APPENDIX
A. Related Work

Generative Imitation-Based Policies. With the rise of large-
scale open-source datasets of expert demonstrations [2, 4, 5, 8,
13, 44], imitation learning (IL) has become a popular way to
learn low-level robot control policies from data. In particular,
recent advances in generative modeling have unlocked policy
architectures that can model diverse, multi-modal behaviors
directly from high-dimensional observations [6, 23, 33]. At the
same time, generative IL policies still exhibit nuanced, hard-to-
anticipate performance degradations during deployment time.
These degradations range from complete task failures (e.g.,
inability to grasp a cup, knocking it down, or dropping
it [27]) potentially due to distribution shifts or visual distrac-
tors [19, 46], to inappropriate behaviors that are misaligned
with the deployment context or an end-user’s preferences (e.g.,
placing the gripper inside of a cup filled with water during
grasping) [1]. In this work, our goal is to leverage the diverse
low-level behavior distribution that the base policy has learned,
but prevent these nuanced performance degradations at runtime
via our novel policy steering method.

Failure Detection, Monitoring & Prediction. The handling
of generative policy failures can be grouped into three broad
categories: posthoc detection, runtime monitoring, and failure
prediction. Posthoc approaches identify and explain failures
present in offline robot datasets, and have recently leveraged
Vision Language Models (VLMs) to accelerate this process
via video captioning, highlighting critical data frames, and
providing human-interpretable summaries of failures [10,
16, 26, 48]. In contrast, runtime monitoring aims to detect
failures as they happen during robot deployment. To quickly
identify nuanced failures, recent methods propose a “fast and
slow” approach: a fast online detector flags unusual situations
(e.g., binary anomaly classifier), while a slower VLM-based
reasoner provides a deeper understanding of the event and if it
is a relevant failure [1, 39]. Although these strategies can ef-
fectively identify failures, they fundamentally require the robot
to start failing for the runtime monitor to activate. The final
category, failure prediction methods, anticipate failures before
they occur and unlock the potential for preemptive correction
of the base policy. Here, existing approaches [22, 24, 25]
often rely on out-of-distribution (OOD) detection in a latent
space or dense human labels to train a binary classifier
that distinguishes failures from successes. In this work, we
contribute to the predictive category of methods. Our method
anticipates future outcomes of the policy’s actions via a latent
world model, and reasons about the outcomes via a VLM that
is aligned with the predicted latent states.

Policy Steering. A traditional method to improve a base IL
policy is to fine-tune it with additional intervention data [25]
or recovery behaviors [37]. However, recently, runtime policy
steering has become an attractive alternative to improving a
generalist IL policy [27, 47] without needing any additional
and expensive demonstration data. Runtime policy steering

assumes that the base policy is capable of generating the
correct behaviors, but fails to select them reliably. Here, an
external verifier can be used to re-rank (i.e., “steer””) the gen-
erations towards ones with good outcomes. Previous methods
have explored humans-in-the-loop [47] or a -function learned
from very large offline datasets labeled with sparse rewards.
[27] as the verifier. In our framework, by using a VLM-
in-the-loop as our verifier, we can perform policy steering
autonomously after finetuning VLM on a small dataset and
provide human-like interpretable guidance.

Learning to Search. From an algorithmic perspective, our
approach fits within the paradigm of learning to search (L2S)
[31]. In L2S, one learns the components required to, at test
time, plan a sequence of actions, rather than merely imitating
what was in the training data. L2S provides two key advan-
tages over direct imitation algorithms like behavioral cloning.
First, the agent gains the ability to reason about the conse-
quences of its actions and potentially recover from mistakes,
avoiding compounding errors [35, 41]. We see this manifest
in our system’s ability to avoid or correct from failures the
base policy would have produced otherwise. Second, verifying
whether a plan is good is often easier to learn than generating
a good plan in the first place [43, 28]. We see this manifest in
the fact that our system only requires a limited amount of data
to fine-tune our verifier VLM, rather than the larger amount
of data an end-to-end approach would have required [38].

In contrast to more classical L2S approaches that require
extensive global search in the real world [31, 52], we instead
perform local search [3] against a learned verifier [42, 12]
inside a learned world model [32]. This allows us to avoid
the computational expense of global search and the potential
safety violations incurred by real-world interaction. As argued
by [42, 32], doing so still matches many of the guarantees of
classical L2S methods if one fits the world model on a mixture
of on-policy and off-policy trajectories (i.e., in a hybrid fashion
[40, 45]), as we do consistently across all of our experiments.

B. Limitations

While FOREWARN exhibits strong policy steering across
diverse task settings, it is not without limitations. First, it
assumes base policy is sufficiently competent—i.e., already
containing the correct behavior. Future work should investigate
how to detect if none of the policy’s generated action plans
are suitable for the deployment context, and how to improve
the base policy via targeted fine-tuning data.

A second limitation lies in modeling real-world interaction
dynamics. Our component-level analysis in App. D2 revealed
that our system’s primary failures stem from the world model’s
imprecise ‘“imagination”, exacerbated by our limited training
data. More advanced visual features (e.g., DINO features [30])
might improve the world model’s robustness to visual dis-
tractors. Ongoing research on large-scale, generalizable world
models [49] for manipulation may also inform future extension
of this framework.

Another bottleneck of the current system is the inference
overhead, a common challenge for large autoregressive models

like LLMs and world models. Some approaches to this include:
1) hierarchical decomposition of FOREWARN running high-
level reasoning at low frequency while maintaining low-
level control at high frequency like the common practice of
hierarchical Vision Language Action Models (VLAs), 2) using
advancement in quantization and caching techniques, 3) distill-
ing our latent-aligned VLM into a model with smaller size, 4)
strategically allocate inference time by identifying keypoints
when it is “worth” reasoning for longer or deliberately.

