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ABSTRACT

Foundation models, such as large language models, have achieved remarkable
success in natural language processing and are evolving into models capable of
handling multiple modalities. Listening ability, in particular, is crucial for many
applications, leading to research on building speech foundation models. However,
the high computational cost of these large models presents a significant challenge
for real-world applications. Although substantial efforts have been made to reduce
computational costs, such as through pruning techniques, the majority of these ap-
proaches are applied primarily during the training phase for specific downstream
tasks. In this study, we hypothesize that optimal pruned networks may vary based
on contextual factors such as speaker characteristics, languages, and tasks. To ad-
dress this, we propose a dynamic pruning technique that adapts to these contexts
during inference without altering the underlying model. We demonstrated that we
could successfully reduce inference time by approximately 30% while maintain-
ing accuracy in multilingual/multi-task scenarios. We also found that the obtained
pruned structure offers meaningful interpretations based on the context, e.g., task-
related information emerging as the dominant factor for efficient pruning.

1 INTRODUCTION

In recent years, foundation models have achieved remarkable success across various tasks in natural
language processing (OpenAI, 2022; 2023; Google, 2023; Meta, 2024; Anthropic, 2024; Amazon,
2024; DeepSeek-AI, 2025). These Large Language Models (LLMs) have been particularly effective
as multi-modal systems, incorporating modalities such as images and videos (Google, 2024; An-
thropic, 2024; Amazon, 2024). The integration of voice as a modality for communication between
humans and LLMs has also gained traction, leading to applications that facilitate interactive conver-
sations with LLMs (OpenAI, 2024; Défossez et al., 2024). Many studies have explored features to
integrate the hearing ability into LLMs, employing methods such as connecting massive audio en-
coders to LLMs (Changli et al., 2024; Yuan et al., 2024; Chu et al., 2023; HU et al., 2024; Défossez
et al., 2024) and utilizing large speech-to-text foundation models with powerful multilingual and
multi-task capabilities (Radford et al., 2023; Peng et al., 2023d; Puvvada et al., 2024).

However, this broad support necessitates the training of large-scale models with billions of param-
eters, introducing new challenges such as increased inference costs. In speech processing, where
input sequences tend to be longer than those in language processing, computationally intensive mod-
els can significantly prolong inference times. To address these challenges, various methodologies
have been proposed, including bifocal networks (Macoskey et al., 2021a), dual-attention architec-
tures (Sahai et al., 2023), amortized networks (Macoskey et al., 2021b; Xie et al., 2022; Strimel
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et al., 2023), pruning (Fu et al., 2022; Lai et al., 2021; Peng et al., 2023a; Wang et al., 2023; Ding
et al., 2024), quantization (Nguyen et al., 2020; Ding et al., 2024), distillation (Liu et al., 2021;
Chang et al., 2022; 2024; Gandhi et al., 2023), and combinations of those methods (Peng et al.,
2023c). However, these approaches primarily focus on reducing the model size during training.

While these models handle various tasks, it raises a fundamental question: is a single model optimal
structured for all tasks and languages? Different languages and tasks may require unique pruning
strategies for effective processing. For example, Chen et al. (2022) highlights that different layers
contribute differently depending on the task, indicating that the optimal model structure might vary
across tasks. They also showed excellent performance in ASR using the WavLM encoder with only
a single linear layer as the decoder, which raises questions about the need for a large-scale decoder
in ASR systems. Conversely, Peng et al. (2024a) highlight the importance of the decoder network
in ST, suggesting that the decoder may play a more critical role in ST compared to ASR. Therefore,
we hypothesize that there might be an optimal model structure depending on each task and language
combination so that each subnetwork has the potential to perform with comparable accuracy with
less inference complexity.

Given this hypothesis, we propose a method for dynamically pruning a pre-trained foundation model
based on the context information, including speech features, language, and task characteristics, en-
abling the construction of an optimal model architecture tailored to the contextual requirements
during inference. Specifically, we train a model that computes module-level masks for each layer in
the encoder and decoder networks based on the provided context while simultaneously fine-tuning
the foundation model. The predicted mask is utilized to determine which modules to activate or
skip while maintaining accuracy. By analyzing the pruned network, we offer an interpretation of the
importance of the optimal subnetwork within the given contexts.

This paper makes the following key contributions:

1. We propose to apply a novel context-aware pruning technique to each module in a speech
foundation model dynamically within multilingual and multi-task scenarios.

2. We were able to reduce inference time by 34.3% without degrading the BLEU scores for
the ST task and 28.6% with only 2.8% WER degradation on the ASR task.

3. We conducted a detailed comparative analysis and found that the obtained pruned struc-
ture offers meaningful interpretations based on the context, e.g., task-related information
emerging as the dominant factor for efficient pruning.

2 RELATED WORK

Pruning techniques are mainly classified into unstructured and structured approaches. The former is
a technique for deleting individual weights in a network (LeCun et al., 1989; Hassibi et al., 1993;
Han et al., 2016b); however, it has a problem of low compatibility with hardware accelerators (Han
et al., 2016a; Liu et al., 2024). This method is further investigated in Appendix D. On the other hand,
structured pruning has a more direct benefit in reducing the complexity, which performs pruning on
a layer or module basis, including filters/layers in CNNs (Wen et al., 2016; Li et al., 2017; Alvarez
& Salzmann, 2016; Han et al., 2017) or layer-wise pruning in models (Fan et al., 2020; Lee et al.,
2021; Chen & Zhao, 2019). Thus, our paper employs structured pruning.

Methods for determining pruning targets include gradient-based techniques (Guo et al., 2016; He
et al., 2020; Fu et al., 2022; Wen et al., 2016) as well as magnitude-based approaches for mod-
ules (Li et al., 2017; 2022). However, these methods typically use a fixed architecture during infer-
ence. Addressing this limitation, recent research has focused on implementing efficient inference
by dynamically adjusting the computational load during the inference process (Bengio et al., 2016;
Jernite et al., 2017; Bolukbasi et al., 2017; Graves, 2016). Notably, in the speech domain, numerous
studies have explored streaming models to achieve dynamic model structures aimed at speedup (Ma-
coskey et al., 2021a;b; Strimel et al., 2023; Xie et al., 2022; Xu et al., 2023). In this context, Peng
et al. (2023b); Bittar et al. (2024) extended this concept to large-scale Transformer-based models,
exploring dynamic layer-wise structural changes to enhance efficiency. In our study, we extend the
work of Peng et al. (2023b) by utilizing the model structure of a speech foundation model to address
multilingual and multi-task scenarios. This extension explores how a large-scale speech foundation
model adapts its structure based on context and input condition (Lu et al., 2024), providing insights
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(a) E-Branchformer (b) TransformerDecoder (c) Language/Task token

Figure 1: The sparse E-Branchformer and Transformer architectures in the experiment, and the
method for embedding the language/task information. The audio information and the language/task
information are concatenated, and the Gate Predictor calculates the gate probability for each module
in each layer.

into more efficient and context-aware (Chang et al., 2021; Sathyendra et al., 2022) speech processing
systems.

