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ABSTRACT

Supplementary materials to the paper: “Learning Riemannian Metrics for Inter-
polating Animations”. The code will be made available upon publication.

1 VISUAL COMPARISON OF INTERPOLATIONS

We visualize and qualitatively evaluate the accuracy of our interpolations for different sampling
rates s to complement the results shown in Figs. 6-9 in the main text. Our visualizations show
the ground truth animation, with the interpolation layered transparently over it. This allows us to
highlight where the interpolation deviates from the ground truth (GT) in Figs. 1-5. We observe that
our interpolation is accurate even for smaller sampling rates. These static visualizations are further
complemented by the supplemental video.
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Figure 1: Qualitative evaluation of the geodesic interpolation for the Pitching animation. Left:
Frame from ground truth (GT) animation. Right: Frames for rates: s ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 2: Qualitative evaluation of the geodesic interpolation for the Punching animation. Left:
Frame from ground truth (GT) animation. Right: Frames for rates: s ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 3: Qualitative evaluation of the geodesic interpolation for the Jumping animation. Left:
Frame from ground truth (GT) animation. Right: Frames for rates: s ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 4: Qualitative evaluation of the geodesic interpolation for the Sitting animation. Left:
Frame from ground truth (GT) animation. Right: Frames for rates: s ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 5: Qualitative evaluation of the geodesic interpolation for the Rolling animation. Left:
Frame from the ground truth (GT) animation. Right: Frames for rates: s ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

2 QUANTITATIVE COMPARISON OF INTERPOLATIONS

We quantitatively compare the accuracy of each interpolation scheme as a function of the sampling
rate s. Fig. 6 plots the interpolations’ errors:

Qhyb = 0.5Qloc + 0.5Qrot,

for the Punching animation. This complements the results for the Pitching animation pre-
sented in Fig. 5 in the main text. As for the Pitching animation, our approach applied to the
Punching animation consistently presents the lowest error just in front of slerp’s. Despite the
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seemingly small quantitative difference between slerp’s and ours in Fig. 6, we note from the supple-
mentary videos and qualitative evaluations above that the interpolated animations show significant
perceptual differences.

Punch: Sampling Rate vs. Location + Rotation sum error 
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Figure 6: As the sampling rate for the Punching animation increases—which means a higher
number of ground truth frames in the initial animation—the error metric Qhyb decreases.

To confirm these visual insights and better express these perceptual differences, we use an additional
quantitative evaluation: the Hausdorff distance. The Hausdorff distance is a common measure that
compares two sets of points: e.g., two meshes at a given frame in between two animations. Given
two sets of points, A and B, the Hausdorff distance dH(A,B) is defined as:

dH(A,B) = max{sup
a∈A

inf
b∈B

||a− b||, sup
b∈B

inf
a∈A

||a− b||},

where ||a− b|| is the distance between points a and b in Euclidean space, and sup is the supremum.

The lower the Hausdorff distance, the more similar the two meshes on a given frame are. The
Hausdorff distance measures the maximum distance from any point in one character mesh to the
closest point in the other character mesh. In other words, the Hausdorff distance measures the
similarity between two character meshes by quantifying the distance between their farthest points:
this is interesting to quantify our own perception of the differences between animations, as our eyes
often catch on the most important differences when running the animation.

We compute the Hausdorff distance between each interpolated animation (across interpolation
schemes) and the ground truth animation for a fixed sampling rate of s = 0.3. Figs.7-9 show
our results for the remaining three animations: Sitting, Jumping and Rolling respectively.
Each interpolation scheme presents a plot with “peaks”, where the distance goes to 0 at regular
intervals. This is expected, since each interpolation scheme keeps frames from the ground-truth an-
imations, at regular intervals, and only interpolates in-between them. We observe that our geodesic
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Figure 7: Quantitative comparison per frame using the Hausdorff distance to the ground truth for
the Sitting animation (sampling rate: s = 0.3).
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Figure 8: Quantitative comparison per frame using the Hausdorff distance to the ground truth for
the Jumping animation (sampling rate: s = 0.3).
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Figure 9: Quantitative comparison per frame using the Hausdorff distance to the ground truth for
the Rolling animation (sampling rate: s = 0.3).

interpolation (shown in purple) systematically provides a lower distance to the ground-truth anima-
tion, quantifying what we observe qualitatively in the video. We also observe that the two schemes
for linear interpolation, Cartesian and slerp, provide very close (although distinct) values of Haus-
dorff distances. This highlights an interesting property of our approach: while our interpolation is
still “linear” in the sense that it is “geodesic” which is the generalization of “linear” for manifolds,
changing the geometry of the manifold does provide a significant perceptual difference compared to
only changing from linear space (Cartesian) to nonlinear space (spherical).

