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ABSTRACT

In continual learning, catastrophic forgetting is affected by multiple aspects of the
tasks. Previous works have analyzed separately how forgetting is affected by ei-
ther task similarity or overparameterization. In contrast, our paper examines how
task similarity and overparameterization jointly affect forgetting in an analyzable
model. Specifically, we focus on two-task continual linear regression, where the
second task is a random orthogonal transformation of an arbitrary first task (an ab-
straction of random permutation tasks). We derive an exact analytical expression
for the expected forgetting — and uncover a nuanced pattern. In highly overpa-
rameterized models, intermediate task similarity causes the most forgetting. How-
ever, near the interpolation threshold, forgetting decreases monotonically with the
expected task similarity. We validate our findings with linear regression on syn-
thetic data, and with neural networks on established permutation task benchmarks.

1 INTRODUCTION

Modern neural networks achieve state-of-the-art performance in a wide range of applications,
but when trained on multiple tasks in sequence, they typically suffer from a drop in perfor-
mance on earlier tasks, known as the catastrophic forgetting problem (Goodfellow et al., 2013).
Continual learning research is mostly dedicated to designing neural architectures and optimization
methods that better suit learning sequentially (e.g., Zenke et al. (2017); De Lange et al. (2021)).
Despite these efforts, it is still unclear in which regimes forgetting is most pronounced, even for
elementary models.

A number of works have explored the relationship between task similarity and catastrophic forget-
ting (Bennani et al., 2020; Ramasesh et al., 2021; Doan et al., 2021; Lee et al., 2021; Evron et al.,
2022; Lin et al., 2023). While earlier works struggled to have a consensus on whether similar or
different tasks are most prone to forgetting, recent works suggested that continual learning is the
easiest when tasks have either high similarity or low similarity, and that it is most difficult for tasks
that have an intermediate level of similarity (Evron et al., 2022; Lin et al., 2023). The main exper-
imental evidence of this claim so far focused on the similarity of learned feature representations of
a neural network (Ramasesh et al., 2021). Theoretically, Lin et al. (2023) quantified task similarity
using Euclidean distances between underlying “teacher” models. However, this notion of similarity
cannot capture the task similarity in standard benchmarks (e.g., permuted MNIST), where typically
the input features are changing between tasks (and not the teacher). Others (Doan et al., 2021; Evron
et al., 2022) interpreted task similarity as the principal angles between data matrices.

In practice, neural networks are typically extremely overparameterized. Several works have stud-
ied, empirically and analytically, the beneficial effect of overparameterization in continual learning,
particularly on the commonly used permutation and rotation benchmarks (Goldfarb & Hand, 2023;
Mirzadeh et al., 2022). In this paper, we propose a more refined analysis, which is able to show the
combined effect of overparameterization and task similarity for a general data model. We show that
task similarity alone cannot explain the difficulty of a continual learning problem, rather it depends
also on the model’s overparameterization level.

∗Equal contribution. Correspondence to <goldfarb.d@northeastern.edu> or <itay@evron.me>.
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Our main result is an exact analytical expression for the worst-case forgetting under a two-task
linear regression model trained using the simplest (S)GD scheme. Data for each task is related by a
random orthogonal transformation over a randomly chosen subspace, and the Dimensionality of the
Transformed Subspace (DOTS) controls the task similarity — the higher the DOTS, the lower the
similarity between tasks. This similarity notion provides a natural knob that controls how similar
tasks are after a random transformation. This notion also closely characterizes popular permutation
benchmarks, for which it was first suggested by the seminal work of Kirkpatrick et al. (2017).

Figure 1 informally illustrates the essence of our result. When the model is suitably overparame-
terized, the relationship between task similarity and expected forgetting is non-monotonic, where
the most forgetting occurs for intermediately similar tasks. However, if the model is critically pa-
rameterized, then the behavior is monotonic and the continual learning problem is most difficult for
the highest dissimilarity level. This behavior illustrates how hard it is to estimate the difficulty of
continual learning in different regimes.
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(a) A highly overparameterized regime.
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(b) Near the interpolation threshold.

Figure 1: Informal illustration of our theoretical result. Formal details are shared in Section 2.

The contributions of this paper are:

• We present a linear regression data model motivated by empirically-studied permutation tasks
that exhibits a joint effect of task similarity and overparameterization on catastrophic forgetting.

• We derive an exact non-asymptotic expression for the worst-case expected forgetting under our
model. We reveal a non-monotonic behavior in task similarity when the model is suitably overpa-
rameterized, and a monotonic behavior when it is critically overparameterized. We demonstrate
that contrary to common belief, overparameterization alone cannot always prevent forgetting.

• We replicate this theoretically-observed interaction of task similarity and overparameterization
using a fully connected neural network in a permuted image setting.

2 ANALYSIS

We study a linear regression model trained continually on a sequence of two tasks under varying
overparameterization and task-similarity levels.

2.1 DATA MODEL AND ASSUMPTIONS

Formally, we consider two regression tasks given by two p-dimensional data matrices
X1,X2 ∈ Rn×p and a single label vector y ∈ Rn. The first data matrix X1 can be arbitrary.
For ease of notation, we often denote X ≜ X1.

The second task’s data matrix X2 is given by rotating the first task’s p-dimensional data in a random
m-dimensional subspace for some m ∈ [p]. Specifically, we set X2 = X1O = XO, where
O ∈ Rp×p is a random orthogonal operator defined as,

O = Qp

[
Qm

Ip−m

]
Q⊤p , (1)

and Qm ∼ O (m) ,Qp ∼ O (p) are orthogonal operators, sampled “uniformly”, i.e., using the Haar
measure of the orthogonal group. Our definition of the operator O results in a more mathematically-
tractable orthogonal transformation version of popular permutation task datasets (like the ones we
use in Section 3), where the labels stay fixed while features permute. This definition also reduces
(when m = p) to the random rotations studied in Goldfarb & Hand (2023).
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To facilitate our analysis, we assume that the first task is realizable by a linear model (implying that
the second one is realizable as well). A similar assumption has been made in a previous theoretical
paper (Evron et al., 2022) that analyzed, as we do, arbitrary data matrices (rather than assuming
random isotropic data). This assumption is especially reasonable in overparameterized regimes,
such as in wide neural networks under the NTK regime.
Assumption 1 (Realizability). There exists a solution w⋆ ∈ Rp such that X1w

⋆ = Xw⋆ = y.

Note that this assumption implies that the second task is also realizable (since
X2(O

⊤w⋆) = XOO⊤w⋆ = Xw⋆ = y). When p ≥ 2 rank(X), it is readily seen that the
tasks are also jointly-realizable w.h.p.

2.2 THE ANALYZED LEARNING SCHEME AND ITS LEARNING DYNAMICS

We analyze the most natural continual learning scheme. That is, given two tasks (X1,y) , (X2,y),
we learn them sequentially with a gradient algorithm, without explicitly trying to prevent forgetting.

Scheme 1 Continual learning of two tasks
Initialize w0 = 0p

Start from w0 and obtain w1 by minimizing L1(w)≜∥X1w−y∥2 with (S)GD (to convergence)
Start from w1 and obtain w2 by minimizing L2(w)≜∥X2w−y∥2 with (S)GD (to convergence)
Output w2

The learning scheme above is known to mathematically converge1 to the following iterates,

w1 =
(
argmin
w∈Rp

∥w −w0∥2 s.t. y=X1w
)

= X+
1 y , (2)

w2 =
(
argmin
w∈Rp

∥w −w1∥2 s.t. y=X2w
)

= X+
2 y +

(
Ip −X+

2 X2

)
w1 , (3)

where X+ is the pseudoinverse of X (we use X+
1 ,X

+
2 for analysis only; we do not compute them).

We now define our main quantity of interest.
Definition 2 (Forgetting). The forgetting after learning the two tasks (parameterized by X,w⋆,O),
is defined as the degradation in the loss of the first task. More formally,

F (O;X,w⋆) ≜ L1(w2)− L1(w1) = ∥X1w2 − y∥2 − ∥X1w1 − y∥2︸ ︷︷ ︸
=0

= ∥Xw2 − y∥2 .

Our forgetting definition is natural and relates to definitions in previous papers (e.g., Doan et al.
(2021)). Notice that under our Assumption 1, the forgetting is the training loss of the first task
(exactly as in Evron et al. (2022)). Alternatively, one can study the degradation in the generalization
loss instead, but this often requires additional data-distribution assumptions (e.g., random isotropic
data as in Goldfarb & Hand (2023); Lin et al. (2023)), while our analysis is valid for any arbitrary
data matrix. Our analysis thus gives a better insight into the problem’s expected worst-case error.

To analyze the forgetting, we utilize our data model from Section 2.1 to show that,

F (O;X,w⋆) = ∥Xw2 − y∥2 =
∥∥X (X+

2 y +
(
Ip −X+

2 X2

)
w1

)
− y

∥∥2
[X2=XO] =

∥∥X(XO)
+
y +Xw1 −X(XO)

+
(XO)w1−y

∥∥2[
y=Xw1,

w1=X+y=X+Xw⋆

]
=
∥∥X(XO)

+
X (I−O)w1

∥∥2 =
∥∥X(XO)

+
X (I−O)X+Xw⋆

∥∥2
[pseudoinverse properties] =

∥∥(XX+X
) (

O⊤X+
)
X (I−O)X+Xw⋆

∥∥2
[∀X,v:∥Xv∥2≤∥X∥2∥v∥2] ≤

∥∥X∥∥2
2

∥∥X+XO⊤X+X (I−O)X+Xw⋆
∥∥2 ,

(4)

where ∥X∥2 = σmax(X). We used two pseudoinverse properties (any matrix X and orthogonal ma-
trix O hold X=XX+X and (XO)

+
=O⊤X+). Our upper bound is sharp, i.e., it saturates when

all nonzero singular values of X are identical. This allows for exact worst-case forgetting analysis.
1In the realizable case, minimizing the squared loss of a linear model using (stochastic) gradient descent, is

known to converge to the projection of the initialization onto the solution space (see Sec. 2.1 in Gunasekar et al.
(2018)). This happens regardless of the batch size (as long as the learning rate is small enough). Finally, the
projections are given mathematically using the pseudoinverses (e.g., see Sec. 1.3 in Needell & Tropp (2014)).
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2.3 KEY RESULT: INTERPLAY BETWEEN TASK-SIMILARITY AND OVERPARAMETERIZATION

We now present our main theorem and illustrate it in Figure 2 on random synthetic data.
Theorem 3. Let p ≥ 4, d ∈ {1, . . . , p} ,m ≥ 2. Define Xp,d ≜ {X ∈ Rn×p | n ≥ rank(X) = d }.
Define the Dimensionality of Transformed Subspace α ≜ m

p as our proxy for task dissimilarity and

β ≜ 1− d
p as our proxy for overparameterization. Then, for any solution w⋆ ∈ Rp (Assumption 1),

the (normalized) worst-case expected forgetting per Def. 2 (obtained by Scheme 1) is

max
X∈Xp,d

EOF (O;X,w⋆)

∥X∥22∥X+Xw⋆∥2
=α

(
2 + β

(
α3 − 6α2 + 11α− 8

)
+ β2

(
−5α3 + 22α2 − 30α+ 12

)
+

β3
(
5α3 − 18α2 + 20α− 6

))
+O

(
1

p

)
,

where X+Xw⋆ projects w⋆ onto the column space of X. Notice that ∥X∥22∥X+Xw⋆∥2 is a neces-
sary scaling factor, since the forgetting ∥Xw2−y∥2 = ∥Xw2−Xw⋆∥2 naturally scales with ∥X∥22
and ∥X+Xw⋆∥2. The exact expression (without the O notation) appears in Eq. (8) in Appendix C.

The full proof is given in Appendix C. Below we outline an informal sketch of the proof.

Proof sketch. In our proof, we show that the expected forgetting is controlled by two important
terms, namely, EO

(
e⊤i O

⊤Σ+Σ (I−O) ei
)2

and EO

(
e⊤i O

⊤Σ+Σ (I−O) ej
)2

for i ̸= j, where
ei is the ith standard unit vector. Each of these expectations is essentially a polynomial of the
entries of our random Qp,Qm from Eq. (1). To compute these expectations (in Lemmas 6 and 8),
we employ exact formulas for the integrals of monomials over the orthogonal groups in p and m
dimensions (Gorin, 2002). A more detailed proof outline is given in Appendix C.
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Figure 2: Empirically illustrating the worst-case forgetting under different overparameterization lev-
els. Points indicate the forgetting under 1000 sampled random transformations applied on a (single)
random data matrix X. Their mean is shown in the thin orange line, with the standard deviation
represented by a gray band. The thick blue line depicts the analytical expression of Theorem 3.
Here, we restrict the nonzero singular values of X to be identical, saturating the inequality in Eq. (4).
Indeed, the analytical bound matches the empirical mean, thus exemplifying the tightness of our
analysis. For completeness, in Appendix C.3, we repeat this experiment with p = 10 and p = 1000.

2.3.1 INTERESTING EXTREMAL CASES

To help interpret our result, we exemplify it in several interesting regimes, taking either the task
similarity proxy α or the overparameterization proxy β to their extremes.

Highly overparameterized regime (β = 1− d
p → 1). Plugging in β = 1 into Theorem 3, we get

max
X∈Xp,d

EOF (O;X,w⋆)

∥X∥22∥X+Xw⋆∥2
= α2 (1− α)

2
=
(

m
p

)2 (
1− m

p

)2
. (5)

This behavior is illustrated in Figure 1(a) and in the top part of Figure 3. The non-monotonic nature
of this behavior and its peak at α=0.5 corresponding to intermediate similarity, seem to agree with
Figure 3(a) in Evron et al. (2022) (especially when no repetitions are made, i.e., their k=2 curve).
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At the interpolation threshold (d = p =⇒ β = 1− d
p = 0). In this extreme, the theorem asserts,

max
X∈Xp,d

EOF (O;X,w⋆)

∥X∥22∥X+Xw⋆∥2
= 2α = 2m

p .

This behavior is illustrated in Figure 1(b) and in the rightmost plot of Figure 2. Notably, we get
a monotonic decrease in forgetting as tasks become more similar. This seems to contradict the
conclusions of Evron et al. (2022), according to which intermediate task similarity should be the
worst. We settle this alleged disagreement in our discussion in Section 4.

Minimal task similarity (m = p =⇒ α = m
p = 1). Plugging in α = 1 into Theorem 3, we get

max
X∈Xp,d

EOF (O;X,w⋆)

∥X∥22∥X+Xw⋆∥2
= 2− 2β − β2 + β3 = d

p + 2
(

d
p

)2
−
(

d
p

)3
.

This minimal task similarity regime matches the (noiseless) model of Goldfarb & Hand (2023),
where a (generalization) risk bound with a scaling of

√
n
p was proven under a particular data model.

2.3.2 THE ENTIRE INTERPLAY BETWEEN TASK SIMILARITY AND OVERPARAMETERIZATION

The figure below illustrates our main result (Theorem 3). While high task similarity consistently
reduces forgetting, this effect becomes more evident with sufficient overparameterization. Notice-
ably, non-monotonic effects of task similarity (our DOTS), only occur when the model turns highly
overparameterized. Importantly, we observe once more that even with extremely high overparam-
eterization levels (β = 1− d

p → 1), forgetting does not vanish entirely. Instead, this outcome is
contingent on task similarity, as captured by our DOTS measure. For instance, Eq. (5) shows that
when α = m

p = 0.5, the worst-case forgetting becomes (0.5)4 = 0.0625 when β=1− d
p →1.
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Figure 3: Levelsets depicting our main result from Theorem 3. The entire space (combinations
of α, β) appears on the lower-right subplot. We zoom into more interesting regimes, i.e., high task
similarity and high overparameterization, on the lower-left and upper-right subplots (respectively).
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2.4 EMPIRICAL FORGETTING UNDER AN AVERAGE-CASE DATA MODEL

We aim to simulate the (linear) model from Section 2 and show that the average-case behavior
matches the joint effect that task similarity and overparameterization have on the worst-case for-
getting as analyzed in our Theorem 3. We choose the data model of Goldfarb & Hand (2023) for
its clear analogies to learning with neural networks. Under this model, n samples of effective di-
mensionality d are sampled independently. The latent dimensionality p of the samples controls the
overparameterization level. These parameters are precisely defined in Section 2.1 therein. We also
utilize the same hyperparameters and noise levels as defined in their numerical simulations in Sec-
tion 2.3. We compute the statistical risk and training error (MSE) of w1, w2, and the null estimator
on task 1 as a function of α ∈ [0, 1] for p ∈ [500, 1000, 3000] averaged over 100 runs.
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w1, p=1000
w1, p=3000

w2, p=500
w2, p=1000
w2, p=3000

Null estimator
 

Figure 4: Results of the numerical simulation. Risk and training error on task 1 are plotted as a
function of α for various levels of p. The solid (blue) curves denote performance on task 1 of an
estimator that is trained on task 1 and then on task 2. The dashed dark lines denote performance on
task 1 of an estimator trained on task 1 only. The dotted black line denotes the performance of the
null estimator. Training error curves for w1 are omitted as these values are 0 for p > d.

The results of the experiment are shown in Figure 4. The dotted black line denotes performance of
the null estimator (the parameter vector 0p) providing a level for which any non-trivial estimator
should beat. The dashed horizontal lines denote the risk of the single task estimator on task 1,
providing a hypothetical best-case bound for w2. The forgetting of the model is then defined by the
difference between the performance of w1 (grey curves) and the performance of w2 (blue curves).
The grey curves are omitted for the training error plot as the single-task training error is 0 for p > d.
Thus, forgetting in training error is controlled solely by the performance of w2.

Comparing Figure 2 (for the worst-case forgetting) and Figure 4 here (for the average-case data
model) reveals that the interplay between task similarity and overparameterization in both cases
agrees with our analytical result in Theorem 3. Here, for large p (3000), we observe a ∩-shaped
curve for the forgetting of w2, where the highest amount of forgetting occurs in the intermediate
similarity regime. The model under small p (500) has the greatest forgetting when tasks are most
dissimilar. Forgetting risk at the extreme of α = 1 reduces to the model of Goldfarb & Hand (2023),
whose main result explains why overparameterization is beneficial in this setting. Additionally, it is
not surprising that higher levels of overparameterization benefit the single task risk setting of w1, as
this reduces to the model of Hastie et al. (2022) where the double descent behavior was observed.
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3 NEURAL NETWORK EXPERIMENTS

In this section, we examine whether our analytical results apply to a continual learning benchmark
using neural networks. The permuted MNIST (LeCun, 1998) benchmark is a popular continual
learning problem that has been used to measure the performance of many state-of-the-art continual
learning algorithms (Kirkpatrick et al., 2017; Zenke et al., 2017; Li et al., 2019). One performs a
number of uniformly chosen permutations on the 28×28 images of the MNIST dataset. This results
in equally difficult tasks (for an MLP): each task is a different pixel-shuffled version of MNIST. One
then trains in sequence on these tasks and measures catastrophic forgetting. We consider a variant
of the permuted MNIST benchmark, first suggested by Kirkpatrick et al. (2017), where instead of
permuting the entire image, we only permute a square grid of pixels in the center of the image.
Define the width/length of the permuted square to be the “permutation size” (PS). When PS = 0,
each task is identical and thus extremely similar. When PS = 28, each task is fully permuted
and thus extremely different. Any value of PS ∈ (0, 28) can be deemed to have some level of
intermediate similarity. Figure 5 shows examples of high, intermediate, and low similarities in this
setup. We are interested in the relationship between PS and catastrophic forgetting. Based on prior
work (Ramasesh et al., 2021; Evron et al., 2022), it seems we should expect the most forgetting to
occur in the regime of intermediate similarity in a two-task scenario.

Figure 5: Three versions of permuted MNIST for PS = 0 (high similarity), PS = 14 (intermediate
similarity), PS = 28 (low similarity).

We use vanilla SGD to train a 2-layer MLP of width 400 on sequences of up to 4 tasks of MNIST and
EMNIST (a more difficult 26-class version of MNIST for handwritten English letters; see Cohen
et al. (2017)). After each task is trained, we report the test error on all seen tasks. We compare
forgetting across varying permutation sizes. See Appendix A for complete implementational details.
The results are shown in Figure 6. The leftmost plots best illustrate the relationship between PS and
forgetting. The remaining plots are intended to ensure that each new task is being sufficiently fit.
We observe a ∩-shape behavior where the most forgetting occurs around PS ∈ [16, 24], agreeing
with our hypothesis that forgetting is most severe for intermediately similar tasks.

Now consider the experiment in Figure 6 but using a 2-layer MLP with a lower overparameterization
level. For each dataset, we find an overparameterization level that is significantly lower than before
but still saturates to the training data and has comparable single-task test error as the highly overpa-
rameterized version. For MNIST we choose width 20 and for EMNIST we choose width 40. The
results of this experiment are shown in Figure 7. We can observe that the ∩-shape behavior is now
less pronounced and it appears that the continual learning problem has relatively equal difficulty
for intermediately similar tasks as for extremely dissimilar tasks. This general behavior agrees with
our previous results on the relationship of overparameterization and forgetting in Section 2, both in
the theoretical results and numerical simulations. See Appendix B for evidence of the connection
between the notion of similarity in permuted MNIST and the NTK feature regime.
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Figure 6: Results of the permutation experiment for varying levels of permutation size. The archi-
tecture is a 2-layer MLP of width 400. Model 1 corresponds to the net that is trained on task 1,
Model 2 corresponds to the net that is trained on task 1 then task 2, and so on. Plotted curves have
been averaged over 10 runs and error bars denote standard deviation of test error over the runs.
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Figure 7: Replication of the experiment in Figure 6 using less overparameterized 2-layer MLP
models (width 20 for MNIST and width 40 for EMNIST).

4 DISCUSSION

While several related works study continual learning theoretically (Kim et al., 2022; Heckel, 2022),
only some of them study the relationship between task similarity and catastrophic forgetting. Ben-
nani et al. (2020) prove generalization bounds which suggest that forgetting is more severe when
tasks are dissimilar. Lee et al. (2021) analyze a student-teacher setup, showing that intermediate
tasks forget the most. Li et al. (2023) show regimes for which dissimilar tasks may be difficult
and where performance on intermediately similar tasks can benefit from regularization. Experimen-
tally, Ramasesh et al. (2021) provide evidence that intermediate task similarity is most difficult by
studying learned feature representations during training on a number of modern neural networks.
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Geometric interpretation and Comparison to Evron et al. (2022). Previous studies utilize prin-
cipal angles between the solution subspaces of the two data matrices (X1,X2) to quantify task
similarity (Doan et al., 2021; Evron et al., 2022). Evron et al. (2022) show analytically that interme-
diate task similarity (an angle of 45◦) is most difficult in two-task linear regression. Their analysis
applies to any two arbitrary tasks, and thus seemingly contradicts the behavior observed, e.g., in
our Figure 1(b), where maximal dissimilarity is most difficult. The key to settling this apparent
disagreement is the randomness of our transformations (Eq. (1)). Their analysis focuses on any two
deterministic tasks, while our second task is given by a random transformation of the first, as done
in many popular continual learning benchmarks (e.g., permutation and rotation tasks).

To gain a geometric intuition, consider two tasks of rank d = 1 (x1,x2).2 Consider also a max-
imal task dissimilarity (DOTS of α = m

p = 1). Then, x2 = Ox1 is a completely random ro-
tation of x1 in p dimensions. It is known that E

∣∣〈 x1

∥x1∥ ,
x2

∥x2∥
〉∣∣ ≈ 1√

p (Remark 3.2.5 in Ver-
shynin (2018)). Near the interpolation threshold, e.g., when p = 2 (recall that d = 1), we get
E
∣∣〈 x1

∥x1∥ ,
x2

∥x2∥
〉∣∣≈ 1√

2
=⇒ E∠(x1,x2) ≈ 45◦, corresponding to the intermediate task dissimilarity

in Evron et al. (2022), where forgetting is maximal. Conversely, given high overparameterization
levels (p → ∞), we get E

∣∣〈 x1

∥x1∥ ,
x2

∥x2∥
〉∣∣≈ 1√

p → 0 =⇒ E∠(x1,x2) → 90◦, corresponding to the
maximal task dissimilarity in Evron et al. (2022), where forgetting is minimal.