3 METHODS

3.1 OPEN WHISPER-STYLE SPEECH MODELS

In this study, we utilized Open Whisper-Style Speech Models (OWSM) (Peng et al., 2023d) as
the foundation for our speech model experiments. OWSM is an open-source reproduction of Ope-
nAI’s Whisper model (Radford et al., 2023). Among the available versions, we selected OWSM-
v3.1 (Peng et al., 2024b) as the speech foundation model for our experiments. The key rationale
for selecting OWSM models lies in its fully open training data, processes, and configuration com-
pared to Whisper. We ensure that the data used for validation in our experiments is not part of the
pre-training corpus. This transparency is critical. If validation data was included in the pre-training
data, it could inflate post-pruning accuracy, hindering a proper evaluation of the pruned network’s
performance.

Additionally, the E-Branchformer architecture integrated into OWSM-v3.1 offers a more flexible
and generalized structure compared to the conformer, due to its parallel design. The model employs a
dual-branch structure: one branch extracts global context using a self-attention-based module (glob-
ATT), while the other captures local context using a convolution-based module (cgMLP) Sakuma
et al. (2022). These branches are merged through a convolution-based merging layer, and are en-
closed between two feed-forward networks (FFN1 and FFN2). Through the elimination of particular
modules in the E-Branchformer layers, we can create a model resembling a conformer. This will
enable us to thoroughly evaluate the Transformer’s efficiency and effectiveness as an architectural
design.

3.2 MODULE-LEVEL PRUNING

We implement module-level pruning in our study, targeting essential components within foundation
models like self-attention (ATT) and feed-forward networks (FFN). For example, in the Transformer
architecture, we prune the self-ATT, source-attention (src-ATT), and FFN as modules. In the case
of the E-Branchformer, pruning modules include the FFN1, glob-ATT, cgMLP, and the FFN2.

The motivation for adopting module-wise pruning is our assumption that the model’s architecture
should remain flexible and adaptable during inference. Pruning techniques that operate at a finer
granularity, such as kernel pruning or layer pruning, which removes individual kernels or layers
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from convolution components, would disrupt the model’s structural integrity and limit its ability to
dynamically adapt to different audio inputs. While layer-wise pruning aligns with our goal of simpli-
fying the model, it oversimplifies the pruned model and prevents us from observing the importance
of individual modules. For these reasons, we decided to employ module-wise pruning techniques
to balance between structural flexibility and model interpretability. Further considerations on layer-
skip approaches have been included in the Appendix C for reference.

3.3 PRUNING

Given the dynamic nature of the input speech, it is necessary to generate a mask for each module
based on audio input, language, and task information. To achieve this, we employ a neural network
model to estimate a binary mask that determines whether to use a module. We frame the pruning
problem as an L0 regularization task Louizos et al. (2018), optimizing the expected value of the
binary mask to achieve the desired sparsity. While Louizos et al. (2018) uses a Sigmoid-based
approach, we follow Peng et al. (2023b) for implementation efficiency and treat the mask estimation
as a two-class classification problem using Gumbel-Softmax Jang et al. (2017) for implementation
efficiency.

In these works, pruning masks were learned using the sigmoid function or Gumbel-Softmax. How-
ever, the masks used during training were continuous values between 0 and 1, rather than strict
binary values. As a result, modules that should have been completely skipped during inference were
still partially utilized during training. During fine-tuning the OWSM model, we observed that even
with a very low temperature for the softmax operation for probabilities, the gate probabilities often
remained in the range between 0.4 and 0.6. This led to a discrepancy where the output of a module
was scaled by a factor of 0.4 during training, while the same module was entirely skipped during in-
ference because the probability fell below the threshold value, such as 0.5. To address this issue, we
employed the Straight-through Gumbel-Softmax Estimator (SGSE) Jang et al. (2017) to ensure that
the output of the gate predictor was strictly binary. With SGSE, the forward pass computations are
performed using binary values, while the backward pass estimates gradients with continuous values,
allowing the model to be trained effectively. The detailed formulation is provided in Appendix A.

In our work, inspired by Peng et al. (2023b) and Wang et al. (2020), we define the sparsity loss
function, Lsparsity, as follows:

Lsparsity = α{|g − starget|+ (g − starget)
2}, (1)

where g is the average of the gate probabilities for all modules, α refers to the weight forLsparsity, and
starget is the desired sparsity ratio for the model. Since we use Gumbel-Softmax to binarize all gate
probabilities, g represents the proportion of modules that are activated in the entire model, i.e., the
model’s sparsity ratio. For a detailed derivation of the loss function, please refer to the Appendix E.

Additionally, when both the Encoder and Decoder are pruned, we calculate the Lsparsity based on
the gate probabilities from both components to bring the overall model sparsity closer to starget. Let
genc be the gate probability for any module in the encoder, and gdec be the gate probability for any
module in the decoder. Then, the Lsparsity is calculated for three scenarios, from top to bottom: first,
when only the encoder is pruned; second, when only the decoder is pruned; and third, when both the
encoder and decoder are pruned simultaneously.

Lsparsity =


α |E[genc]− starget|+ α (E[genc]− starget)

2 encoder only

α |E[gdec]− starget|+ α (E[gdec]− starget)
2 decoder only

α
2 |E[genc] + E[gdec]− 2starget|+ α

4 (E[genc] + E[gdec]− 2starget)
2 jointly

As noted by Wang et al. (2020), starget is gradually increased during training. Therefore, let the loss
for the downstream task be Lowsm, the overall loss function that we aim to minimize is:

L = Lowsm + Lsparsity. (2)

3.4 CONTEXT-AWARE GATE PREDICTOR

As shown in Fig. 1, the gate probability is calculated using Gate Predictors. In Peng et al. (2023b),
two types of Gate Predictors are proposed: GlobalGP and LocalGP. GlobalGP calculates the gate
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probability based on the encoder’s input, which is also fed into the first layer of the encoder. In
contrast, LocalGP provides a Gate Predictor for each layer, computing the probability based on
the input to that specific layer. While both methods have shown promising results, we opted for
GlobalGP due to its implementation simplicity. The detailed process of calculating gate probability
is in Appendix G.

