
Uncovering motifs of concurrent signaling across
multiple neuronal populations

— Supplementary Information —

Evren Gokcen1, Anna I. Jasper2, Alison Xu2,
Adam Kohn*,2,3,4, Christian K. Machens*,5, Byron M. Yu*,1,6

1Dept. of Electrical and Computer Engineering, Carnegie Mellon University
2Dominick Purpura Dept. of Neuroscience, 3Dept. of Ophthalmology and Visual Sciences,

4Dept. of Systems and Computational Biology, Albert Einstein College of Medicine
5Champalimaud Neuroscience Programme, Champalimaud Foundation

6Dept. of Biomedical Engineering, Carnegie Mellon University
egokcen@cmu.edu, {anna.jasper, alison.xu, adam.kohn}@einsteinmed.edu,

christian.machens@neuro.fchampalimaud.org, byronyu@cmu.edu
*Denotes equal contribution.

S1 Mathematical notation

To disambiguate each variable or parameter in the mDLAG model, we need to keep track of up
to four labels that indicate their associated (1) trial; (2) neuron or latent variable index; (3) time
point; or (4) subpopulation (for example, brain area). We indicate the first three labels via subscripts.
Trials are indexed by n = 1, . . . , N ; neurons are indexed by i = 1, . . . , q; latent variables are
indexed by j = 1, . . . , p; and time is indexed by t = 1, . . . , T . Where relevant, we indicate the
population to which a variable or parameter pertains via a superscript, where populations are indexed
by m = 1, . . . ,M . For example, we define the observed activity of neuron i (out of qm) in population
m at time t on trial n as ymn,i,t ∈ R. Similarly, we define latent variable j (out of p) in population m
at time t on trial n as xm

n,j,t ∈ R. To indicate a collection of all variables along a particular index,
we replace that index with a colon. Hence we represent the simultaneous activity of qm neurons
observed in population m at time t on trial n as the vector ym

n,:,t ∈ Rqm . Similarly, we represent the
collection of all p latent variables in population m at time t on trial n as the vector xm

n,:,t ∈ Rp. For
concision, where a particular index is either not applicable or not immediately relevant, we omit it.
The identities of the remaining indices should be clear from context. For example, we might rewrite
ym
n,:,t as ym

n,t.

It is conceptually helpful to understand the notation for observed variables (y) and latent variables
(x) as taking cross-sections of three-dimensional arrays. For example, observed activity in population
m on trial n can be grouped into the matrix (two-dimensional array) Y m

n = [ym
n,1 · · ·ym

n,T] ∈
Rqm×T . Hence each ym

n,t is a column of Y m
n . Then we can form the three-dimensional array Y m by

concatenating the matrices Y m
1 , . . . , Y m

N across trials along a third dimension. Similarly, the latent
variables in population m on trial n can be grouped into the matrix Xm

n = [xm
n,:,1 · · ·xm

n,:,T] ∈ Rp×T .
We represent a row of Xm

n (i.e., the values of a single latent variable j at all time points on trial n) as
xm
n,j,: ∈ RT . Finally, we can form the three-dimensional array Xm by concatenating the matrices

Xm
1 , . . . , Xm

N across trials along a third dimension.

We will explicitly define all other variables and parameters as they appear, but for reference, we list
common variables and parameters below:

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Data characteristics

• N – number of trials

• T – number of time points per trial

Observed neural activity

• qm – number of neurons observed in population m

• Y m
n – qm × T matrix of observed activity in population m on trial n

• ym
n,t – qm × 1 vector of observed activity in population m at time t on trial n;

the tth column of Y m
n

Latent variables

• p – number of latent variables (same for all populations)

• Xm
n – p× T matrix of latent variables in population m on trial n

• xm
n,:,t – p× 1 vector of latent variables in population m at time t on trial n; the tth

column of Xm
n

• xm
n,j,: – T × 1 vector of values of latent j in population m over time on trial n;

the jth row of Xm
n

Observation model parameters

• Cm – qm × p loading matrix for population m

• αm
j – automatic relevance determination (ARD) parameter for population m and

latent j
• dm – qm × 1 mean parameter for population m

• ϕm – qm × 1 observation noise precision parameter for population m,
ϕm = [ϕm

1 · · ·ϕm
qm]⊤

Gaussian process parameters

• Dm,j – time delay parameter between population m and latent j

• τj – Gaussian process timescale for latent j

• σj – Gaussian process noise parameter for latent j

Gaussian process covariances

• Km1,m2,j – T × T covariance matrix for latent j, between populations m1 and m2

• km1,m2,j – covariance function for latent j, between populations m1 and m2

Hyperparameters (fixed to small values to produce noninformative priors)

• β – precision parameter of the Gaussian prior over each mean parameter dm

• aϕ, bϕ – shape and rate parameters, respectively, of the Gamma prior over each noise
precision parameter ϕm

i for neuron i in population m

• aα, bα – shape and rate parameters, respectively, of the Gamma prior over each ARD
parameter αm

j for population m and latent j

S2 Posterior inference and fitting the mDLAG model

S2.1 Variational inference

Let Y and X be collections of all observed neural activity and latent variables, respectively, across
all time points and trials. Similarly, let d, ϕ, C, A, and D be collections of the mean parameters,

2

noise precisions, loading matrices, ARD parameters, and time delays, respectively. From the neural
activity, we seek to estimate posterior distributions over the probabilistic model components

θ = {X, d, ϕ, C, A} (S1)

and point estimates of the deterministic GP parameters Ω =
{
D, {τj}pj=1

}
.