Comparison to Lin et al. (2023). Lin et al. (2023) prove generalization bounds on forgetting
which suggest that forgetting may not change monotonically with task similarity. However, their
data model is not suitable for high overparameterization. For example, in the limit of high over-
parameterization, their model is performing as well as a null predictor. In contrast, we focus on
the training error, and do not assume a specific data model for the first task, which allows us to
generalize even in the highly overparameterized regime.

A starting point for analysis. Our work focuses on linear models and data permutation tasks.
Exploring linear models using (stochastic) gradient descent is the most natural starting point for
theoretical analysis, as an initial step towards understanding more complex systems. Moreover,
recent work shows connections between extremely overparameterized neural networks and linear
models via the neural tangent kernel (NTK) (Jacot et al. (2018); but also see Wenger et al. (2023)).
We choose to study data permutation tasks for their well-defined mathematical relationship and
generation of equally difficult tasks (for a fully connected model). However there is criticism that
permutation tasks are relatively easy to solve in practice and only provide a best-case for real-world
problems (Farquhar & Gal, 2018; Pfülb & Gepperth, 2019). Despite these critiques, we believe that
the data permutation setting is the most amenable for initial theoretical results.

4.1 LIMITATIONS AND FUTURE WORK

Our analysis in Section 2 has centered around a continual linear regression model. An immediate
next step is to explore the extension of our analysis and empirical findings to more intricate non-
linear models (e.g., MLPs, CNNs, and transformers) or to other notions of task similarity. Another
avenue of investigation involves extending the analysis to continual classification models, possibly
using the weak regularization approach suggested by Evron et al. (2023).

Our analysis has also primarily examined settings with T = 2 tasks. Extending these analytical
results to T ≥ 3 tasks poses an immediate challenge. The complexity of our analysis, which already
required intricate techniques and proofs, suggests that tackling the extension may be considerably
difficult. Moreover, the convergence analysis presented in a previous paper (Evron et al., 2022) for
learning T ≥ 3 tasks cyclically has proven to be notably more challenging than that for T = 2 tasks
(and was further improved in a follow-up paper (Kong et al., 2023)).

Finally, since our models are linear, our proxy for overparameterization, i.e., β = 1− d
p , directly con-

trols the overlap between the task subspaces (see also the geometric interpretation above). Clearly,
this proxy is different than the width of deep networks. On the other hand, there are still relations
between these two proxies through the theory of the NTK regime (Jacot et al., 2018). A further
examination of these relations, both theoretically and empirically (perhaps in the spirit of our Ap-
pendix B and Wenger et al. (2023)), could benefit the continual learning literature.

2For simplicity, we discuss the principal angles between x1,x2 instead of between their nullspaces (i.e., the
solution spaces). In two-task scenarios, these are essentially equivalent (see Claim 19 in Evron et al. (2022)).
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Table 1: Hyperparameters for the neural network experiments
Hyperparameter Value

learning rate 0.01
batch size 64

epochs / task 100
momentum 0

dropout 0

A NEURAL NETWORK IMPLEMENTATION DETAILS FOR SECTION 3

Table 1 reports the hyperparameters used in the neural network experiments. All architectures used
ReLU activation functions for the hidden layers and softmax for the output layers. Weights were
initialized as Unif(−1√

i
, 1√

i
) where i is the input dimension of the given layer. The experiment in

Figure 6 used intermediate width 400 and the experiment in Figure 7 used intermediate width 20 for
MNIST and 40 for EMNIST.

B NTK FEATURE SIMILARITY EXPERIMENTS

Let a,b ∈ Rp be two sets of NTK features and define correlation as |⟨a,b⟩|∥a∥∥b∥ . Then the average cor-

relation between datasets A,B ∈ Rn×p is
∑n

i=1
|⟨ai,bi⟩|
∥ai∥∥bi∥/n. Figure 8 plots the average correlation

between original MNIST and permuted MNIST as a function of permutation size. We see that the
average correlation is monotonic in permutation size — extremely high for low permutation size
and extremely low for high permutation size. This provides evidence of the connection between the
centered permuted MNIST problem and task similarity in the NTK regime.
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Figure 8: Results of the permuted MNIST NTK feature similarity experiment.
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C SUPPLEMENTARY MATERIALS FOR OUR ANALYTIC RESULTS (SECTION 2)

Throughout the appendix, we denote the singular-value decomposition of a given X ∈ Rn×p by
X = UΣV⊤ for Σ ∈ Rn×p. The number of nonzero entries on the diagonal of Σ is d = rank (X).

Recall Theorem 3.
Let p ≥ 4, d ∈ {1, . . . , p} ,m ≥ 2. Define Xp,d ≜ {X ∈ Rn×p | n ≥ rank(X) = d }.
Define the Dimensionality of Transformed Subspace α ≜ m

p as our proxy for task dissimilarity
and β ≜ 1 − d

p as our proxy for overparameterization. Then, for any solution w⋆ ∈ Rp (Assump-
tion 1), the (normalized) worst-case expected forgetting per Def. 2 (obtained by Scheme 1) is

max
X∈Xp,d

EOF (O;X,w⋆)

∥X∥2∥X+Xw⋆∥2
=α

(
2 + β

(
α3 + 11α− 6α2 − 8

)
+ β2

(
−5α3 + 22α2 − 30α+ 12

)
+

β3
(
5α3 − 18α2 + 20α− 6

))
+O

(
1

p

)
,

where X+Xw⋆ projects w⋆ onto the column space of X. Notice that ∥X∥2∥X+Xw⋆∥2 is a neces-
sary scaling factor, since the forgetting ∥Xw2−y∥2 = ∥Xw2−Xw⋆∥2 naturally scales with ∥X∥2
and ∥X+Xw⋆∥2. The exact expression (without the O notation) appears in Eq. (8) in Appendix C.

Proof outline. We start our proof (below) by showing that the expected forgetting is sharply upper
bounded as,

1
∥X∥2EOF (O;X,w⋆) ≤

d∑
i=1

EO

(
e⊤i O

⊤Σ+Σ (I−O)Σ+ΣV⊤w⋆
)2

=

(
EO

(
e⊤1 O

⊤Σ+Σ (I−O) e1
)2

+ (d− 1)EO

(
e⊤1 O

⊤Σ+Σ (I−O) e2
)2) d∑

i=1

(
V⊤w⋆

)
i

2

︸ ︷︷ ︸
=∥X+Xw⋆∥2

,

where e1, e2 are the two first standard unit vectors in Rp. This directly implies that,

EOF (O;X,w⋆)

∥X∥2 ∥X+Xw⋆∥2
≤ EO

(
e⊤1 O

⊤Σ+Σ (I−O) e1
)2︸ ︷︷ ︸

solved in Lemma 6

+(d− 1)EO

(
e⊤1 O

⊤Σ+Σ (I−O) e2
)2︸ ︷︷ ︸

solved in Lemma 8

.

Each of these two expectations is essentially a polynomial of the entries of our random orthogonal

Qp ∈ Rp×p,Qm ∈ Rm×m which form the random operator O = Qp

[
Qm

Ip−m

]
Q⊤p as

explained in Eq. (1).

We compute these two expectations (in Lemmas 6 and 8) by employing exact formulas for the
integrals of monomials over the orthogonal groups in p and m dimensions (Gorin, 2002). Our
derivations often get complicated, and so we split them into three appendices:

1. Appendix C (below): Derivations of more complicated expressions involving the operator O.

2. Appendix D: Derivations and properties of monomials of general random orthogonal matrices,
mostly using results from Gorin (2002).

3. Appendix E: Derivations of auxiliary expressions (mostly involving Qm,Qp) that are used as
building blocks in multiple derivations.

13



Published as a conference paper at ICLR 2024

Proof for Theorem 3. Starting from Eq. (4), we show that for any given X,w⋆ it holds that

1
∥X∥2EOF (O;X,w⋆) = 1

∥X∥2EO

∥∥XX+XO⊤X+X (I−O)X+Xw⋆
∥∥2

≤ EO

∥∥X+XO⊤X+X (I−O)X+Xw⋆
∥∥2 , (6)

where, importantly, the inequality saturates when all the nonzero singular values of X are identical.
Plugging in the SVD, i.e., of X = UΣV⊤, we get

1
∥X∥2EOF (O;X,w⋆) ≤ EO

∥∥VΣ+ΣV⊤O⊤VΣ+ΣV⊤ (I−O)VΣ+ΣV⊤w⋆
∥∥2

= EO

∥∥Σ+ΣV⊤O⊤VΣ+ΣV⊤ (I−O)VΣ+ΣV⊤w⋆
∥∥2 ,

where the last equality stems from spectral norm properties (recall that V is an orthogonal matrix).

Following our definition of O = Qp

[
Qm

Ip−m

]
Q⊤p (Eq. (1)) and since Qp is sampled uniformly

from the orthogonal group O(p), we notice that O and V⊤OV are identically distributed. Hence,
we can rewrite the above expectation as

1
∥X∥2EOF (O;X,w⋆) ≤ EO

∥∥Σ+ΣO⊤Σ+Σ (I−O)Σ+ΣV⊤w⋆︸ ︷︷ ︸
≜v

∥∥2

[Σ+Σ=(Σ+Σ)
2] = E

∥∥∥∥∥
d∑

i=1

eie
⊤
i O
⊤Σ+Σ (I−O)Σ+Σv

∥∥∥∥∥
2

[Pythagorean theorem] =

d∑
i=1

E
(
e⊤i O

⊤Σ+Σ (I−O)Σ+Σv
)2 ∥ei∥2︸ ︷︷ ︸

=1

. (7)

Remark 4 (Ease of notation). For simplicity, in the equation above and from now on, we omit
the explicit subscript notation whenever it is clear from the context of our derivations what the
expectation pertains to. For instance, instead of writing EO [F (O;X,w⋆)] we can simply write
E [F (O;X,w⋆)].

As another example, we often analyze (for i ̸= j) expressions of the following spirit,

EO

(
e⊤i Oej

)2
= EQp∼O(p),Qm∼O(m)

(
e⊤i Qp

[
Qm

Ip−m

]
Q⊤p ej

)2

= Eu,v∼Sp−1(p):u⊥v
Qm∼O(m)

(
u⊤
[

Qm

Ip−m

]
v

)2

,

where the last step follows from the angle-preserving property of orthogonal operators (Qp). For
the sake of simplicity, we take the liberty to also write the expectations above as,

E
(
e⊤i Oej

)2
= E

(
e⊤i Qp

[
Qm

Ip−m

]
Q⊤p ej

)2

= Eu⊥v

(
u⊤
[

Qm

Ip−m

]
v

)2

.

Finally, when the dimensions are clear from the context, we interchangeably write matrices in the

two following forms:
[

0m

Ip−m

]
=

[
0

Ip−m

]
, and

[
Qm

0p−m

]
=

[
Qm

0

]
.
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Back to the proof. Focusing on just one term from the above Eq. (7), we have,

E
(
e⊤i O

⊤Σ+Σ (I−O)Σ+Σv
)2

= E

(
e⊤i O

⊤Σ+Σ (I−O)

d∑
i=1

eje
⊤
j v

)2

= E

 d∑
j=1

(
e⊤i O

⊤Σ+Σ (I−O) ej
) (

e⊤j v
)2

=

d∑
j=1

d∑
k=1

vjvkE
(
e⊤i O

⊤Σ+Σ (I−O) ej
) (

e⊤i O
⊤Σ+Σ (I−O) ek

)
=

d∑
j=1

v2jE
(
e⊤i O

⊤Σ+Σ (I−O) ej
)2

+

+

d∑
j ̸=k=1

vjvk E
(
e⊤i O

⊤Σ+Σ (I−O) ej
) (

e⊤i O
⊤Σ+Σ (I−O) ek

)︸ ︷︷ ︸
=0, by Lemma 5

=

d∑
j=1

v2jE
(
e⊤i O

⊤Σ+Σ (I−O) ej
)2

= v2i E
(
e⊤i O

⊤Σ+Σ (I−O) ei
)2︸ ︷︷ ︸

j=i

+
∑

j∈[d]\{i}

v2jE
(
e⊤i O

⊤Σ+Σ (I−O) ej
)2

︸ ︷︷ ︸
j ̸=i

= v2i E
(
e⊤1 O

⊤Σ+Σ (I−O) e1
)2

+ E
(
e⊤1 O

⊤Σ+Σ (I−O) e2
)2 ∑

j∈[d]\{i}

v2j .

We are free to use e1, e2 instead of ei, ej (for i, j ∈ [d]) due to the exchangeability of different rows
of Qp. For instance, notice that

E
(
e⊤i O

⊤Σ+Σ (I−O) ej
)2

= E

(
d∑

k=1

e⊤i Qp

[
Q⊤

m

Ip−m

]
Q⊤p eke

⊤
k Qp

(
I−
[
Qm

Ip−m

])
Q⊤p ej

)2

.

That is, the expression is a function of Q⊤p e1, . . . ,Q
⊤
p ed which are the first d rows of the random

Qp and are entirely exchangeable (see Prop. 9).
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Going back to Eq. (7),

1
∥X∥2EOF (O;X,w⋆) ≤

d∑
i=1

E
(
e⊤i O

⊤Σ+Σ (I−O)Σ+Σv
)2

=

d∑
i=1

v2i E
(
e⊤1 O

⊤Σ+Σ (I−O) e1
)2

+ E
(
e⊤1 O

⊤Σ+Σ (I−O) e2
)2 ∑

j∈[d]\{i}

v2j


= E

(
e⊤1 O

⊤Σ+Σ (I−O) e1
)2 d∑

i=1

v2i + E
(
e⊤1 O

⊤Σ+Σ (I−O) e2
)2 d∑

i=1

∑
j∈[d]\{i}

v2j

= E
(
e⊤1 O

⊤Σ+Σ (I−O) e1
)2 d∑

i=1

v2i + E
(
e⊤1 O

⊤Σ+Σ (I−O) e2
)2 d∑

i=1

∑
j∈[d]

v2j

− v2i


= E

(
e⊤1 O

⊤Σ+Σ (I−O) e1
)2 d∑

i=1

v2i + E
(
e⊤1 O

⊤Σ+Σ (I−O) e2
)2d

d∑
j=1

v2j −
d∑

i=1

v2i


= E

(
e⊤1 O

⊤Σ+Σ (I−O) e1
)2 d∑

i=1

v2i + E
(
e⊤1 O

⊤Σ+Σ (I−O) e2
)2

(d− 1)

d∑
i=1

v2i

=

(
E
(
e⊤1 O

⊤Σ+Σ (I−O) e1
)2

+ (d− 1)E
(
e⊤1 O

⊤Σ+Σ (I−O) e2
)2) d∑

i=1

v2i .

Interestingly, in this worst-case scenario, the direction of w⋆ that lies in the column span of X, i.e.,
X+Xw⋆ = VΣ+ΣV⊤w⋆︸ ︷︷ ︸

=v

does not play a role, but only its scale
∥∥VΣ+ΣV⊤w⋆

∥∥ = ∥Vv∥ =

∥v∥ =
∑d

i=1 v
2
i (since v is only nonzero in its first d entries). Normalizing by this scale, we get,

EOF (O;X,w⋆)

∥X∥2 ∥X+Xw⋆∥2
≤ E

(
e⊤1 O

⊤Σ+Σ (I−O) e1
)2︸ ︷︷ ︸

solved in Lemma 6

+(d− 1)E
(
e⊤1 O

⊤Σ+Σ (I−O) e2
)2︸ ︷︷ ︸

solved in Lemma 8

,

where we remind the reader that the inequality saturates when all the nonzero singular values of X
are identical.

16



Published as a conference paper at ICLR 2024

By plugging in the two lemmata and after some tedious algebraic steps, we get the final bound of,

max
X∈Xp,d

EOF (O;X,w⋆)

∥X∥2∥X+Xw⋆∥2

=
m4p2(2+p+p2)−2m3p(24+10p+13p2+p4)+m2p(240+230p−15p2+50p3−2p4+p5)

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

=
m(p6−28p5+47p4−324p3−60p2−240p−576)+2p(288+120p−90p2+71p3−6p4+p5)

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d · m4p(−7p−2−6p2)+m3(16p4+18p3+74p2+92p+48)+m2(−11p5−223p3−267p2−302p−240)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d · m(2p6−3p5+168p4−33p3+728p2+1124p+192)+(74p4−240p−576−490p3−252p2−24p5)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

2d2 · m4p(6+5p)−2m3(8p3+13p2+9p+18)+m2(15p4+24p3+106p2+162p+36)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

2d2 · m(−3p5+3p4−129p3−191p2−198p−144)+p(288+246p−15p2+26p3−p4)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d3 · m4(−5p−6)+m3(18p2+34p−12)+m2(−20p3−46p2−39p−42)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d3 · m(6p4+10p3+96p2+154p+60)+(2p4−30p3−32p2−144p−144)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .

(8)

The above is the exact expression for the worst-case forgetting. To reach the O notation, we assume
that p ≫ 1, and so we are left with the most significant elements of each product. That is, we show
that,

≈ m4p2(p2)−2m3p(p4)+m2p(p5)+m(p6)+2p(p5)
p8 +d

m4p(−6p2)+m3(16p4)+m2(−11p5)+m(2p6)−24p5

p8 +

2d2
m4p(5p)−2m3(8p3)+m2(15p4)+m(−3p5)+p(−p4)

p8 +

d3
m4(−5p)+m3(18p2)+m2(−20p3)+m(6p4)+(2p4)

p8

= m4−2m3p+m2p2+mp2+2p2

p4 + d−6m
4+16m3p−11m2p2+2mp3−24p2

p5 +

2d2 5m4−16m3p+15m2p2−3mp3−p3

p6 + d3−5m
4+18m3−20m2p2+6mp3+2p3

p7

= m4−2m3p+m2p2+mp2+2p2

p4 + d
p
−6m4+16m3p−11m2p2+2mp3−24p2

p4 +

2
(

d
p

)2
5m4−16m3p+15m2p2−3mp3−p3

p4 +
(

d
p

)3 −5m4+18m3−20m2p2+6mp3+2p3

p4

=
m4−2m3p+(m2+m+2)p2

p4 +
(

d
p

)
−6m4+16m3p−11m2p2+2mp3

p4 +

2
(

d
p

)2
5m4−16m3p+15m2p2−(3m+1)p3

p4 +
(

d
p

)3 −5m4+18m3p−20m2p2+(6m+2)p3

p4

=
(

m
p

)4
−2
(

m
p

)3
+
(

m
p

)2
+
(

m
p

)
1
p+

2
p2 +

(
d
p

)(
−6
(

m
p

)4
+16

(
m
p

)3
−11

(
m
p

)2
+2
(

m
p

))
+

2
(

d
p

)2(
5
(

m
p

)4
− 16

(
m
p

)3
+ 15

(
m
p

)2
− 3

(
m
p

)
− 1

p

)
+(

d
p

)3(
−5
(

m
p

)4
+ 18

(
m
p

)3
− 20

(
m
p

)2
+ 6

(
m
p

)
+ 2

p

)
≜ α4 − 2α3 + α2 + (1− β)

(
−6α4 + 16α3 − 11α2 + 2α

)
+

2 (1− β)
2 (

5α4 − 16α3 + 15α2 − 3α
)
+ (1− β)

3 (−5α4 + 18α3 − 20α2 + 6α
)
+O

(
1
p

)
= α

(
2 + β3

(
5α3 − 18α2 + 20α− 6

)
+ β2

(
−5α3 + 22α2 − 30α+ 12

)
+

β
(
α3 − 6α2 + 11α− 8

) )
+O

(
1
p

)
.
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Lemma 5. Let i ∈ [d] and let j, k ∈ [d] such that j ̸= k. It holds that

E
(
e⊤i O

⊤Σ+Σ (I−O) ej
) (

e⊤i O
⊤Σ+Σ (I−O) ek

)
= 0 .

Proof. The expectation can be decomposed as,

E
(
e⊤i O

⊤Σ+Σ (I−O) ej
) (

e⊤i O
⊤Σ+Σ (I−O) ek

)
= E

[(
e⊤i O

⊤Σ+Σej
) (

e⊤i O
⊤Σ+Σek

)]
− E

[(
e⊤i O

⊤Σ+Σej
) (

e⊤i O
⊤Σ+ΣOek

)]
− E

[(
e⊤i O

⊤Σ+ΣOej
) (

e⊤i O
⊤Σ+Σek

)]
+ E

[(
e⊤i O

⊤Σ+ΣOej
) (

e⊤i O
⊤Σ+ΣOek

)]
= E

[(
e⊤i O

⊤ej
) (

e⊤i O
⊤ek

)]
− E

[(
e⊤i O

⊤ej
) (

e⊤i O
⊤Σ+ΣOek

)]
− E

[(
e⊤i O

⊤Σ+ΣOej
) (

e⊤i O
⊤ek

)]
+ E

[(
e⊤i O

⊤Σ+ΣOej
) (

e⊤i O
⊤Σ+ΣOek

)]
,

where the last step holds because j, k ∈ [d] and therefore Σ+Σej = ej , Σ
+Σek = ek.

Following the definition of O (Eq. (1)), the first expectation becomes

E
[(
e⊤i O

⊤ej
) (

e⊤i O
⊤ek

)]
= EQp,Qm

[
e⊤j Qp

[
Qm

Ip−m

]
Q⊤p ei · e⊤k Qp

[
Qm

Ip−m

]
︸ ︷︷ ︸

≜A

Q⊤p ei

]
.

Since j ̸= k, we must have either j /∈ {i, k} or k /∈ {i, j} (or both). Denote the relevant rows of
Qp by qi ≜ Q⊤p ei, qj ≜ Q⊤p ej , qk ≜ Q⊤p ek and notice that they are independent of Qm (or A).
Without loss of generality, j /∈ {i, k}. The above expectation becomes EQp,Qm

[
q⊤j Aqi · q⊤k Aqi

]
,

where qj appears only once (an odd number). By Cor. 11, the expectation vanishes.

Quite similarly, the second expectation becomes

E
[(
e⊤i O

⊤ej
) (

e⊤i O
⊤Σ+ΣOek

)]
=

d∑
t=1

E
[
e⊤i O

⊤ej · e⊤i O⊤et · e⊤t Oek
]

=

d∑
t=1

E
[
q⊤j Aqi · q⊤t Aqi · q⊤t Aqk

]
.

Notice that both i, t appear an even number of times in (each of) the above expectation(s).
Since j ̸= k, at least one out of j, k appears an odd number of times (either one, three, or five)
in each of the above expectations. Again, by Cor. 11, this expectation vanishes. Clearly, the same
holds for the third expectation.

The fourth expectation is,

E
[(
e⊤i O

⊤Σ+ΣOej
) (

e⊤i O
⊤Σ+ΣOek

)]
=

d∑
ℓ,t=1

E
[(
e⊤i O

⊤eℓe
⊤
ℓ Oej

) (
e⊤i O

⊤ete
⊤
t Oek

)]
=

d∑
ℓ,t=1

E
[
q⊤ℓ Aqi · q⊤ℓ Aqj · q⊤t Aqi · q⊤t Aqk

]
.

Notice that i, ℓ, t appear an even number of times in (each of) the above expectation(s).
Since j ̸= k, at least one out of j, k appears an odd number of times (either one, three, five, or
seven) in each of the above expectations. Again, by Cor. 11, this expectation vanishes.
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C.1 DERIVING E
(
e⊤i O

⊤Σ+Σ (I−O) ei
)2

Lemma 6. Let p ≥ 4,m ∈ {2, . . . , p}, d ∈ [p], and let O be a random transformation sampled as
described in Eq. (1). Then, ∀i ∈ [d], it holds that

E
(
e⊤i O

⊤Σ+Σ (I−O) ei
)2

=
m4(p2+2p)−2m3p3+m2(p4−4p3+20p2−24)+m(3p4−10p3+63p2+6p−72)+2(p+1)(p3−11p2+38p−24)

(p−1)p(p+1)(p+2)(p+4)(p+6) +

d(p+1)(−2m4+6m3p−2m2(p−1)(2p−5)−12m(p2−3p+3)−8(p2−8p+6))
(p−1)p(p+1)(p+2)(p+4)(p+6) +

d2(4mp(−m2+m+4)+4(m+1)(m+2)p2+(m−6)(m−1)m(m+1)−8(2p+3))
(p−1)p(p+1)(p+2)(p+4)(p+6)

Proof. We decompose the expectation as,

E
(
e⊤i O

⊤Σ+Σ (I−O) ei
)2

= E
(
e⊤i Oei

)2 − 2E
[(
e⊤i Oei

) (
e⊤i O

⊤Σ+ΣOei
)]

+ E
(
e⊤i O

⊤Σ+ΣOei
)2

,

and derive each of its three terms separately in the following subsections.

