch, 40% is French, 20% is English and 10% is German. On these
values the entropy is calculated for the goodness score and reward. Therefore, the state does not contain a list of all employees, but does
contain their contributions to the team’s skills such that the agent can decide for a new candidate if they are a good fit. Given 𝐾 the desired
final team size and 𝑘 the number of employees (i.e., hired applicants), we define the company’s potential based on the degree 𝑑 , extra degree
𝑒 and experience 𝑥 each employee holds on average. Concretely, the potential of the employees follows a Gaussian with mean
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and a standard deviation of 0.01. For the estimated company potential given a new applicant, we use the same distribution given the
assumption that an applicant’s resume based on these features does not perfectly match the applicant’s potential once hired for the job.

Goodness score. To define how suitable each candidate is for hire, we define an objective goodness score𝐺𝑡 ∈ [−1, 1] based on how the
estimated new company state 𝑝𝑡+1 would differ from the current 𝑝𝑡 , should the applicant be hired:
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𝐾
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(𝑓𝑡+1 − 𝑓𝑡 ) (3)

with 𝑁 the number of skill features. Note that this goodness score is also noisy due to the noise in the current company potential and the
estimated new potential. Intuitively, the goodness score is higher for applicants who can improve the average potential, have the requested
skills and improve the language entropy of the team.

Action and reward. At each timestep 𝑡 , the agent must choose whether to reject or hire the applicant for a given state s𝑡 . Given the chosen
action 𝑎𝑡 for state s𝑡 , the agent receives a reward 𝑟𝑡 based on the goodness score 𝐺𝑡 of the presented applicant. Given the goodness score 𝐺𝑡

and threshold 𝜖 , the reward for hiring an applicant is

𝑟𝑡,ℎ𝑖𝑟𝑒 = 𝐺𝑡 − 𝜖 + N(0, 0.01) (4)

We add Gaussian noise to the reward under the assumption that the applicant’s qualification may differ slightly from the estimation of the
goodness score. This models the employer’s uncertainty about the suitability of hired applicants. The reward for rejecting an applicant is the
negative reward of hiring the applicant:

𝑟𝑡,𝑟𝑒 𝑗𝑒𝑐𝑡 = −𝑟𝑡,ℎ𝑖𝑟𝑒 (5)

Transition function. We define the transition function 𝑝 : S × R × S × A → [0, 1] as the probability of encountering the next state s𝑡+1
and reward 𝑟𝑡 given the current state s𝑡 and action 𝑎𝑡 . To mimic a realistic team composition over time, we allow employees to leave the
company based on real job transition probabilities corresponding to their age [4]. This provides the agent with the additional challenge of
replacing lost skills of leaving employees to keep the team balanced.
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Feedback signal. To extend the MDP to an 𝑓MDP, we implement the feedback signal 𝑓𝑡 as the correct action 𝑎𝑡 based on the goodness
score:

𝑓𝑡 = 𝑎𝑡 (6)

B MULTIMAUS 𝑓MDP
The fraud detection setting concerns online credit card transactions where multi-modal authentication is used to identify and reject fraudulent
transactions. We make the following adaptations to the MultiMAuS simulator [8], but keep their default parameters.

State. Each hour, a set of customers, both genuine and fraudulent, attempt to make transactions, where each transaction is characterised
by the following features: card id, merchant id, amount, currency, country and the date and hour when the transaction is occurring. As the
agent must check transactions on an individual basis, we consider a new timestep for every transaction request. At each timestep 𝑡 , the
agent observes the current state s𝑡 containing information about the current company state, and a new transaction to process. We define two
company state features: the proportion of genuine to fraud transactions and the average customer satisfaction.

Reward + action. For each transaction, the agent must decide whether or not to request an authentication from the customer. Based on the
chosen action 𝑎𝑡 , the agent receives a reward

𝑟𝑡 =


+1 if genuine authentication,
−1 if fraudulent authentication,
0 otherwise

(7)

Based on this reward, always asking for authentication results in more fraudulent transactions being caught, as fraudsters are assumed
to not be able to provide a second authentication [8]. However, asking for authentication too often reduces the customer’s patience in
completing transactions. Furthermore, too many authentication requests make it more likely for customers to leave the credit card company.
Therefore, the agent must carefully select transactions to check to keep customer satisfaction high, while also catching as many fraudulent
transactions as possible.

Feedback signal. The reward 𝑟𝑡 specifies the correctness of the action if the agent requests authentication. Consequently, if the reward is
positive the transaction is considered genuine, while a negative reward indicates an unsuccessful transaction, caused by a loss in commission
or by stolen money requiring the credit company to repay the losses to the client. To implement a feedback signal 𝑓 , we infer the correctness
when authenticating to observe the amount of true positives and false positives.