In the case of methods like GPFA [1] and DLAG [2], the linear-Gaussian structure of the model en-
ables an exact expectation-maximization (EM) algorithm. With the introduction of prior distributions
over model parameters, mDLAG loses this property. The complete likelihood of the mDLAG model,

P (Y, θ|Ω) = P (d)P (ϕ)P (C|A)P (A)P (Y |X,C,d,ϕ)P (X|Ω)

=

M∏
m=1

[
P (dm)

[
qm∏
i=1

P (ϕm
i)

][
p∏

j=1

P (cmj | αm
j)P (αm

j)

]

·

[
N∏

n=1

T∏
t=1

P (ym
n,t|xm

n,t, C
m,dm,ϕm)

]]
·

[
N∏

n=1

p∏
j=1

P (xn,j,:|{Dm,j}Mm=1, τj)

]
(S2)

is no longer Gaussian. Then a hypothetical EM E-step (evaluation of the posterior distribution
P (θ|Y,Ω)) becomes prohibitive, as it relies on the analytically intractable marginalization of equation
S2 with respect to θ.

We therefore employ instead a variational inference scheme [3, 4], in which we maximize the evidence
lower bound (ELBO), L(Q,Ω), with respect to the approximate posterior distribution Q(θ) and the
deterministic parameters Ω, where

logP (Y) ≥ L(Q,Ω) = EQ[logP (Y, θ|Ω)]− EQ[logQ(θ)] (S3)

We constrain Q(θ) so that it factorizes over the elements of θ:

Q(θ) = Qx(X)Qd(d)Qϕ(ϕ)Qc(C)QA(A) (S4)

This factorization enables closed-form updates during optimization (see below). The ELBO can then
be iteratively maximized via coordinate ascent of the factors of Q(θ) and the deterministic parameters
Ω: each factor or deterministic parameter is updated in turn while the remaining factors or parameters
are held fixed. These updates are repeated until the ELBO, which is guaranteed to be non-decreasing,
improves from one iteration to the next by less than a present tolerance (here we used 10−8 or a
maximum of 50,000 iterations).

S2.1.1 Posterior distribution updates

Maximizing the ELBO, L(Q,Ω), with respect to the kth factor of Q, Q∗
k, results in the following

update [3]:

logQ∗
k(θk) = ⟨logP (Y, θ|Ω)⟩ℓ ̸=k + const. (S5)

Here we introduce the notation ⟨·⟩ to indicate the expectation with respect to the approximate posterior
distribution, EQ[·], and ⟨logP (Y, θ|Ω)⟩ℓ ̸=k specifically indicates the expectation of the complete
log likelihood with respect to all but the kth factor of Q. We impose no further constraints on Q or
its factors. However, because of the choice of Gaussian and conjugate Gamma priors in Section 2
of the main text, evaluation of equation S5 leads to factors with the same functional form as their

3

corresponding priors (equations 1–7):

Qx(X) =

N∏
n=1

N (x̄n | µ̄xn
, Σ̄x) (S6)

Qd(d) =

M∏
m=1

N (dm | µm
d ,Σm

d) (S7)

Qϕ(ϕ) =

M∏
m=1

qm∏
i=1

Γ(ϕm
i | ãϕ, b̃mϕ,i) (S8)

Qc(C) =

M∏
m=1

qm∏
i=1

N (c̃mi | µ̃m
ci ,Σ

m
ci) (S9)

QA(A) =

M∏
m=1

p∏
j=1

Γ(αm
j | ãmα , b̃mα,j) (S10)

Here x̄n ∈ RMpT is a collection of all latent variables on trial n (see below), and c̃mi ∈ Rp is the ith

row of Cm, the loading matrix for population m. Any additional factorization in equations S6–S10
also emerge naturally—we impose only the factorization in equation S4.

To express the updates for Qx(X), let us first define several variables. Construct yn,t =
[y1⊤

n,t · · ·yM⊤
n,t]⊤ ∈ Rq, q =

∑
m qm, by vertically concatenating the neural activity of popula-

tions m = 1, . . . ,M at time t on trial n. Then construct ȳn = [y⊤
n,1 · · ·y⊤

n,T]
⊤ ∈ RqT by vertically

concatenating the neural activity yn,t across all time points t = 1, . . . , T . For latent variables,
define xn,t = [x1⊤

n,:,t · · ·xM⊤
n,:,t]

⊤ ∈ RMp by vertically concatenating the p latent variables of each
population at time t on trial n. Then we vertically concatenate the latent variables xn,t across all
time points t = 1, . . . , T to give x̄n = [x⊤

n,1 · · ·x⊤
n,T]

⊤ ∈ RMpT . Finally, we collect the parameters
Cm, Φm, and dm across populations m = 1, . . . ,M by defining C = diag(C1, . . . , CM) ∈ Rq×Mp,
Φ = diag(Φ1, . . . ,Φm) ∈ Sq×q , and d = [d1⊤ · · ·dM⊤]⊤ ∈ Rq .