By adding these three terms and by simple algebra, we get the required result,

= m2−2mp−m+p2+2p+2
p(p+2) − 2

(p−m)(d(−m2+2mp+3m−6)+m2p−2mp2−3mp+p3+5p2+8p−8)
(p−1)p(p+2)(p+4) +

3(m+4)(m+6)+(p−m)(p−m+2)(m2−2mp−4m+p2+10p+36)
p(p+2)(p+4)(p+6) +

(d−1)(−72+m4(−1−2p)−72p−20p2−20p3+m3(6+16p+8p2)+m2(−47−70p−34p2−10p3))
(p−1)p(p+1)(p+2)(p+4)(p+6) +

(d−1)(m(42+136p+114p2+22p3+4p4))
(p−1)p(p+1)(p+2)(p+4)(p+6) +

(d−1)d(4mp(−m2+m+4)+4(m+1)(m+2)p2+(m−6)(m−1)m(m+1)−8(2p+3))
(p−1)p(p+1)(p+2)(p+4)(p+6)

=
m4(p2+2p)−2m3p3+m2(p4−4p3+20p2−24)+m(3p4−10p3+63p2+6p−72)+2(p+1)(p3−11p2+38p−24)

(p−1)p(p+1)(p+2)(p+4)(p+6) +

d(p+1)(−2m4+6m3p−2m2(p−1)(2p−5)−12m(p2−3p+3)−8(p2−8p+6))
(p−1)p(p+1)(p+2)(p+4)(p+6) +

d2(4mp(−m2+m+4)+4(m+1)(m+2)p2+(m−6)(m−1)m(m+1)−8(2p+3))
(p−1)p(p+1)(p+2)(p+4)(p+6)

Remark 7 (Explaining proof techniques). In this subsection, we explain the proof steps more thor-
oughly than in other places, since most of the techniques repeat themselves throughout the appen-
dices.
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C.1.1 TERM 1: E
(
e⊤i Oei

)2
Recalling Remark 4 on our simplified notations, we show that,

E
(
e⊤i Oei

)2
= E

(
e⊤i Qp

[
Qm

Ip−m

]
Q⊤p ei

)2

= Eu∼Sp−1

(
u⊤
[

Qm

Ip−m

]
u

)2

= E
[
u⊤
([

Qm

0

]
+

[
0

Ip−m

])
u · u⊤

([
Qm

0

]
+

[
0

Ip−m

])
u

]
.

Opening the product above, by Cor. 12 we are only left with the following terms:

= E
[
u⊤
[

0
Ip−m

]
uu⊤

[
0

Ip−m

]
u

]
+ E

[
u⊤
[

Qm

0

]
uu⊤

[
Qm

0

]
u

]
= E

[(
u⊤b ub

)2]
+ E

[
u⊤a Qmuau

⊤
a Qmua

]
,

where, like we frequently do throughout the appendix, we decomposed u into u =

[
ua

ub

]
∈ Rp

with ua ∈ Rm and ub ∈ Rp−m. This decomposition is often useful, since for two or-
thogonal unit vectors u,v, it holds that 0 = u⊤v = u⊤a va + u⊤b vb =⇒ u⊤a va = −u⊤b vb and
1 = ∥u∥2 = ∥ua∥2 + ∥ub∥2 =⇒ ∥ua∥2 = 1− ∥ub∥2.

Another “trick” that we use often, is to reparameterize Qmua (for Qm ∼ O(m)) as ∥ua∥ r for
r ∼ Sm−1. Then, the expectation above becomes,

= E
[
∥ub∥4

]
+ E

[
∥ua∥2 u⊤a

(
1

m
Im

)
ua

]
= E

[
∥ub∥4

]
+

1

m
E
[
∥ua∥4

]
=

p∑
i=m+1

p∑
j=m+1

E
[
u2
iu

2
j

]
+

1

m

m∑
i=1

m∑
j=1

E
[
u2
iu

2
j

]
= (p−m)E

[
u4
p

]
+ (p−m) (p−m− 1)E

[
u2
p−1u

2
p

]
+

1

m

(
mE

[
u4
1

]
+m (m− 1)E

[
u2
1u

2
2

])
= (p−m)E

[
u4
1

]
+ (p−m) (p−m− 1)E

[
u2
1u

2
2

]
+ E

[
u4
1

]
+ (m− 1)E

[
u2
1u

2
2

]
,

where in the last step we used the fact that different entries of u are identically distributed (see also
Prop. 9). Using simple algebraic steps and employing the notations presented in Appendix D for
monomials of entries of random orthogonal matrices, we have

= (p−m+ 1)E
[
u4
1

]
+
(
m2 − 2mp+ 2m+ p2 − p− 1

)
E
[
u2
1u

2
2

]
= (p−m+ 1)

〈
4
−→
0

〉
+
(
m2 − 2mp+ 2m+ p2 − p− 1

)〈 2
2
−→
0

〉
.

Finally, we plug in the expectations (computed in Appendix D), and get

=
3 (p−m+ 1)

p (p+ 2)
+

m2 − 2mp+ 2m+ p2 − p− 1

p (p+ 2)
=

m2 − 2mp−m+ p2 + 2p+ 2

p (p+ 2)
.
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C.1.2 TERM 2: E
[(
e⊤i Oei

) (
e⊤i O

⊤Σ+ΣOei
)]

It holds that,

E
[(
e⊤i Oei

) (
e⊤i O

⊤Σ+ΣOei
)]

= E
[(
e⊤1 Oe1

) (
e⊤1 O

⊤Σ+ΣOe1
)]

= E

[
e⊤1 Oe1e

⊤
1 O
⊤

d∑
k=1

eke
⊤
k Oe1

]
=

d∑
k=1

E
[
e⊤1 Oe1e

⊤
1 O
⊤eke

⊤
k Oe1

]
=

d∑
k=1

E
[(
e⊤k Oe1

)2
e⊤1 Oe1

]
= E

[(
e⊤1 Oe1

)3]︸ ︷︷ ︸
solved in Prop. 14

+(d− 1)E
[(
e⊤2 Oe1

)2
e⊤1 Oe1

]
︸ ︷︷ ︸

solved in Prop. 15

=
(p−m)

(
m2 − 2mp− 3m+ p2 + 6p+ 14

)
p (p+ 2) (p+ 4)

+ (d− 1)
(p−m)

(
−m2 + 2mp+ 3m− 6

)
(p− 1) p (p+ 2) (p+ 4)

=
(p−m)

(
(p− 1)

(
m2 − 2mp− 3m+ p2 + 6p+ 14

)
+ (d− 1)

(
−m2 + 2mp+ 3m− 6

))
(p− 1) p (p+ 2) (p+ 4)

=
(p−m)

(
d
(
−m2 + 2mp+ 3m− 6

)
+m2p− 2mp2 − 3mp+ p3 + 5p2 + 8p− 8

)
(p− 1) p (p+ 2) (p+ 4)

C.1.3 TERM 3: E
(
e⊤i O

⊤Σ+ΣOei
)2

It holds that,

E
(
e⊤i O

⊤Σ+ΣOei
)2
= E

(
e⊤1 O

⊤Σ+ΣOe1
)2
= E

(
e⊤1 O

⊤
d∑

k=1

eke
⊤
k Oe1

)2

=E

(
d∑

k=1

(
e⊤k Oe1

)2)2

=

d∑
k=1

d∑
ℓ=1

E
(
e⊤k Oe1

)2 (
e⊤ℓ Oe1

)2
=

d∑
k=1

E
(
e⊤k Oe1

)4
︸ ︷︷ ︸

k=ℓ

+

d∑
k ̸=ℓ=1

E
(
e⊤k Oe1

)2 (
e⊤ℓ Oe1

)2
︸ ︷︷ ︸

k ̸=ℓ

= E
(
e⊤1 Oe1

)4︸ ︷︷ ︸
k=1, solved in Prop. 16

+(d− 1)E
(
e⊤2 Oe1

)4︸ ︷︷ ︸
k≥2, solved in Prop. 17︸ ︷︷ ︸

k=ℓ

+

2 (d− 1)E
(
e⊤1 Oe1

)2 (
e⊤2 Oe1

)2︸ ︷︷ ︸
ℓ ̸=k=1∨ k ̸=ℓ=1, solved in Prop. 18

+(d− 1) (d− 2)E
(
e⊤2 Oe1

)2 (
e⊤3 Oe1

)2︸ ︷︷ ︸
k,ℓ≥2, k ̸=ℓ solved in Prop. 19︸ ︷︷ ︸

k ̸=ℓ

We note in passing that since d ≤ p, then when p = 2 ⇒ d ≤ 2, the rightmost term is necessarily
zero. Therefore, we can use Prop. 19 freely ∀p ≥ 2, even though it requires that p ≥ 3.

E
(
e⊤i O

⊤Σ+ΣOei
)2

=
3(m+4)(m+6)+(p−m)(p−m+2)(m2−2mp−4m+p2+10p+36)

p(p+2)(p+4)(p+6) +

3(d−1)(m4−2m3(2p+3)+m2(4p2+4p−1)+2m(6p2+8p+3)+8(p2−2p−3))
(p−1)p(p+1)(p+2)(p+4)(p+6) +

2 (d− 1)
(m+4)(2mp+4p+m−m2−6)−(p−m)(p−m+2)(m(m−2p−5)+10)

(p−1)p(p+2)(p+4)(p+6) +

(d−1)(d−2)(4mp(−m2+m+4)+4(m+1)(m+2)p2+(m−6)(m−1)m(m+1)−8(2p+3))
(p−1)p(p+1)(p+2)(p+4)(p+6)

=
3(m+4)(m+6)+(p−m)(p−m+2)(m2−2mp−4m+p2+10p+36)

p(p+2)(p+4)(p+6) +

(d−1)(−72+m4(−1−2p)−72p−20p2−20p3+m3(6+16p+8p2))
(p−1)p(p+1)(p+2)(p+4)(p+6) +

(d−1)(m2(−47−70p−34p2−10p3)+m(42+136p+114p2+22p3+4p4))
(p−1)p(p+1)(p+2)(p+4)(p+6) +

(d−1)d(4mp(−m2+m+4)+4(m+1)(m+2)p2+(m−6)(m−1)m(m+1)−8(2p+3))
(p−1)p(p+1)(p+2)(p+4)(p+6)
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C.2 DERIVING E
(
e⊤i O

⊤Σ+Σ (I−O) ej
)2

Lemma 8. Let p ≥ 4,m ∈ {2, . . . , p}, d ∈ [p], and let O be a random transformation sampled as
described in Eq. (1). Then, ∀i, j ∈ [d] such that i ̸= j, it holds that

E
(
e⊤i O

⊤Σ+Σ (I−O) ej
)2

=
(−4p3−6p2+12p)m4+m3(10p4+14p3+20p2+48p)+m2(−7p5−4p4−109p3−134p2−120p−144)

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

m(2p6+3p5+84p4−45p3+336p2+636p+144)+(−18p5+24p4−182p3−104p2−168p−288)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d · 3m4(−4+4p+3p2)−4m3(p+2)(7p2−2p+6)+m2(26p4+44p3+163p2+256p+36)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d · −2m(3p
5+102p3+142p2+154p+132)−2p(p+1)(p3−24p2+26p−204)

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d2 · m4(−5p−6)+m3(18p2+34p−12)+m2(−20p3−46p2−39p−42)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d2 · m(6p4+10p3+96p2+154p+60)+(2p4−30p3−32p2−144p−144)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .

Proof. We decompose the expectation as,

E
(
e⊤i O

⊤Σ+Σ (I−O) ej
)2

= E
(
e⊤i Oej

)2 − 2E
[(
e⊤j Oei

) (
e⊤i O

⊤Σ+ΣOej
)]

+ E
(
e⊤i O

⊤Σ+ΣOej
)2

,

and derive each of its three terms separately in the following subsections. The final result in the
lemma is obtained by summing these three terms.

C.2.1 TERM 1: E
(
e⊤i Oej

)2
It holds that,

E
(
e⊤i Oej

)2
=E

(
u⊤
([

Qm

0p−m

]
+
[
0m

Ip−m

])
v
)2

= E
(
u⊤a Qmva + u⊤b vb

)2
= E

(
u⊤a Qmva

)2︸ ︷︷ ︸
solved in Eq. (22)

+2E
(
u⊤a Qmvau

⊤
b vb

)︸ ︷︷ ︸
=0, by Cor. 12

+ E
(
u⊤b vb

)2︸ ︷︷ ︸
solved in Eq. (23)

=
mp+m− 2

(p− 1) p (p+ 2)
+

m (p−m)

(p− 1) p (p+ 2)
=

mp+m− 2 +m (p−m)

(p− 1) p (p+ 2)

=
2mp+m−m2 − 2

(p− 1) p (p+ 2)
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C.2.2 TERM 2: 2
(
e⊤j Oei

) (
e⊤i O

⊤Σ+ΣOej
)

It holds that,

2E
[(
e⊤j Oei

) (
e⊤i O

⊤Σ+ΣOej
)]

= 2E

[
e⊤2 Oe1e

⊤
1 O
⊤

d∑
k=1

eke
⊤
k Oe2

]

= 2

d∑
k=1

E
[
e⊤2 Oe1e

⊤
1 O
⊤eke

⊤
k Oe2

]
= 2

d∑
k=1

E
[
e⊤2 Oe1e

⊤
k Oe1e

⊤
k Oe2

]

= 2

E
[
e⊤2 Oe1e

⊤
1 Oe1e

⊤
1 Oe2

]︸ ︷︷ ︸
solved in Prop. 20

+E
[(
e⊤2 Oe1

)2
e⊤2 Oe2

]
︸ ︷︷ ︸

solved in Prop. 15

+(d− 2)E
[
e⊤2 Oe1e

⊤
3 Oe1e

⊤
3 Oe2

]︸ ︷︷ ︸
solved in Prop. 21


= 2 (p−m)

(
−m2−m+(m+1)p−2
(p−1)p(p+2)(p+4) + −m

2+2mp+3m−6
(p−1)p(p+2)(p+4) +

(d−2)(2m2−3mp−2m−p+8)
(p−2)(p−1)p(p+2)(p+4)

)
= 2 (p−m)

(
−2m2 + 2m+ (3m+ 1) p− 8

(p− 1) p (p+ 2) (p+ 4)
+

(d− 2)
(
2m2 − 3mp− 2m− p+ 8

)
(p− 2) (p− 1) p (p+ 2) (p+ 4)

)

=
2 (p−m)

(
d
(
2m2 − 3mp− 2m− p+ 8

)
+ p

(
−2m2 + 3mp+ 2m+ p− 8

))
(p− 2) (p− 1) p (p+ 2) (p+ 4)
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C.2.3 TERM 3: E
(
e⊤i O

⊤Σ+ΣOej
)2

It holds that,

E
(
e⊤i O

⊤Σ+ΣOej
)2

= E
(
e⊤1 O

⊤Σ+ΣOe2
)2

= E

(
e⊤1 O

⊤
d∑

k=1

eke
⊤
k Oe2

)2

=

d∑
k,ℓ=1

E
(
e⊤1 O

⊤eke
⊤
k Oe2

) (
e⊤1 O

⊤eℓe
⊤
ℓ Oe2

)
=

d∑
k,ℓ=1

E
(
e⊤k Oe1 · e⊤k Oe2

) (
e⊤ℓ Oe1 · e⊤ℓ Oe2

)
=

d∑
k=1

E
(
e⊤k Oe1 · e⊤k Oe2

)2
︸ ︷︷ ︸

k=ℓ

+

d∑
k ̸=ℓ=1

E
(
e⊤k Oe1 · e⊤k Oe2

) (
e⊤ℓ Oe1 · e⊤ℓ Oe2

)
︸ ︷︷ ︸

k ̸=ℓ

We now show that,

d∑
k=1

E
(
e⊤k Oe1 · e⊤k Oe2

)2
= 2E

(
e⊤1 Oe1 · e⊤1 Oe2

)2︸ ︷︷ ︸
k=1,2, solved in Prop. 18

+(d− 2)E
(
e⊤3 Oe1 · e⊤3 Oe2

)2︸ ︷︷ ︸
k≥3, solved in Prop. 19

=
2((m+4)(2mp+4p+m−m2−6)−(p−m)(p−m+2)(m(m−2p−5)+10))

(p−1)p(p+2)(p+4)(p+6) +

(d−2)(4mp(−m2+m+4)+4(m+1)(m+2)p2+(m−6)(m−1)m(m+1)−8(2p+3))
(p−1)p(p+1)(p+2)(p+4)(p+6)

= −2(m−p−1)(m−p)(m(p+2)(m−2p−5)+2(5p+6))
(p−1)p(p+1)(p+2)(p+4)(p+6) +

d · 4m(−m2+m+4)p+4(m+1)(m+2)p2+(m−6)(m−1)m(m+1)−8(2p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

Moreover, we have that,

d∑
k ̸=ℓ=1

E
(
e⊤k Oe1 · e⊤k Oe2

) (
e⊤ℓ Oe1 · e⊤ℓ Oe2

)
= 2E

(
e⊤1 Oe1e

⊤
1 Oe2

) (
e⊤2 Oe1e

⊤
2 Oe2

)︸ ︷︷ ︸
k=1,ℓ=2∨ k=2,ℓ=1, solved in Prop. 22

+4 (d− 2)E
(
e⊤1 Oe1e

⊤
1 Oe2

) (
e⊤3 Oe1e

⊤
3 Oe2

)︸ ︷︷ ︸
k≤2,ℓ≥3∨ k≥3,ℓ≤2, solved in Prop. 24.

+

(d− 2) (d− 3)E
(
e⊤3 Oe1e

⊤
3 Oe2

) (
e⊤4 Oe1e

⊤
4 Oe2

)︸ ︷︷ ︸
k ̸=ℓ≥3, solved in Prop. 25

By summing all of the above and by some tedious algebraic steps, we finally get that,

E
(
e⊤i O

⊤Σ+ΣOej
)2

=
2p(m4(6−3p−2p2)+m3(−12−20p+15p2+7p3)+m2(18+13p+5p2−21p3−8p4))

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

2p(m(3p5+8p4+21p3+28p2−14p−12)+p(12−4p−29p2−12p3+p4))
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d · 3m4(−4+4p+3p2)−4m3(−6−13p+16p2+8p3)+m2(−36+16p+29p2+88p3+36p4)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d · −2m(6p
5+13p4+69p3+105p2+16p−12)+(−4p5+54p4+90p3+152p2+120p)

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d2 · m4(−5p−6)+m3(18p2+34p−12)+m2(−20p3−46p2−39p−42)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

d2 · m(6p4+10p3+96p2+154p+60)+(2p4−30p3−32p2−144p−144)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .
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C.3 EXTENDING FIGURE 2: MORE RANDOM SYNTHETIC DATA EXPERIMENTS

(a) Experiments for p = 10.

(b) Experiments for p = 100.

(c) Experiments for p = 1000.

Figure 9: Empirically illustrating the worst-case forgetting under different overparameterization
levels. Points indicate the forgetting under many sampled random transformations applied on a (sin-
gle) random data matrix X. Their mean is shown in the thin orange line, with the standard deviation
represented by a gray band. The thick blue line depicts the analytical expression of Theorem 3. The
analytical bound matches the empirical mean, thus exemplifying the tightness of our analysis.
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D MONOMIALS OF ENTRIES OF RANDOM ORTHOGONAL MATRICES

Throughout the supplementary materials, we often wish to compute the expectation of an arbi-
trary monomial of the entries of a random orthogonal matrix Q ∼ O(p) sampled uniformly from
the orthogonal group, e.g., EQ[q21,1q

4
1,2q

6
2,2]. Following Gorin (2002), we define a “power matrix”

M ∈ Zp×R
≥0 (for some R ≤ p) that maps into a monomial

∏p,R
i,j=1 q

mi,j

i,j constructed from the entries
of the first R columns of the random Q ∈ Rp×p. We denote the expected value of this monomial by

EQ

[∏p,R

i,j=1
q
mi,j

i,j

]
≜ ⟨M⟩ , for example, EQ[q21,1q

4
2,1q

6
2,2] ≜

〈
2 0
4 6−→
0
−→
0

〉
.

We employ the notation
−→
0 to complement M to have p rows. For instance, in the example above,

−→
0 is a vector with p−2 zero entries.

The following are helpful properties of the integral (expectation) over the orthogonal group, as
mentioned in Gorin (2002).
Property 9 (Invariance of the integral over the orthogonal group). Let Q ∼ O(p) and M ∈ Zp×R

≥0 .

1. Invariance w.r.t. transpose. Since Q and Q⊤ are identically distributed, it holds that
⟨M⟩ = ⟨M⊤⟩. For example,〈 2 0

4 2
4 6−→
0
−→
0

〉
= EQ[q21,1q

4
2,1q

2
2,2q

4
3,1q

6
3,2] = EQ[q21,1q

4
1,2q

4
1,3q

2
2,2q

6
2,3] =

〈
2 4 4
0 2 6−→
0
−→
0
−→
0

〉
.

2. Invariance w.r.t. row and column permutations. Since different rows/columns of Q are identi-
cally distributed, the integral over the orthogonal group O(p) is invariant under permutations
of columns or rows of the power matrix M (see also Ullah (1964)). For example,〈

2 0
4 6−→
0
−→
0

〉
= EQ[q21,1q

4
2,1q

6
2,2] = EQ[q61,1q

4
1,2q

2
2,2] =

〈
6 4
0 2−→
0
−→
0

〉
.

The following is a known property of odd moments in integrals (expectations) over the orthogonal
group (see Brody et al. (1981); Gorin (2002)).
Property 10. If the sum over any row or column of the power matrix M is odd, the integral vanishes,

i.e., ⟨M⟩ = 0. For example, EQ[q1,1q
4
2,1q

6
2,2] =

〈
1 0
4 6−→
0
−→
0

〉
= 0.

(In contrast, generally, it holds that
〈

1 1
1 1−→
0
−→
0

〉
̸= 0).

Corollary 11. Let qi be the ith column (or row) of Q. Let A(1), . . . ,A(N) ∈ Rp×p be N matrices
independent on Q and let i1, . . . , i2N ∈ [p] be 2N indices. Then, if there exists an index i ∈ [p] that
appears an odd number of times in i1, . . . , i2N , the following expectation vanishes:

E[qi1A
(i1)qiN+1

· qi2A
(i2)qiN+2

· · ·qiNA(iN )qi2N ] = 0 .

For example, the above dictates that,

EQp,Qm

[
e⊤1 Qp

[
Qm

Ip−m

]
Q⊤p e1 · e⊤1 Qp

[
0m

Ip−m

]
Q⊤p e2 · e⊤3 Qp

[
Qm

0p−m

]
Q⊤p e2

]
= 0 ,

since q1 appears 3 times (also because q3 appears once).

Proof. The expectation can be rewritten as,

E[qi1A
(i1)qiN+1

· · ·qiNA(iN )qi2N ] =

p∑
j1,...,jN=1

p∑
k1,...,kN=1

E
[∏N

ℓ=1
qjℓ,iℓa

(iℓ)
jℓ,kℓ

qkℓ,iN+ℓ

]
.

Let t ∈ [p] be an index that appears an odd number of times in i1, . . . , i2N . The tth column (or row)
appears the same number of times in each of the (summand) expectations. Thus, the sum of the tth

column (or row) corresponding to qt in the power matrix M corresponding to that expectation will
be an odd number. Thus, by Prop. 10, the expectation vanishes.
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Corollary 12. Let v1, . . . ,v2N ∈ Rp and c ∈ R be random variables independent of Qm ∼ O(m).
Then, if N is an odd number, the following expectation vanishes:

E[c · v⊤1
[
Qm

0p−m

]
vN+1 · v⊤2

[
Qm

0p−m

]
vN+2 · · ·v⊤N

[
Qm

0p−m

]
v2N ] = 0 .