C PARETO CONDITIONED NETWORKS
A Pareto Conditioned Network (PCN) [2] applies supervised learning techniques to approximate all non-dominated policies within a single
neural network. PCN takes as input a tuple ⟨s, ℎ̂, R̂⟩, representing the observed state s, the desired return R̂ to reach at the end of the episode
and the desired horizon ℎ̂ indicating the number of timesteps that should be executed before reaching R̂. Both ℎ̂ and R̂ are chosen by the
decision maker at the start of an episode. Consequently, at every timestep 𝑡 , the desired return is updated by the received reward R̂← R̂ − 𝑟𝑡
and the desired horizon is decreased by one timestep ℎ̂ ← ℎ̂ − 1. PCN learns policies similar to classification techniques, where ⟨s𝑡 , ℎ𝑡 ,R𝑡 ⟩ is
the input at timestep 𝑡 and the chosen action 𝑎𝑡 is the output. We employ a dense neural network with state, horizon and return embeddings,
with each consisting of a hidden layer of 64 neurons and a sigmoid activation function. Their outputs are fed through a fully connected
neural network of 2 layers with a RELU activation on the first layer. This last network produces outputs for each action.

D POLICY VISUALISATION
To easily compare the range of possible policy trade-offs across multiple objectives, all objectives are normalised and/or shifted, such that
the maximum any objective can reach is 0. As the number of policies is large (more than 30 per seed), we opt to highlight a representative
subset of 5-10 policies for each of the figures. This subset contains the policy with the highest performance reward (R), along with policies
which differ most from each other and the un-highlighted policies across all policies. Note that we do plot all policies in low opacity. As such,
more shaded regions indicate a larger number of policies which obtain similar trade-offs.

E ADDITIONAL JOB HIRING RESULTS
E.1 Individual fairness under different distance metrics
As individual fairness notions are impacted by the chosen distance metric, we explore their impact on the learned policies. Figure 1 shows a
representative set of policies when optimising for an individual fairness notion under different distance metrics. Note how for the Bray-Curtis
distance metric, both individual fairness notions are difficult to optimise to as high value as the heterogeneous distance metrics HEOM and
HMOM [7]. Consequently, choosing the appropriate distance metric is context dependent, and must be decided a priori by stakeholders [1].
For our experiments, we have chosen to exclude the Bray-Curtis distance metric, as no policies could be found with any variation in the



trade-offs for both individual fairness notions. Therefore, this distance metric is not informative on the fairness in our experiments. Instead,
we opted for HMOM, but note that HEOM could have been an equally suitable choice.

(a) Individual Fairness (IF)

(b) Consistency Score Complement (CSC)

Figure 1: Representative set of learned hiring policies when optimising for an individual fairness notion.

E.2 Job hiring with reward bias
Figure 2 shows the additional combinations of optimising the reward, a group fairness notion as well as an individual fairness notion under
different reward configurations. In general, group fairness is easier to maximise. Note how the only exceptions are policies which prioritise
the reward. The default configuration of Figure 2c in particular has found a policy which improves the reward, at the cost of both group and
individual fairness.

F ADDITIONAL FRAUD DETECTION RESULTS
F.1 Individual fairness under different distance metrics
We explored the impact of different distance metrics in the fraud detection setting as well. We observe a similar effect to the job hiring
setting, where the Bray-Curtis distance metric is very difficult to increase. For the same reasons, we have opted for the HMOM distance
metric instead for the rest of the experiments.

F.2 Multi-objective policies under different history sizes
Figure 4 shows the learned policies when optimising the reward and an individual fairness notion, under different history sizes. We note a
similar effect on the learned policies when optimising for the reward, a group fairness notion and an individual fairness notion, where the
largest differences are across the reward R, EO and OAE. Note that the window size also impacts how much CSC can be maximised.
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(a) Reward (R), Statistical Parity (SP) and Individual Fairness (IF)

(b) Reward (R), Equal Opportunity (EO) and Individual Fairness (IF)

(c) Reward (R), Statistical Parity (SP) and Consistency Score Complement (CSC)

Figure 2: Representative set of learned hiring policies when optimising the reward, a group fairness notion and an individual
fairness notion. Showing results for different reward configurations.

(a) Individual Fairness (IF)

(b) Consistency Score Complement (CSC)

Figure 3: Representative set of learned fraud detection policies when optimising for an individual fairness notion.



(a) Reward (R) and Individual Fairness (IF)

(b) Reward (R) and Consistency Score Complement (CSC)

Figure 4: Representative set of learned fraud detection policies when optimising the reward and an individual fairness notion.
Showing results for histories with different sliding window sizes.
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