Posterior estimates of the latent variables X are independent across trials. We can thus update Qx(X)
by evaluating the posterior covariance, Σ̄x ∈ SMpT×MpT , and mean, µ̄xn

∈ RMpT , of x̄n for each
trial n:

Σ̄x =
(
K̄−1 + ⟨C⊤ΦC⟩

)−1
(S11)

µ̄xn
= Σ̄x⟨C̄⟩⊤⟨Φ̄⟩

(
ȳn − ⟨d̄⟩

)
(S12)

where ⟨C̄⟩ ∈ RqT×MpT , ⟨Φ̄⟩ ∈ SqT×qT , and ⟨C⊤ΦC⟩ ∈ RMpT×MpT are block diagonal matrices
comprising T copies of the matrices ⟨C⟩, ⟨Φ⟩, and ⟨C⊤ΦC⟩, respectively. ⟨d̄⟩ ∈ RqT is constructed
by vertically concatenating T copies of ⟨d⟩. The elements of K̄ ∈ RMpT×MpT are computed using
equations 8 and 9. Note that (1) The update for the posterior covariance, Σ̄x, is identical for trials of
the same length. This computation can therefore be reused efficiently across trials. (2) Under the
posterior distribution, latent variables j = 1, . . . , p are no longer independent, as they are under the
prior distribution (equations 7, S2).

Posterior estimates of the mean parameters d are independent across populations (and, in fact,
neurons). We can thus update Qd(d) by evaluating the posterior covariance, Σm

d ∈ Sqm×qm , and
mean, µm

d ∈ Rqm , of mean parameter dm for each population m:

Σm
d =

(
βIqm +NT ⟨Φm⟩

)−1
(S13)

µm
d = Σm

d ⟨Φm⟩
N∑

n=1

T∑
t=1

(
ym
n,t − ⟨Cm⟩⟨xm

n,t⟩
)

(S14)

Posterior estimates of precision parameters ϕ are independent across populations and neurons. We
can thus update Qϕ(ϕ) by evaluating the posterior parameters ãϕ and b̃mϕ,i of parameter ϕm

i for each

4

neuron i in population m:

ãϕ = aϕ +
NT

2
(S15)

b̃mϕ,i = bϕ +
1

2

N∑
n=1

T∑
t=1

[
(ymn,i,t)

2 + ⟨(dmi)2⟩+ tr
(
⟨c̃mi (c̃mi)⊤⟩⟨xm

n,t(x
m
n,t)

⊤⟩
)

− 2⟨c̃mi ⟩⟨xm
n,t⟩
(
ymn,i,t − ⟨dmi ⟩

)
− 2ymn,i,t⟨dmi ⟩

]
(S16)

Here c̃mi ∈ Rp is again the ith row of Cm, the loading matrix for population m.

Posterior estimates of loading matrices C are independent across populations and neurons, i.e., across
the rows of each Cm. We can thus update Qc(C) by evaluating the posterior covariance, Σm

ci ∈ Sp×p,
and mean, µ̃m

ci ∈ Rp, of the ith row of Cm:

Σm
ci =

(
⟨Am⟩+ ⟨ϕm

i ⟩
N∑

n=1

T∑
t=1

⟨xm
n,t(x

m
n,t)

⊤⟩
)−1

(S17)

µ̃m
ci = Σm

ci ⟨ϕ
m
i ⟩

N∑
n=1

T∑
t=1

⟨xm
n,t⟩
(
ymn,i,t − ⟨dmi ⟩

)
(S18)

Here Am = diag(αm
1 , . . . , αm

p). Note that the posterior independence over the rows of each Cm

contrasts with the prior independence over the columns of each Cm (equations 5, S2).

Finally, posterior estimates of ARD parameters A are independent across populations and latent
variables. We can thus update QA(A) by evaluating the posterior parameters ãmα and b̃mα,j of parameter
αm
j for each population m and latent variable j:

ãmα = aα +
qm
2

(S19)

b̃mα,j = bα +
1

2
⟨∥cmj ∥22⟩ (S20)

All moments ⟨·⟩ can be readily computed from the approximate posterior distributions given in
equations S6–S10.

S2.1.2 Gaussian process parameter updates

There are no closed-form solutions for the Gaussian process parameter updates, but we can compute
gradients and perform gradient ascent. Note that, for this work, we choose not to fit the Gaussian
process noise variances σ2

j , but rather, we set them to small values (10−3), as in [1, 2].

To express the timescale and delay parameter gradients, we introduce more compact notation for the
variables in equation 7. Let xn,j,: = [x1⊤

n,j,: · · ·xM⊤
n,j,:]

⊤ ∈ RMT for the jth latent, and

Kj =

K1,1,j · · · K1,M,j

...
. . .

...
KM,1,j · · · KM,M,j

 ∈ SMT×MT (S21)

We next rewrite the ELBO to show the terms that depend on Kj . Let

Ln =

p∑
j=1

[
1

2
log |K−1

j | − 1

2
tr(K−1

j ⟨xn,j,:x
⊤
n,j,:⟩)

]
(S22)

Then,

L(Q,Ω) =

N∑
n=1

Ln + const. (S23)

5

To optimize timescales, we first make the change of variables γj = 1/τ2j . The variable γj is simpler
to work with. We then optimize with respect to γj . The γj gradients are given by

∂L

∂γj
=

N∑
n=1

tr

((
∂Ln

∂Kj

)⊤(
∂Kj

∂γj

))
(S24)

where
∂Ln

∂Kj
= −1

2
K−1

j +
1

2
K−1

j ⟨xn,j,:x
⊤
n,j,:⟩K−1

j (S25)

and each element of ∂Kj/∂γj is given by

∂km1,m2,j(t1, t2)

∂γj
= −1

2
(∆t)2

(
1− σ2

j

)
exp

(
−1

2
γj(∆t)2

)
(S26)

where ∆t is defined as in equation 9. To optimize γj while respecting non-negativity constraints, we
perform the change of variables γj = exp(γ∗

j), and then perform unconstrained gradient ascent with
respect to γ∗

j .