Finally, our VLM is built upon an open-source LLama-3.2-
11B-Vision-Instruct model, whose visual reasoning capabili-
ties lag behind its language-based commonsense reasoning. A
stronger backbone could yield higher-quality behavior descrip-
tions, especially if it excels at video captioning tasks.

C. Algorithm & Implementation Details

1) Base Policy:

We use Diffusion Policy [6] as our robot action generation
model due to its strong ability to capture multimodal and
complex robot behaviors.

Rollouts from Demonstration Dataset

Cup Task

Bag Task

Fork Task

Fig. 4: Multimodality in Demonstration Datasets.

Training dataset. For each task, we collect 100 multimodal
demonstrations and train the policy on an NVIDIA A6000
GPU following the procedure in [6]. In Cup Task,the training
dataset consists of 50 demonstrations where the robot grasps
the cup by the rim while touching the inner surface, and 50
demonstrations where the robot grasps it by the handle. In Bag
Task, the training dataset consists of 50 demonstrations where
the robot grasps the middle part of the bag and 50 demon-
strations where it grasps the top edge without crushing the
chips. In Fork Task, the training dataset consists of 4 modes,
including 1) picking up the fork by tines and dropping high;
2) picking up the fork by the handle and dropping high; 3)
picking up the fork by the tines and dropping low; 4) picking
up the fork by the handle and dropping low. Each mode has 25
demonstrations. Figure 4 presents multimodal demonstrations
for each task, and Table II details the hyperparameters used
for training.

Observation and action spaces. The robot’s policy receives
inputs from a wrist-mounted camera, a third-person camera,
and proprioceptive states—including the end-effector position,

Hyperparameter Value
State Normalization Yes
Action Normalization Yes
Image Chunk 2
Image Size 256
State Dimension 8
Action Dimension 10

Action Execution Horizon (Bag) 140
Action Execution Horizon (Cup) 120

Prediction Horizon (Bag) 120
Prediction Horizon (Cup) 140
Batch Size 100
Training Epochs 600
Learning Rate le-5
Number of Worker 16
Train Diffusion Step 100
Inference Diffusion Iteration 16

TABLE II: Base Policy Hyperparameters.

orientation quaternion relative to the base, and gripper open-
ing—to predict actions that control the end-effector’s absolute
pose and gripper opening.

Action plan aggregation. During policy steering, we
aggregate 100 sampled action plans into 6 modes. We
represent each action trajectory as a T x 7 array, where T is
the trajectory length, and each action consists of the gripper’s
position (3D coordinates) and orientation (quaternion with
four components). To cluster these trajectories into 6 modes,
we apply Time Series K-Means with Dynamic Time Warping
(DTW) as the distance metric. This allows us to group similar
motion patterns while accounting for temporal variations
in trajectory execution. The average trajectory within each
cluster is used as the aggregated action plan. In the subsequent
stages of our system, these 6 aggregated action plans serve
as candidate options for policy steering selection.

2) World Model:

Motivation. The effectiveness of world models has been
demonstrated across various embodied domains [25, 50]. In
our problem setting, it provides several key advantages: 1) it
grounds low-level actions, difficult for a VLM to interpret—by
predicting future image observations from action plans, bridg-
ing the gap between low-level actions and visual observations;
2) it compresses information into latent states that not only
retain essential details for high-quality image decoding but
also effectively predict the next latent state given an action.

Architecture. We use DreamerV3, a state-of-the-art recurrent
world model from [18]. Our world model, denoted as Wy =
(€4, fo,Dy), consists of three key components: an encoder
network £, a recurrent dynamics model fy4 that operates over
a stochastic continuous latent space, and a decoder network
D, that projects latent embeddings back into observations.

Below, we provide a detailed definition of each module:

L Es(0L), T =1 @)
T Ep(oh, 2L _q,ak_y), t<T<t+T.
~i fgb(Z,Z,-,ag-)a T =1.
IRRNR SN 5)
fo(2h,al), t<rT<t+T.
0, :=Dy(2r), t<T<t+T. (6)
Hyperparameter Value
Observation Normalization Yes
Action Normalization Yes
Image Size (64, 64)
Batch Length 64
Batch Size 16
Training Step (Cup) 100000
Training Step (Bag) 150000
Hidden State A Dimension 512
Stochastic Representation z Dimension 32
Dynamics Loss Ratio agyn 0.5
Representation Loss Ratio arep 0.1
Reconstruction Loss Ratio avpreq 1.0
CNN Encoder Depth 32
CNN Encoder Kernel Size 4

TABLE III: World Model Hyperparameters.

Training. The world model W, is pretrained using an
offline dataset of policy’s rollouts and demonstrations Dwy =
{{(o2,al, 0’ +1)}ITLI:_O1 jj‘il. Apart from 100 demonstrations,
we collect 250 rollouts for each task, including both the
success and failure experiences of the generative policy m
deployed on the real robot.