To handle multiple languages and tasks simultaneously, we created vectors representing the language
and task, combined them with the speech features, and used them as input to the Gate Predictors.
These vectors are combinations of one-hot vectors representing the language and task. For example,
if there are two languages, French and German, and tasks including speech recognition and transla-
tion between them, the language conditions are [0, 1] for French and [1, 0] for German, and the task
conditions are [0, 0, 1] for speech recognition, [0, 1, 0] for French to German translation, and [1, 0, 0]
for German to French translation. Combining these, tasks such as French speech recognition can be
expressed as [0, 1, 0, 0, 1], and similarly [0, 1, 0, 1, 0] means translating French to German.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset This study employs the Europarl-ST (Iranzo-Sánchez et al., 2020) dataset to evaluate
model performance across multiple languages. The corpus was compiled from debates held in the
European Parliament between 2008 and 2012. We utilized version 1.1 of the dataset, which com-
prises speech data in nine languages. For our experiments, we selected German, French, and Italian,
which consist of approximately 20 hours of speech data. As the europarl-ST dataset is not part of
the OWSM training data, we deemed it suitable for evaluating the model under multi-lingual and
multi-task settings.

Task We fine-tuned the OWSM model with a pruning objective across ASR and ST tasks. The
experiments were designed to compare two pruning strategies: one in which the model was trained
on ASR and ST tasks independently, and another where both tasks were integrated during training.
Additionally, we investigated the effects of sparsifying the model in three configurations: sparsifying
only the Encoder, only the Decoder, and both simultaneously.

Evaluation In this experiment, we evaluated the ASR task using Word Error Rate (WER) and the
ST task using BLEU scores. For each language, we prepared models with sparsity ratio of 10%,
30%, 50%, 70%, and 90%, and assessed their performance. Additionally, we used a baseline model
that was fine-tuned with all modules retained for comparison. Note that the sparsity level refers to
the ratio of activated modules to the total number of modules, not the number of parameters in the
model. In all experiments, we performed auto-regressive decoding with a beam size of 5.

The model sparsity observed in this experiment is visualized using heat maps, where each cell rep-
resents the gate probability for all modules across all layers. During model validation, the activation
frequency of each gate is accumlated, and the average is computed to derive the expected activation
probability per module.

4.2 RESULTS

4.2.1 MULTI-LINGUAL ASR

Figure 2 shows the WER for German. In Figures 3 and 4, we present the visualization of E[genc] and
E[gdec] for each module when the encoder and decoder were pruned separately. Figure 5 illustrates
the E[genc] and E[gdec] when encoder and decoder were jointly pruned. We analyzed the g across
varied starget and languages, and found no significant differences. Therefore, we focus on the German
ASR results here. For complete heatmaps and a WER table, refer to Appendix H. We considered the
possibility that the differences in the amount of data used for pre-training the OWSM model across
languages might affect our results and conducted additional training accordingly. The results are
provided in Appendix B.
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Figure 2: Comparison of sparsity ratio and
WER. The label enc indicates pruning of the
encoder only, dec indicates pruning of the de-
coder only, and enc-dec indicates simultane-
ous pruning of both. The WER is evaluated
for German as the starget varies from 0.1 to
0.9. The baseline WER is 13.5. Decoder
pruning retains WER even at high sparsity,
while encoder pruning significantly degrades
it.

Figure 3: Visualization of E[genc] when
pruned separately with German and French
ASR. The columns represents the starget,
with starget being 0.5 and 0.7 from left to
right. The first row represents the result for
German ASR, and the second row repre-
sents the French ASR. The y-axis within
the heatmap represents the depth, where
top is the first layer. The label A indi-
cates glob-ATT, C indicates cgMLP, F1 in-
dicates FFN1, and F2 indicates FFN2.

Figure 4: Visualization of E[gdec] in German
ASR, when decoder was pruned separately.
The columns represent the starget, with starget
being 0.7 and 0.9 from left to right. The la-
bel SELF indicates self-ATT, SRC indicates
src-ATT, and FFN indicates FFN. The other
settings are consistent with those in Figure 3.

Figure 5: Visualization of E[genc] and E[gdec]
when they were pruned jointly. The stargat
for this figure is 0.7. The left image corre-
sponds to the encoder, and the right image
corresponds to the decoder. The other set-
tings are consistent with those in Figure 3
and Figure 4.

Inference Performance We found that pruning the decoder side did not harm WER, even with
high sparsity ratios, where pruning encoder modules greatly deteriorate the WER in high sparsity
ratio. By analyzing the results alongside the module heatmap, we observed a decline in encoder
accuracy at starget = 0.7, specifically when cgMLP started to be pruned, underscoring the critical
role of cgMLP in ASR tasks. In contrast, observing the decoder side with a starget = 0.9, where a
substantial number of FFNs have been pruned, we find that WER does not deteriorate as severely as
in the ST case discussed in section 4.2.2. This finding supports our initial question that ASR may
not require large-scale decoders to the same extent as ST.

Sparse Encoder Analysis Referring to Figure. 3, the encoder’s pruning strategy remained consis-
tent across languages. Additionally, the highly polarized colors in Figure. 3, indicate that the gate
probabilities are concentrated at extreme values, suggesting minimal variation in module selection
based on speech characteristics. Interestingly, pruning approximately 50% of the encoder modules
led to a more biased module selection, favoring cgMLP activations. This highlights the crucial role
of local context captured by cgMLP, challenging the current architectural convention that equally
balances both.
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Figure 6: Comparison of sparsity ratio and
BLEU scores for French-to-German transla-
tion. BLEU is evaluated for encoder-only,
decoder-only, and encoder-decoder pruning,
with a baseline score of 12.2. Similar to
ASR, the decoder retains performance better
than the encoder at high sparsity.

Figure 7: Visualization of E[genc] and
E[gdec] when they were pruned jointly. The
columns represents the starget, with starget
being 0.5 and 0.7 from left to right. The
first row represents the encoder, and the
second row represents the decoder. The
other settings are consistent with those in
Figure 3.