Next, delay gradients for population m and latent variable j are given by

∂L

∂Dm,j
=

N∑
n=1

tr

((
∂Ln

∂Kj

)⊤(
∂Kj

∂Dm,j

))
(S27)

where ∂Ln

∂Kj
is defined as in equation S25, and each element of ∂Kj/∂Dm,j is given by

∂km1,m2,j(t1, t2)

∂Dm,j
= −γj(∆t)

(
1− σ2

j

)
exp

(
−1

2
γj(∆t)2

)
∂ (∆t)

∂Dm,j
(S28)

∂(∆t)

Dm,j
=

{
1 if m = m1

−1 if m = m2

0 otherwise
(S29)

where ∆t, m1, and m2 are defined as in equation 9. In practice, we fix all delay parameters for
population 1 at 0 to ensure identifiability. Similar to the timescales, one might wish to constrain
the delays within some physically realistic range, such as the length of an experimental trial, so
that −Dmax ≤ Dm,j ≤ Dmax. Toward that end, we make the change of variables Dm,j = Dmax ·
tanh(

D∗
m,j

2) and perform unconstrained gradient ascent with respect to D∗
m,j . Here we chose Dmax

to be half the length of a trial.

S2.2 Evaluation of the lower bound

To monitor the progress of the fitting procedure, we evaluate the ELBO on each iteration. To evaluate
the ELBO, we can rewrite it as follows:

L(Q,Ω) = EQ[logP (Y |θ,Ω)]− KL(Q(θ)∥P (θ|Ω)) (S30)

KL(Q(θ)∥P (θ|Ω)) is the KL-divergence between the approximate posterior distribution Q(θ) and
prior distribution P (θ|Ω). Due to the factorized forms of Q(θ) and P (θ|Ω), L(Q,Ω) becomes

L(Q,Ω) = EQ[logP (Y |θ,Ω)]− KL(Qx(X)∥P (X|Ω))− KL(Qc(C)∥P (C|A))

− KL(QA(A)∥P (A))− KL(Qϕ(ϕ)∥P (ϕ))− KL(Qd(d)∥P (d)) (S31)

This form of the ELBO provides insight into the nature of the optimization procedure for fitting
mDLAG models. The first term is the expected log-likelihood (with respect to the approximate
posterior Q(θ)) of the observed neural activity, Y , given the latest model parameters, θ and Ω. This
term encourages mDLAG models to explain the observed neural activity as well as possible. The
KL-divergence terms, on the other hand, penalize deviations of each factor of the fitted posterior from
its corresponding prior distribution, and hence act as a form of regularization.

6

Using the posterior updates in Section S2.1 and the prior definitions in Section 2, each term of the
ELBO can be computed as follows:

EQ[logP (Y |θ,Ω)] = −qNT

2
log(2π) +

NT

2

M∑
m=1

qm∑
i=1

⟨log ϕm
i ⟩ −

M∑
m=1

qm∑
i=1

(ãϕ − ⟨ϕm
i ⟩bϕ)

(S32)

−KL(Qx(X)∥P (X|Ω)) = MpNT

2
+

1

2

N∑
n=1

[
log |Σ̄x| −

p∑
j=1

[
log |Kj |+ tr(K−1

j ⟨xn,j,:x
⊤
n,j,:⟩)

]]
(S33)

−KL(Qc(C)∥P (C|A)) =

M∑
m=1

[
qm
2

p∑
j=1

⟨logαm
j ⟩

+
1

2

qm∑
i=1

[
log |Σm

ci |+ tr(Ip − ⟨c̃mi (c̃mi)⊤⟩⟨Am⟩)
]]

(S34)

−KL(QA(A)∥P (A)) =

M∑
m=1

p∑
j=1

[
−ãmα log b̃mα,j + aα log bα + log

Γ(ãmα)

Γ(aα)
− bα⟨αm

j ⟩+ ãmα

+ (aα − ãmα)(Ψ(ãmα)− log b̃mα,j)

]
(S35)

−KL(Qϕ(ϕ)∥P (ϕ)) =

M∑
m=1

qm∑
i=1

[
−ãϕ log b̃

m
ϕ,i + aϕ log bϕ + log

Γ(ãϕ)

Γ(aϕ)
− bϕ⟨ϕm

i ⟩+ ãϕ

+ (aϕ − ãϕ)(Ψ(ãϕ)− log b̃mϕ,i)

]
(S36)

−KL(Qd(d)∥P (d)) =
q

2
+

q

2
log β +

1

2
log |Σd| −

1

2
β⟨∥d∥22⟩ (S37)

Here, Γ(·) is the gamma function, and Ψ(·) is the digamma function. All moments ⟨·⟩ can be readily
computed from the approximate posterior distributions given in equations S6–S10.

S2.3 Parameter initialization and removal of insignificant latent variables

To initialize the mDLAG fitting procedure, we first specified an initial number of latent variables, p.
Through automatic relevance determination, mDLAG effectively prunes insignificant latent variables.
We leveraged this feature to improve the computational efficiency (with respect to both speed and
memory) of the fitting procedure as follows. Each iteration, we evaluated the sample second moment
of the estimated latent variables, 1

N

∑
n µ̄

2
xn

(here, µ̄2
xn

is computed by squaring each element of
µ̄xn

). If the sample second moment of a latent variable was not larger than some threshold, ϵ, for at
least one population, then we removed it from the mDLAG model (and its associated parameters in θ
and Ω) [4]. Here, we chose ϵ = 10−7. We chose an initial p to be as small as possible (to minimize
runtime) yet large enough that at least one of the initial latent variables would be deemed insignificant
(according to the criterion above or according to shared variance explained, see equation S52), thus
ensuring that dimensionalities were not underestimated. A value of p = 30 was sufficient for the
datasets analyzed here.