For example, the above dictates that the following expectation vanishes,

EQp,Qm

[
e⊤1 Qp

[
Qm

0p−m

]
Q⊤p e1 · e⊤1 Qp

[
Qm

0p−m

]
Q⊤p e1 · e⊤2 Qp

[
Qm

0p−m

]
Q⊤p e2

]
= 0 ,

since here N = 3.
In contrast, the above does not imply that the following expectation vanishes,

EQp,Qm

[
e⊤1 Qp

[
Qm

0p−m

]
Q⊤p e1 · e⊤1 Qp

[
0m

Ip−m

]
Q⊤p e1︸ ︷︷ ︸

here, this is considered as c

· e⊤2 Qp

[
Qm

0p−m

]
Q⊤p e2

]
,

since here N = 2.

Proof. The expectations become,

E
[
c ·
∏N

ℓ=1
v⊤ℓ
[
Qm

0ℓ

]
vN+ℓ

]
= E

[
c ·
∏N

ℓ=1

(∑m

i,j=1
(vℓ)i (Qm)i,j︸ ︷︷ ︸

≜qi,j

(vN+ℓ)j

)]

= E
[
c ·
∏N

ℓ=1

(∑m

i,j=1
qi,j(vℓ)i(vN+ℓ)j

)]
=

m∑
i1,...,iN=1

m∑
j1,...,jN=1

E
[
c ·
∏N

ℓ=1
qiℓ,jℓ(vℓ)iℓ(vN+ℓ)jℓ

]
.

We notice that in each of the (summand) expectations the entries of Qm appear exactly N times.
However, since N is odd, at least one row or column of the power matrix corresponding to the
monomial in the expectation must have an odd sum. Then, by Prop. 10, all these expectations
vanish.
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The main result we need from Gorin (2002) is their Eq. (23), providing a recursive formula to
compute ⟨M⟩ for any power matrix M. We bring this formula here for the sake of completeness.
Lemma 13 (Recursive formula for computing expectations of monomials over the orthogo-
nal group). Define the Pochhammer symbol (z)n = Γ(z+n)

Γ(z) . Denote
(−→n−→
k

)
=
∏p

i=1

(
ni

ki

)
.

Denote (−→n |K) =
∏p

i=1 (ni | Ki,1, . . . ,Ki,R−1).

Then, the one-vector integral is given by ⟨−→m⟩ =
(
p
2

)−1
m/2

∏p
i=1

(
1
2

)
mi/2

.

Moreover, the R-vector integral (corresponding to a matrix M ∈ Zp×R
≥0 , is given by

⟨M⟩ =
(

p−R+1
2

)−1
mR/2

·

·
∑
−→κ

(mR
−→κ

)
(−1)

(mR−κ)/2 ·
p∏

i=1

(
1
2

)
κi/2

·
∑
K

(−→mR−−→κ |K) ·
R−1∏
j=1

(
1
2

)
kj/2

· ⟨M(R−1)+K⟩


where the first sum runs over all −→κ with all even entries (less or equal to the corresponding entries
of the last column −→mR). The second sum runs over all K ∈ Zp,R−1

≥0 for which all sums of columns
are even, i.e., kj ≜

∑p
i=1 ki,j is even ∀j ∈ [R− 1]. Finally, M(R−1) stands for the first R − 1

columns of M, and mR =
∑p

i=1 mi,R and κ =
∑p

i=1 κi.

In the pages to come, we present many calculations of expectations of different monomials that
we use throughout the supplementary materials. We include these calculations since the recursive
formula of Lemma 13 is somewhat complicated to apply, and we wish our derivations to be repro-
ducible and easily followed.

D.1 MONOMIALS OF ONE ORTHOGONAL VECTOR

E[u4
1] =

〈
4−→
0

〉
=
(
p
2

)−1
2

(
1
2

)
2
=
(
p
2

(
p+2
2

))−1 3
4 = 3

p(p+2)

E[u6
1] =

〈
6−→
0

〉
=
(
p
2

)−1
3

(
1
2

)
3
= 15

p(p+2)(p+4)

E[u2
1u

2
2] =

〈
2
2−→
0

〉
=
(
p
2

)−1
2

(
1
2

)
1

(
1
2

)
1
=
(
p
2

(
p+2
2

))−1 1
4 = 1

p(p+2)

E[u4
1u

2
2] =

〈
4
2−→
0

〉
=
(
p
2

)−1
3

(
1
2

)
2

(
1
2

)
1
= 3

p(p+2)(p+4)

E[u2
1u

2
2u

2
3] =

〈 2
2
2−→
0

〉
=
(
p
2

)−1
3

(
1
2

)3
1
= 1

p(p+2)(p+4)
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D.2 MONOMIALS OF TWO ORTHOGONAL VECTOR

D.2.1 ONE INDEX (ROW)

〈
4 4−→
0
−→
0

〉
=
(
p−1
2

(
p+1
2

))−1(
(−1)

2 ( 1
2

)
2

〈
8−→
0

〉
+

(
4

2

)
(−1)

1 ( 1
2

)2
1

〈
6−→
0

〉
+ (−1)

0 ( 1
2

)
2

〈
4−→
0

〉)
= 1

(p−1)(p+1)

(
3
〈

8−→
0

〉
− 6

〈
6−→
0

〉
+ 3

〈
4−→
0

〉)
= 3

(p−1)(p+1)

((
p
2

)−1
4

(
1
2

)
4
− 2

(
p
2

)−1
3

(
1
2

)
3
+
(
p
2

)−1
2

(
1
2

)
2

)
= 3

(p−1)(p+1)

(
105

p(p+2)(p+4)(p+6) −
30

p(p+2)(p+4) +
3

p(p+2)

)
= 3

(p−1)(p+1)

(
3(p−1)(p+1)

p(p+2)(p+4)(p+6)

)
= 9

p(p+2)(p+4)(p+6)

〈
2 2−→
0
−→
0

〉
= 1

p(p+2)

〈
4 2−→
0
−→
0

〉
=
(
p−1
2

)−1 (
(−1)

1 ( 1
2

)
1

〈
6−→
0

〉
+ (−1)

0 ( 1
2

)
1

〈
4−→
0

〉)
= 1

(p−1)
(〈

4−→
0

〉
−
〈

6−→
0

〉)
= 1

(p−1)

((
p
2

)−1
2

(
1
2

)
2
−
(
p
2

)−1
3

(
1
2

)
3

)
= 1

(p−1)

(
3

p(p+2) −
15

p(p+2)(p+4)

)
= 3(p−1)

(p−1)p(p+2)(p+4) =
3

p(p+2)(p+4)

〈
6 2−→
0
−→
0

〉
=
〈

6
2−→
0

〉
=
(
p
2

)−1
4

(
1
2

)
3

(
1
2

)
1
= 15

p(p+2)(p+4)(p+6)
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D.2.2 TWO INDICES (ROWS)

〈
2 2
2 2−→
0
−→
0

〉
= 1

4

(
p−1
2

(
p+1
2

))−1 (
3
〈

4
4−→
0

〉
+
〈

2
2−→
0

〉
−
〈

2
4−→
0

〉
−
〈

4
2−→
0

〉)
= 1

(p−1)(p+1)

(
3
(
p
2

)−1
4

(
1
2

)
2

(
1
2

)
2
+
(
p
2

)−1
2

(
1
2

)
1

(
1
2

)
1
− 2

(
p
2

)−1
3

(
1
2

)
1

(
1
2

)
2

)
= 1

(p−1)(p+1)

(
3 9
16

(
p
2

)−1
4

+ 1
4

(
p
2

)−1
2

− 2
2 · 3

4

(
p
2

)−1
3

)
= 1

(p−1)(p+1)

(
27
16

(
p
2 · p+2

2 · p+4
2 · p+6

2

)−1
+ 1

4

(
p
2 · p+2

2

)−1 − 3
4

(
p
2 · p+2

2 · p+4
2

)−1)
= 1

(p−1)(p+1)

(
27

p(p+2)(p+4)(p+6) +
1

p(p+2) −
3
4

8
p(p+2)(p+4)

)
= 1

(p−1)(p+1)

(
27+(p+4)(p+6)−6(p+6)

p(p+2)(p+4)(p+6)

)
= p2+4p+15

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈
4 0
0 4−→
0
−→
0

〉
=
(
p−1
2

(
p+1
2

))−1(
(−1)

2 ( 1
2

)
2

〈
4
4−→
0

〉
+

(
4

2

)
(−1)

1 ( 1
2

)2
1

〈
4
2−→
0

〉
+ (−1)

0 ( 1
2

)
2

〈
4
0−→
0

〉)
= 1

(p−1)(p+1)

(
3
〈

4
4−→
0

〉
− 6

〈
4
2−→
0

〉
+ 3

〈
4
0−→
0

〉)
= 3

(p−1)(p+1)

((
p
2

)−1
4

(
1
2

)2
2
− 2

(
p
2

)−1
3

(
1
2

)
2

(
1
2

)
1
+
(
p
2

)−1
2

(
1
2

)
2

)
= 3

(p−1)(p+1)

(
9

p(p+2)(p+4)(p+6) −
6

p(p+2)(p+4) +
3

p(p+2)

)
= 3

(p−1)(p+1)

(
3(p+3)(p+5)

p(p+2)(p+4)(p+6)

)
= 9(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈
4 0
0 2−→
0
−→
0

〉
=
(
p−1
2

)−1 (
(−1)

1 ( 1
2

)
1

〈
4
2−→
0

〉
+ (−1)

0 ( 1
2

)
1

〈
4
0−→
0

〉)
= 1

(p−1)

(〈
4
0−→
0

〉
−
〈

4
2−→
0

〉)
= 1

(p−1)

((
p
2

)−1
2

(
1
2

)
2
−
(
p
2

)−1
3

(
1
2

)
2

(
1
2

)
1

)
= 1

(p−1)

(
3

p(p+2) −
3

p(p+2)(p+4)

)
= 3(p+3)

(p−1)p(p+2)(p+4)

〈
6 0
0 2−→
0
−→
0

〉
=
(
p−1
2

)−1 (
(−1)

1 ( 1
2

)
1

〈
6
2−→
0

〉
+ (−1)

0 ( 1
2

)
1

〈
6
0−→
0

〉)
= 1

p−1

(〈
6
0−→
0

〉
−
〈

6
2−→
0

〉)
= 1

p−1

((
p
2

)−1
3

(
1
2

)
3
−
(
p
2

)−1
4

(
1
2

)
3

(
1
2

)
1

)
= 1

p−1

(
15

p(p+2)(p+4) −
15

p(p+2)(p+4)(p+6)

)
= 15(p+5)

(p−1)p(p+2)(p+4)(p+6)

〈
3 3
1 1−→
0
−→
0

〉
=
〈

3 1
3 1−→
0
−→
0

〉
=
(
p−1
2

(
p+1
2

))−1(
(−1)

2 ( 1
2

)
2

〈
6
2−→
0

〉
+

(
3

2

)
(−1)

1 ( 1
2

)
1

(
1
2

)
1

〈
4
2−→
0

〉)
= 4

(p−1)(p+1)

(
3
4

(
p
2

)−1
4

(
1
2

)
3

(
1
2

)
1
− 3!

2!1! ·
3
8

(
p
2

)−1
3

(
1
2

)
1

(
1
2

)
1

)
= 4

(p−1)(p+1)

(
3
4 · 15

16

(
p
2

)−1
4

− 9
8 · 1

4

(
p
2

)−1
3

)
= 4

(p−1)(p+1)

(
45
64 ·

(
p
2 · p+2

2 · p+4
2 · p+6

2

)−1 − 9
32 ·

(
p
2 · p+2

2 · p+4
2

)−1)
= 1

(p−1)(p+1)

(
45

p(p+2)(p+4)(p+6) −
9

p(p+2)(p+4)

)
= −9(p+1)

(p−1)p(p+1)(p+2)(p+4)(p+6)
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〈
3 1
1 3−→
0
−→
0

〉
=
(
p−1
2

(
p+1
2

))−1(
(−1)

2 ( 1
2

)
2

〈
4
4−→
0

〉
+

(
3

2

)
(−1)

1 ( 1
2

)2
1

〈
4
2−→
0

〉)
= 3

(p−1)(p+1)

(〈
4
4−→
0

〉
−
〈

4
2−→
0

〉)
= 3

(p−1)(p+1)

((
p
2

)−1
4

(
1
2

)2
2
−
(
p
2

)−1
3

(
1
2

)
1

(
1
2

)
2

)
= 3

(p−1)(p+1)

(
9

p(p+2)(p+4)(p+6) −
3

p(p+2)(p+4)

)
= −9(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈
3 1
1 1−→
0
−→
0

〉
= 1

p−1

(
(−1)

1 ( 1
2

)
1

〈
4
2−→
0

〉)
= −1

p−1

((
p
2

)−1
3

(
1
2

)
2

(
1
2

)
1

)
= −3

(p−1)p(p+2)(p+4)

〈
5 1
1 1−→
0
−→
0

〉
=
(
p−1
2

)−1 (
(−1)

1 ( 1
2

)
1

〈
6
2−→
0

〉)
= 1

p−1

(
−
(
p
2

)−1
4

(
1
2

)
1

(
1
2

)
3

)
= −15

(p−1)p(p+2)(p+4)(p+6)

〈
4 2
0 2−→
0
−→
0

〉
= 4

(p−1)(p+1)

(
(−1)

2 ( 1
2

)
2

〈
6
2−→
0

〉
+ (−1)

1 ( 1
2

)2
1

〈
4
2−→
0

〉
+

(−1)
1 ( 1

2

)2
1

〈
6
0−→
0

〉
+ (−1)

0 ( 1
2

)2
1

〈
4
0−→
0

〉)
= 1

(p−1)(p+1)

(
3
〈

6
2−→
0

〉
−
〈

4
2−→
0

〉
−
〈

6
0−→
0

〉
+
〈

4
0−→
0

〉)
= 1

(p−1)(p+1)

(
3
(
p
2

)−1
4

(
1
2

)
3

(
1
2

)
1
−
(
p
2

)−1
3

(
1
2

)
2

(
1
2

)
1
−
(
p
2

)−1
3

(
1
2

)
3
+
(
p
2

)−1
2

(
1
2

)
2

)
= 1

(p−1)(p+1)

(
45

p(p+2)(p+4)(p+6) +
−3−15

p(p+2)(p+4) +
3

p(p+2)

)
= 3(p+1)(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6) =
3(p+3)

(p−1)p(p+2)(p+4)(p+6)

〈
4 2
2 0−→
0
−→
0

〉
=
(
p−1
2

)−1 (
(−1)

1 ( 1
2

)
1

〈
6
2−→
0

〉
+ (−1)

0 ( 1
2

)
1

〈
4
2−→
0

〉)
= 1

p−1

(〈
4
2−→
0

〉
−
〈

6
2−→
0

〉)
= 1

p−1

((
p
2

)−1
3

(
1
2

)
2

(
1
2

)
1
−
(
p
2

)−1
4

(
1
2

)
3

(
1
2

)
1

)
= 1

p−1

(
3

p(p+2)(p+4) −
15

p(p+2)(p+4)(p+6)

)
= 3(p+1)

(p−1)p(p+2)(p+4)(p+6)

〈
2 1
0 1−→
0
−→
0

〉
= 1

p−1

(
−
〈

3
1−→
0

〉)
= 0

〈
2 0
0 2−→
0
−→
0

〉
= 2

p−1

(
(−1)

1 ( 1
2

)
1

〈
2
2−→
0

〉
+ (−1)

0 ( 1
2

)
1

〈
2
0−→
0

〉)
= 1

p−1

(〈
2
0−→
0

〉
−
〈

2
2−→
0

〉)
= 1

p−1

(
1
p − 1

p(p+2)

)
= p+1

(p−1)p(p+2)

〈
1 1
1 1−→
0
−→
0

〉
= 1

p−1

(
−
〈

2
2−→
0

〉)
= 1

p−1

(
−
(
p
2

)−1
2

(
1
2

)2
1

)
= −1

(p−1)p(p+2)

〈
2 2
2 0−→
0
−→
0

〉
=
(
p−1
2

)−1
1

(
(−1)

1 ( 1
2

)
1

〈
4
2−→
0

〉
+ (−1)

0 ( 1
2

)
1

(
1
2

)
0

〈
2
2−→
0

〉)
= 1

p−1

(〈
2
2−→
0

〉
−
〈

4
2−→
0

〉)
= 1

p−1

((
p
2

)−1
2

(
1
2

)2
1
−
(
p
2

)−1
3

(
1
2

)
1

(
1
2

)
2

)
= (p+4)−3

(p−1)p(p+2)(p+4) =
p+1

(p−1)p(p+2)(p+4)

〈
2 2
4 0−→
0
−→
0

〉
=
〈

4 2
0 2−→
0
−→
0

〉
= 3p+9

(p−1)p(p+2)(p+4)(p+6)
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D.2.3 THREE INDICES (ROWS)

〈 4 0
0 2
0 2−→
0
−→
0

〉
=
(
p−1
2

(
p+1
2

))−1(
(−1)

2 ( 1
2

)
2

〈 4
2
2−→
0

〉
+

(−1)
1 ( 1

2

)2
1

〈 4
0
2−→
0

〉
+ (−1)

1 ( 1
2

)2
1

〈 4
2
0−→
0

〉
+ (−1)

0 ( 1
2

)2
1

〈 4
0
0−→
0

〉)
= 1

(p−1)(p+1)

(
3

〈 4
2
2−→
0

〉
− 2

〈 4
2
0−→
0

〉
+

〈 4
0
0−→
0

〉)
= 1

(p−1)(p+1)

(
3
(
p
2

)−1
4

(
1
2

)2
1

(
1
2

)
2
− 2

(
p
2

)−1
3

(
1
2

)
1

(
1
2

)
2
+
(
p
2

)−1
2

(
1
2

)
2

)
= 1

(p−1)(p+1)

(
9

p(p+2)(p+4)(p+6) −
6

p(p+2)(p+4) +
3

p(p+2)

)
= 3(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 0
4 0
0 2−→
0
−→
0

〉
=
(
p−1
2

)−1(
(−1)

1 ( 1
2

)
1

〈 2
4
2−→
0

〉
+ (−1)

0 ( 1
2

)
1

〈 2
4
0−→
0

〉)
= 1

p−1

(〈 2
4
0−→
0

〉
−
〈 2

4
2−→
0

〉)
= 1

p−1

((
p
2

)−1
3

(
1
2

)
1

(
1
2

)
2
−
(
p
2

)−1
4

(
1
2

)2
1

(
1
2

)
2

)
= 3(p+5)

(p−1)p(p+2)(p+4)(p+6)

〈 2 2
1 1
1 1−→
0
−→
0

〉
=
(
p−1
2

)−1
2

(
(−1)

2 ( 1
2

)
2

〈 4
2
2−→
0

〉
+ (−1)

1 ( 1
2

)2
1

〈 2
2
2−→
0

〉)
= 4

(p−1)(p+1)

(
3
4

〈 4
2
2−→
0

〉
− 1

4

〈 2
2
2−→
0

〉)
= 1

(p−1)(p+1)

(
3

〈 4
2
2−→
0

〉
−
〈 2

2
2−→
0

〉)
= 1

(p−1)(p+1)

(
3
(
p
2

)−1
4

(
1
2

)
2

(
1
2

)2
1
−
(
p
2

)−1
3

(
1
2

)3
1

)
= −p+3

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 0 2
2 0
2 0−→
0
−→
0

〉
=
(
p−1
2

)−1(
(−1)

1 ( 1
2

)
1

〈 2
2
2−→
0

〉
+ (−1)

0 ( 1
2

)
1

〈 0
2
2−→
0

〉)
= 1

(p−1)

(〈 0
2
2−→
0

〉
−
〈 2

2
2−→
0

〉)
= 1

(p−1)

((
p
2

)−1
2

(
1
2

)2
1
−
(
p
2

)−1
3

(
1
2

)3
1

)
= 1

(p−1)

(
(p+4)−1

p(p+2)(p+4)

)
= p+3

(p−1)p(p+2)(p+4)

〈 2 2
2 0
2 0−→
0
−→
0

〉
=
(
p−1
2

)−1
1

(
(−1)

1 ( 1
2

)
1

〈 4
2
2−→
0

〉
+ (−1)

0 ( 1
2

)
1

(
1
2

)
0

〈 2
2
2−→
0

〉)
= 1

p−1

(〈 2
2
2−→
0

〉
−
〈 4

2
2−→
0

〉)
= 1

p−1

((
p
2

)−1
3

(
1
2

)3
1
−
(
p
2

)−1
4

(
1
2

)2
1

(
1
2

)
2

)
= p+3

(p−1)p(p+2)(p+4)(p+6)

〈 3 1
1 1
2 0−→
0
−→
0

〉
=
(
p−1
2

)−1(
(−1)

1 ( 1
2

)
1

〈 4
2
2−→
0

〉)
= − 3

p−1

((
p
2

)−1
4

(
1
2

)
2

(
1
2

)2
1

)
= − 3

(p−1)p(p+2)(p+4)(p+6)

〈 3 1
1 1
0 2−→
0
−→
0

〉
=
(
p−1
2

(
p+1
2

))−1(
(−1)

2 ( 1
2

)
2

〈 4
2
2−→
0

〉
+ (−1)

1 ( 1
2

)2
1

〈 4
2
0−→
0

〉)
= 1

(p−1)(p+1)

(
3
(
p
2

)−1
4

(
1
2

)
2

(
1
2

)2
1
−
(
p
2

)−1
3

(
1
2

)
2

(
1
2

)
1

)
= 1

(p−1)(p+1)

(
9

p(p+2)(p+4)(p+6) −
3

p(p+2)(p+4)

)
= −3(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

32



Published as a conference paper at ICLR 2024

〈 4 0
1 1
1 1−→
0
−→
0

〉
=
(
p−1
2

)−1
1

(−1)
1 ( 1

2

)
1

〈 4
2
2−→
0

〉
= − 1

p−1

〈 4
2
2−→
0

〉
= − 1

p−1
(
p
2

)−1
4

(
1
2

)
2

(
1
2

)2
1

= − 3
(p−1)p(p+2)(p+4)(p+6)

〈 2 2
2 0
0 2−→
0
−→
0

〉
=
(
p−1
2

)−1
2

(
(−1)

2 ( 1
2

)
2

〈 4
2
2−→
0

〉
+

(−1)
1 ( 1

2

)2
1

〈 2
2
2−→
0

〉
+ (−1)

1 ( 1
2

)2
1

〈 4
2
0−→
0

〉
+ (−1)

0 ( 1
2

)2
1

〈 2
2
0−→
0

〉)
= 1

(p−1)(p+1)

(
3

〈 4
2
2−→
0

〉
−
〈 2

2
2−→
0

〉
−
〈 4

2
0−→
0

〉
+

〈 2
2
0−→
0

〉)
= 1

(p−1)(p+1)

(
3
(
p
2

)−1
4

(
1
2

)
2

(
1
2

)2
1
−
(
p
2

)−1
3

(
1
2

)3
1
−
(
p
2

)−1
3

(
1
2

)
1

(
1
2

)
2
+
(
p
2

)−1
2

(
1
2

)2
1

)
= 9−(p+6)−3(p+6)+(p+4)(p+6)

(p−1)p(p+1)(p+2)(p+4)(p+6) = (p+3)2

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 0
1 1
1 1−→
0
−→
0

〉
=
(
p−1
2

)−1
1

(−1)
1 ( 1

2

)
1

〈 2
2
2−→
0

〉
= − 1

p−1

〈 2
2
2−→
0

〉
= − 1

p−1
(
p
2

)−1
3

(
1
2

)3
1

= − 1
(p−1)p(p+2)(p+4)
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D.2.4 FOUR INDICES (ROWS)

〈 2 0
0 2
1 1
1 1−→
0
−→
0

〉
=
(
p−1
2

)−1
2

(
(−1)

2 ( 1
2

)
2

〈 2
2
2
2−→
0

〉
+ (−1)

1 ( 1
2

)2
1

〈 2
0
2
2−→
0

〉)

= 1
(p−1)(p+1)

(
3

〈 2
2
2
2−→
0

〉
−

〈 2
0
2
2−→
0

〉)
= 1

(p−1)(p+1)