Sparse Decoder Analysis In conditions where 90% of the modules were pruned, src-ATT was
prioritized over self-ATT and FFN in Figure 4, indicating its essential role in inference. Given that
src-ATT is the module responsible for incorporating audio information, this behavior is understand-
able. At a 70% sparsity ratio, we observed a typical flow in the TransformerDecoder, where the
process moves from self-ATT to src-ATT, and then to FFN. The heatmap indicates that groups of
modules can be computed in chunks, with several self-ATT modules processed together, followed
by a block of src-ATT modules, and then a group of FFN modules. These findings suggest that
incorporating chunk-wise computation could improve the efficiency of conventional decoder archi-
tectures.

Combined Encoder-Decoder Sparsity Analysis We found that several portions of the encoder
exhibit a similar architecture to that of the Conformer. That is, the processing sequence progresses
from the FFN to the glob-ATT, then to the cgMLP, and back to the FFN. This finding suggests that
the Conformer architecture is effective in speech foundation models, particularly when the model
size is constrained.

Compared to Figure 4 and Figure 5, we observed that when pruning is applied only to the decoder,
src-attention layers in the early part of the decoder are often skipped. However, when both the en-
coder and decoder are pruned together, the earlier src-attention layers in the decoder become more
active. This difference appears to stem from whether the encoder’s full capacity is available. When
the encoder is fully utilized, the decoder computes more self-attention and FFN layers before src-
attention to incorporate additional contextual information from the output tokens. In contrast, when
encoder capacity is limited, the decoder compensates by performing self-attention and FFN compu-
tations directly on the audio features to capture details that may have been missed by the encoder.
Additionally, by analyzing the number of active modules in the decoder, we found differences in
the number of FFN layers processed before src-attention, which further supports this interpretation.
These findings are also supported by visualizations provided in the Appendix H.

4.2.2 MULTI-LINGUAL ST

Figure 6 presents the BLEU scores for the French-to-German translation tasks. Figure 7 visual-
ize the E[genc] and E[gdec] for each module when the encoder and decoder were pruned separately.
We also analyzed the g across varied starget and tasks, and found no significant differences. There-
fore, we focus on the French-to-German ST results here. Refer to the Appendix H for a complete
heatmaps and table of BLEU score. The analysis on combined encoder-decoder settings are also in
the Appendix H.
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Inference Performance Focusing on the encoder side in Figure 6, the BLEU scores remained
relatively stable even with a starget = 0.5. On the other hand, from Figure 6 and Figure 7, BLEU
scores began to degrade when usage of cgMLP modules dropped when starget becomes 0.7. This
highlights the importance of convolution-based models in ST, consistent with ASR tasks. A notable
difference from ASR is that pruning the decoder also deteriorates model performance. We found
that in the ST decoder, the FFN tends to be retained in computation. As the model removes the FFN,
the BLEU score also degrades. This observation supports our initial hypothesis that the decoder
plays a more critical role in ST compared to ASR.

Sparse Encoder Analysis In Figure 7, we observed an increased importance of cgMLP, similar
to the findings in ASR. However, unlike ASR, the utilization of FFN2 decreased in the earlier layers
of the ST task. Nevertheless, there were no significant differences in module selection within the
encoder structure. This indicates that it may not be necessary to modify the encoder when designing
models intended to handle both ASR and ST tasks simultaneously.

Sparse Decoder Analysis From starget = 0.5 to starget = 0.7, the number of activated src-ATT
decreased significantly in Figure 7, with this reduction being larger than ASR. Additionally, it be-
came apparent that self-ATT were computed over a broader range of depths compared to ASR. This
suggests that while ASR places greater importance on audio information, ST requires self-ATT and
FFN more than audio information for translation. This increased reliance can be attributed to the
non-monotonic relationship between input audio and output text in ST, necessitating a greater use
of self-ATT and FFN to capture complex dependencies.

In Figure 7, we observed that self-ATT layers are more frequently activated before src-ATT in ST
compared to ASR. We hypothesize that this difference arises from the distinct priorities of each task.
In ASR, the primary focus is on integrating audio features directly, as each computation of src-ATT
increases the prominence of audio information as a weighted sum. In contrast, ST seems to place
a higher importance on alignment text information through self-ATT before src-ATT to effectively
map different languages. As a result, self-ATT layers are activated earlier to better contextualize
before src-ATT, reflecting the task-specific demands of aligning cross-modal information. These
findings underscore how the allocation of self-ATT and src-ATT computations is influenced by the
differing requirements of ASR and ST.

4.2.3 PRUNING BY JOINT ASR AND ST

Figure 8 represents the WER for German ASR, and Figure 9 represents the BLEU score for French-
to-German translation task. Figure 9 represents the BLEU score for French-to-German translation
task. Same as the single-task settings, we also analyzed the g across varied starget and tasks, but
could not find differences in module selection across languages and tasks. Therefore, we focus on
the French-to-German ST results here. Refer to the Appendix H for a complete heatmaps and tables
for other tasks and languages. The analysis of the case where the encoder and decoder were pruned
separately is included in Paragraph 4.2.3.

Inference Performance When ASR and ST tasks were trained simultaneously, a slight degrada-
tion in WER and BLEU was observed in Figures 8 and 9, particularly when pruning was applied to
both the encoder and decoder. However, we found that when only the decoder was pruned, perfor-
mance was better maintained compared to other settings. These findings suggest that, for large-scale
speech foundation models trained on multiple tasks, focusing on decoder pruning is a more effective
strategy for preserving accuracy across various tasks.

Combined Encoder-Decoder Sparsity Analysis In Figure 10, the processing order observed was
FFN, followed by src-ATT, and then self-att, particularly when starget is 0.7. This order contradicts
the typical processing sequence of a Transformer decoder and the observations made in 4.2.1. These
results suggest that the conventional processing order of Transformer decoders may not be optimal
for speech foundation models trained on multi-task data.
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Figure 8: Comparison of starget and WER on
German ASR. This figure compares results
when using only ASR data versus using both
ASR and ST data. single refers to the results
obtained using only ASR data, and joint in-
cludes results from pruning that also incor-
porates ST data. The other settings are con-
sistent with those in Figure 3.

Figure 9: Comparison of starget and BLEU on
French-to-German ST. This figure compares
results when using only ST data versus us-
ing both ASR and ST data. The labels are
the same as Figure 8. Combined with Fig-
ure 8, this suggests that decoder pruning in
multitask settings maintains competitive per-
formance compared to task-specific pruning.

Figure 10: Visualization of E[genc] and E[gdec] when they were pruned jointly.
The columns represent the starget, with starget being 0.3, 0.5, and 0.7 from left to
right. The first row represents the encoder, and the second row represents the
decoder. The other settings are consistent with those in Figure 3.