Output Text Token

I

Text Layer

Output Text Token

Text Layer

Cross Attention Layer Cross Attention Layer

Text Layer Text Layer

Cross Attention Layer

Text + Vision

Presence Tokens

Cross Attention Layer

) Text Layer
L Text + Vision Projection Layer

Presence Tokens i

Text Layer

Projection Layer

[Latent Tokens T Image Tokens

Text Tokenizer T
World Model Encoder I

Text Tokenizer
Vision Encoder
+ Dynamics Model

Action Plan (text)

The robot aim
the cup. Desc
behavior

Action Plan (text) ~State Imag,

Narration Prompt

Observations Narration Prompt

Fig. 5: VLM Architecture. On the left is detailed architecture

, an modified VLM with an explicit world
model. On the right is original Llama-3.2-Vision-Instruct
model, which is used as our baseline VLLM-Act. This is an
elaborated version of Fig. 2

Since offline datasets lack reward signals, we omit the
reward loss. Instead, the pretraining of the world model is
supervised using a modified loss function: Ly = agyn X
Layn + Orep X Lyep + Qpred X Lpreq. Here, the dynamic loss

Lgyn incentivizes accurate forward predictions in the latent
space while £,., ensures that latent states are informative for
reconstructing observations and learning good representation.
Finally, the prediction loss £,,.4 minimizes the error between
decoded observations of the predicted latent states and the
ground-truth observations. The exact loss calculation is shown
in [18]. The hyperparameters used for training world model
is shown in Table III.

During training, the decoder Dy reconstructs observations
from the latent space to compute the prediction loss and the
visualization helps us select the best world model.

Hyperparameter Value
LoRA (rank) 8
LoRA (dropout) 0.05
LoRA (alpha) 32
Precision bfloat16
Batch Size 10
Learning Rate le-4
Epoch (Cup) 10
Epoch (Bag) 15
Finetuned Layers ["down_proj”, "up_proj”, "o_proj”, "k_proj”,
7q_proj”, "v_proj”, “gate_proj”, "linear_proj”]

TABLE IV: VLM Hyperparameters of

Deployment. Because we cannot reset the real-world environ-
ment to the exact same state, each action sequence a! yields
only a single observation sample o}. As a result, the expecta-
tion in Eq. 3 is approximated in practice. During finetuning, we
make the dynamics model fy deterministic by taking the mean
of its predicted distribution. Although the model provides a
64-step prediction horizon, we downsample these future latent
states to 16 to reduce redundancy from minimal changes across
adjacent steps. Each latent state is formed by concatenating
the hidden state and the stochastic representation, and we
keep the world model frozen throughout VLM finetuning and
deployment.

You are an assistant for monitoring the robot's behavior.

Given the provided task description input and the images in time order of robot execution(combined wrist and third
person view), respond with only one sentence that best describes the robot's behavior.

Your response must strictly align with the image observations. Do not include any additional text, explanations, or
information.

Input: {general task description}

<latent token> x 16

Fig. 6: Prompt Template for Behavior Narration in

3) Vision Language Model:

Architecture. We use Llama-3.2-11B-Vision-Instruct model
as our VLM backbone. We modify the original Llama Model
to incorporate the explicit world model to predict outcomes
of the action plans first and then use VLM to reason about

the latent states to generate behavior narrations. The modified
architecture is visualized in Fig. 5. Specifically, we replace the
original vision encoder (ViT) of Llama with our world model’s
encoder as well as dynamics model, and project latent states
as text tokens. We use one single linear layer to project latent
tokens to text tokens.

You are an assistant providing help for household tasks. Based on the task description and the possible modes
provided, your job is to select the best behavior mode that fulfills the task goal. The most important rule that needs to
be considered first is in task description. Assume that each mode will be executed exactly as described, with no
modifications.

Output Requirements:

- If neither mode fully meets the task goal or all modes present a high risk, you reject all of them.

- If exactly one mode is suitable, you choose this one.

- If multiple modes are equally suitable and do not conflict with constraints, you can choose any of them.

Response Format:

- Return the selected behavior mode by repeating the mode description. Use ‘none of them" for mode description if no
mode is selected.

- Include one sentence of explanation for the choice made.

Task D task description)
Task Condition: {task context]

Behavior Modes:

‘Mode 1. {Action Plan 1}
"Mode 2. {Action Plan 2}
‘Mode 3. {Action Plan 3}
‘Mode 4. {Action Plan 4}
*Mode 5. {Action Plan 5}'
*Mode 6. {Action Plan 6}'

Fig. 7: Prompt Template for Policy Steering.

Finetuning. We adopt LoRA to finetune our modified model,
loading the base weights from Llama-3.2-Vision-Instruct and
randomly initializing the new linear projection layer. This
approach updates only 0.2664% of the original model’s param-
eters. The finetuning hyperparameters are listed in Table IV,
and we select the model with the lowest evaluation loss for
deployment.

You are an assistant responsible for failure monitor during household tasks. Your task is to evaluate whether the policy's
behavior is a success or failure based on the task description and task condition. The most important rule is in task
condition. Assume the robot policy is going to be executed as described, except there is a clear failure stated in behavior
mode. Do not infer unintended consequences or failure scenarios beyond what is explicitly described.

Output Requirements: - If the behavior mode is likely to achieve the desired goal in the task description, you confirm it
is normal. Remember only when the behavior mode indicated failure given task condition or clearly against the task
goal, you output abnormal.

Response Format:

- Return either ‘'normal’ or ‘abnormal’ as the final judgment. Provide a one-sentence reason for the decision made,
without speculating on additional failure scenarios. Your estimation should reason only with task condition. Don't be
overconservative.

Provided Behavior Mode: ‘Mode 1. {Action Plan}".

Task Condition:{task context}

Task Description:(general task description)

Fig. 8: Prompt Template for Failure Monitoring.

Prompt. The modified VLM is finetuned to generate behavior
narration with the prompt template in Fig. 6, explaining the
predicted latent states from the world model.

In policy steering. we sample and aggregate action se-
quences into 6 modes to query VLM for the best choice. Each
mode’s behavior narration replaces Action Plan in the prompt
template in Fig. 7.