(
3
(
p
2

)−1
4

(
1
2

)4
1
−
(
p
2

)−1
3

(
1
2

)3
1

)
= −p−3

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 0
2 0
1 1
1 1−→
0
−→
0

〉
=
(
p−1
2

)−1
1

(−1)
1 ( 1

2

)
1

〈 2
2
2
2−→
0

〉
= − 1

p−1

〈 2
2
2
2−→
0

〉
= − 1

p−1
(
p
2

)−1
4

(
1
2

)4
1

= − 1
(p−1)p(p+2)(p+4)(p+6)

〈 2 0
2 0
0 2
0 2−→
0
−→
0

〉
=
(
p−1
2

(
p+1
2

))−1(
(−1)

2 ( 1
2

)
2

〈 2
2
2
2−→
0

〉
+ 2 (−1)

1 ( 1
2

)2
1

〈 2
2
2
0−→
0

〉
+ (−1)

0 ( 1
2

)2
1

〈 2
2
0
0−→
0

〉)

= 1
(p−1)(p+1)

(
3

〈 2
2
2
2−→
0

〉
− 2

〈 2
2
2
0−→
0

〉
+

〈 2
2
0
0−→
0

〉)
= 1

(p−1)(p+1)

(
3
(
p
2

)−1
4

(
1
2

)4
1
− 2

(
p
2

)−1
3

(
1
2

)3
1
+
(
p
2

)−1
2

(
1
2

)2
1

)
= 1

(p−1)(p+1)

(
3

p(p+2)(p+4)(p+6) −
2

p(p+2)(p+4) +
1

p(p+2)

)
= (p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 1 1
1 1
1 1
1 1−→
0
−→
0

〉
=
(
p−1
2

)−1
2

(−1)
2 ( 1

2

)
2

〈 2
2
2
2−→
0

〉
= 3

(p−1)(p+1)

(
p
2

)−1
4

(
1
2

)4
1
= 3

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 0
2 0
2 0
0 2−→
0
−→
0

〉
=

〈 2 0
0 2
2 0
2 0−→
0
−→
0

〉
=
(
p−1
2

)−1(
(−1)

1 ( 1
2

)
1

〈 2
2
2
2−→
0

〉
+ (−1)

0 ( 1
2

)
1

〈 2
0
2
2−→
0

〉)

= 1
p−1

(〈 2
0
2
2−→
0

〉
−

〈 2
2
2
2−→
0

〉)
= 1

p−1

((
p
2

)−1
3

(
1
2

)3
1
−
(
p
2

)−1
4

(
1
2

)4
1

)
= 1

p−1

(
1

p(p+2)(p+4) −
1

p(p+2)(p+4)(p+6)

)
= p+5

(p−1)p(p+2)(p+4)(p+6)
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D.3 MONOMIALS OF THREE ORTHOGONAL VECTOR

D.3.1 ONE INDEX (ROW)〈
2 2 2−→
0
−→
0
−→
0

〉
= 1

p(p+2)(p+4)

〈
4 2 2−→
0
−→
0
−→
0

〉
= 1

p−2

(
(−1)

1 (〈 6 2−→
0
−→
0

〉
+
〈

4 4−→
0
−→
0

〉)
+ (−1)

0 〈 4 2−→
0
−→
0

〉)
= 1

p−2
(〈

4 2−→
0
−→
0

〉
−
〈

6 2−→
0
−→
0

〉
−
〈

4 4−→
0
−→
0

〉)
= 1

p−2

(
3

p(p+2)(p+4) +
−15−9

p(p+2)(p+4)(p+6)

)
= 3(p−2)

(p−2)p(p+2)(p+4)(p+6) =
3

p(p+2)(p+4)(p+6)

D.3.2 TWO INDICES (ROWS)

〈
2 2 2
2 0 0−→
0
−→
0
−→
0

〉
=

〈 2 2
2 0
2 0−→
0
−→
0

〉
= p+3

(p−1)p(p+2)(p+4)(p+6)

〈
2 2 0
0 0 2−→
0
−→
0
−→
0

〉
=

〈 0 2
2 0
2 0−→
0
−→
0

〉
= (p+3)

(p−1)p(p+2)(p+4)

〈
0 2 2
4 0 0−→
0
−→
0
−→
0

〉
=

〈 4 0
0 2
0 2−→
0
−→
0

〉
= 3(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈
2 1 1
0 1 1−→
0
−→
0
−→
0

〉
= 1

p−2

(
−
〈

2 2
0 2−→
0
−→
0

〉
−
〈

3 1
1 1−→
0
−→
0

〉)
= 1

p−2

(
− p+1

(p−1)p(p+2)(p+4) +
3

(p−1)p(p+2)(p+4)

)
= −1

(p−1)p(p+2)(p+4)

〈
4 1 1
0 1 1−→
0
−→
0
−→
0

〉
=

〈 4 0
1 1
1 1−→
0
−→
0

〉
= −3

(p−1)p(p+2)(p+4)(p+6)

〈
2 1 1
2 1 1−→
0
−→
0
−→
0

〉
=

〈 2 2
1 1
1 1−→
0
−→
0

〉
= −(p−3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈
3 1 2
1 1 0−→
0
−→
0
−→
0

〉
=

〈 3 1
1 1
2 0−→
0
−→
0

〉
= −3

(p−1)p(p+2)(p+4)(p+6)

〈
1 1 2
3 1 0−→
0
−→
0
−→
0

〉
=

〈 3 1
1 1
0 2−→
0
−→
0

〉
= −3(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈
2 2 0
2 0 2−→
0
−→
0
−→
0

〉
=

〈 2 2
2 0
0 2−→
0
−→
0

〉
= (p+3)2

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈
4 2 0
0 0 2−→
0
−→
0
−→
0

〉
= 1

p−2

(
(−1)

1
(〈

4 2
0 2−→
0
−→
0

〉
+
〈

4 2
2 0−→
0
−→
0

〉)
+ (−1)

0
〈

4 2
0 0−→
0
−→
0

〉)
= 1

p−2

(〈
4 2
0 0−→
0
−→
0

〉
−
〈

4 2
0 2−→
0
−→
0

〉
−
〈

4 2
2 0−→
0
−→
0

〉)
= 1

p−2

(
3(p−1)(p+6)−3(p+3)−3(p+1)

(p−1)p(p+2)(p+4)(p+6)

)
= 3(p+5)

(p−1)p(p+2)(p+4)(p+6)

35



Published as a conference paper at ICLR 2024

D.3.3 THREE INDICES (ROWS)〈 2 0 0
0 2 0
0 0 2−→
0
−→
0
−→
0

〉
= 1

p−2

(〈 2 0
0 2
0 0−→
0
−→
0

〉
−
〈 2 0

0 2
2 0−→
0
−→
0

〉
−
〈 2 0

0 2
0 2−→
0
−→
0

〉)
= 1

p−2

(〈 2 0
0 2
0 0−→
0
−→
0

〉
− 2

〈 2 0
0 2
0 2−→
0
−→
0

〉)
= 1

p−2

(
p+1

(p−1)p(p+2) −
2(p+3)

(p−1)p(p+2)(p+4)

)
= p2+3p−2

(p−2)(p−1)p(p+2)(p+4)

〈 4 0 0
0 2 0
0 0 2−→
0
−→
0
−→
0

〉
= 1

p−2

(〈 4 0
0 2
0 0−→
0
−→
0

〉
−
〈 4 0

0 2
2 0−→
0
−→
0

〉
−
〈 4 0

0 2
0 2−→
0
−→
0

〉)
= 1

p−2

(
3(p+3)

(p−1)p(p+2)(p+4) −
3(p+5)

(p−1)p(p+2)(p+4)(p+6) −
3(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= 1

p−2

(
3(p+1)(p+3)(p+6)−3(p+1)(p+5)−3(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

3(p3+8p2+13p−2)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 0 2 2
2 0 0
2 0 0−→
0
−→
0
−→
0

〉
= 1

p−2

(
(−1)

1

(〈 2 2
2 0
2 0−→
0
−→
0

〉
+

〈 0 4
2 0
2 0−→
0
−→
0

〉)
+ (−1)

0

〈 0 2
2 0
2 0−→
0
−→
0

〉)
= 1

p−2

(〈 0 2
2 0
2 0−→
0
−→
0

〉
−
〈 2 2

2 0
2 0−→
0
−→
0

〉
−
〈 0 4

2 0
2 0−→
0
−→
0

〉)
= 1

p−2

(
p+3

(p−1)p(p+2)(p+4) −
p+3

(p−1)p(p+2)(p+4)(p+6) −
3(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= (p+3)((p+1)(p+6)−(p+1)−3(p+5))

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) =
(p−2)(p+3)(p+5)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

= (p+3)(p+5)
(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 0 0
0 2 0
2 0 2−→
0
−→
0
−→
0

〉
= 1

p−2

(〈 2 0
0 2
2 0−→
0
−→
0

〉
−
〈 2 0

0 2
4 0−→
0
−→
0

〉
−
〈 2 0

0 2
2 2−→
0
−→
0

〉)
= 1

p−2

(
p+3

(p−1)p(p+2)(p+4) −
3(p+5)

(p−1)p(p+2)(p+4)(p+6) −
(p+3)2

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= (p+1)((p+3)(p+6)−3(p+5))−(p+3)2

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) = p3+6p2+3p−6
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 1 1
0 1 1
2 0 0−→
0
−→
0
−→
0

〉
= 1

p−2

(
−
〈 3 1

1 1
2 0−→
0
−→
0

〉
−
〈 2 2

0 2
2 0−→
0
−→
0

〉)
= 1

p−2

(
3

(p−1)p(p+2)(p+4)(p+6) −
(p+3)2

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= 3(p+1)−(p+3)2

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) =
−(p2+3p+6)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 0 1 1
0 1 1
2 0 0−→
0
−→
0
−→
0

〉
= 1

p−2

(
−
〈 1 1

1 1
2 0−→
0
−→
0

〉
−
〈 0 2

0 2
2 0−→
0
−→
0

〉)
= 1

p−2

(
1

(p−1)p(p+2)(p+4) −
p+3

(p−1)p(p+2)(p+4)

)
= −(p+2)

(p−2)(p−1)p(p+2)(p+4)

〈 0 1 1
0 1 1
4 0 0−→
0
−→
0
−→
0

〉
= 1

p−2

(
−
〈 1 1

1 1
4 0−→
0
−→
0

〉
−
〈 0 2

0 2
4 0−→
0
−→
0

〉)
= 1

p−2

(
3

(p−1)p(p+2)(p+4)(p+6) −
3(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= 1

p−2

(
3(p+1)−3(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

−3(p2+7p+14)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)
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〈 1 2 1
1 0 1
0 0 2−→
0
−→
0
−→
0

〉
= 1

p−2

(
−
〈 3 1

1 1
0 2−→
0
−→
0

〉
−
〈 2 2

0 2
0 2−→
0
−→
0

〉)
= 1

p−2

(
3(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6) −
p+3

(p−1)p(p+2)(p+4)(p+6)

)
= −(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 1 3 0
1 1 0
0 0 2−→
0
−→
0
−→
0

〉
= 1

p−2

(
−
〈 4 0

2 0
0 2−→
0
−→
0

〉
−
〈 3 1

1 1
0 2−→
0
−→
0

〉)
= 1

p−2

(
− 3(p+5)

(p−1)p(p+2)(p+4)(p+6) +
3(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= 1

p−2

(
3(p+3)−3(p+1)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

−3(p2+5p+2)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 2 0
0 1 1
0 1 1−→
0
−→
0
−→
0

〉
=

〈 2 1 1
0 1 1
2 0 0−→
0
−→
0
−→
0

〉
=

−(p2+3p+6)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 1 1 0
1 0 1
2 1 1−→
0
−→
0
−→
0

〉
=

〈 2 1 1
1 1 0
1 0 1−→
0
−→
0
−→
0

〉
= 1

p−2

(
−
〈 3 1

1 1
2 0−→
0
−→
0

〉
−
〈 2 2

1 1
1 1−→
0
−→
0

〉)
= 1

p−2

(
3

(p−1)p(p+2)(p+4)(p+6) −
−p+3

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= p−3+3(p+1)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

= 4p
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 3 1 0
0 1 1
1 0 1−→
0
−→
0
−→
0

〉
= 1

p−2

(
−
〈 3 1

1 1
2 0−→
0
−→
0

〉
−
〈 3 1

0 2
1 1−→
0
−→
0

〉)
= 1

p−2

(
3

(p−1)p(p+2)(p+4)(p+6) +
3(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= 1

p−2

(
3(p+1)+3(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= 6(p+2)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 0 1 1
1 1 0
1 0 1−→
0
−→
0
−→
0

〉
= 1

p−2

(
−
〈 1 1

1 1
2 0−→
0
−→
0

〉
−
〈 0 2

1 1
1 1−→
0
−→
0

〉)
= 1

p−2

(
−2

〈 1 1
1 1
2 0−→
0
−→
0

〉)
= 2

(p−2)(p−1)p(p+2)(p+4)
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D.3.4 FOUR INDICES (ROWS)

〈 0 2 0
0 0 2
2 0 0
2 0 0−→
0
−→
0
−→
0

〉
= 1

p−2

(〈 0 2
0 0
2 0
2 0−→
0
−→
0

〉
−

〈 0 2
2 0
2 0
2 0−→
0
−→
0

〉
−

〈 0 2
0 2
2 0
2 0−→
0
−→
0

〉)
= 1

p−2

(
p+3

(p−1)p(p+2)(p+4) −
p+5

(p−1)p(p+2)(p+4)(p+6) −
(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= (p+1)(p+3)(p+6)−(p+1)(p+5)−(p+3)(p+5)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

= p3+8p2+13p−2
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 0 1 1
0 1 1
2 0 0
2 0 0−→
0
−→
0
−→
0

〉
= 1

p−2

(
−

〈 1 1
1 1
2 0
2 0−→
0
−→
0

〉
−

〈 0 2
0 2
2 0
2 0−→
0
−→
0

〉)
= 1

p−2

(
(p+1)−(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

−(p2+7p+14)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 0 0
0 2 0
1 0 1
1 0 1−→
0
−→
0
−→
0

〉
= 1

p−2

(
−

〈 2 0
0 2
2 0
2 0−→
0
−→
0

〉
−

〈 2 0
0 2
1 1
1 1−→
0
−→
0

〉)
= 1

p−2

(
−(p+5)

(p−1)p(p+2)(p+4)(p+6) +
p+3

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= 1

p−2

(
p+3−(p+5)(p+1)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

−(p2+5p+2)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 1 0 1
1 0 1
1 1 0
1 1 0−→
0
−→
0
−→
0

〉
= 1

p−2

(
−

〈 2 0
2 0
1 1
1 1−→
0
−→
0

〉
−

〈 1 1
1 1
1 1
1 1−→
0
−→
0

〉)
= 1

p−2

(
1

(p−1)p(p+2)(p+4)(p+6) −
3

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= p−2

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) =
1

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 0 0
0 1 1
1 1 0
1 0 1−→
0
−→
0
−→
0

〉
= 1

p−2

(
1

(p−1)p(p+2)(p+4)(p+6) +
p+3

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= 2(p+2)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)
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D.4 MONOMIALS OF FOUR ORTHOGONAL VECTOR〈
2 2 2 2−→
0
−→
0
−→
0
−→
0

〉
= 1

p−3

(
(−1)

1 (〈 4 2 2−→
0
−→
0
−→
0

〉
+
〈

2 4 2−→
0
−→
0
−→
0

〉
+
〈

2 2 4−→
0
−→
0
−→
0

〉)
+ (−1)

0 〈 2 2 2−→
0
−→
0
−→
0

〉)
= 1

p−3
(〈

2 2 2−→
0
−→
0
−→
0

〉
− 3

〈
4 2 2−→
0
−→
0
−→
0

〉)
= 1

p−3

(
1

p(p+2)(p+4) −
9

p(p+2)(p+4)(p+6)

)
= p−3

(p−3)p(p+2)(p+4)(p+6) =
1

p(p+2)(p+4)(p+6)

〈
2 2 2 0
0 0 0 2−→
0
−→
0
−→
0
−→
0

〉
=

〈 2 0
0 2
2 0
2 0−→
0
−→
0

〉
= p+5

(p−1)p(p+2)(p+4)(p+6)

〈
2 2 0 0
0 0 2 2−→
0
−→
0
−→
0
−→
0

〉
=

〈 2 0
2 0
0 2
0 2−→
0
−→
0

〉
= (p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 2 0 0
0 0 2 0
0 0 0 2−→
0
−→
0
−→
0
−→
0

〉
=

〈 0 2 0
0 0 2
2 0 0
2 0 0−→
0
−→
0
−→
0

〉
=

(p3+8p2+13p−2)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2−→
0
−→
0
−→
0
−→
0

〉
= 1

p−3

(
(−1)

1

(〈 2 0 0
0 2 0
0 0 2
2 0 0−→
0
−→
0
−→
0

〉
+

〈 2 0 0
0 2 0
0 0 2
0 2 0−→
0
−→
0
−→
0

〉
+

〈 2 0 0
0 2 0
0 0 2
0 0 2−→
0
−→
0
−→
0

〉)
+(−1)

0

〈 2 0 0
0 2 0
0 0 2
0 0 0−→
0
−→
0
−→
0

〉)

= 1
p−3

(〈 2 0 0
0 2 0
0 0 2
0 0 0−→
0
−→
0
−→
0

〉
− 3

〈 2 0 0
0 2 0
0 0 2
0 0 2−→
0
−→
0
−→
0

〉)

= 1
p−3

(
p2+3p−2

(p−2)(p−1)p(p+2)(p+4) −
3(p3+8p2+13p−2)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

(p−2)(p+3)(p2+6p+1)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈
1 1 2 2
1 1 0 0−→
0
−→
0
−→
0
−→
0

〉
=

〈 2 0
2 0
1 1
1 1−→
0
−→
0

〉
= −1

(p−1)p(p+2)(p+4)(p+6)

〈
1 1 2 0
1 1 0 2−→
0
−→
0
−→
0
−→
0

〉
=

〈 2 0
0 2
1 1
1 1−→
0
−→
0

〉
= −(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 1 1 2 0
1 1 0 0
0 0 0 2−→
0
−→
0
−→
0
−→
0

〉
=

〈 2 0 0
0 2 0
1 0 1
1 0 1−→
0
−→
0
−→
0

〉
=

−(p2+5p+2)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 1 1 0 0
1 1 0 0
0 0 2 2−→
0
−→
0
−→
0
−→
0

〉
=

〈 0 1 1
0 1 1
2 0 0
2 0 0−→
0
−→
0
−→
0

〉
=

−(p2+7p+14)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 1 1 0
0 1 0 1
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉
=

〈 2 0 0
0 1 1
1 1 0
1 0 1−→
0
−→
0
−→
0

〉
= 2(p+2)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)
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〈 1 1 0 0
1 1 0 0
0 0 2 0
0 0 0 2−→
0
−→
0
−→
0
−→
0

〉
= 1

p−3

(
−

〈 2 0 0
2 0 0
0 2 0
0 0 2−→
0
−→
0
−→
0

〉
−

〈 1 1 0
1 1 0
0 2 0
0 0 2−→
0
−→
0
−→
0

〉
−

〈 1 0 1
1 0 1
0 2 0
0 0 2−→
0
−→
0
−→
0

〉)

= 1
p−3

(
−

〈 2 0 0
2 0 0
0 2 0
0 0 2−→
0
−→
0
−→
0

〉
− 2

〈 1 1 0
1 1 0
0 2 0
0 0 2−→
0
−→
0
−→
0

〉)

= 1
p−3

(
− p3+8p2+13p−2

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +
2(p2+5p+2)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

−(p3+6p2+3p−6)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 2 0 0 0
0 1 1 0
0 1 0 1
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉
= 1

p−3

−

〈 2 0 0
0 1 1
1 1 0
1 0 1−→
0
−→
0
−→
0

〉
−

〈 2 0 0
0 1 1
0 2 0
0 1 1−→
0
−→
0
−→
0

〉
−

〈 2 0 0
0 1 1
0 1 1
0 0 2−→
0
−→
0
−→
0

〉
︸ ︷︷ ︸

equal


= 1

p−3

(
2(p2+5p+2)−2(p+2)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= 2p(p+4)

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈
1 1 1 1
1 1 1 1−→
0
−→
0
−→
0
−→
0

〉
=

〈 1 1
1 1
1 1
1 1−→
0
−→
0

〉
= 3

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 1 1 1 1
1 1 0 0
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉
= 1

p−3

(
−
〈 2 1 1

1 1 0
1 0 1−→
0
−→
0
−→
0

〉
−
〈 1 2 1

1 1 0
0 1 1−→
0
−→
0
−→
0

〉
−
〈 1 1 2

1 1 0
0 0 2−→
0
−→
0
−→
0

〉)
= 1

p−3

(
−2

〈 2 1 1
1 1 0
1 0 1−→
0
−→
0
−→
0

〉
−
〈 1 1 2

1 1 0
0 0 2−→
0
−→
0
−→
0

〉)
= 1

p−3

(
(p2+3p+6)−8p

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= 1

(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉
= 1

p−3

(
−

〈 1 1 0
1 1 0
1 0 1
1 0 1−→
0
−→
0
−→
0

〉
−

〈 1 1 0
1 1 0
0 1 1
0 1 1−→
0
−→
0
−→
0

〉
−

〈 1 1 0
1 1 0
0 0 2
0 0 2−→
0
−→
0
−→
0

〉)

= 1
p−3

(
−2

〈 1 1 0
1 1 0
0 1 1
0 1 1−→
0
−→
0
−→
0

〉
−

〈 1 1 0
1 1 0
0 0 2
0 0 2−→
0
−→
0
−→
0

〉)
= 1

p−3

(
−2

(p−1)p(p+1)(p+2)(p+4)(p+6) +
p2+7p+14

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= p2+5p+18

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

〈 1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉
= 1

p−3

(
−

〈 1 0 1
1 1 0
1 1 0
1 0 1−→
0
−→
0
−→
0

〉
−

〈 1 0 1
0 2 0
1 1 0
0 1 1−→
0
−→
0
−→
0

〉
−

〈 1 0 1
0 1 1
1 1 0
0 0 2−→
0
−→
0
−→
0

〉)
= 1

p−3

(
− 1

(p−1)p(p+1)(p+2)(p+4)(p+6) +
−4(p+2)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= −5p−6

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)
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E AUXILIARY EXPECTATION DERIVATIONS

In this section, we attach many auxiliary derivations of simple and complicated polynomials that we
need in our main propositions and lemmas.
Proposition 14. For p ≥ 2,m ∈ {2, . . . , p} and a random transformation O sampled as described
in Eq. (1), it holds that,

E
[(
e⊤1 Oe1

)3]
=

(p−m)
(
m2 − 2mp− 3m+ p2 + 6p+ 14

)
p (p+ 2) (p+ 4)

.

Proof. We notice that the expectation can be written as

E
[(
e⊤1 Oe1

)3]
= E

[(
u⊤
[
Qm

0

]
u+ u⊤

[
0

Ip−m

]
u
)3]

.