4.3 INFERENCE EFFICIENCY

We measured the actual inference time of the pruned model to analyze the effect of pruning on infer-
ence speed. We used one A40 GPU and 16 CPUs for each inference run. We employed vectorized
beam search (Seki et al., 2019) for decoding, where the beam size is 5. Since previous experiments
showed no variation in module selection across languages or tasks, we focused on one language
and task, specifically German ASR for measuring inference time in each case. Table 1 presents the
trends in metrics, inference time, and FLOPs as a function of module sparsity. It is important to note
that we ignored the first run of inference, as it contains initialization processes that make it slower.

The results show that reducing the decoder modules by 50% improves latency while maintaining
accuracy for both ASR and ST tasks. Specifically, we achieved a 34.3% reduction in inference
time with no degradation in BLEU for ST, and a 28.6% reduction with only a 2.8% WER increase
for ASR. Since OWSM uses auto-regressive inference with vectorized beam search, the decoder
handles the majority of the computational load. This is reflected in the significant reduction in
FLOPs observed during pruning, as the decoder processes each output token individually, treating
the beam size as the batch size. In this analysis, we set the beam size to 5, meaning the encoder’s
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Table 1: Metrics and Elapsed time on inference for ASR (German) and ST (French-to-German)
across varying starget. The models were trained on task-specific training datasets. The table compares
elapsed time, GFLOPs, and metrics (WER for ASR and BLEU for ST) at different starget for the enc,
dec, and enc-dec. Baseline results are: ASR - 9.28 seconds and 13.5 WER, and 3781 GFLOPs; ST
- 10.54 seconds, 12.2 BLEU, and 3409 GFLOPs. Each row represents a different sparsity target,
showing the impact on inference time and output quality as the sparsity increases. ET refers to the
elapsed time. We use fvcore library to estimate the GFLOPs.

ASR (German)

Encoder Decoder EncDec

sparsity ET GFLOPs WER ET GFLOPs WER ET GFLOPs WER

10% 9.07 3697 14.4 9.33 3268 15.3 10.39 2843 14.3
30% 9.21 3690 14.8 7.24 2293 15.9 7.09 2249 15.4
50% 8.92 3669 16.3 6.62 1713 20.4 5.99 1698 17.8
70% 9.15 3633 21.0 4.79 1272 17.2 5.49 1139 28.8
90% 8.52 3613 80.8 4.80 625 24.5 5.22 682 80.8

ST (French-to-German)

Encoder Decoder EncDec

sparsity ET GFLOPs BLEU ET GFLOPs BLEU ET GFLOPs BLEU

10% 10.42 3369 12.3 10.72 2718 12.9 10.58 2861 12.2
30% 10.08 3357 11.9 8.27 2015 13.0 9.27 2093 11.6
50% 10.27 3335 12.3 6.92 1521 12.2 7.09 2023 9.4
70% 10.38 3311 9.2 5.38 1063 10.3 6.58 936 5.2
90% 10.44 3298 2.5 4.27 504 5.3 4.81 549 0.4

batch size is 1, while the decoder’s is 5. As a result, pruning the decoder not only reduces FLOPs
but also has a more pronounced impact on inference speed compared to pruning the encoder.

5 CONCLUSION

In this work, we proposed a novel context-aware dynamic pruning method for speech foundation
models that adapts pruning dynamically during inference. With the pruned model, we successfully
accelerated the inference of speech foundation models, particularly without any degradation in the
ST task. Through a detailed analysis of the model structures that emerge after pruning, we identi-
fied the efficiency of the Transformer decoder and Conformer, while also uncovering an interesting
computational flow when the model was pruned in multi-task settings. Although this study focused
on the speech domain, our approach can be readily extended to foundation models in other fields,
such as NLP and computer vision.
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7 REPRODUCIBILITY

You can download the OWSM-v3.1 we employed in this experiment from the huggingface hub 1

All of our experiments are conducted with ESPnet (Watanabe et al., 2018). Based on the training
configuration of OWSM-v3.1, we added or modified the following configuration:

encoder: e_branchformer_token_condition
decoder: transformer_decoder_token_condition

tau_ini: 1
tau_end: 0.1
tau_cooldown_steps: 15000
sparsity_init: 0.0
sparsity_end: 0.3

optim: adamw
optim_conf:

lr: 0.00001
weight_decay: 0.000001

scheduler: warmuplr
scheduler_conf:

warmup_steps: 6000

Several configurations were added to the original ESPnet. Each configuration is as follows:

• tau ini / tau end: The initial and final temperatures for Gumbel-Softmax.
• tau cooldown steps: The iteration number for the temperature of Gumbel-Softmax. Target

sparsity gradually increases to sparsity end.
• sparsity init / sparsity end : The initial target sparsity and after the warmup.
• sparsity warmup steps: Warmup steps for the sparsity. The target sparsity will be gradually

increased to reach sparsity end.

The class we set for the encoder and decoder is the extended class of E-Branchformer and Trans-
formerDecoder to incorporate pruning in this study. Other configurations are same as the OWSM-
v3.1, and you can refer to all settings in huggingface hub 2
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A PROBLEM FORMULATION OF DYNAMIC PRUNING WITH
STRAIGHT-THROUGH GUMBEL-SOFTMAX ESTIMATOR

Our task formulation follows (Louizos et al., 2018), but differs in the formulation of the term used
to compute model complexity, where we employ the SGSE function. Specifically, given an input
speech signal x, model parameters θ, model function f(θ), and pruning mask z, the output token ỹ

is computed using the pruned parameters θ̃ as follows:

ỹ = f(x|θ̃), θ̃ = θ ⊙ z, z ∈ {0, 1}|θ|,

where |θ| denotes the number of model parameters. Given a dataset, we define the loss function L
and the l0 norm as ∥θ̃∥0 = E[z]. The training loss is then formulated as:

loss =
1

N

(
N∑
L(f(x|θ̃), y)

)
+ λ∥θ̃∥0,

where N is the batch size and λ is a hyperparameter that encourages model sparsity. Here, ∥θ̃∥0
serves as a sparsity-inducing regularization term. However, learning z as a binary variable makes
it difficult to compute gradients for the skipped modules, which prevents parameter updates. To
address this, (Louizos et al., 2018) applies a reparameterization trick to represent z in a differentiable
form z̃, allowing for simultaneous optimization of both θ and z̃ by defining ∥θ̃∥0 = E[z̃].