Another potential usage of our system is to evaluate and
monitor different policies’ performances under specific task
description before execution. To showcase our system can be
a reliable failure monitor across different tasks, we conduct
additional experiments in App. D2. We list the prompts used
for failure monitor in Fig. 8.

Different tasks have different task descriptions, and specifi-
cations (i.e., contexts), which are put in the prompt for policy
monitoring and policy steering can be found in Sec. IV

You are an assistant for monitoring the robot's behavior. Given the provided task description input, the image of robot
at the first step(combined wrist and third person view), the robot gripper state at the first step and the next 16 actions of
the robot, respond with only one sentence that best describes the robot's future behavior of these 16 actions.

Note:

1. Remember to pay attention to the details of grasping part of the object, e.g. handle, rim. If gripper is not contacting
the cup or the cup is lying down on the table, describe the behavior and must state it as a failure in the output.

2. Both the robot state and the actions have 8 dimensions. The first three dimensions are the x, y, z positions of the
robot gripper. X direction is moving forward and backward in the image and Y is moving left and right. Z is moving
up and down. The 4th to 7th values are the quaternion of the gripper. The last value is gripper opening or closing.

3. Your response must strictly align with the image observation. Do not include any additional text, explanations, or
information.

Action Sequences: {Action Plan}
Current State: {proprioceptive states)

Input:(general task description}

Fig. 9: Prompt Template for Behavior Narration for VLM-
Act in Cup Task

Hyperparameter Value
LoRA (rank) 8
LoRA (dropout) 0.05
LoRA (alpha) 32
Quantization 4bit
Batch Size 1
Learning Rate le-5
Epoch (Cup) 10
Epoch (Bag) 15
Finetuned Layers | [0OWI_PTOT" "4p-proy "o_prof” .proy”,
q_proj”, v_proj”, "gate_proj”]

TABLE V: VLM Hyperparameters of VL.M-Act.

4) Additional Details of Baselines:

VLM-Act. This baseline is an ablated version of
without the explicit world model. It uses the original
Llama-3.2-11B-Vision-Instruct model as shown in right part of
Fig. 5 and finetuned with the same labels as in VQA Dataset.
The action plans and states are prompted as text and image
observations are concatenated together and processed as image
tokens. Details of the prompt are available in Fig. 9. Since
VLM cannot directly interpret the low-level action control,
we give some privileged information in the prompt, marked
as red in the prompt template, to help it generate behavior
narration. However, this baseline still struggles to generate
accurate behavior narration as shown in Sec. D2, despite
being finetuned on the same dataset. For policy monitoring
and policy steering, VLM-Act uses the same prompt as
. Hyperparamers used for finetuning are shown
in Table. V

VLM-Img & VLM-Img-Oracle. We further evaluate an
advanced VLM (GPT-40) to interpret fine-grained motion
details from a sequence of 16 images, either reconstructed
from predicted latent states or recorded from actual execution.
GPT-40 runs at the default temperature. As shown by the red
text in Fig. 10, GPT-4o still struggles to comprehend subtle
motion details, even when given privileged information to
guide its focus.

Classifier-Dyn-Latent. For policy steering and monitoring,
we adopt a causal transformer-based binary classifier [25] to

You are a helpful assistant that describes robot behaviors.
Task Description: {general task description]

Here are sixteen images(third person view and wrist camera view) of robot execution listed in time order and a task
description. Please generate a one-sentence description of the robot's behavior.

No!es
. Pay attention to the grasping process as it shows the grip part.
2. Do not hallucinate over the contact position.
. If the grasp is achieved, the sentence should focus on which part of the object it grasps and makes contact with, e.g.
handle, inner surface, etc.
4. 4.7f the cup is not grasped in the robot's gripper, the sentence should describe the failure.

w

<image token>x 16

Fig. 10: Prompt Template for Behavior Narration for GPT-
40 in Cup Task.

Hyperparameter Value
Embedding Dimension 64
Number of Head 1
Attention Dropout 0.05
Embedding Dropout 0.05
Block Output Dropout 0.05

Context Length 16

Sinusoidal Embedding True
Learning Rate le-4
Gradient Clip (—o0,100]

Epochs 30

TABLE VI: Hyperparameters of Classifier-Dyn-Latent.

directly predict success or failure from future latent states.
Table VI summarizes its hyperparameters. We manually label
each rollout as success or failure under the first task description
to train the classifier.

VLM-DynLat-Binary. This end-to-end baseline also predicts
a binary success/failure label from future latent states, but em-
ploys the same modified VLM architecture as

which provides a larger capacity than the transformer- based
classifier. It is trained on the same dataset as Classifier-Dyn-
Latent, with the prompt template shown in Fig. 11.

You are an assistant for failure detection. Analyze the robot behaviors from the provided images presented in time order
(combined wrist and third-person view). Compare the observed behaviors with the provided task description and task
condition to determine whether the task was successful or a failure.

Respond with only one of the following numbers: 0 or 1. 0 means task failure. 1 means task success.

No additional words, explanations, or clarifications are allowed. Your output must be limited to a single digit (0 or 1) and
nothing else.

Task Description: (general task description]
Task Condition:(task context}

<latent token>x 16

Fig. 11: Prompt Template for Policy Monitoring for VI M-
DynLat-Binary.

VLM-DynLat-Category. Similarly, we develop an end-to-
end approach that directly predicts a valid set of action plans
for policy steering. The modified VLM is finetuned to output
which action-plan indexes are valid under the current task
description. Its input includes a text prompt and six sequences
of predicted future latent states (Fig. 12), each corresponding
to one candidate action plan.

D. Experiment

1) Real Robot Setup:
Fig. 13 demonstrates the setup of our real-world experiments.