To initialize the rest of the mDLAG fitting procedure, we specified initial values for only the
moments of the posterior factors Qd(d), Qϕ(ϕ), Qc(C), and QA(A) (equations S7–S10) that were
needed to begin iteration. Qx(X) was then the first factor to be updated each iteration of the fitting
procedure. We specified noninformative priors by fixing all hyperparameters to a very small value
[4], β, aϕ, bϕ, aα, bα = 10−12. For Qd(d), we initialized µm

d at the sample mean of neural activity
across all trials and time points. For Qϕ(ϕ), we initialized ⟨ϕm

i ⟩−1 for each neuron i in population m
to the sample variance of that neuron across all trials and time points. For Qc(C), we first randomly
initialized all first moments µ̃m

ci with entries drawn from a zero-mean Gaussian distribution with
variance chosen to match the scale of the data. Then, we initialized the second moments ⟨c̃mi (c̃mi)⊤⟩
to the outer product of first moments µ̃m

ci µ̃
m⊤
ci . For QA(A), we initialized ⟨αm

j ⟩ for each latent j in

7

population m to qm/⟨∥cmj ∥22⟩, which stems from equations S19 and S20. Finally, we initialized all
delays to zero, and all Gaussian process timescales to the same value, equal to twice the sampling
period or spike count bin width of the neural activity.

S3 Group factor analysis (GFA) with anisotropic observation noise

Throughout this work, we included the static dimensionality reduction method group factor analysis
(GFA) as a comparison benchmark for mDLAG (Fig. 4, Supplementary Fig. S2b, Supplementary
Fig. S3, Supplementary Fig. S4). We implemented the following modified version of GFA with
anisotropic observation noise (contrasting the isotropic model in [4], see below). For population
m on trial n, define a linear relationship between observed neural activity, ym

n ∈ Rqm , and latent
variables, xn ∈ Rp:

ym
n = Cmxn + dm + εm (S38)

εm ∼ N (0, (Φm)−1) (S39)

where Cm ∈ Rqm×p, dm ∈ Rqm , and Φm ∈ Sqm×qm are probabilistic model parameters with prior
distributions, defined below.

The parameter dm can be thought of as the mean firing rate of each neuron in population m. Each
dm is defined to have a Gaussian prior:

P (dm) = N (dm | 0, β−1Iqm) (S40)

where β ∈ R>0 is a hyperparameter, and Iqm is the qm × qm identity matrix. Here we constrain the
precision matrix Φm = diag(ϕm

1 , . . . , ϕm
qm) to be diagonal to capture variance that is independent to

each neuron (in [4], the precision matrix is defined as τIqm , so that the noise variance, τ−1 ∈ R>0,
is the same for all neurons). This constraint encourages the latent variables to explain as much of the
shared variance among neurons as possible. We set the conjugate Gamma prior over each ϕm

i , for
each neuron i = 1, . . . , qm:

P (ϕm
i) = Γ(ϕm

i | aϕ, bϕ) (S41)

where aϕ, bϕ ∈ R>0 are hyperparameters.

The loading matrix Cm linearly combines latent variables and maps them to observed neural activity.
The automatic selection of the number of latents, and of the number of populations a particular
latent involves, is accomplished through automatic relevance determination (ARD; see also [3]).
Specifically, each column of Cm is defined by the following prior:

P (cmj | αm
j) = N (cmj | 0, (αm

j)−1Iqm) (S42)

P (αm
j) = Γ(αm

j | aα, bα) (S43)

where cmj ∈ Rqm is the jth column of Cm, αm
j ∈ R>0 is the ARD parameter for latent j and

population m, and aα, bα ∈ R>0 are hyperparameters. The ARD prior encourages population-wise
sparsity for each latent variable.

Finally, latent variables xn are defined by a standard Normal prior:

P (xn) = N (xn | 0, Ip) (S44)

where Ip is the p × p identity matrix. As with mDLAG, GFA models are fit using approximate
inference: posterior estimates maximize a variational lower bound on the data likelihood, and are
constrained to follow a factorized form (see Section S2).

S4 Leave-group-out prediction

To facilitate comparison of performance across methods (Supplementary Fig. S2, Supplementary
Fig. S3), we developed a leave-group-out prediction procedure that measures an mDLAG model’s
ability to capture interactions across populations [2, 4]. In brief, we used a model fit to training data
to predict (on held-out test trials) the unobserved activity of held-out neurons in one population, given
the observed activity of neurons in the remaining populations.

8

In detail, let us first collect observed variables (for one trial) in a manner that highlights group
structure. We collect observations in population m on trial n in ỹm

n = [ym⊤
n,:,1 · · ·ym⊤

n,:,T]
⊤ ∈ RqmT

by vertically concatenating the observed neural activity ym
n,:,t ∈ Rqm in population m across all

times t = 1, . . . , T . Then, we collect the observations for the remaining M − 1 populations in
ỹ−m
n ∈ R

∑
ℓ ̸=m qℓT , obtained by vertically concatenating the ordered set of observations {ỹℓ

n}ℓ ̸=m.