However, this method results in z̃ being a continuous value, which leads to discrepancies between
training and inference computations. To mitigate this issue, we employ SGSE, which ensures that
z̃ remains binary even during training. Specifically, given a trainable global gate predictor G(·) and
context information C, z̃ can be expressed using the SGSE function as:

z̃ = SGSE(G(x,C))

B DATA SIZE

The language-specific data volumes used for training OWSM-v3.1 are shown in Table 2, including
additional languages from the Appendix experiments. Although the Italian dataset is smaller than
German and French, pruning trends remain similar. For performance details, see Appendix H. We
created a new dataset by integrating Voxforge (Voxforge.org) with Europarl-ST, covering the same

Table 2: Data size used in OWSM-v3.1 pre-
training for each language.

Language amount (h)
French 2489
German 3704
Italian 707
Hungarian 97
Bulgarian 18

Table 3: Additional dataset with Voxforge.We
show WER for German (deu), French (fra), and
Italian (ita). Decoder was pruned from OWSM-
v3.1 model.

sparsity deu fra ita
0% 14.2 11.1 12.3

10% 14.8 12.8 13.3
30% 15.1 12.9 13.6
50% 19.3 16.0 18.2
70% 17.5 15.1 15.8
90% 25.5 23.8 21.6
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Table 4: Additional results for Hungarian (hun)
and Bulgarian (bul). We show WER for these
two languages when encoders and decoders
were pruned separately. The WER for full fine-
tuned model is 33.2 for Hungarian and 23.5 for
Bulgarian.

Encoder Decoder

sparsity hun bul hun bul
10% 38.7 38.2 35.1 29.5
30% 42.5 37.7 34.1 24.2
50% 42.1 38.3 40.1 29.1
70% 54.4 44.2 36.3 26.5
90% 89.2 78.8 42.1 36.2

Table 5: Reproduced I3D results using the Lib-
riSpeech dataset. We show the Word Error Rate
(WER) on the test-clean set for varying numbers
of encoder layers.

# Layers WER
36 8.7
34 8.7
28 8.8

(a) Encoder (b) Decoder

Figure 11: The sparsity plot for Hungarian ASR shows the results when the encoder and decoder
were pruned separately, with the target sparsity ratio set to 70%. The pruning patterns exhibit no
notable differences compared to those observed in high-resource languages.

languages. Training and evaluation follow Section 4, and ASR results appear in Table 3. Perfor-
mance degradation across sparsity levels is comparable between Europarl-ST and the joint dataset.

To assess the impact on underrepresented languages, we selected Hungarian and Bulgarian from
Fleurs (Conneau et al., 2022). Table 4 shows WER results. Decoder pruning lowered accuracy, as
with high-resource languages like French and German, but encoder pruning had a greater impact.
Even at lower sparsity, encoder pruning caused notable performance drops, highlighting its crucial
role in preserving accuracy for low-resource languages. With less training data, effective input
feature capture is essential, while the decoder is less sensitive to sparsity due to its reliance on
encoder representations.

We developed a baseline on Peng et al. (2023b) using a Transformer-encoder model trained on Lib-
riSpeech (Panayotov et al., 2015) and fine-tuned it on the LibriSpeech-100h subset. The reproduced
WER results on the test-clean set are shown in Table 5. Our parameter settings yielded sparsity
levels of approximately 95% and 78%, indicating that performance remains unaffected up to around
20–25% sparsity, consistent with our experimental results.

C LAYER-LEVEL PRUNING

To compare performance with other pruning methods, we conducted layer-level pruning experi-
ments. An example pruning pattern for layer skipping is shown in Figure 12. Table 6 presents WER
results for German ASR with decoder-only pruning. Up to 70% sparsity, skipping at the layer and
module levels shows no significant difference. At lower sparsity, the layer-level approach performs
better, while at higher sparsity, the module-level approach excels. This suggests that at higher spar-
sity, optimizing the roles and order of individual modules is more effective than skipping entire
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Table 6: WER on module-level pruning and layer-level pruning. Results from German ASR, with
only decoder pruned (left) and only encoder pruned (right).

Encoder Pruned Decoder Pruned

sparsity Module Layer Module Layer

10% 14.5 31.3 15.8 15.4
30% 15.0 32.0 16.4 15.2
50% 16.8 34.2 16.2 16.5
70% 25.1 40.2 18.3 18.7
90% 47.3 108.6 26.4 99.9

Table 7: Comparison of GFLOPs between module skip and layer skip at different target sparsity
levels when the encoder is pruned. We used the fvcore library to calculate the FLOPs. FLOPs
were computed over multiple utterances, and the average value was taken. For reference, the FLOPs
for the model without pruning were 3781.

sparsity Module Skip (GFLOPs) Layer Skip (GFLOPs)
10% 3697 3697
30% 3690 3692
50% 3669 3666
70% 3633 3640
90% 3613 3620

Figure 12: The sparsity plot when layers were skipped from encoder with the target sparsity ratio
set to 70%. This model was trained on German-to-Italian ST.

layers. For the encoder, accuracy degradation is significant, suggesting that layer-level pruning is
unsuitable for speech foundation models. Unlike module-level pruning, layer-level pruning forcibly
removes even cgMLP, which plays a critical role in encoding.

We also computed FLOPs when the encoder is pruned, as shown in Table 7. Since different modules
are used in module-level vs. layer-level pruning, we analyzed the impact. For encoder pruning,
module-level pruning results in slightly lower FLOPs, reinforcing its advantage in efficiency.

D UNSTRUCTURED PRUNING

We investigated the impact of pruning strategies: unstructured vs. structured pruning. Table 8
compares magnitude-based unstructured pruning and PARP. Fine-tuning was performed on a dataset
including ASR and ST, and WER was evaluated on German ASR. Even with unstructured pruning,
decoder pruning preserved performance. However, compared to module-level pruning at the same
sparsity, module-level pruning—especially on the encoder—maintained accuracy more effectively.
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Table 8: WER results for German ASR with different unstructured pruning techniques.