You are an assistant for policy steering.
The first behavior mode is observed as the following images: <latent token> x 16.

The second behavior mode is observed as the following images: <latent token> x 16.

The third behavior mode is observed as the following images: <latent token> x 16.

The fourth behavior mode is observed as the following images: <latent token> x 16.

The fifth behavior mode is observed as the following images: <latent token> x 16.

The sixth behavior mode is observed as the following images: <latent token> x 16.

Analyze six sequences of robot behaviors from the provided images presented in time order (combined wrist and
third-person view). Compare each sequence with the provided task description and task condition to determine which
sequences successfully satisfy the task requirements.

Instructions:

-Respond with a list containing the indices of the valid sequences (e.g., [0,1,2]).

-If none of the sequences satisfy the task requirements, return an empty list: [].

-The indices should be between 0 and 5.

-No additional words, explanations, or clarifications are allowed.

-Your output must be strictly a list containing the indices of the valid sequences or an empty list.

Task Description:{general task description}

Task Condition:{task context}

Fig. 12: Prompt Template for Policy Steering for VIM-
DynLat-Category.

We employ two cameras, a RealSense D435 camera on the
Franka hand and a Zed mini 2i camera placed in front of the
robot. In order to increase the contact region and compilancy,
we replace the original Franka gripper finger with 3D printed
gripper finger from [7].

RN

Fig. 13: Real Robot Setup The visualization of the real robot
environment and the positions of the cameras.

2) Supplementary Experiments & Analyses:

From Action Rollouts to Behavior Narration.

As discussed in Sec. III-B, if we want to use the VLM
as an open world verifier RXLM(~;€), we need to enable the
model to understand the underlying textual representation of
low-level action outcomes. In this section, we study if our our
latent-aligned VLM can accurately describe the outcomes of
low-level actions. We also compare our approach with several
baselines to investigate the advantages of using an explicit
world model for predicting action outcomes and decoding a
robot’s action plans into behavior narrations.

Baselines. We compare our approach, , against
four baselines (more implementation details provided in
App. C4). (1) FOREWARN-Oracle, is an upper-bound on

Cup Task

Prompt: The robot aims to grasp a cup from the table. Please provide a sentence that best
describes the robot’s behavior.

FOREWARN-Oracle: The robot is trying to pick up the mug by its inner surface.
FOREWARN (ours): The robot works on seizing the cup through its interior.

: The robot attempts to grab the mu.
VLM-Img-Oracle: The robot successfully grasps the mug —
VLM-Img: The robot successfully grasps the mug —

Bag Task

9
"o‘,.:‘/éi Ny Ll - i

Prompt: The robot aims to grasp a bag of chips from the table. Please provide a sentence
that best describes the robot’s behavior.

FOREWARN-Oracle: The robot grips the chip bag with a firm hold on the middle.
FOREWARN (ours): The robot grips the chip bag directly in the middle.

: The robot holds the chip bag —
VLM-Img-Oracle: The robot successfully grasps the chip bag _
VLM-Img: The robot successfully grasps _with its gripper.

Fig. 14:. Examples of Behavior Narrations Predicted by Each Approach. The top row displays the ground-truth robot
observations and the prompt used for querying VLMs. Only FOREWARN and FOREWARN-Oracle consistently produce
accurate outcome narrations, effectively capturing nuanced motion details. In contrast, the baselines frequently hallucinate or
fail to capture critical contact details between the gripper and objects. For instance, in the Bag task, VLM-Act, VLM-Img,
and VLM-Img-Oracle all hallucinate that the robot is grasping the edge of the bag, whereas it is actually grasping the middle.

our method’s performance assuming that we had access to
ground-truth future observations (instead of relying on the
latent dynamics f, to predict future outcomes). This method
uses the encoder £; on ground-truth future observations to
get privileged (posterior) future latent states z;; 7 as in-
put for the VLM. (2) VLM-Act, which directly fine-tunes
the original Llama-3.2-11B-Vision-Instruct model to generate
behavior narrations end-to-end from the current observation
o; and an action plan a;., 7 (represented as text), without
explicitly predicting outcomes. (3) VLM-Img, which utilizes
the decoded world model’s predictions (i.e., the predicted
future visual observations) given a robot’s planned actions. We
use GPT-40 [29] to process the predicted visual observations
and generate behavior narrations in a zero-shot manner. (4)
VLM-Img-Oracle, which is similar to VLM-Img but is an
upper bound on this method by using ground-truth visual
observations instead of predicted ones.

Metrics. We adopt the metrics from [10] to evaluate the align-
ment between predicted behavior narrations and ground-truth
narrations: (1) LLM Score: A similarity score (ranging from
0 to 1) determined by the GPT-40 model. (2) GT Accuracy:
A binary score (0 or 1) indicating whether the predictions
match the ground-truth narrations, as determined by a human
labeler (in this case, the authors). For further details on the
motivation behind using these metrics for evaluation, please
refer to App. D3.