Our goal is to predict ỹm
n given ỹ−m

n . We do so by inferring the latent variables given observations
ỹ−m
n , and then predicting the held-out activity ỹm

n from the inferred latent variables. Toward that end,
we similarly collect the latent variables for population m on trial n in x̃m

n = [xm⊤
n,:,1 · · ·xm⊤

n,:,T]
⊤ ∈

RpT by vertically concatenating the latent variables xm
n,:,t ∈ Rp across all times t = 1, . . . , T . Then

the latent variables for the remaining M − 1 populations can be collected in x̃−m
n ∈ R(M−1)pT ,

obtained by vertically concatenating the ordered set of latent variables {x̃ℓ
n}ℓ̸=m. This variable

reorganization then allows us to rewrite the mDLAG state model as[
x̃m
n

x̃−m
n

]
∼ N

(
0,

[
K̃m,m K̃m,−m

K̃−m,m K̃−m,−m

])
(S45)

where the elements of the GP covariance matrices K̃m,m ∈ SpT×pT , K̃m,−m = K̃⊤
−m,m ∈

RpT×(M−1)pT , and K̃−m,−m ∈ S(M−1)pT×(M−1)pT are computed using equations 8 and 9.

Next, for each population m, define ⟨C̃m⟩ ∈ RqmT×pT , ⟨Φ̃m⟩ ∈ SqmT×qmT , and ⟨W̃m⟩ ∈ RpT×pT

as block diagonal matrices comprising T copies of the matrices ⟨Cm⟩, ⟨Φm⟩, and ⟨Wm⟩ =

⟨Cm⊤ΦmCm⟩, respectively. Define also ⟨d̃m⟩ ∈ RqmT by vertically concatenating T copies
of ⟨dm⟩. The parameters corresponding to the remaining M − 1 populations can then be collected
into the block diagonal matrices ⟨C̃−m⟩ = diag({⟨C̃ℓ⟩}ℓ̸=m) ∈ R

∑
ℓ ̸=m qℓT×(M−1)pT , ⟨Φ̃−m⟩ =

diag({⟨Φ̃ℓ⟩}ℓ ̸=m) ∈ R
∑

ℓ ̸=m qℓT×
∑

ℓ ̸=m qℓT , ⟨W̃−m⟩ = diag({⟨W̃ ℓ⟩}ℓ ̸=m) ∈ R(M−1)pT×(M−1)pT ,
and the vector ⟨d̃−m⟩ ∈ R

∑
ℓ ̸=m qℓT , obtained by vertically concatenating the elements of the set

{⟨d̃ℓ⟩}ℓ ̸=m.

Similar to the updates given by equations S11 and S12, we compute the inferred latent variables
given the observed neural activity ỹ−m

n according to

Σ̃−m
x =

(
K̃−1

−m,−m + ⟨W̃−m⟩
)−1

(S46)

µ̃−m
xn

= Σ̃−m
x ⟨C̃−m⟩⊤⟨Φ̃−m⟩

(
ỹ−m
n − ⟨d̃−m⟩

)
(S47)

We then use equation S45 to infer the latent variables for population m according to

µ̃m
xn

= K̃m,−m(K̃−m)−1µ̃−m
xn

(S48)
and take predictions of the neural activity in population m to be

ˆ̃y
m

n = ⟨C̃m⟩µ̃m
xn

+ ⟨d̃m⟩ (S49)

We next use equation S49 to define a measure of a model’s across-group predictive performance.
Assume we are given an mDLAG model fit to training data. Then let ỹm

n be the activity of population
m on trial n of a held-out test set, and let ˆ̃y

m

n be its predicted value given by equation S49. Collect
these values across all n = 1, . . . , N held-out test set trials into the respective matrices Y m =

[ỹm
1 · · · ỹm

N] ∈ RqmT×N and Ŷ m = [ˆ̃y
m

1 · · · ˆ̃y
m

N] ∈ RqmT×N . Furthermore, let µm
y ∈ Rqm be the

sample mean for each neuron in population m, taken over all time points and trials. Construct
ȳm = [µm⊤

y · · ·µm⊤
y]⊤ ∈ RqmT by vertically concatenating T copies of the sample mean, and

construct Ȳ m = [ȳm · · · ȳm] ∈ RqmT×N by horizontally concatenating N copies of ȳm.

We then define a leave-group-out R2 value as follows:

R2
lgo = 1−

∑M
m=1∥Y m − Ŷ m∥2F∑M
m=1∥Y m − Ȳ m∥2F

(S50)

R2
lgo ∈ (−∞, 1], where a value of 1 implies perfect prediction of neural activity, and a negative value

implies that estimates predict neural activity less accurately than simply the sample mean. R2
lgo is

normalized by the total variance of neural activity within each dataset, thereby facilitating comparison
across datasets, in which the variance of neural activity could vary widely.

9

S5 Choosing the number of significant latent variables in each population

mDLAG mDLAG incorporates ARD to automatically determine, during model fitting, both the
total number of latent variables and the subset of populations that each latent involves. We sought an
intuitive measure of the significance of each latent variable within a population, post-fitting, based on
the amount of shared variance each latent variable explains. The shared variance of latent variable j in
population m is given by ⟨∥cmj ∥22⟩, the expected squared magnitude of the jth column of the loading
matrix Cm. Since the total shared variance can vary widely across populations, we considered a
normalized metric, the fraction of shared variance explained by latent variable j in population m
(displayed in Supplementary Fig. S1b):

νmj =
⟨∥cmj ∥22⟩∑p
k=1⟨∥cmk ∥22⟩

(S51)

For small ARD hyperparameters, aα and bα (as we have chosen in this work), the fraction of shared
variance can equivalently be computed using the estimated ARD parameters (see equations S19 and
S20):

νmj ≈
⟨αm

j ⟩−1∑p
k=1⟨αm

k ⟩−1
(S52)

If a latent variable does not significantly explain activity in a population, then νmj will be close to
zero (see Supplementary Fig. S1b, ‘V1’ and ‘V2’). In our analysis of the Neuropixels recordings
(Section 4, Fig. 5) we reported a latent variable as significant in a population if it explained at least
2% of the shared variance within that population (νmj ≥ 0.02).