Employing the algebraic identity that (a+ b)
3
= a3 + 3a2b + 3ab2 + b3 and Cor. 12 (canceling

terms with an odd number of Qm appearances), it can be readily seen that in our case we are left
with (a+ b)

3
=��a

3 + 3a2b+���3ab2 + b3. We thus get,

E
[(
e⊤1 Oe1

)3]
= 3E

[(
u⊤
[
Qm

0

]
u
)2

u⊤
[
0

Ip−m

]
u
]
+ E

[(
u⊤
[
0

Ip−m

]
u
)3]

= 3E

[(
u⊤
[
Qm

0

]
u
)2 p∑

i=m+1

u2
i

]
+ E

( p∑
i=m+1

u2
i

)3


= 3

p∑
i=m+1

E
[(
u⊤
[
Qm

0

]
u
)2

u2
i

]
+

p∑
i=m+1

p∑
j=m+1

p∑
k=m+1

E
[
u2
iu

2
ju

2
k

]

= (p−m)

3E
[
u2
p · u⊤a Qmua · u⊤a Qmua

]
+

p∑
j=m+1

p∑
k=m+1

E
[
u2
pu

2
ju

2
k

]
The inner left term becomes

E
[
u2
p ∥ua∥2 · u⊤a Er∼Sm−1

[
rr⊤

]
ua

]
=

3

m
E
[
u2
p ∥ua∥4

]
=

3

m

m∑
i=1

m∑
j=1

E
[
u2
pu

2
iu

2
j

]

=
3

m

mE
[
u2
pu

4
1

]︸ ︷︷ ︸
i=j

+m (m− 1)E
[
u2
pu

2
1u

2
2

]︸ ︷︷ ︸
i ̸=j

 = 3

(〈
4
2−→
0

〉
+ (m− 1)

〈 2
2
2−→
0

〉)
,

while the inner right term becomes
p∑

k=m+1

E
[
u4
pu

2
k

]
︸ ︷︷ ︸

j=p

+(p−m− 1)

p∑
k=m+1

E
[
u2
p−1u

2
pu

2
k

]
︸ ︷︷ ︸

m+1≤j≤p−1

= E
[
u6
p

]︸ ︷︷ ︸
k=p

+(p−m−1)E
[
u2
p−1u

4
p

]︸ ︷︷ ︸
m+1≤k≤p−1

+(p−m−1)

2E
[
u2
p−1u

4
p

]︸ ︷︷ ︸
k=p∨ k=p−1

+(p−m−2)E
[
u2
p−2u

2
p−1u

2
p

]︸ ︷︷ ︸
m+1≤j≤p−2


=
〈

6−→
0

〉
+ (p−m− 1)

(
3
〈

4
2−→
0

〉
+ (p−m− 2)

〈 2
2
2−→
0

〉)
.

Combining these two inner terms, we get,

E
[(
e⊤1 Oe1

)3]
= (p−m)

(〈
6−→
0

〉
+ 3 (p−m)

〈
4
2−→
0

〉
+
(
m2 − 2mp+ 6m+ p2 − 3p− 1

)〈 2
2
2−→
0

〉)
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= (p−m)

(
15

p (p+ 2) (p+ 4)
+

9 (p−m)

p (p+ 2) (p+ 4)
+

m2 − 2mp+ 6m+ p2 − 3p− 1

p (p+ 2) (p+ 4)

)
=

(p−m)
(
m2 − 2mp− 3m+ p2 + 6p+ 14

)
p (p+ 2) (p+ 4)

.

Proposition 15. For p ≥ 2,m ∈ {2, . . . , p} and a random transformation O sampled as described
in Eq. (1), it holds that,

E
[(
e⊤2 Oe1

)2
e⊤2 Oe2

]
=

(p−m)
(
−m2 + 2mp+ 3m− 6

)
(p− 1) p (p+ 2) (p+ 4)

.

Proof. By decomposing the expectation into the two additive terms below, we get that

E
[(
e⊤2 Oe1

)2
e⊤2 Oe2

]
= E

[(
u⊤
[
Qm

Ip−m

]
v
)2

u⊤
[
Qm

Ip−m

]
u

]
= E

[(
u⊤
[
Qm

0

]
v + u⊤

[
0

Ip−m

]
v
)2 (

u⊤
[
Qm

0

]
u+ u⊤

[
0

Ip−m

]
u
)]

= E
[(
uaQmva + u⊤b vb

)2 (
uaQmua + u⊤b ub

)]
= E

[
uaQmva

(
uaQmva + u⊤b vb

) (
uaQmua + u⊤b ub

)]︸ ︷︷ ︸
below

+

E
[
u⊤b vb

(
uaQmva + u⊤b vb

) (
uaQmua + u⊤b ub

)]︸ ︷︷ ︸
below

=
(p−m)

(
m (p+ 2)− 4−m2 +mp+m− 2

)
(p− 1) p (p+ 2) (p+ 4)

=
(p−m)

(
−m2 + 2mp+ 3m− 6

)
(p− 1) p (p+ 2) (p+ 4)

.

Using Cor. 12 in the first step below, we show that the first term is,

E
[
uaQmva

(
uaQmva + u⊤b vb

) (
uaQmua + u⊤b ub

)]
= E

[
uaQmvau

⊤
b vbuaQmua

]
+ E

[
uaQmvauaQmvau

⊤
b ub

]
=

1

m
E
[
∥ua∥2 u⊤a va · u⊤b vb

]
+

1

m
E
[
∥ua∥2 ∥va∥2 ∥ub∥2

]
= − 1

m
E
[
∥ua∥2

(
u⊤b vb

)2]︸ ︷︷ ︸
solved in Eq. (17)

+
1

m
E
[
∥ua∥2 ∥va∥2 ∥ub∥2

]
︸ ︷︷ ︸

solved in Eq. (19)

= − 1
m

(p−m)m(m+2)
(p−1)p(p+2)(p+4) +

1
m

m(p−m)(m(p+3)−2)
(p−1)p(p+2)(p+4) =

(p−m) (m (p+ 2)− 4)

(p− 1) p (p+ 2) (p+ 4)
.

From Eq. (9), we know that the second term is

E
[
u⊤b vb

(
uaQmva + u⊤b vb

) (
uaQmua + u⊤b ub

)]
= E

[(
u⊤b vb

)2]︸ ︷︷ ︸
solved in Eq. (23)

−
(
1 +

1

m

)
E
[
∥ua∥2

(
u⊤b vb

)2]︸ ︷︷ ︸
solved in Eq. (17)

= (p−m)m
(p−1)p(p+2) −

m+1
m

(p−m)m(m+2)
(p−1)p(p+2)(p+4)

=
(p−m)

(
−m2 +mp+m− 2

)
(p− 1) p (p+ 2) (p+ 4)

.
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Proposition 16. For p ≥ 2,m ∈ {2, . . . , p} and a random transformation O sampled as described
in Eq. (1), it holds that,

E
(
e⊤1 Oe1

)4
=

3 (m+ 4) (m+ 6) + (p−m) (p−m+ 2)
(
m2 − 2mp− 4m+ p2 + 10p+ 36

)
p (p+ 2) (p+ 4) (p+ 6)

Proof. We start by showing,

E
(
e⊤1 Oe1

)4
= E

(
u⊤
[
Qm

Ip−m

]
u
)4

= E
(
u⊤a Qmua + u⊤b ub

)4
.

Employing an algebraic identity and Cor. 12 to cancel terms with an odd number of Qm appearances,
it can be readily seen that in our case we are left with (a+ b)

4
= a4 +���4a3b+ 6a2b2 +�

��4ab3 + b4.
We thus get,

= E
(
u⊤a Qmua

)4
+ 6E

(
u⊤a Qmua

)2 (
u⊤a ua

)2
+ E

(
u⊤b ub

)4
= Er∼Sm−1,u∼Sp−1

(
∥ua∥ r⊤ua

)4
+ 6E

[(
u⊤b ub

)2 Er∼Sm−1

(
∥ua∥ r⊤ua

)2]
+ E

(
u⊤b ub

)4
= E

[
∥ua∥4 Er∼Sm−1

(
r⊤ua

)4]
+ 6E

[
∥ub∥4 ∥ua∥2 u⊤a Er∼Sm−1

[
rr⊤

]
ua

]
+ E ∥ub∥8

We employ the isotropy of r and show that,

= E
[
∥ua∥4 Er∼Sm−1

(
∥ua∥ r⊤e1

)4]
+

6

m
E
[
∥ub∥4 ∥ua∥2 u⊤a ua

]
+ E ∥ub∥8

= Er∼Sm−1

[
r41
]
E ∥ua∥8 +

6

m
E
[
∥ub∥4 ∥ua∥4

]
+ E ∥ub∥8

=
〈

4−→
0

〉
m
E ∥ua∥8 +

6

m
E
[(

1− ∥ua∥2
)2

∥ua∥4
]
+ E ∥ub∥8

=
3

m (m+ 2)
E ∥ua∥8 +

6

m

(
E ∥ua∥4 − 2E

[
∥ua∥2 ∥ua∥4

]
+ E ∥ua∥8

)
+ E ∥ub∥8

=

(
3

m (m+ 2)
+

6

m

)
E ∥ua∥8 +

6

m
E ∥ua∥4 −

12

m
E ∥ua∥6 + E ∥ub∥8

=
6m+ 15

m (m+ 2)
E ∥ua∥8 +

6

m
E ∥ua∥4 −

12

m
E ∥ua∥6 + E ∥ub∥8 ,

where we use the subscript in
〈

4−→
0

〉
m

to indicate that, unlike in most places, the corresponding
random vector is in Sm−1 rather than Sp−1.

Next, we derive these expected norms in Prop. 26, and obtain

=
6m+ 15

m (m+ 2)

m (m+ 2) (m+ 4) (m+ 6)

p (p+ 2) (p+ 4) (p+ 6)
+

6

m

m (m+ 2)

p (p+ 2)
− 12

m

m (m+ 2) (m+ 4)

p (p+ 2) (p+ 4)
+

(p−m) (p−m+ 2) (p−m+ 4) (p−m+ 6)

p (p+ 2) (p+ 4) (p+ 6)

=
(6m+ 15) (m+ 4) (m+ 6)

p (p+ 2) (p+ 4) (p+ 6)
+

6 (m+ 2)

p (p+ 2)
− 12 (m+ 2) (m+ 4)

p (p+ 2) (p+ 4)
+

(p−m) (p−m+ 2) (p−m+ 4) (p−m+ 6)

p (p+ 2) (p+ 4) (p+ 6)

=
(6m+ 15) (m+ 4) (m+ 6) + 6 (m+ 2) (p+ 4) (p+ 6)− 12 (m+ 2) (m+ 4) (p+ 6)

p (p+ 2) (p+ 4) (p+ 6)

(p−m) (p−m+ 2) (p−m+ 4) (p−m+ 6)

p (p+ 2) (p+ 4) (p+ 6)

=
3 (m+ 4) (m+ 6) + (p−m) (p−m+ 2)

(
m2 − 2mp− 4m+ p2 + 10p+ 36

)
p (p+ 2) (p+ 4) (p+ 6)

.
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Proposition 17. For p ≥ 2,m ∈ {2, . . . , p} and a random transformation O sampled as described
in Eq. (1), it holds that,

E
(
e⊤1 Oe2

)4
=

3(m4−2m3(2p+3)+m2(4p2+4p−1)+2m(6p2+8p+3)+8(p2−2p−3))
(p−1)p(p+1)(p+2)(p+4)(p+6) .

Proof. We begin by showing that,

E
(
e⊤1 Oe2

)4
= E

(
e⊤1 Qp

[
Qm

Ip−m

]
Q⊤p e2

)4
= Eu⊥v

(
u⊤
[
Qm

Ip−m

]
v
)4

= Eu⊥v
(
u⊤a Qmva + u⊤b vb

)4
= E

(
u⊤a Qmva + u⊤b vb

)4
,

where the last step simply employs our simplifying notations (Remark 4).

Employing an algebraic identity and Cor. 12 to cancel terms with an odd number of Qm appearances,
it can be readily seen that in our case we are left with (a+ b)

4
= a4 +�

��4a3b+ 6a2b2 +�
��4ab3 + b4.

We thus get,

= E
[(
u⊤a Qmva

)4]︸ ︷︷ ︸
solved in Eq. (25)

+6E
[(
u⊤a Qmva

)2 (
u⊤b vb

)2]︸ ︷︷ ︸
solved in Eq. (26)

+E
[(
u⊤b vb

)4]︸ ︷︷ ︸
solved in Eq. (24)

=
3(m2(p+3)(p+5)+2m(p+1)(p+3)−8(2p+3))

(p−1)p(p+1)(p+2)(p+4)(p+6) + 6 (m+2)(mp+2p+3m)(p−m)
(p−1)p(p+1)(p+2)(p+4)(p+6)+

3m4−6m3p+3m2p2−6m2p−12m2+6mp2+12mp
(p−1)p(p+1)(p+2)(p+4)(p+6) .

After some tedious algebra, we get, as required,

E
(
e⊤1 Oe2

)4
=

3(m4−2m3(2p+3)+m2(4p2+4p−1)+2m(6p2+8p+3)+8(p2−2p−3))
(p−1)p(p+1)(p+2)(p+4)(p+6) .
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Proposition 18. For p ≥ 2,m ∈ {2, . . . , p} and a random transformation O sampled as described
in Eq. (1), it holds that,

E
(
e⊤1 Oe1 · e⊤2 Oe1

)2
= E

(
e⊤2 Oe2 · e⊤2 Oe1

)2
=

(m+ 4)
(
2mp+ 4p+m−m2 − 6

)
− (p−m) (p−m+ 2) (m (m− 2p− 5) + 10)

(p− 1) p (p+ 2) (p+ 4) (p+ 6)
.

Proof. First, due to the exchangeability (Prop. 9), we have,

E
(
e⊤1 Oe1 · e⊤2 Oe1

)2
=E

(
e⊤2 Oe2e

⊤
1 Oe2

)2
=E

(
e⊤2 O

⊤e2e
⊤
2 O
⊤e1

)2
=E

(
e⊤2 Oe2 · e⊤2 Oe1

)2
Then, we show that,

E
(
e⊤2 Oe2 · e⊤2 Oe1

)2
= E

(
u⊤
([

Qm

0

]
+
[
0

Ip−m

])
u · u⊤

([
Qm

0

]
+
[
0

Ip−m

])
v
)2

= E
(
u⊤a Qmua + u⊤b ub

)2 (
u⊤a Qmva + u⊤b vb

)2
= E

((
u⊤a Qmua

)2
+ 2u⊤a Qmuau

⊤
b ub + ∥ub∥4

) (
u⊤a Qmva + u⊤b vb

)2
We now partition the above into three terms that we solve separately.

The first term is,

E
(
u⊤a Qmua

)2 ((
u⊤a Qmva

)2
+ 2u⊤a Qmvau

⊤
b vb +

(
u⊤b vb

)2)
= E

(
u⊤a Qmua

)2 (
u⊤a Qmva

)2︸ ︷︷ ︸
solved in Eq. (14)

+2E
(
u⊤a Qmua

)2
u⊤a Qmvau

⊤
b vb︸ ︷︷ ︸

=0, by Prop. 12

+E
(
u⊤a Qmua

)2 (
u⊤b vb

)2︸ ︷︷ ︸
solved in Eq. (16)

=
(m+ 4) (m (p+ 3) + 2 (p− 3))

(p− 1) p (p+ 2) (p+ 4) (p+ 6)
+

(m+ 2) (m+ 4) (p−m)

(p− 1) p (p+ 2) (p+ 4) (p+ 6)

=
(m+ 4)

(
2mp+ 4p+m−m2 − 6

)
(p− 1) p (p+ 2) (p+ 4) (p+ 6)

.

The second term is,

E
[(
2u⊤a Qmuau

⊤
b ub

) ((
u⊤a Qmva

)2
+ 2u⊤a Qmvau

⊤
b vb +

(
u⊤b vb

)2)]
[Prop. 12] = 4E

[
u⊤a Qmuau

⊤
b ub · u⊤a Qmvau

⊤
b vb

]
= 4Eu⊥v

[
EQm

[
u⊤a Qmuau

⊤
a Qmva

]
· ∥ub∥2 · u⊤b vb

]
= 4Eu⊥v

[
Er∼Sm−1

[(
∥ua∥u⊤a r

) (
∥ua∥ r⊤va

)]
· ∥ub∥2 · u⊤b vb

]
= 4Eu⊥v

[
∥ua∥2 ∥ub∥2 · u⊤a Er∼Sm−1

[
rr⊤

]
va · u⊤b vb

]
=

4

m
Eu⊥v

[
∥ua∥2 ∥ub∥2 · u⊤a va · u⊤b vb

]
=

4

m
E
[
∥ua∥2

(
1− ∥ua∥2

) (
−u⊤b vb

)
u⊤b vb

]
=

4

m
E
[
∥ua∥4

(
u⊤b vb

)2]︸ ︷︷ ︸
solved in Eq. (15)

− 4

m
E
[
∥ua∥2

(
u⊤b vb

)2]︸ ︷︷ ︸
solved in Eq. (17)

=
4

m

m (m+ 2) (m+ 4) (p−m)

(p− 1) p (p+ 2) (p+ 4) (p+ 6)
− 4

m

(p−m)m (m+ 2)

(p− 1) p (p+ 2) (p+ 4)

=
4 (p−m) (m+ 2) ((m+ 4)− (p+ 6))

(p− 1) p (p+ 2) (p+ 4) (p+ 6)
=

−4 (p−m)
(
mp+ 2p+ 4−m2

)
(p− 1) p (p+ 2) (p+ 4) (p+ 6)

The third term is,

E
[
∥ub∥4

((
u⊤a Qmva

)2
+ 2u⊤a Qmvau

⊤
b vb +

(
u⊤b vb

)2)]
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= E
[
∥ub∥4

(
u⊤a Qmva

)2]
+ 2E

[
∥ub∥4 u⊤a Qmvau

⊤
b vb

]
︸ ︷︷ ︸

=0, by Prop. 12

+E
[
∥ub∥4

(
u⊤b vb

)2]

= E
[
∥ub∥4

(
u⊤a Qmva

)2]︸ ︷︷ ︸
solved in Eq. (28)

+E
[
∥ub∥4

(
u⊤a va

)2]︸ ︷︷ ︸
solved in Eq. (15)

(plugging in m← p−m)

=
(p−m)(mp2−m2p−5m2+7mp+12m−2p−4)

(p−1)p(p+2)(p+4)(p+6) +
(p−m)m(m2−2mp−6m+p2+6p+8)

(p−1)p(p+2)(p+4)(p+6)

=
(p−m)

(
m3 − 3m2p− 11m2 + 2mp2 + 13mp+ 20m− 2p− 4

)
(p− 1) p (p+ 2) (p+ 4) (p+ 6)

Finally, summing the three terms (and after some tedious algebra), we get the required

E
(
e⊤2 Oe2 · e⊤2 Oe1

)2
=

(m+4)(2mp+4p+m−m2−6)−(p−m)(p−m+2)(m(m−2p−5)+10)

(p−1)p(p+2)(p+4)(p+6) .
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Proposition 19. For p ≥ 3,m ∈ {2, 3, . . . , p} and a random transformation O sampled as de-
scribed in Eq. (1), it holds that,

E
(
e⊤2 Oe3 · e⊤2 Oe1

)2
=

4mp(−m2+m+4)+4(m+1)(m+2)p2+(m−6)(m−1)m(m+1)−8(2p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6) .

Proof. We show that,

E
(
e⊤2 Oe3 · e⊤2 Oe1

)2
= E

(
u⊤
([

Qm

0

]
+
[
0

Ip−m

])
z · u⊤

([
Qm

0

]
+
[
0

Ip−m

])
v
)2

= E
(
u⊤a Qmza + u⊤b zb

)2 (
u⊤a Qmva + u⊤b vb

)2
= E

((
u⊤a Qmza

)2
+ 2u⊤a Qmzau

⊤
b zb +

(
u⊤b zb

)2) (
u⊤a Qmva + u⊤b vb

)2
,

where the expectation is computed over the orthogonal matrix Qm ∼ O(m) and three random
(isotropic) orthogonal unit vectors u ⊥ v ⊥ z ∈ Sp−1.

Again, starting from the first additive term,

E
[(
u⊤a Qmza

)2 ((
u⊤a Qmva

)2
+ 2u⊤a Qmvau

⊤
b vb +

(
u⊤b vb

)2)]
= E

(u⊤a Qmza
)2 (

u⊤a Qmva

)2︸ ︷︷ ︸
solved in Eq. (34)

+2
(
u⊤a Qmza

)2
u⊤a Qmvau

⊤
b vb︸ ︷︷ ︸

=0, by Cor. 12

+
(
u⊤a Qmza

)2 (
u⊤b vb

)2︸ ︷︷ ︸
solved in Eq. (35)


= m(p+3)((m+2)p+5m+2)−16p−24

(p−1)p(p+1)(p+2)(p+4)(p+6) +
(p−m)(m+2)(m(p2+5p+2)−6p−4)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

=
(p−2)(m(p+3)((m+2)p+5m+2)−16p−24)+(p−m)(m+2)(m(p2+5p+2)−6p−4)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .

The second term is,

E
[
2u⊤a Qmzau

⊤
b zb

((
u⊤a Qmva

)2
+ 2u⊤a Qmvau

⊤
b vb +

(
u⊤b vb

)2)]
= E

[
2u⊤a Qmzau

⊤
b zb

(
u⊤a Qmva

)2]︸ ︷︷ ︸
=0, by Cor. 12

+4E
[
u⊤a Qmzau

⊤
b zbu

⊤
a Qmvau

⊤
b vb

]
+

E
[
2u⊤a Qmzau

⊤
b zb

(
u⊤b vb

)2]︸ ︷︷ ︸
=0, by Cor. 12

= 4Eu⊥v⊥z,Qm

[
u⊤a Qmzau

⊤
b zbu

⊤
a Qmvau

⊤
b vb

]
= 4Eu⊥v⊥z

[
∥ua∥2 Er∼Sm−1

(
v⊤a rr

⊤za
)
u⊤b zbu

⊤
b vb

]
=

4

m
Eu⊥v⊥z

[
∥ua∥2 v⊤a zau⊤b zbu⊤b vb

]
︸ ︷︷ ︸

solved in Eq. (39)

=
4 (p−m)

(
(m+ 2) p2 + (2− 3m) p− 2m2 (p+ 2)− 6m+ 4

)
(p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

.

And the third additive term is,

E
[(
u⊤b zb

)2 ((
u⊤a Qmva

)2
+ 2u⊤a Qmvau

⊤
b vb +

(
u⊤b vb

)2)]
= E

[(
u⊤b zb

)2 (
u⊤a Qmva

)2]︸ ︷︷ ︸
=E

[
(u⊤

a Qmza)
2
(u⊤

b vb)
2
]

due to the invariance (Prop. 9),
already solved in Eq. (35)

+2E
[(
u⊤b zb

)2
u⊤a Qmvau

⊤
b vb

]
︸ ︷︷ ︸

=0, by Cor. 12

+E
[(
u⊤b zb

)2 (
u⊤b vb

)2]︸ ︷︷ ︸
solved in Eq. (40)

=
(p−m)(m+2)(m(p2+5p+2)−6p−4)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

m(p−m)(−m2+mp+2p+4)
(p−1)p(p+1)(p+2)(p+4)(p+6)

=
(p−m)

(
(m+ 2)

(
m
(
p2 + 5p+ 2

)
− 6p− 4

)
+ (p− 2)m

(
−m2 +mp+ 2p+ 4

))
(p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

.

By adding these three terms and after some tedious algebra, we get the required proposition.
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Proposition 20. For p ≥ 2,m ∈ {2, . . . , p} and a random transformation O sampled as described
in Eq. (1), it holds that,

E
[
e⊤2 Oe1e

⊤
1 Oe1e

⊤
1 Oe2

]
=

(p−m)
(
−m2 +mp−m+ p− 2

)
(p− 1) p (p+ 2) (p+ 4)

Proof. First, we notice that

Eu⊥v,Qm

[
v⊤a Qmuau

⊤
a Qmuau

⊤
b vb

]
= Eu⊥v

[
v⊤a Er∼Sm−1

[
(∥ua∥ r) (∥ua∥ r)⊤

]
uau

⊤
b vb

]
= Eu⊥v

[
∥ua∥2 v⊤a Er∼Sm−1

[
rr⊤

]
uau

⊤
b vb

]
=

1

m
Eu⊥v

[
∥ua∥2 v⊤a uau

⊤
b vb

]
= − 1

m
E
[
∥ua∥2

(
u⊤b vb

)2]
.

Then, we focus on our quantity of interest here,

E
(
e⊤2 Oe1e

⊤
1 Oe1e

⊤
1 Oe2

)
= Eu⊥v,Qm

[
v⊤
[
Qm

Ip−m

]
uu⊤

[
Qm

Ip−m

]
uu⊤

[
Qm

Ip−m

]
v
]

= E
[(
v⊤a Qmua + v⊤b ub

) (
u⊤a Qmua + u⊤b ub

) (
u⊤a Qmva + u⊤b vb

)]
.