Model WER (%)
Original model (without fine-tuning) 24.6
+ Unstructured pruning (sparsity = 0.1) 24.5
+ Unstructured pruning (sparsity = 0.3) 24.5
+ PARP (sparsity = 0.1, applied to encoder) 31.2
+ PARP (sparsity = 0.3, applied to encoder) 31.8
+ PARP (sparsity = 0.1, applied to decoder) 19.8
+ PARP (sparsity = 0.3, applied to decoder) 16.4

E SPARSITY LOSS

In Peng et al. (2023b), pruning is applied to the Transformer encoder by targeting the self-attention
and feed-forward network modules. The sparsity loss function, Lsparsity, is defined as:

Lsparsity = λ

(
1

2N

N∑
l=1

(g
(l)
self-ATT + g

(l)
FFN)

)
,

where g(l)self-ATT, g
(l)
FFN are the gate probabilities of each module in the l-th layer, and the N is the num-

ber of layers. λ is a constant loss weight for the sparsity and the value is determined heuristically.
Peng et al. (2023b) aims to achieve model sparsity by controlling the magnitude of the loss through
λ. In Peng et al. (2023b), different values of λ will lead to different inference costs, as the final
sparsity ratio of the model is controlled by sparsity loss.

We initially tried the fixed value for λ. However, the fixed λ did not allow the model to achieve
the desired sparsity, particularly when attempting to prune over 70% of the modules. To address
this, Wang et al. (2020) introduces a Lagrange multiplier λ1 and λ2, and the sparsity loss is defined
as:

Lpenalty = λ1(g − starget) + λ2(g − starget)
2

where λ1 and λ2 are updated based on the model’s sparsity.

Here, Lpenalty can take a negative value when −λ2

λ1
≤ g − starget ≤ 0 (Details are in F). If Lpenalty

becomes negative, it complicates solving the minimization problem when combined with the ASR
and ST losses. To address this issue, we employed a function to calculate the absolute value of
g − starget, so that the Lpenalty remains non-negative. For the sake of simplicity, we set the λ1 =
λ2 = 1 and employed a constant α on top of it. Starting from 1, we gradually increase the α unless
it reaches the desired sparsity. The visualization of each cost function is in the Appendix. Thus,
the sparsity loss we used in this experiment becomes Eq. 1. When calculating the Lsparsity, α was
gradually increased following Wang et al. (2020).

F VISUALIZATION ON SPARSITY LOSS

The purpose of Lagrange multipliers in Wang et al. (2020) is to make the Lpenalty more aggressive
penalty term. So we hypothesized that simply introducing a regularization term, which has similar
role, we can make the model prune the desired number of modules. Figure 13 illustrates the graphs
of various penalty terms. The x-axis represents gl0 − starget and the y-axis represents Lsparsity.

The Lpenalty in Appendix E can be rewritten as a quadratic function: Lpenalty = (x + λ1

2λ2
)2 − λ2

2

4λ2
1

This is represented by the green curve in Figure 13. They move the vertex of this green curve when
updating the two Lagrange multipliers. In our implementation, we set λ1 = λ2 = 1 and introduced
an overall coefficient α. Thus, Lpenalty becomes: Lpenalty = α(x + 1

2 )
2 − α

4 In our approach, we
increase the value of this coefficient when the difference between the actual sparsity and the target
sparsity exceeds a certain threshold (0.05). Increasing this coefficient α lowers the vertex of the
green line in Figure 13. For example, setting α = 5 results in the red curve, which has a steeper
slope for x > 0.
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Figure 13: Visualization on different Lsparsity. Wang et al. (2020) moves the green line to maximize
the loss. Our method simply shifts the vertex downward. For example, by lowering the vertex of the
green line, we transform it into a penalty function resembling the red line.

Algorithm 1 Gate Predictor

xpooled ← Average(xGP) ▷ Average over time dimension, xpooled ∈ RD

x← Concat(C, xpooled) ▷ Concatenate conditional info, x ∈ RD+Dconf

logit← Reshape(G(x)) ▷ Reshape G(x) to logit ∈ RL×2

g ← SGSE(logit, axis = 1) ▷ Compute SGSE function
g ← g[:, 1] ▷ Select second column from Gumbel-Softmax output

G CONTEXT-AWARE GATE PROBABILITY

The gate probability g is computed using a separate predictor for each module. Let G() denote the
gate predictor, with speech feature input xGP ∈ RT×D, condition C ∈ RDC

, and total layers L.
Here, T is the number of frames, D the speech feature dimension, and DC the condition dimension.
The gate probability g for a module is computed as in Algorithm 1, with gl0 = E[g].

To prevent early learning instability, we avoid random weight initialization for the Gate Predictor.
Random initialization may remove 50% of modules early, hindering gradual reduction. Instead, we
adjust the final layer bias so that g initially outputs values near 1, ensuring full activation. This setup
allows a gradual reduction in active modules during training. Following Peng et al. (2023b), we use
a two-layer MLP with an intermediate size of 32.

H HEATMAPS AND TABLES

Table 9: Comparison of WER (%) for French, German, and Italian using encoder-sparsified model,
decoder-sparsified model, and jointly sparsified model.

Sparse Encoder Sparse Decoder Jointly Sparsified Encoder-Decoder

Baseline 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

French 10.3 11.4 11.7 12.8 18.3 84.8 11.3 13.4 16.4 13.3 26.5 10.9 11.7 14.1 27.1 84.8
German 13.5 14.4 14.8 16.3 21.0 80.8 15.3 15.9 20.4 17.2 24.5 14.3 15.4 17.8 28.8 80.8
Italian 12.8 14.5 14.4 16.5 22.5 86.0 13.8 13.9 20.1 15.4 26.5 13.5 14.7 17.5 32.5 86.0
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Figure 14: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French, the second row represents German, and the third row represents Italian. The other settings
are consistent with those in Figure 3.

Figure 15: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French, the second row represents German, and the third row represents Italian. The other settings
are consistent with those in Figure 3.

Table 10: BLEU score on each speech translation direction for Sparse Encoder, Sparse Decoder, and
Jointly Sparsified Encoder-Decoder

Sparse Encoder Sparse Decoder Jointly Sparsified Encoder-Decoder

src trg baseline 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

fra de 12.2 12.3 11.9 12.3 9.2 2.5 12.9 13.0 12.2 10.3 5.3 12.2 11.6 9.4 5.2 0.4
it 13.5 12.8 12.7 12.3 10.2 1.8 12.5 11.8 12.0 9.3 3.1 12.8 12.0 8.8 4.2 0.0

deu fr 9.4 9.1 8.7 8.5 6.6 2.2 9.3 9.2 9.0 6.4 3.1 8.9 8.5 6.3 3.2 3.1
it 7.5 7.0 7.0 6.6 5.1 1.3 8.4 8.4 7.9 6.4 2.8 7.1 6.5 4.7 2.3 0.0

ita de 11.8 11.1 10.8 10.1 8.2 2.8 12.1 12.0 11.8 9.4 5.5 11.2 10.3 8.5 4.6 0.7
fr 14.0 12.8 12.6 11.8 9.9 3.1 13.0 12.3 11.8 8.3 3.3 12.8 12.0 8.8 4.2 0.9
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Figure 16: Visualization of E[genc] when encoder and decoder was pruned jointly. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French, the second row represents German, and the third row represents Italian. The
other settings are consistent with those in Figure 3.