Furthermore, we confirm that the frames where our interpolation performs best are indeed the frames
where the perceptual difference is the most visible in the supplemental video. For example, Fig. 6
of the main text shows frame 24 of the Sitting animation. In Fig. 7, this frame corresponds to
one of the high peaks of the Hausdorff distance for the linear interpolations (Cartesian and slerp)
and the piece-wise constant interpolation, while our distance remains low. Likewise, Fig. 9 of the
main text shows frame 44 of the Rolling animation. In Fig. 9, this frame also corresponds to one
of the frames where our geodesic interpolation performs significantly better that the alternatives.

Lastly, we evaluate how our approach performs under different sampling rates s for animations
Sitting, Jumping and Rolling. Figs. 10-12 show our results. As expected, the distance to
the ground truth animation decreases as we increase the sample rate, specifically as a decreasing
exponential. We explicitly illustrate the relationship between the error of our method, expressed as
Hausdorff distance, and the sampling rate s. Fig. 13 shows the Hausdorff distance averaged over
frames in log-scale as a function of s. We confirm a consistent trend among the three animations:
decreasing line in log-scale, i.e., decreasing exponential.

3 COMPRESSION

We quantitatively compare the file sizes for a given animation under the different compression
schemes. We take an error threshold using the Qhyb metric to set a threshold on the desired qual-
ity of the animation. For each interpolation scheme, we pick the lowest sampling rate that allows
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Figure 10: Evaluation of the geodesic interpolation per frame using the Hausdorff distance to the
ground truth animation, for the Sitting animation.
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Figure 11: Evaluation of the geodesic interpolation per frame using the Hausdorff distance to the
ground truth animation, for the Jumping animation.

the interpolation to reach that quality threshold. We then compare the file sizes generated by each
subsampled animation. To this aim, we consider the number of frames, bones, and the amount of
memory required to represent each bone at each frame. Specifically, since one floating-point number
is typically 4 bytes in size and each bone can be represented using 3 coordinates (i.e., 3 floats) at
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Figure 12: Evaluation of the geodesic interpolation per frame using the Hausdorff distance to the
ground truth animation, for the Rolling animation.
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Figure 13: Hausdorff distance (in log-scale) between our interpolated animation and the ground
truth animation, averaged over the frames, as a function of the sampling rate, for the three main
animations: Jumping, Sitting, and Rolling.

each frame, we estimate the file size using the following formula:

S = F ·B · 3 · 4 bytes, (1)
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where F is the number of frames and B is the number of bones. To evaluate the file size generated
by our method, the two additional parameters α and β must also be saved for each bone. They
occupy an additional:

Sα,β = B · 2 · 4 bytes. (2)

Sampling Rate File Size
Pitch our geodesic 0.42 30.72KB*

piecewise constant 0.57 40.32KB
linear (cartesian) 0.57 40.32KB
linear (slerp) 0.46 31.68KB

Punch our geodesic 0.38 184 KB*
piecewise constant 0.49 234 KB
linear (cartesian) 0.51 249 KB
linear (slerp) 0.4 195 KB

Table 1: We show the compression capability of our approach, by giving the file sizes it achieves
on two animations with different number of bones: the Pitch animation with 24 bones and the
Punch animation with 65 bones. In both animations, and for each interpolation method, we select
the sampling rate that allows us to reach an interpolation error of Qhyb < 0.2.

We note that the formula for S only provides a proxy of the file size, as it assumes that each bone
is represented using only 3 floats at each frame. Indeed, it does not take into account other memory
requirements that are necessary to store the artistic components of an actual character animation in a
software such as Blender. Yet, our estimation of file size provides a useful guideline to get intuition
on the memory requirements of a given animation, which is crucial for efficient storage.

Table 1 shows compression achieved by the interpolation methods in terms of file size S as defined
in the equation above. To stay below a given interpolation error of Qhyb < 0.2, we observe that our
method requires a lower sampling rate s, which in turn yields a lower file size. The difference in file
sizes naturally increases when the character rig is large: that is, for an animation that has a higher
number of bones. For example, in the animation Punchwith 65 bones, even a “small” improvement
in sampling rate provides an important improvement in terms of file sizes. Considering the fact that
animations do not only store the location of the bones, but also store a very high number of artistic
features, the file sizes presented in Table 1 should be multiplied by a few order of magnitudes. In
this context, our method can yield substantial improvements in terms of memory requirements.
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