Results: On the Value of Explicit Action Outcome Pre-
diction. Table VII presents the GT Accuracy and LLM
Score for our approach and each baseline. The results are
averaged across 30 test rollouts for each task. The results
show that VLM-Act performs poorly, achieving less than
50% GT Accuracy across all tasks. This underperformance
is due to its inability to interpret low-level actions without
the grounding provided by a world model’s future outcome

GT Accuracy T LLM Score 1
Cup Bag Average Cup Bag Average
FOREWARN-Oracle | 0.9240.02 0.7740.03 0.85+0.03 | 0.86+0.01 0.7640.03 0.8140.02
FOREWARN (Ours) | 0.874+0.02 0.7540.03 0.82:£0.03 | 0.8240.02 0.72 0.02 0.76+0.02
VLM-Act 0.374£0.03 036+£0.06 03740.05 | 0.5240.05 0.50+£0.07 0.5140.06
VLM-Img-Oracle 0614004 0434003 0.52£0.04 | 0.6540.02 0.6240.02 0.64+0.02
VLM-Img 0.364£0.05 0.33£0.04 03540.05 | 0.56£0.03 0.60+£0.04 0.5840.04

TABLE VII: Alignment Between Predicted Behavior Narra-
tions and Ground-Truth Narrations. FOREWARN outper-
forms all baselines across both tasks and achieves performance
comparable to FOREWARN-Oracle, which has access to
ground-truth action outcomes and represents the upper bound
for our approach. We use 50 rollouts to evaluate the perfor-
mance. For FOREWARN, FOREWARN-Oracle and VLM-
Act, the mean and standard deviation are reported by running
3 seeds for the finetuning experiments while VLM-Img and
VLM-Img-Oracle, report 3 queries of GPT-4o.

predictions. In contrast, FOREWARN, which leverages an
explicit world model, outperforms VL.M-Act by over 50% on
every task, despite both being fine-tuned on the same dataset.
These results demonstrate that decoupling the VLM’s burden
of predicting action outcomes enables the model to produce
more accurate outcome narrations than directly training the
VLM to both predict outcomes and generate narrations end-
to-end.

Results: On the Value of VLM Fine-Tuning. Interestingly,
despite being among the most advanced VLMs, both VLM-
Img and VLM-Img-Oracle struggle to accurately interpret
robot behaviors directly from visual observations, even with
access to ground-truth observations. As shown in Table VII,
these methods fall behind FOREWARN by at least 30% in
GT Accuracy and 16% in LLM Score. These results show
that existing state-of-the-art VLMs struggle to decode fine-
grained motion details from video observations, underscoring
the importance of fine-tuning for improved performance in
such tasks.

Fork Task (Phase 1) Latent outcome decoding & policy steering

Prompt: The robot aims to grasp_the fork from the table.
Please provide a sentence that best describes the robot’s
behavior. <Latent Token> x T

FOREWARN:

Pass latents

Imagination to VLM

. EEEEm -
O]
R

: Prompt: Now the robot need to i
2 3 the fork for eating. Please select khe best action plan
(€D) (#) . [omitted] (Behavior Narration} x

FOREWARN:
@ The chosen mode is 1 because it fulflls the

w(ae | o) Viyi task condition of maintaining sanitation
s nm‘ms__l l [P Reasoner without touching the tines of the fork,
i FHEE NS
773 t+27/3 t+ C+4T/3 t+57/3 t+2T Real time
Fork Task {Phase 2) Latent outcome decoding & policy steering
Prompt: The robot aims to place the fork in_the
bowl. Please provide a sentence that best describes

the robot’s behavior. <Latent Token> x T
FOREWARN:
t fails to

Sample actions
(@i | O0eer)
Execute
actions

Imagination

@,
OILIW@—
(ater) 7

(#er r) (GD)

Prompt: Now the robot need o maintain the sanitation.of
Please select the best action plan
[ommed] {Behavior Narration) 6
FOREWARN:
The chosen maode is 6 because it is the only
option that places the fork to the bowl and
maintains sanitation.

r

VLM

Pass latents Reasoner

Fig. 15: Policy Steering: Fork Task. We visualize the steering
process for the Fork task including two phases (Pick and
Place). For each phase, we visualize the imagined T'-step
rollouts decoded from the world model for the 3 out of 6
action plans sampled from the base policy on the left. On
the right, we show the behavior narrations generated from our
finetuned VLM 7'M and the VLM’s reasoning R (-; /)
about the outcomes based on the task description ¢ and
behavior narrations to select the best action plan to execute.
The time axis shows the real-world execution of the selected
behavior from the perspective of the wrist-camera.

Results: Qualitative Examples. In Figure 14, we visualize
behavior narrations generated by our approach and the base-
lines. consistently produces more accurate out-
come narrations, effectively capturing nuanced motion details.
In contrast, the baselines often hallucinate or fail to capture
critical contact details between the gripper and objects.

More Qualitative Examples for Policy Steering. We include
additional qualitative examples for Cup and Bag tasks in
Fig 16. These examples further demonstrate the effectiveness
of our policy steering system for different tasks. The imagined
image sequences from the world model show that our system
is capable to predict the various outcomes for different action
sequences and the VLM can reason about behavior narrations
and correctly evaluate the action plans.

FOREWARN as a VLM-in-the-loop Failure Monitoring
System. In this section, we present another application
of our approach—preemptive failure monitoring—based on
the behavior narrations generated in Sec. D2. Similarly, our
modified VLM first decodes the predicted latent states from
the world model, as behavior narrations E},. Then it reasons
about behavior narrations under task description ¢ and decides
whether the future action plan, translated as Eb, is a fail-
ure. As both quantitative and qualitative results demonstrate,

is a reliable and versatile failure monitoring
framework across diverse task.

Baselines. We consider three methods as our baselines, which
preemptively predict the outcome of the action plan before the
execution. 1) VLM-DynLat-Binary takes the predicted latent
states from the world model and task description ¢ as input to
the VLM, directly generating binary output to indicate success
or failure without the intermediate step of behavior narration;
2) Classifier-Dyn-Latent takes the predicted latent states as
input and trains a transformer-based binary classifier to gen-
erate binary output with the same dataset as VLM-DynLat-
Binary; 3) VLM-Act uses generated behavior narrations in
Sec. D2 and queries the VLM again to decide if the behavior
is a success or failure within the context of the task description
£. These baselines are equivalent to those in Sec. IV-A.