DLAG For comparison on the V1-V2 recordings (Supplementary Fig. S1d, Supplementary
Fig. S2a), we also applied DLAG [5], which was designed to study concurrent signaling between
two populations. In contrast with mDLAG, DLAG explicitly designates latent variables as “across-
population” and “within-population.” Then the number of each type of latent variable (resulting
in three hyperparameters) is determined via a heuristic two-stage cross-validation procedure (used
in [2]): (1) Factor analysis (FA) models [6] are applied to each population separately, and cross-
validation is used to identify the total dimensionality of each population. (2) A reduced space of
candidate DLAG models are considered, such that the number of each population’s within- and
across-population latent variables sum to that populations’s optimal FA dimensionality. From this
reduced space of model candidates, the optimal DLAG model is identified using cross-validation. We
employed this approach here on the training trials of the V1-V2 datasets, using 4-fold cross-validation
in both stages.

10

S6 Supplementary Figures

47 ms
V1V2

0

3.0

-3.0

a.
u.

320 msTime
One trial

Latent 1 2 3 4 5

6 ms
V1 V2 V1 V2

a c

d DLAG estimate

mDLAG estimate
Tetrodes

Array

b
48 ms

V1V2

0

3.0

-3.0

a.
u.

320 msTime
One trial

Latent 1 2 3 4 5

Layer 4
V1

V2

V1 V2
2 ms

V1 V2

1
Latent variable

0

0.2

0.4

S
ha

re
d

va
r.

ex
p.

V1 V2

11

V1-V2

2 ms
V1V2

3 ms
V1V2

Figure S1: mDLAG detects hallmarks of V1-V2 communication. (a) Schematic showing a sagittal
section of occipital cortex and the recording setup. V1 population activity was recorded using a
96-channel Utah array. V2 population activity was recorded using a set of movable electrodes and
tetrodes. (b) Fraction of shared variance explained (‘var. exp.’, see equation S52) within each
population by mDLAG latent variables for a representative dataset. Latent variables are grouped from
left to right based on whether they are shared between V1 and V2 (‘V1-V2’), local to V1 (‘V1’),
or local to V2 (‘V2’). Only latent variables that explained at least 2% of the shared variance in at
least one area are shown. (c) mDLAG single-trial latent time course estimates for a representative
dataset (same as in (b)). Only the top local latent variable is shown for each population (‘V1’ and
‘V2’). Same conventions as in Fig. 4b. (d) DLAG single-trial latent time course estimates for the
same dataset as in (c). Same conventions as in Fig. 4b.

11

a
mDLAG
better

0 0.04 0.08
Test R2, DLAG

0

0.04

0.08

Te
st

 R
2 , m

D
LA

G
One

dataset

-0.02 0 0.02
0

15

30

N
o.

 d
at

as
et

s

mDLAG R2 - DLAG R2

mDLAG
better

b

-0.05 0 0.05
mDLAG-0 R2 - GFA R2

0 0.05 0.1
Test R2, GFA

0

0.05

0.1

Te
st

 R
2 , m

D
LA

G
-0

0

4

8

N
o.

 d
at

as
et

s

mDLAG-0
better

mDLAG-0
better

c

-0.01 0 0.01
mDLAG R2 - mDLAG-0 R2

0 0.05 0.1
Test R2, mDLAG-0

0

0.05

0.1

Te
st

 R
2 , m

D
LA

G

0

4

8

N
o.

 d
at

as
et

s

*

mDLAG
better

mDLAG
better

Figure S2: mDLAG performance across neural recordings. (a) mDLAG outperforms DLAG across
V1-V2 datasets (related to Supplementary Fig. S1). Here we consider two neuronal populations. For
three or more populations, DLAG cannot be applied directly. Top: mDLAG performance versus
DLAG performance (leave-group-out R2 evaluated on 100 test trials). Each data point represents
one V1-V2 dataset. Bottom: Distribution of differences in performance between mDLAG and
DLAG. mDLAG significantly outperformed DLAG across datasets (⋆⋆⋆: one-sided paired sign
test; p = 3.7 × 10−11), indicating the performance benefit of ARD for model selection. (b)-(c)
Demonstrating the empirical benefit of mDLAG’s use of Gaussian processes and time delays on the
Neuropixels recordings (related to Fig. 5). Here we consider three neuronal populations. (b) mDLAG
models for which time delays were fixed at zero (‘mDLAG-0’) outperform GFA across Neuropixels
datasets. Top: mDLAG-0 performance versus GFA performance (leave-group-out R2 evaluated on 75
test trials). Each data point represents one Neuropixels dataset. Bottom: Distribution of differences
in performance between mDLAG-0 and GFA. mDLAG-0 significantly outperformed GFA across
datasets (⋆⋆⋆: one-sided paired sign test; p = 9.8 × 10−4), indicating the performance benefit of
including a Gaussian process time series model. (c) mDLAG models with estimated time delays
outperform mDLAG models with time delays fixed at zero (‘mDLAG-0’) across Neuropixels datasets.
Top: mDLAG performance versus mDLAG-0 performance (leave-group-out R2 evaluated on 75
test trials). Each data point represents one Neuropixels dataset. Bottom: Distribution of differences
in performance between mDLAG and mDLAG-0. mDLAG significantly outperformed mDLAG-0
across datasets (⋆: one-sided paired sign test; p = 0.0107), indicating the performance benefit of
estimating time delays between populations.