Splitting the first multiplicative term, we get,

E
[
v⊤a Qmua

(
u⊤a Qmua + u⊤b ub

) (
u⊤a Qmva + u⊤b vb

)]
Cor. 12 = E

[
v⊤a Qmuau

⊤
a Qmuau

⊤
b vb

]
+ E

[
v⊤a Qmuau

⊤
b ubu

⊤
a Qmva

]
= E

[
v⊤a Qmuau

⊤
a Qmuau

⊤
b vb

]
+ E

[
∥ub∥2 v⊤a Qmuau

⊤
a Qmva

]
︸ ︷︷ ︸

solved in Eq. (27)

,

[above] = − 1

m
Eu⊥v

[
∥ua∥2

(
u⊤b vb

)2]
+

(p−m) (p−m+ 2)

(p− 1) p (p+ 2) (p+ 4)
,

and

E
[
v⊤b ub

(
u⊤a Qmua + u⊤b ub

) (
u⊤a Qmva + u⊤b vb

)]
[Cor. 12] = E

[
v⊤b ubu

⊤
a Qmuau

⊤
a Qmva

]
+ E

[
v⊤b ubu

⊤
b ubu

⊤
b vb

]
= E

[
v⊤b ubu

⊤
a Qmuau

⊤
a Qmva

]
+ E

[
∥ub∥2

(
u⊤b vb

)2]
[invariance of Qm w.r.t. transpose (Prop. 9)]

= E
[
v⊤a Qmuau

⊤
a Qmuau

⊤
b vb

]
+ E

[(
1− ∥ua∥2

) (
u⊤b vb

)2]
[above] = − 1

m
Eu⊥v

[
∥ua∥2

(
u⊤b vb

)2]
+ E

[(
u⊤b vb

)2]− E
[
∥ua∥2

(
u⊤b vb

)2]
.

(9)

Combining the above, we get

E
(
e⊤2 Oe1e

⊤
1 Oe1e

⊤
1 Oe2

)
= (p−m)(p−m+2)

(p−1)p(p+2)(p+4) + E
[(
u⊤b vb

)2]︸ ︷︷ ︸
solved in Eq. (23)

−
(
1 +

2

m

)
E
[
∥ua∥2

(
u⊤b vb

)2]︸ ︷︷ ︸
solved in Eq. (17)

= (p−m)(p−m+2)
(p−1)p(p+2)(p+4) +

(p−m)m
(p−1)p(p+2) −

m+2
m

(p−m)m(m+2)
(p−1)p(p+2)(p+4)

=
(p−m)

(
−m2 +mp−m+ p− 2

)
(p− 1) p (p+ 2) (p+ 4)

.
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Proposition 21. For p ≥ 3,m ∈ {2, 3, . . . , p} and a random transformation O sampled as de-
scribed in Eq. (1), it holds that,

E
[
e⊤2 Oe1e

⊤
3 Oe1e

⊤
3 Oe2

]
=

(p−m)
(
2m2 − 3mp− 2m− p+ 8

)
(p− 2) (p− 1) p (p+ 2) (p+ 4)

Proof. We start by decomposing the expectation into the following,

E
[
e⊤2 Oe1e

⊤
3 Oe1e

⊤
3 Oe2

]
= E

[
v⊤
[
Qm

Ip−m

]
u · z⊤

[
Qm

Ip−m

]
u · z⊤

[
Qm

Ip−m

]
v
]

= E
[
v⊤a Qmua ·

(
z⊤a Qmua + z⊤b ub

)
·
(
z⊤a Qmva + z⊤b vb

)]
+

E
[
v⊤b ub ·

(
z⊤a Qmua + z⊤b ub

)
·
(
z⊤a Qmva + z⊤b vb

)]
Focusing on the first additive term and by employing Cor. 12 (in the first step below), we get,

E
[
v⊤a Qmua

(
z⊤a Qmua + z⊤b ub

) (
z⊤a Qmva + z⊤b vb

)]
= E

[
v⊤a Qmua · z⊤a Qmua · z⊤b vb

]
+ E

[
v⊤a Qmua · z⊤b ub · z⊤a Qmva

]
= E

[
∥ua∥2 v⊤a Er∼Sm−1

[
rr⊤

]
za · z⊤b vb

]
+ E

z⊤b ub ·

 m∑
i,j=1

viqijuj

 m∑
k,ℓ=1

zkqkℓvℓ


=

1

m
E
[
∥ua∥2 v⊤a za︸ ︷︷ ︸

=−z⊤
b vb

·z⊤b vb

]
+ E

( p∑
s=m+1

uszs

)
·

 m∑
i,j=1

viqijuj

 m∑
k,ℓ=1

zkqkℓvℓ


= − 1

m
E
[
∥ua∥2

(
v⊤b zb

)2]︸ ︷︷ ︸
solved in Eq. (41)

+(p−m)

m∑
i,j=1

m∑
k,ℓ=1

E [ujupvivℓzkzp]E [qijqkℓ]

[By Prop. 10, most summands are zero]

= − 1

m

m (p−m) (mp+ 2m− 4)

(p− 2) (p− 1) p (p+ 2) (p+ 4)
+ (p−m)

m∑
i,j=1

E [ujupvivjzizp]E
[
q2ij
]

= − (p−m)(mp+2m−4)
(p−2)(p−1)p(p+2)(p+4) +

p−m

m

mE
[
u1upv

2
1z1zp

]︸ ︷︷ ︸
i=j

+m (m− 1)E [u2upv1v2z1zp]︸ ︷︷ ︸
i ̸=j


= − (p−m) (mp+ 2m− 4)

(p− 2) (p− 1) p (p+ 2) (p+ 4)
+ (p−m)

(〈
1 2 1
1 0 1−→
0
−→
0
−→
0

〉
+ (m− 1)

〈 0 1 1
1 1 0
1 0 1−→
0
−→
0
−→
0

〉)
= (p−m)

(
− mp+2m−4

(p−2)(p−1)p(p+2)(p+4) +
−1

(p−1)p(p+2)(p+4) +
2(m−1)

(p−2)(p−1)p(p+2)(p+4)

)
= (p−m)

(
−mp+ 2

(p− 2) (p− 1) p (p+ 2) (p+ 4)
+

−1

(p− 1) p (p+ 2) (p+ 4)

)
=

(p−m) (−mp− p+ 4)

(p− 2) (p− 1) p (p+ 2) (p+ 4)

In addition, the second term is,

E
[
v⊤b ub

(
z⊤a Qmua + z⊤b ub

) (
z⊤a Qmva + z⊤b vb

)]
= E

[
v⊤b ub · z⊤a Qmua · z⊤a Qmva

]
+ E

[
v⊤b ub · z⊤b ub · z⊤b vb

]
= E

[
∥za∥2 v⊤b ubv

⊤
a Er∼Sm−1

[
rr⊤

]
ua

]
+ E

[
v⊤b ubz

⊤
b ubz

⊤
b vb

]
=

1

m
E
[
∥za∥2 v⊤b ub v⊤a ua︸ ︷︷ ︸

=−v⊤
b ub

]
+ E

[
v⊤b ubz

⊤
b ub z⊤b vb︸ ︷︷ ︸

=−z⊤
a va

]
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= − 1

m
E
[
∥za∥2

(
v⊤b ub

)2]︸ ︷︷ ︸
solved in Eq. (41)

−E
[
v⊤b ubz

⊤
b ubz

⊤
a va

]

= − 1

m

m (p−m) (mp+ 2m− 4)

(p− 2) (p− 1) p (p+ 2) (p+ 4)
−

p∑
i=m+1

p∑
k=m+1

m∑
ℓ=1

E [uiviukzkvℓzℓ]

= − (p−m) (mp+ 2m− 4)

(p− 2) (p− 1) p (p+ 2) (p+ 4)
−m

p∑
i=m+1

p∑
k=m+1

E [v1z1uiviukzk]

= − (p−m) (mp+ 2m− 4)

(p− 2) (p− 1) p (p+ 2) (p+ 4)
− (p−m)m

p∑
k=m+1

E [v1z1upvpukzk]

= − (p−m)

(
mp+2m−4

(p−2)(p−1)p(p+2)(p+4)

+m

E
[
u2
pv1vpz1zp

]︸ ︷︷ ︸
k=p

+(p−m− 1)E [up−1upv1vp−1z1zp]︸ ︷︷ ︸
m+1≤k≤p−1

)

= − (p−m)

(
mp+2m−4

(p−2)(p−1)p(p+2)(p+4) +m

(〈
0 1 1
2 1 1−→
0
−→
0
−→
0

〉
+ (p−m− 1)

〈 0 1 1
1 1 0
1 0 1−→
0
−→
0
−→
0

〉))
= − (p−m)

(
mp+2m−4

(p−2)(p−1)p(p+2)(p+4) +m
(

−1
(p−1)p(p+2)(p+4) +

2(p−m−1)
(p−2)(p−1)p(p+2)(p+4)

))
=

−2 (p−m)
(
−m2 +mp+m− 2

)
(p− 2) (p− 1) p (p+ 2) (p+ 4)

.

Overall, we get that

E
[
e⊤2 Oe1e

⊤
3 Oe1e

⊤
3 Oe2

]
= (p−m)(−mp−p+4)

(p−2)(p−1)p(p+2)(p+4) +
−2(p−m)(−m2+mp+m−2)
(p−2)(p−1)p(p+2)(p+4)

=
(p−m)

(
2m2 − 3mp− 2m− p+ 8

)
(p− 2) (p− 1) p (p+ 2) (p+ 4)

.
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Proposition 22. For p ≥ 2,m ∈ {2, . . . , p} and a random transformation O sampled as described
in Eq. (1), it holds that,

E
(
e⊤1 Oe1 · e⊤1 Oe2

) (
e⊤2 Oe1 · e⊤2 Oe2

)
=
−m4(p+3)+m3(3p2+8p−6)+m2(−3p3−6p2+13p+3)+m(p4−7p2+4p+6)+p4−p3−18p2−40p−24

(p−1)p(p+1)(p+2)(p+4)(p+6) .

Proof. We start by decomposing the quantity as follows,

E
(
e⊤1 Oe1 · e⊤1 Oe2

) (
e⊤2 Oe1 · e⊤2 Oe2

)
= E

[(
u⊤a Qmua + u⊤b ub

) (
u⊤a Qmva + u⊤b vb

) (
v⊤a Qmua + v⊤b ub

) (
v⊤a Qmva + v⊤b vb

)]
= E

[
u⊤a Qmua

(
u⊤a Qmva + u⊤b vb

) (
v⊤a Qmua + v⊤b ub

) (
v⊤a Qmva + v⊤b vb

)]
+

E
[
u⊤b ub

(
u⊤a Qmva + u⊤b vb

) (
v⊤a Qmua + v⊤b ub

) (
v⊤a Qmva + v⊤b vb

)]
We show that the first term is,

E
[
u⊤a Qmua

(
u⊤a Qmva + u⊤b vb

) (
v⊤a Qmua + v⊤b ub

) (
v⊤a Qmva + v⊤b vb

)]
= E

[
u⊤a Qmuau

⊤
a Qmva

(
v⊤a Qmua + v⊤b ub

) (
v⊤a Qmva + v⊤b vb

)]
+

E
[
u⊤a Qmuau

⊤
b vb

(
v⊤a Qmua + v⊤b ub

) (
v⊤a Qmva + v⊤b vb

)]
[Cor. 12] = E

[
u⊤a Qmuau

⊤
a Qmvav

⊤
a Qmuav

⊤
a Qmva

]
+ E

[
u⊤a Qmuau

⊤
b vbv

⊤
b ubv

⊤
a Qmva

]
+

E
[
u⊤a Qmuau

⊤
a Qmvav

⊤
b ubv

⊤
b vb

]
+ E

[
u⊤a Qmuau

⊤
b vbv

⊤
a Qmuav

⊤
b vb

]︸ ︷︷ ︸
equivalent

= E
[
u⊤a Qmuau

⊤
a Qmvav

⊤
a Qmuav

⊤
a Qmva

]
+ 2E

[
u⊤a Qmuau

⊤
a Qmvav

⊤
b ubv

⊤
b vb

]
+

E
[
u⊤a Qmuav

⊤
a Qmva

(
u⊤b vb

)2]
= E

[
u⊤a Qmuau

⊤
a Qmvav

⊤
a Qmuav

⊤
a Qmva

]
+

2E
[
∥ua∥2 Er∼Sm−1

(
r⊤uar

⊤va

)
v⊤b ubv

⊤
b vb

]
+ E

[
u⊤a Qmuav

⊤
a Qmva

(
u⊤b vb

)2]
= E

[
u⊤a Qmuau

⊤
a Qmvav

⊤
a Qmuav

⊤
a Qmva

]︸ ︷︷ ︸
solved in Prop. 23

+ 2
m E

[
∥ua∥2 u⊤a va · v⊤b ub ∥vb∥2

]
︸ ︷︷ ︸

solved in Eq. (29)

+

E
[
u⊤a Qmuav

⊤
a Qmva

(
v⊤b ub

)2]︸ ︷︷ ︸
solved in Eq. (30)

=
−(m2(2p+3)+m(−p2+14p+30)−6p2+4p+24)

(p−1)p(p+1)(p+2)(p+4)(p+6) +
2m(p−m)(p+3)(m2−mp−2(p+2))
m(p−1)p(p+1)(p+2)(p+4)(p+6) +

3(p−m)(−m2+mp+2p+4)
(p−1)p(p+1)(p+2)(p+4)(p+6)

=
−m3(2p+3)+m2(4p2+4p−3)−2m(p3−p2+9)−4(p3+2p2+4p+6)

(p−1)p(p+1)(p+2)(p+4)(p+6) .

Moreover, we show that the second term is,

E
[
u⊤b ub

(
u⊤a Qmva + u⊤b vb

) (
v⊤a Qmua + v⊤b ub

) (
v⊤a Qmva + v⊤b vb

)]
[Cor. 12] = E

[
u⊤b ubu

⊤
b vbv

⊤
b ubv

⊤
b vb

]
+ E

[
u⊤b ubu

⊤
a Qmvav

⊤
a Qmuav

⊤
b vb

]
+

E
[
u⊤b ubu

⊤
a Qmvav

⊤
b ubv

⊤
a Qmva

]
+ E

[
u⊤b ubu

⊤
b vbv

⊤
a Qmuav

⊤
a Qmva

]
= E

[
u⊤b ub

(
v⊤a ua

)2
v⊤b vb

]
+ E

[
u⊤b ubu

⊤
a Qmvav

⊤
a Qmuav

⊤
b vb

]
+

E
[
u⊤b ubu

⊤
b vb · u⊤a Qmvav

⊤
a Qmva

]
+ E

[
u⊤b ubu

⊤
b vb · v⊤a Qmuav

⊤
a Qmva

]︸ ︷︷ ︸
equal due to the invariance of Qm w.r.t. transpose (Prop. 9)

= E
[
u⊤b ub

(
v⊤a ua

)2
v⊤b vb

]
︸ ︷︷ ︸

solved in Eq. (31)

+E
[
u⊤b ubu

⊤
a Qmvav

⊤
a Qmuav

⊤
b vb

]︸ ︷︷ ︸
solved in Eq. (32)

+
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2E
[
u⊤b ubu

⊤
b vb · u⊤a Qmvav

⊤
a Qmva

]︸ ︷︷ ︸
solved in Eq. (33)

=
(p−m)m(m2(p+3)−2m(p2+5p+3)+p(p2+7p+10))

(p−1)p(p+1)(p+2)(p+4)(p+6) +

(p−m)(m2p+3m2−2mp2−10mp−6m+p3+7p2+10p)
(p−1)p(p+1)(p+2)(p+4)(p+6) + −2(p−m)(p+3)(3(p+1)+(m−1)(p−m−1))

(p−1)p(p+1)(p+2)(p+4)(p+6)

=
−(p−m)(p−m+2)(m2p+3m2−mp2−2mp+9m−p2−p+12)

(p−1)p(p+1)(p+2)(p+4)(p+6) .

Overall, we conclude that

E
(
e⊤1 Oe1 · e⊤1 Oe2

) (
e⊤2 Oe1 · e⊤2 Oe2

)
=
−m3(2p+3)+m2(4p2+4p−3)−2m(p3−p2+9)−4(p3+2p2+4p+6)

(p−1)p(p+1)(p+2)(p+4)(p+6) +

−(p−m)(p−m+2)(m2p+3m2−mp2−2mp+9m−p2−p+12)
(p−1)p(p+1)(p+2)(p+4)(p+6)

=
−m4(p+3)+m3(3p2+8p−6)+m2(−3p3−6p2+13p+3)+m(p4−7p2+4p+6)+p4−p3−18p2−40p−24

(p−1)p(p+1)(p+2)(p+4)(p+6) .
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Proposition 23. For p ≥ 2,m ∈ {2, . . . , p} and a random transformation O sampled as described
in Eq. (1), it holds that,

E
[
u⊤a Qmuau

⊤
a Qmvav

⊤
a Qmuav

⊤
a Qmva

]
=
−(m2(2p+3)+m(−p2+14p+30)−6p2+4p+24)

(p−1)p(p+1)(p+2)(p+4)(p+6) .

Proof.

E
[
u⊤a Qmuau

⊤
a Qmvav

⊤
a Qmuav

⊤
a Qmva

]
=

m∑
i,j=1

m∑
k,ℓ=1

m∑
n,r=1

m∑
s,t=1

E [uiujukvℓvnurvsvt]E [qijqkℓqnrqst]

=

m∑
i,n=1

m∑
j,ℓ,r,t=1

E [uiujuivℓvnurvnvt]E [qijqiℓqnrqnt]︸ ︷︷ ︸
i=k=⇒n=s

+

m∑
i ̸=k=1

m∑
j,ℓ,r,t=1

E [uiujukvℓviurvkvt] (E [qijqkℓqirqkt] + E [qijqkℓqkrqit])︸ ︷︷ ︸
i ̸=k=⇒(n=i̸=s=k)∨ (n=k ̸=s=i) due to symmetry w.r.t. n, s

=

m∑
i,n=1

m∑
j,ℓ,r,t=1

E
[
uiujuivℓurv

2
nvt
]
E [qijqiℓqnrqnt] +

m∑
i ̸=k=1

m∑
j,ℓ,r,t=1

E [uiujukvℓviurvkvt] (E [qijqkℓqirqkt] + E [qijqkℓqkrqit])

= m

m∑
n=1

m∑
j,ℓ,r,t=1

E
[
u2
1ujurvℓvtv

2
n

]
E [q1,jq1,ℓqnrqnt]︸ ︷︷ ︸

≜(A) below

+

m

m∑
k=2

m∑
j,ℓ,r,t=1

E [u1v1urujukvkvℓvt] (E [q1,jqkℓq1,rqkt] + E [q1,jqkℓqkrq1,t])︸ ︷︷ ︸
≜(B) below

=
−m3(p+3)+m2(p2−5p−12)+m(6p2−26p−60)+16p2−8p−48

(m+2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

−m3p−13m2p−24m2+2mp2−6mp−24m−4p2

(m+2)(p−1)p(p+1)(p+2)(p+4)(p+6)

=
−
(
m2 (2p+ 3) +m

(
−p2 + 14p+ 30

)
− 6p2 + 4p+ 24

)
(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)
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Deriving (A).

(A) =
m∑

n=1

m∑
j,ℓ,r,t=1

E
[
u2
1ujurvℓvtv

2
n

]
E [q1,jq1,ℓqnrqnt]

=

m∑
j,ℓ,r,t=1

E
[
u2
1ujurvℓvtv

2
1

]
E [q1,jq1,ℓq1,rq1,t]︸ ︷︷ ︸

n=1, solved below

+

(m− 1)

m∑
j,ℓ,r,t=1

E
[
u2
1ujurvℓvtv

2
2

]
E [q1,jq1,ℓq2,rq2,t]︸ ︷︷ ︸

n≥2, solved below

=
m2(p2+4p+15)+6m(p−3)(p+1)+4(5p2+2p−6)

m(m+2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

−m3p−3m3−9m2p−27m2−14mp−42m−4p2−16p−24
m(m+2)(p−1)p(p+1)(p+2)(p+4)(p+6)

=
−m3 (p+ 3) +m2

(
p2 − 5p− 12

)
+m

(
6p2 − 26p− 60

)
+ 16p2 − 8p− 48

m (m+ 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

When n = 1: The only nonzero options are
〈

4 0−→
0
−→
0

〉
and

〈
2 0
2 0−→
0
−→
0

〉
. We have,

m∑
j,ℓ,r,t=1

E
[
u2
1ujurvℓvtv

2
1

]
E [q1,jq1,ℓq1,rq1,t]

=
〈

4 0−→
0
−→
0

〉
m

m∑
j=1

E
[
u2
1u

2
jv

2
j v

2
1

]
+

〈
2 0
2 0−→
0
−→
0

〉
m

 m∑
j ̸=ℓ=1

E
[
u2
1u

2
jv

2
ℓ v

2
1

]︸ ︷︷ ︸
j=r ̸=ℓ=t

+

m∑
j ̸=r=1

E
[
u2
1ujurvjvrv

2
1

]︸ ︷︷ ︸
j=ℓ ̸=r=t

+

m∑
j ̸=ℓ=1

E
[
u2
1ujuℓvjvℓv

2
1

]︸ ︷︷ ︸
j=t̸=ℓ=r


=
〈

4 0−→
0
−→
0

〉
m

m∑
j=1

E
[
u2
1u

2
jv

2
1v

2
j

]
+
〈

2 0
2 0−→
0
−→
0

〉
m

m∑
j ̸=ℓ=1

(
E
[
u2
1u

2
jv

2
1v

2
ℓ

]
+ 2E

[
u2
1ujuℓv

2
1vjvℓ

])
=
〈

4 0−→
0
−→
0

〉
m

(
E
[
u4
1v

4
1

]
+ (m− 1)E

[
u2
1u

2
2v

2
1v

2
2

])
+〈

2 0
2 0−→
0
−→
0

〉
m

 m∑
j ̸=ℓ=1

E
[
u2
1u

2
jv

2
1v

2
ℓ

]
+ 2

m∑
j ̸=ℓ=1

E
[
u2
1ujuℓv

2
1vjvℓ

]
=
〈

4 0−→
0
−→
0

〉
m

(〈
4 4−→
0
−→
0

〉
p
+ (m− 1)

〈
2 2
2 2−→
0
−→
0

〉
p

)
+
〈

2 0
2 0−→
0
−→
0

〉
m

2

m∑
j ̸=ℓ=1

E
[
u2
1ujuℓvjvℓv

2
1

]
〈

2 0
2 0−→
0
−→
0

〉
m

(m− 1)E
[
u4
1v

2
2v

2
1

]︸ ︷︷ ︸
j=1,ℓ≥2

+(m− 1)E
[
u2
1u

2
2v

4
1

]︸ ︷︷ ︸
j≥2,ℓ=1

+(m− 1) (m− 2)E
[
u2
1u

2
2v

2
1v

2
3

]︸ ︷︷ ︸
j ̸=ℓ≥2


=
〈

4 0−→
0
−→
0

〉
m

(〈
4 4−→
0
−→
0

〉
p
+ (m− 1)

〈
2 2
2 2−→
0
−→
0

〉
p

)
+

〈
2 0
2 0−→
0
−→
0

〉
m

(
2 (m− 1)

〈
4 2
0 2−→
0
−→
0

〉
p
+ (m− 1) (m− 2)

〈 2 2
2 0
0 2−→
0
−→
0

〉
p

)
+

〈
2 0
2 0−→
0
−→
0

〉
m

2 (m− 1)

 2E
[
u3
1u2v2v

3
1

]︸ ︷︷ ︸
j=1,ℓ≥2∨ j≥2,ℓ=1

+(m− 2)E
[
u2
1u2u3v2v3v

2
1

]︸ ︷︷ ︸
j ̸=ℓ≥2



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=
〈

4 0−→
0
−→
0

〉
m

(〈
4 4−→
0
−→
0

〉
p
+ (m− 1)

〈
2 2
2 2−→
0
−→
0

〉
p

)
+

(m− 1)
〈

2 0
2 0−→
0
−→
0

〉
m

(
2
〈

4 2
0 2−→
0
−→
0

〉
p
+ (m− 2)

〈 2 2
2 0
0 2−→
0
−→
0

〉
p

+ 4
〈

3 3
1 1−→
0
−→
0

〉
p
+ 2 (m− 2)

〈 2 2
1 1
1 1−→
0
−→
0

〉
p

)

=
3

m (m+ 2)

(〈
4 4−→
0
−→
0

〉
p
+ (m− 1)

〈
2 2
2 2−→
0
−→
0

〉
p

)
+

(m− 1)

m (m+ 2)