Metrics. To evaluate the overall performance of different
methods as preemptive failure monitors, we report the standard
detection metrics from prior work [1] including Accuracy
(ACC), True Positive Rate (TPR), True Negative Rate (TNR).

Latent decoding & policy steering

CUP T bt inati Pass latents Prompt: The robot aims to grasp a cup from the table. Please
magination to VLM provide a sentence that best describes the robot’s behavior.
_ F - <Latent Token>x T
ol o zt FOREWARN:
— The rok s the 1rc t T
(@) The robot fails to sp on the cup
5 (©D) The robot attemp p via the handle
(at) : Prompt: Now the robot need to serve the cup of water to the
3 () guest. Please select the best action plan ...[omitted]
— 7 {Behavior Narration} x 6
@ FOREWARN:
The chosen mode is 6 because it is the most
n(a; | o) VLM suitable way to serve the cup to the guest
. ;—I l [Reasoner without spiliing or contaminating the drinks
ion:

N §
i
[199

5 s
t t+T/3 t+27/3 t+T Real time = t t+T/3 t+2T/3 t+T Real time
Bag Task Latent decoding & policy steering
Sample actions Prompt: The robot aims to grasp a bag from the table.
n(a, | o)) Please provide a sentence that best describes the robot’s
Imagination behavior. <Latent Token> x T
. FOREWARN:
z Execute !
- actions | The the edge.
The he middle.
z7 Prompt: Now the robot need to minimize the contact region to
N avoid crushing contents inside. Please select the best action
= plan .. [omitted] {Behavior Narration} x 6
z) @ FOREWARN:
The chosen mode is 2 because it makes a secure
Pass latents VIM grasp with the bag through the edge to avoid
to VLM Reasoner. crushing the bag.

Fig. 16: Policy Steering for Cup and Bag Task. We visualize
the steering process for the Cup task on the top and the
Bag task on the bottom. For each task, we visualize the
imagined 7'-step rollouts decoded from the world model for
the 3 out of 6 action plans sampled from the base policy
on the left. On the right, we show the behavior narrations
generated from our finetuned VLM T/"™ and the VLM’s
reasoning RY"M(-;£) about the outcomes based on the task
description ¢ and behavior narrations to select the best action
plan to execute. The time axis shows the real-world execution
of the selected behavior from the perspective of the wrist-
camera.

Results: Failure Monitoring Performance. Both VILM-
DynLat-Binary and Classifier-Dyn-Latent perform well
when evaluation task description is the same as training.
However, their performances drop sharply in novel task de-
scription, indicating poor generalization of end-to-end model
even though they have the same model capacity as our method.
In contrast, consistently attains high accuracy,

Cup Bag Average
Method Training Unseen Training Unseen

Training Unseen
Acct TPRT TNRT|Acct TPRT TNR?T|Acct TPRT TNR?T|Acct TPRT TNRT|Acct TPRT TNRT|Acct TPRT TNRT
FOREWARN (Ours) | 0.90 080 1.00 [0.75 0.70 0.80 |0.75 0.71 0.77 {0.75 0.75 0.75 |0.83 0.76 0.89 [0.75 0.73 0.78
VLM-DynLat-Binary| 0.85 0.77 091 [0.15 0.11 0.27 |0.75 0.86 0.69 [040 0.38 0.42 |0.80 0.82 0.80 [0.28 0.25 0.35
Classifier-Dyn-Latent| 0.90 0.80 1.00 | 0.10 0.10 0.10 | 0.80 0.71 0.85 |0.35 0.13 0.50 | 0.85 0.76 093 |0.23 0.12 0.30
VLM-Act 0.65 0.75 0.58 |0.50 0.10 0.90 | 0.60 0.00 0.92 |0.65 0.13 1.00 | 0.63 038 0.75 |0.58 0.12 0.95

TABLE VIII: Policy Monitoring. The reported result in the table is averaged over 20 trajectories. FOREWARN, VLM-
DynLat-Binary and Classifier-Dyn-Latent perform similarly well in training task description while VILM-Act has poor

performance. In unseen task description, FOREWARN is the only method that maintains similar performance as training task
description.

Novel Task Description@ The user wants the robot to ensure stability without the risk of dropping the bag. Failure Monitoring
Wikl el i o e — Behavior Narration Behavior Narration
FOREWARN S VLM-Act o Classifier-Dyn-Latent

Failure Monitoring

Failure Monitoring

Gmspl ng

by the edge Abnormal.

Abnormal. @
Gripping by a side edge may not /| The robot fails to secure the bag, X x
provide a stable hold. violating task condition.

VLM-DynLat-Binary

N
Behavior Narration Behavior Narration
@ The robot grips the bag near the @ The robot fails to secure the @
center. chip bag.

FOREWARN VLM-Act

\ Failure Monitoring Failure Monitoring
True future outcome given (=0) Grasping by

Normal. Abnormal. @
f L T/a : r the pridle Grasping bag near the center is Inability to achieve a firm grasp X O oL X
llh a stable and safe method. contradicts task condition. VLM-DynLat-Binary
J

Classifier-Dyn-Latent

World mdel imagination given aj,, bt Wi Behavior Narration
@ @ The robot cannot hold the chip @
FOREWARN chip bag. VLM-Act bagipioger Classifier-Dyn-Latent
. \ Failure Monitoring Failure Monitoring
rue future outcome given ao 0 E lemg fo

VLM-DynLat-Binary

Abnormal. Abnormal. @
grasp Failing to grasp the bag directly . Inability to hold the bag properly .
contradicts task conditions. violates task condition.