12

Te
st

 R
2

0
0 50 100 150 200 250

0.02

0.04

0.06

0.08

No. training trials

GFA, 225 training trials

mDLAG

Figure S3: mDLAG test performance (leave-group-out R2 evaluated on 75 held-out trials) versus the
number of available training trials. We re-fit mDLAG models to the Neuropixels dataset analyzed
in Fig. 5, but we limited the number of experimental trials available in the training set (i.e., we fit
mDLAG to training sets with 10, 25, 50, 100, 150, up to 225 trials—the full training set size). With
as few as 100 training trials (less than half of the full training set size), mDLAG’s test performance
achieved nearly 95% of full performance (black curve). Furthermore, with as few as 25 training
trials, mDLAG still outperformed the group factor analysis (GFA) model fit to all 225 training trials
(red dashed line). This example demonstrates empirically that mDLAG performs well with trial
counts typical of neurophysiological experiments. In general, this data-efficiency is due to mDLAG’s
incorporation of (1) dimensionality reduction, (2) temporal smoothing, and (3) automatic relevance
determination. These components act as forms of regularization that benefit model performance in
data-limited regimes.

13

300
Total no. neurons

400200100

C
lo

ck
 ti

m
e

pe
r

ite
r.

(s
)

0

1

2

3

mDLAG

GFA

One
dataset

Figure S4: mDLAG (black) and GFA (gray) runtimes on the Neuropixels recordings. Each point
corresponds to one dataset: 10 datasets are shown for each method (some points overlap one another;
same datasets as in Supplementary Fig. S2b,c; M = 3 populations, N = 225 training trials, and
T = 50 time points per trial). The average clock time per fitting iteration (in seconds) for either
method scales linearly as a function of total number of neurons analyzed. For mDLAG, increasing the
number of analyzed neurons from 143 to 388 (an increase by a factor of 2.7) resulted in a 10% increase
in runtime. Overall, mDLAG is more computationally intensive than GFA due to the incorporation of
Gaussian processes. Each mDLAG fitting iteration requires the inversion of a MpT ×MpT matrix
(equation S11). We conservatively ran each mDLAG model for 50,000 iterations, resulting in an
average total runtime of 34 hours. Had we used a less conservative, but still reasonable, stopping
tolerance of 10−6, then the average number of iterations required for convergence would have been
17,000 (with similar parameter estimates), for an average total runtime of 11.5 hours. Results were
obtained on a Red Hat Enterprise Linux machine (release 7.9, 64-bit) with 250GB of RAM running
Matlab (R2019a), on an Intel Xeon CPU (E5-2695 v3, 2.3 GHz).

14

0
0

G
P

 ti
m

es
ca

le
 (

m
s)

Delay from V1 to V2 (ms)

V1V2 V1 V2

50

150

100

15 30-15-30

One latent,
one initialization

Latent 1,
Fig. 5

V3d V2 V2 V3d

Delay from V2 to V3d (ms)
0 15 30-15-30

Latent 1

V1 V3dV3d V1

Delay from V1 to V3d (ms)
0 15 30-15-30

Latent 1

3

2

4

5

Global

Unique

Figure S5: Sensitivity of results (Fig. 5) to mDLAG initialization. To investigate the sensitivity of our
results (Fig. 5) to the initialization of the mDLAG fitting procedure (see Supplementary Section S2.3),
we ran the analysis of the example dataset 20 times, starting from a different random initialization
each time. Estimated dimensionalities (Fig. 5e) were identical across all 20 runs. Leave-group-out
predictive performance (Supplementary Fig. S2c) was also highly consistent (test R2 for example run
shown in Fig. 5: 0.0834; best R2: 0.0842; worst R2: 0.0834). Above, we show the distribution of
Gaussian process (GP) timescales and time delays across the 20 runs. From left to right: GP timescale
versus relative delay from V1 to V2, from V1 to V3d, and from V2 to V3d, respectively. Each point
represents one latent variable. Black points (“global”) correspond to the dimension shared globally
across all three populations. Gray points (“unique”) correspond to the dimensions unique to V1 and
V3d. Magenta triangles correspond to the latent variables estimated for the example run shown in
Fig. 5 (the time courses of latents 1–3 are displayed in Fig. 5f). Clustered around each magenta
triangle are 20 points, which may occlude one another due to their proximity. These analyses suggest
that the results in Fig. 5 are largely insensitive to the initialization of the mDLAG fitting prodedure.

15

References
1. Yu, B. M. et al. Gaussian-Process Factor Analysis for Low-Dimensional Single-Trial Analysis of

Neural Population Activity. Journal of Neurophysiology 102, 614–635 (2009).
2. Gokcen, E. et al. Disentangling the flow of signals between populations of neurons. Nature

Computational Science 2, 512–525 (2022).
3. Bishop, C. Variational principal components. 9th International Conference on Artificial Neural

Networks, 509–514 (1999).
4. Klami, A., Virtanen, S., Leppäaho, E. & Kaski, S. Group Factor Analysis. IEEE Transactions on

Neural Networks and Learning Systems 26, 2136–2147 (2015).
5. Gokcen, E. DLAG (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.6654831 (2022).
6. Everett, B. An Introduction to Latent Variable Models (Springer Netherlands, 1984).

16

	Mathematical notation
	Posterior inference and fitting the mDLAG model
	Variational inference
	Posterior distribution updates
	Gaussian process parameter updates

	Evaluation of the lower bound
	Parameter initialization and removal of insignificant latent variables

	Group factor analysis (GFA) with anisotropic observation noise
	Leave-group-out prediction
	Choosing the number of significant latent variables in each population
	Supplementary Figures