Figure 17: Visualization of E[gdec] when encoder and decoder was pruned jointly. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French, the second row represents German, and the third row represents Italian. The
other settings are consistent with those in Figure 3.

Table 11: BLEU score on each speech translation direction and WER for ASR tasks for Sparse
Encoder, Sparse Decoder, and Jointly Sparsified Encoder-Decoder. The leftmost column represents
the source speech’s language and the corresponding target text’s language.

Sparse Encoder Sparse Decoder Jointly Sparsified Encoder-Decoder

src-
trg

metric baseline 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

fr-fr WER 11.0 11.6 11.9 13.1 22.3 46.8 12.6 13.4 13.2 15.0 25.9 11.2 12.4 14.5 24.2 107.0
fr-de BLEU 11.2 8.4 8.6 7.9 3.9 2.0 11.3 11.6 10.2 9.0 5.8 10.7 9.9 8.3 5.5 0.6
fr-it BLEU 13.0 12.2 12.3 11.6 7.6 2.5 12.3 11.9 11.2 9.6 4.7 10.2 9.5 7.8 2.9 0.0
de-de WER 13.6 14.5 15.0 16.8 25.1 47.3 15.8 16.4 16.2 18.3 26.4 14.6 15.0 18.2 26.5 105.0
de-fr BLEU 8.4 6.1 5.8 5.0 3.1 1.5 8.2 8.3 7.7 6.3 4.0 8.0 7.3 6.0 3.8 0.4
de-it BLEU 6.4 6.1 6.0 5.7 3.4 1.2 6.9 7.0 6.2 4.9 2.6 4.9 4.7 3.7 1.7 0.0
it-it WER 13.2 14.4 15.2 17.3 27.6 86.0 14.5 15.2 15.0 16.7 28.9 13.9 15.1 17.8 28.7 162.6
it-de BLEU 9.8 6.5 6.5 6.2 3.9 2.2 10.6 10.4 9.8 8.4 5.8 7.1 8.7 7.4 3.2 0.1
it-fr BLEU 13.5 13.0 12.6 11.9 8.1 2.9 12.6 12.6 11.9 9.5 5.6 12.6 11.5 9.9 5.6 0.6
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Figure 18: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French-to-German, the second row represents French-to-Italian translation. The other settings are
consistent with those in Figure 3.

Figure 19: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French-to-German, the second row represents French-to-Italian translation. The other settings are
consistent with those in Figure 3.

Figure 20: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French-to-German, the second row represents French-to-Italian translation. The other
settings are consistent with those in Figure 3.
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Figure 21: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French-to-German, the second row represents French-to-Italian translation. The other
settings are consistent with those in Figure 3.

Figure 22: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
German-to-French, the second row represents German-to-Italian translation. The other settings are
consistent with those in Figure 3.

Figure 23: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
German-to-French, the second row represents German-to-Italian translation. The other settings are
consistent with those in Figure 3.
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Figure 24: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the German-to-French, the second row represents German-to-Italian translation. The
other settings are consistent with those in Figure 3.

Figure 25: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the German-to-French, the second row represents German-to-Italian translation. The
other settings are consistent with those in Figure 3.

Figure 26: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
Italian-to-French, the second row represents Italian-to-German translation. The other settings are
consistent with those in Figure 3.
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Figure 27: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
Italian-to-French, the second row represents Italian-to-German translation. The other settings are
consistent with those in Figure 3.

Figure 28: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the Italian-to-French, the second row represents Italian-to-German translation. The other
settings are consistent with those in Figure 3.

Figure 29: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the Italian-to-French, the second row represents Italian-to-German translation. The other
settings are consistent with those in Figure 3.
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Figure 30: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned separately for
French ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

Figure 31: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned jointly for
French ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

Figure 32: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French-to-German, the second row represents French-to-Italian translation. The other settings are
consistent with those in Figure 3.
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Figure 33: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
French-to-German, the second row represents French-to-Italian translation. The other settings are
consistent with those in Figure 3.

Figure 34: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French-to-German, the second row represents French-to-Italian translation. The other
settings are consistent with those in Figure 3.

Figure 35: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the French-to-German, the second row represents French-to-Italian translation. The other
settings are consistent with those in Figure 3.
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Figure 36: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned separately for
German ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

Figure 37: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned jointly for
German ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

Figure 38: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
German-to-French, the second row represents German-to-Italian translation. The other settings are
consistent with those in Figure 3.
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Figure 39: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
German-to-French, the second row represents German-to-Italian translation. The other settings are
consistent with those in Figure 3.

Figure 40: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the German-to-French, the second row represents German-to-Italian translation. The
other settings are consistent with those in Figure 3.

Figure 41: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the German-to-French, the second row represents German-to-Italian translation. The
other settings are consistent with those in Figure 3.
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Figure 42: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned separately
for Italian ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

Figure 43: Visualization of E[genc] and E[gdec] when encoder and decoder was pruned jointly for
Italian ASR. The columns represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from
left to right. The first row represents the encoder, the second row represents the decoder. The other
settings are consistent with those in Figure 3.

Figure 44: Visualization of E[genc] when encoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
Italian-to-French, the second row represents Italian-to-German translation. The other settings are
consistent with those in Figure 3.

31



Published as a conference paper at ICLR 2025

Figure 45: Visualization of E[gdec] when decoder was pruned separately. The columns represents
the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row represents the
Italian-to-French, the second row represents Italian-to-German translation. The other settings are
consistent with those in Figure 3.

Figure 46: Visualization of E[genc] when encoder was jointly pruned with decoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the Italian-to-French, the second row represents Italian-to-German translation. The other
settings are consistent with those in Figure 3.

Figure 47: Visualization of E[gdec] when decoder was jointly pruned with encoder. The columns
represents the starget, with starget being 0.1, 0.3, 0.5, 0.7, and 0.9 from left to right. The first row
represents the Italian-to-French, the second row represents Italian-to-German translation. The other
settings are consistent with those in Figure 3.
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