Fig. 17: Policy Monitoring. In the top (pink) and medium (green) row, the robot imagines correctly about the robot behaviors
but only FOREWARN describes the behavior correctly and generates correct monitoring results with adequate explanations.
In the bottom row (blue), all of the methods distinguish failure correctly from success.

Accuracy T
Method Independent Training Task Description Novel Task Description

World Model Behavior Narration Reasoning Overall System Reasoning Overall System
Cup Bag Average | Cup Bag Average | Cup Bag Average | Cup Bag Average | Cup Bag Average | Cup Bag Average

FOREWARN 090 070 0.80 [1.00 0.85 093 |090 075 0.83 [0.90 0.85 088 |0.75 0.75 0.75
VLM-DynLat-Binary [0.80 0.75 0.78 - - - 095 080 0.88 [0.85 0.75 080 |020 045 033 |0.15 040 0.28
Classifier-Dyn-Latent - - - 1.00 090 095 (090 080 085 [0.05 025 0.15 [0.10 035 0.23
VLM-Act - - - 035 035 035 [095 095 095 [0.65 0.60 0.63 [090 1.00 095 [050 0.65 0.58

TABLE IX: Performance Breakdown for each component in our pipeline across four methods. FOREWARN have high
accuracy across all components while VILM-Act has very low accuracy in narration, leading the poor performance of the

overall system. both Classifier-Dyn-Latent and VLM-DynLat-Binary performs well in training task description and drop
sharply in novel task scenarios.

higher than 75%, with balanced TPR and TNR across all tasks
given different task descriptions, demonstrating its reliability
and flexibility as a failure monitor.

The generalization capability of our method comes from
decoupling the problem of failure monitoring as behavior
narration and outcome evaluation.

This is also demonstrated by VILM-Act, which has the same
intermediate step and shows balanced performance in both task
descriptions, but VLM-Act often misclassifies behaviors in
Bag Task as failures, resulting in low TPR and lower overall
accuracy than .

In Fig. 17, we demonstrate monitoring results for all three
different behaviors qualitatively. Across all three modes of
behaviors, consistently generates accurate de-
scriptions as well as correct monitoring results. VLLM-Act is
biased to generate failure narrations across all three modes,
leading to wrong monitoring results. Classifier-Dyn-Latent
and VLM-DynLat-Binary completely do not understand dif-
ferent action plans within different task descriptions. They
generate the same monitoring results for totally different
descriptions, contradictory to the actual execution.

Component-level Analysis for the System. We analyze
each component in our method as well as all the baselines in
(Table IX). shows high accuracy across all the
components while the poor performance of VLLM-Act is from
the low-quality of narration directly generated from low-level
action sequences. After finetuning, both methods preserve
the strong reasoning capability of the VLM. However,
Classifier-Dyn-Latent and VLM-DynLat-Binary has a huge
performance drop in novel task scenarios because they are
overfitting to the specific task description in the training.

3) Metric Ablations:

Metrics for Behavior Narration. We investigate four com-
mon text-generation metrics proposed in prior work [10]:
Cosine Similarity, ROUGE-L, LLM Fuzzy Matching, and Bi-
nary Success Rate. To assess each metric’s correlation with
ground-truth labels, we sample 16 narrations for each of three
behaviors in the Cup Task (grasping by handle, grasping
by rim, and grasp failures), yielding 360 intra-category and
768 inter-category comparisons. As shown in Figures. 18,19,
and20, it is difficult for Cosine Similarity and ROUGE-L to
cleanly distinguish narrations from the same category versus
different categories, whereas LLM Fuzzy Matching with GPT-
4o can easily separate them. This discrepancy arises because
the narrations share similar high-level semantics (e.g., “grasp-
ing the cup”) and differ only in fine-grained details (e.g., grasp
location). Consequently, we adopt LLM Score and Ground-
Truth Accuracy (manual matching) as our final metrics for
evaluating generated behavior.

Results: Policy Steering Speed. Our system queries the
VLM twice to first generate behavior narrations and then
select the best action plan. The overall inference time is 3.7
seconds among which the generation of behavior narrations

Intra-category rouge
Inter-category rouge
100 4

80 4

Frequency
o
=]

40

204

o]

T T T T T T T
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity Score

Fig. 18: Distribution of ROUGE-L Score shows that intra-
catego 3.

70 4
Intra-category cosine

Inter-category cosine
60 4

Frequency
w & w
S]]

N
o

H
5

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Similarity Score

Fig. 19: Distribution of Cosine Similarity Score shows that
intra-c *~ oottt ones.

300 4 Intra-category gpt4o
Inter-category gpt4o

Frequency
o 5 W o
g & 38 g

v
3

0.‘2 0.‘4 0:6 0.‘8 l.‘O

Similarity Score
Fig. 20: Distribution of LLM Score shows inter-category and
inter-category scores can be roughly separated at 0.7.

for 6 candidate action plans takes 1.3 seconds. In comparison,
VLM-Act takes 22.0 seconds in total for VLM inference
and behavior narration runs 19.7 seconds, much slower than

, partially due to the usage of token per patch
in images rather than a single token per state (image) like

. Additionally, our world model and VLM com-
municate directly in latent space, avoiding image decoding
from world model and encoding from VLM, which could
further speeds up inference.

Time (Seconds) |
Method
‘World Model Prediction|Behavior Narration|Evaluation|Total
0.1 1.3 3.7
2.3
VLM-Act - 19.7 22.0

TABLE X: Inference time for the Policy Steering System.
Inference time for each component in the system (averaged
across 3 runs) shows that greatly reduces the
time to generate behavior narrations from our modified VLM
compared to VLLM-Act.