(
2
〈

4 2
0 2−→
0
−→
0

〉
p
+ 4

〈
3 3
1 1−→
0
−→
0

〉
p
+ (m− 2)

(
2

〈 2 2
1 1
1 1−→
0
−→
0

〉
p

+

〈 2 2
2 0
0 2−→
0
−→
0

〉
p

))

= 3
m(m+2)

(
9(p−1)(p+1)+(m−1)(p2+4p+15)
(p−1)p(p+1)(p+2)(p+4)(p+6)

)
+

(m−1)
m(m+2)

(
2(p+1)·3(p+3)−4·9(p+1)

(p−1)p(p+1)(p+2)(p+4)(p+6) +
(m−2)(2(−p+3)+(p+3)2)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

m2
(
p2 + 4p+ 15

)
+ 6m (p− 3) (p+ 1) + 4

(
5p2 + 2p− 6

)
m (m+ 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

.
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When n ≥ 2: The only nonzero options are
〈

2 2−→
0
−→
0

〉
,
〈

1 1
1 1−→
0
−→
0

〉
,
〈

2 0
0 2−→
0
−→
0

〉
. We have,

m∑
j,ℓ,r,t=1

E
[
u2
1ujurvℓvtv

2
2

]
E [q1,jq1,ℓq2,rq2,t]

=
〈

2 2−→
0
−→
0

〉
m

m∑
j=1

E
[
u2
1u

2
jv

2
j v

2
2

]
︸ ︷︷ ︸

j=ℓ=r=t

+
〈

1 1
1 1−→
0
−→
0

〉
m

m∑
j ̸=ℓ=1

(
E
[
u2
1ujuℓvjvℓv

2
2

]
+ E

[
u2
1u

2
jv

2
ℓ v

2
2

])
︸ ︷︷ ︸

j=t ̸=r=ℓ∨ j=r ̸=t=ℓ

+

〈
2 0
0 2−→
0
−→
0

〉
m

m∑
j ̸=r=1

E
[
u2
1ujurvjvrv

2
2

]
︸ ︷︷ ︸

j=ℓ ̸=r=t

=
〈

2 2−→
0
−→
0

〉
m

m∑
j=1

E
[
u2
1u

2
jv

2
j v

2
2

]
+
〈

1 1
1 1−→
0
−→
0

〉
m

m∑
j ̸=ℓ=1

E
[
u2
1u

2
jv

2
ℓ v

2
2

]
+

(〈
1 1
1 1−→
0
−→
0

〉
m
+
〈

2 0
0 2−→
0
−→
0

〉
m

)
︸ ︷︷ ︸

=
1

(m−1)(m+2)

m∑
j ̸=r=1

E
[
u2
1ujurvjvrv

2
2

]

= 1
m(m+2)

(
E
[
u4
1v

2
1v

2
2

]︸ ︷︷ ︸
j=1

+E
[
u2
1u

2
2v

4
2

]︸ ︷︷ ︸
j=2

+(m− 2)E
[
u2
1u

2
3v

2
3v

2
2

]︸ ︷︷ ︸
j≥3

)
+

−1
(m−1)m(m+2)

(
E
[
u4
1v

4
2

]︸ ︷︷ ︸
j=1,ℓ=2

+E
[
u2
1u

2
2v

2
1v

2
2

]︸ ︷︷ ︸
j=2,ℓ=1

)
+

−1
(m−1)m(m+2) (m− 2)

(
E
[
u4
1v

2
2v

2
3

]︸ ︷︷ ︸
j=1,ℓ≥3

+E
[
u2
1u

2
3v

2
1v

2
2

]︸ ︷︷ ︸
j≥3,ℓ=1

+E
[
u2
1u

2
2v

2
2v

2
3

]︸ ︷︷ ︸
j=2,ℓ≥3

+E
[
u2
1u

2
3v

4
2

]︸ ︷︷ ︸
j≥3,ℓ=2

+

(m− 3)E
[
u2
1u

2
3v

2
2v

2
4

]︸ ︷︷ ︸
j ̸=ℓ≥3

)
+

1
(m−1)(m+2)

(
2E
[
u3
1u2v1v

3
2

]︸ ︷︷ ︸
j=1,r=2∨ j=2,r=1

+2 (m− 2)E
[
u3
1u3v1v

2
2v3
]︸ ︷︷ ︸

j=1,r≥3∨ j≥3,r=1

+2 (m− 2)E
[
u2
1u2u3v

3
2v3
]︸ ︷︷ ︸

j=2,r≥3∨ j≥3,r=2

+

(m− 2) (m− 3)E
[
u2
1u3u4v

2
2v3v4

]︸ ︷︷ ︸
j ̸=r≥3

)

= 1
m(m+2)

(
2
〈

4 2
0 2−→
0
−→
0

〉
+ (m− 2)

〈 2 0
0 2
2 2−→
0
−→
0

〉)
+ −1

(m−1)m(m+2)

(〈
4 0
0 4−→
0
−→
0

〉
+
〈

2 2
2 2−→
0
−→
0

〉)
+

−(m−2)
(m−1)m(m+2)

(〈 4 0
0 2
0 2−→
0
−→
0

〉
+

〈 2 2
0 2
2 0−→
0
−→
0

〉
+

〈 2 0
2 2
0 2−→
0
−→
0

〉
+

〈 2 0
0 4
2 0−→
0
−→
0

〉
+ (m− 3)

〈 2 0
0 2
2 0
0 2−→
0
−→
0

〉)
+

1
(m−1)(m+2)

(
2
〈

3 1
1 3−→
0
−→
0

〉
+ 2 (m− 2)

〈 3 1
0 2
1 1−→
0
−→
0

〉
+ 2 (m− 2)

〈 2 0
1 3
1 1−→
0
−→
0

〉
+

(m− 2) (m− 3)

〈 2 0
0 2
1 1
1 1−→
0
−→
0

〉)
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= 1
m(m+2)

(
2
〈

4 2
0 2−→
0
−→
0

〉
+ (m− 2)

〈 2 0
0 2
2 2−→
0
−→
0

〉)
+

−1
(m−1)m(m+2)

(〈
4 0
0 4−→
0
−→
0

〉
+
〈

2 2
2 2−→
0
−→
0

〉
+

(m− 2)

(
2

〈 4 0
0 2
0 2−→
0
−→
0

〉
+ 2

〈 2 2
0 2
2 0−→
0
−→
0

〉
+ (m− 3)

〈 2 0
0 2
2 0
0 2−→
0
−→
0

〉))
+

1
(m−1)(m+2)

(
2
〈

3 1
1 3−→
0
−→
0

〉
+ 4 (m− 2)

〈 3 1
0 2
1 1−→
0
−→
0

〉
+ (m− 2) (m− 3)

〈 2 0
0 2
1 1
1 1−→
0
−→
0

〉)
= 1

m(m+2)

(
2(p+1)·3(p+3)+(m−2)(p+3)2

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
+

1
(m−1)(m+2)

(
−2·9(p+3)+4(m−2)(−3(p+3))+(m−2)(m−3)(−p−3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
+

−1
(m−1)m(m+2)

(
9(p+3)(p+5)+(p2+4p+15)

(p−1)p(p+1)(p+2)(p+4)(p+6) + (m− 2) 2·3(p+3)(p+5)+2(p+3)2+(m−3)(p+3)(p+5)
(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= −m3p−3m3−9m2p−27m2−14mp−42m−4p2−16p−24

(m−1)m(m+2)(p−1)p(p+1)(p+2)(p+4)(p+6)
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Deriving (B).

(B) =
m∑

k=2

m∑
j,ℓ,r,t=1

E [u1v1urujukvkvℓvt] (E [q1,jqkℓq1,rqkt] + E [q1,jqkℓqkrq1,t])

= (m− 1)

m∑
j,ℓ,r,t=1

E [u1u2ujurv1v2vℓvt] (E [q1,jq1,rq2,ℓq2,t] + E [q1,jq1,tq2,ℓq2,r])

= (m− 1) 2
〈

2 2−→
0
−→
0

〉
m

m∑
j=1

E
[
u1u2u

2
jv1v2v

2
j

]
︸ ︷︷ ︸

j=r=ℓ=t

+

(m− 1)

m∑
j ̸=ℓ=1

E
[
u1u2u

2
jv1v2v

2
ℓ

](〈 2 0
0 2−→
0
−→
0

〉
m
+
〈

1 1
1 1−→
0
−→
0

〉
m

)
︸ ︷︷ ︸

j=r ̸=ℓ=t

+

(m− 1) 2
〈

1 1
1 1−→
0
−→
0

〉
m

m∑
j ̸=r=1

E [u1u2ujurv1v2vjvr]︸ ︷︷ ︸
j=ℓ ̸=r=t

+

(m− 1)

m∑
j ̸=ℓ=1

E [u1u2ujuℓv1v2vjvℓ]

(〈
1 1
1 1−→
0
−→
0

〉
m
+
〈

2 0
0 2−→
0
−→
0

〉
m

)
︸ ︷︷ ︸

j=t ̸=ℓ=r

= (m− 1)

(
2
〈

2 2−→
0
−→
0

〉
m

m∑
j=1

E
[
u1u2u

2
jv1v2v

2
j

]
+

(〈
2 0
0 2−→
0
−→
0

〉
m
+
〈

1 1
1 1−→
0
−→
0

〉
m

) m∑
j ̸=ℓ=1

E
[
u1u2u

2
jv1v2v

2
ℓ

])
+

(m− 1)

(
3
〈

1 1
1 1−→
0
−→
0

〉
m
+
〈

2 0
0 2−→
0
−→
0

〉
m

) m∑
j ̸=r=1

E [u1u2ujurv1v2vjvr]

= (m− 1)

 2
m(m+2)

m∑
j=1

E
[
u1u2u

2
jv1v2v

2
j

]
+ (m+1)−1

(m−1)m(m+2)

m∑
j ̸=ℓ=1

E
[
u1u2u

2
jv1v2v

2
ℓ

]+

(m− 1) −3+(m+1)
(m−1)m(m+2)

m∑
j ̸=r=1

E [u1u2ujurv1v2vjvr]

= (m−1)
(m−1)m(m+2)

(
2 (m− 1)

m∑
j=1

E
[
u1u2u

2
jv1v2v

2
j

]
+m

m∑
j ̸=ℓ=1

E
[
u1u2u

2
jv1v2v

2
ℓ

]
+ (m− 2)

m∑
j ̸=r=1

E [u1u2ujurv1v2vjvr]

)

= 1
m(m+2)

(
2 (m− 1)

m∑
j=1

E
[
u1u2u

2
jv1v2v

2
j

]
+m

m∑
j ̸=ℓ=1

E
[
u1u2u

2
jv1v2v

2
ℓ

]
+

(m− 2)

m∑
j ̸=r=1

E [u1u2ujurv1v2vjvr]

)

= 1
m(m+2)

(
2 (m− 1)

(
2E
[
u3
1u2v

3
1v2
]︸ ︷︷ ︸

j=1,2

+(m− 2)E
[
u1u2u

2
3v1v2v

2
3

]︸ ︷︷ ︸
j≥3

)
+
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m

m∑
j ̸=ℓ=1

E
[
u1u2u

2
jv1v2v

2
ℓ

])
+

(m−2)
m(m+2)

(
2E
[
u2
1u

2
2v

2
1v

2
2

]︸ ︷︷ ︸
j=1,r=2∨ r=1,j=2

+4 (m− 2)E
[
u2
1u2u3v

2
1v2v3

]︸ ︷︷ ︸
j≤2,r≥3∨ r≤2,j≥3

+

(m− 2) (m− 3)E [u1u2u3u4v1v2v3v4]︸ ︷︷ ︸
j ̸=r≥3

)

= 2(m−1)
m(m+2)

(
2
〈

3 3
1 1−→
0
−→
0

〉
+ (m− 2)

〈 1 1
1 1
2 2−→
0
−→
0

〉)
+

(m−2)
m(m+2)

(
2
〈

2 2
2 2−→
0
−→
0

〉
+ 4 (m− 2)

〈 2 2
1 1
1 1−→
0
−→
0

〉
+ (m− 2) (m− 3)

〈 1 1
1 1
1 1
1 1−→
0
−→
0

〉)
+

m
m(m+2)

(
2E
[
u3
1u2v1v

3
2

]︸ ︷︷ ︸
j=1,ℓ=2∨ j=2,ℓ=1

+2 (m− 2)E
[
u3
1u2v1v2v

2
3

]︸ ︷︷ ︸
j∈{1,2},ℓ≥3

+2 (m− 2)E
[
u1u2u

2
3v

3
1v2
]︸ ︷︷ ︸

ℓ∈{1,2},j≥3

+

(m− 2) (m− 3)E
[
u1u2u

2
3v1v2v

2
4

]︸ ︷︷ ︸
ℓ ̸=j≥3

)

= 2(m−1)
m(m+2)

(
2
〈

3 3
1 1−→
0
−→
0

〉
+ (m− 2)

〈 1 1
1 1
2 2−→
0
−→
0

〉)
+

(m−2)
m(m+2)

(
2
〈

2 2
2 2−→
0
−→
0

〉
+ 4 (m− 2)

〈 2 2
1 1
1 1−→
0
−→
0

〉
+ (m− 2) (m− 3)

〈 1 1
1 1
1 1
1 1−→
0
−→
0

〉)
+

m
m(m+2)

(
2
〈

3 1
1 3−→
0
−→
0

〉
+ 2 (m− 2)

〈 3 1
1 1
0 2−→
0
−→
0

〉
+

2 (m− 2)

〈 1 3
1 1
2 0−→
0
−→
0

〉
+ (m− 2) (m− 3)

〈 1 1
1 1
2 0
0 2−→
0
−→
0

〉)

= 4(m−1)
m(m+2)

〈
3 3
1 1−→
0
−→
0

〉
+
(

2(m−1)(m−2)
m(m+2) + 4(m−2)2

m(m+2)

)〈 2 2
1 1
1 1−→
0
−→
0

〉
+

(m−2)
m(m+2)

(
2
〈

2 2
2 2−→
0
−→
0

〉
+ (m− 2) (m− 3)

〈 1 1
1 1
1 1
1 1−→
0
−→
0

〉)
+

m
m(m+2)

(
2
〈

3 1
1 3−→
0
−→
0

〉
+ 4 (m− 2)

〈 3 1
1 1
0 2−→
0
−→
0

〉
+ (m− 2) (m− 3)

〈 1 1
1 1
2 0
0 2−→
0
−→
0

〉)

= −4(m−1)·9(p+1)+2(m−2)(3m−5)(−p+3)
m(m+2)(p−1)p(p+1)(p+2)(p+4)(p+6) + (m−2)

m(m+2)

(
2(p2+4p+15)+3(m−2)(m−3)
(p−1)p(p+1)(p+2)(p+4)(p+6)

)
+

m
m(m+2)

(
−2·9(p+3)−4(m−2)·3(p+3)−(m−2)(m−3)(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

−m3p− 13m2p− 24m2 + 2mp2 − 6mp− 24m− 4p2

m (m+ 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)
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Proposition 24. For p ≥ 3,m ∈ {2, 3, . . . , p} and a random transformation O sampled as de-
scribed in Eq. (1), it holds that,

E
(
e⊤1 Oe1 · e⊤1 Oe2

) (
e⊤3 Oe1 · e⊤3 Oe2

)
= 2m4p+4m4−7m3p2−18m3p+8m2p3+25m2p2+24m2p

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

20m2−3mp4−11mp3−44mp2−64mp−24m−p4+11p3+32p2+68p+48
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

Proof. Like in previous proofs, we decompose the expression into,

E
(
e⊤1 Oe1 · e⊤1 Oe2

) (
e⊤3 Oe1 · e⊤3 Oe2

)
= E

[(
u⊤a Qmua + u⊤b ub

) (
u⊤a Qmva + u⊤b vb

) (
z⊤a Qmua + z⊤b ub

) (
z⊤a Qmva + z⊤b vb

)]
= E

[
u⊤a Qmua

(
u⊤a Qmva + u⊤b vb

) (
z⊤a Qmua + z⊤b ub

) (
z⊤a Qmva + z⊤b vb

)]
+

E
[
u⊤b ub

(
u⊤a Qmva + u⊤b vb

) (
z⊤a Qmua + z⊤b ub

) (
z⊤a Qmva + z⊤b vb

)]
(10)

Focusing on the first term, and employing Cor. 12, we see that,

E
[
u⊤a Qmua

(
u⊤a Qmva + u⊤b vb

) (
z⊤a Qmua + z⊤b ub

) (
z⊤a Qmva + z⊤b vb

)]
= E

[
u⊤a Qmuau

⊤
a Qmvaz

⊤
a Qmuaz

⊤
a Qmva

]
+ E

[
u⊤a Qmuau

⊤
a Qmvaz

⊤
b ubz

⊤
b vb

]
+

E
[
u⊤a Qmuau

⊤
b vbz

⊤
a Qmuaz

⊤
b vb

]
+ E

[
u⊤a Qmuau

⊤
b vbz

⊤
b ubz

⊤
a Qmva

]
The polynomial in the first summand can be derived tediously, very much like in the proof of the
former Prop. 23, and shown to hold

E
[
u⊤a Qmuau

⊤
a Qmvaz

⊤
a Qmuaz

⊤
a Qmva

]
=
−m2(2p2+9p+6)+m(p−2)(p2−6)+2p3+32p+48

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .

The sum of the three rightmost summands is,

E
[
u⊤a Qmuau

⊤
a Qmvaz

⊤
b ubz

⊤
b vb

]
+ E

[
u⊤a Qmuau

⊤
b vbz

⊤
a Qmuaz

⊤
b vb

]
+

+ E
[
u⊤a Qmuau

⊤
b vbz

⊤
b ubz

⊤
a Qmva

]
=

m∑
i,j,k,ℓ=1

(
E
[
uiujqijukvℓqkℓz

⊤
b ubz

⊤
b vb

]
+ E

[
uiujqiju

⊤
b vbzkuℓqkℓz

⊤
b vb

])
+

m∑
i,j,k,ℓ=1

(
E
[
uiujqijzkvℓqkℓu

⊤
b vbz

⊤
b ub

])
=

m∑
i,j,k,ℓ=1

E [qijqkℓ]
(
E
[
uiujukvℓz

⊤
b ubz

⊤
b vb

]
+ E

[
uiuju

⊤
b vbzkuℓz

⊤
b vb

])
+

m∑
i,j,k,ℓ=1

E [qijqkℓ]
(
E
[
uiujzkvℓu

⊤
b vbz

⊤
b ub

])
=

m∑
i,j=1

E
[
q2ij
]︸ ︷︷ ︸

=1/m

(
E
[
uiujuivjz

⊤
b ubz

⊤
b vb

]
+ E

[
uiujziuju

⊤
b vbz

⊤
b vb

]
+ E

[
uiujzivju

⊤
b vbz

⊤
b ub

])
=

1

m

(
E
[
∥ua∥2 u⊤a vaz

⊤
b ubz

⊤
b vb

]
+ E

[
∥ua∥2 u⊤a zau⊤b vbz

⊤
b vb

]
+ E

[
u⊤a vau

⊤
a zau

⊤
b vbz

⊤
b ub

])
=

1

m

(
2E
[
∥ua∥2 v⊤b zbu⊤b zbu⊤a va

]
︸ ︷︷ ︸

obtained from Eq. (39) by plugging in m← p−m

+ E
[
u⊤a vau

⊤
a zau

⊤
b vbz

⊤
b ub

]︸ ︷︷ ︸
solved in Eq. (40)

since u⊤
a va = −u⊤

b vb and u⊤
a za = −z⊤

b ub

)

= 2
(p−m)(m+2)(2(p−m)p+4(p−m)−p2−3p+2)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +
(p−m)(−m2+mp+2p+4)

(p−1)p(p+1)(p+2)(p+4)(p+6)

=
− (p−m) (m+ 2)

(
5mp+ 6m− 3p2 − 2p

)
(p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

.
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Overall, the first term of Eq. (10) equals,

E
[
u⊤a Qmua

(
u⊤a Qmva + u⊤b vb

) (
z⊤a Qmua + z⊤b ub

) (
z⊤a Qmva + z⊤b vb

)]
=

6(m3+m2+2m+8)+4(m+2)p3−2(5m2+8m−2)p2+(m−2)(5m2+3m−16)p
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .

The second term holds,

E
[
u⊤b ub

(
u⊤a Qmva + u⊤b vb

) (
z⊤a Qmua + z⊤b ub

) (
z⊤a Qmva + z⊤b vb

)]
= E

[
u⊤b ubu

⊤
b vbz

⊤
b ubz

⊤
b vb

]
+ E

[
u⊤b ubu

⊤
a Qmvaz

⊤
a Qmuaz

⊤
b vb

]
+

E
[
u⊤b ubu

⊤
a Qmvaz

⊤
b ubz

⊤
a Qmva

]
+ E

[
u⊤b ubu

⊤
b vbz

⊤
a Qmuaz

⊤
a Qmva

]︸ ︷︷ ︸
equal (swap v, z and map Q→ Q⊤)

= E
[
u⊤b ubu

⊤
b vbz

⊤
b ubz

⊤
b vb

]
+ E

[
u⊤b ubz

⊤
b vb · u⊤a Qmvaz

⊤
a Qmua

]
+

2E
[
u⊤b ubu

⊤
b vb · z⊤a Qmuaz

⊤
a Qmva

]
= E

[
u⊤b ubu

⊤
b vbz

⊤
a uaz

⊤
a va

]︸ ︷︷ ︸
solved in Eq. (42)

+E
[
u⊤b ubz

⊤
b vb · u⊤a Qmvaz

⊤
a Qmua

]︸ ︷︷ ︸
solved in Eq. (45)

+

2E
[
u⊤b ubu

⊤
b vb · z⊤a Qmuaz

⊤
a Qmva

]︸ ︷︷ ︸
solved in Eq. (46)

=
(p−m)

((
1+

1
m

)
m(p−m+2)(2mp+4m−p2−3p+2)

)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

(p−m)(2(m2p2+5m2p+2m2−mp3−7mp2−16mp−12m+4p2+16p+16))
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

=
(p−m)(p−m+2)(2m2p+4m2−3mp2−11mp+2m−p2+5p+18)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .

Finally, the overall expression holds,

E
(
e⊤1 Oe1 · e⊤1 Oe2

) (
e⊤3 Oe1 · e⊤3 Oe2

)
=

6(m3+m2+2m+8)+4(m+2)p3−2(5m2+8m−2)p2+(m−2)(5m2+3m−16)p
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

(p−m)(p−m+2)(2m2p+4m2−3mp2−11mp+2m−p2+5p+18)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

= 2m4p+4m4−7m3p2−18m3p+8m2p3+25m2p2+24m2p
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

20m2−3mp4−11mp3−44mp2−64mp−24m−p4+11p3+32p2+68p+48
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .
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Proposition 25. For p ≥ 4,m ∈ {2, 3, . . . , p} and a random transformation O sampled as de-
scribed in Eq. (1), it holds that,

E
(
e⊤3 Oe4 · e⊤3 Oe1

) (
e⊤2 Oe4 · e⊤2 Oe1

)
= −5m4p−6m4+18m3p2+34m3p−12m3−20m2p3−46m2p2−39m2p−42m2+6mp4+10mp3+96mp2

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

154mp+60m+2p4−30p3−32p2−144p−144
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .

Proof. We begin by decomposing the expression into four terms,
E
(
e⊤3 Oep · e⊤3 Oe1

) (
e⊤2 Oep · e⊤2 Oe1

)
= E

[(
u⊤a Qmza + u⊤b zb

) (
u⊤a Qmva + u⊤b vb

) (
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
= E

[
u⊤a Qmza · u⊤a Qmva

(
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
+

E
[
u⊤b zb · u⊤b vb

(
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
+

E
[
u⊤a Qmza · u⊤b vb

(
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
+

E
[
u⊤b zb · u⊤a Qmva

(
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
Below we compute each of these terms separately. The result in the proposition is given by summing
these 4 terms.

Term 1. Employing 12 once again, the term decomposes as
E
[
u⊤a Qmza · u⊤a Qmva

(
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
= E

[
u⊤a Qmzau

⊤
a Qmvax

⊤
a Qmzax

⊤
a Qmva

]
+ E

[
u⊤a Qmzau

⊤
a Qmva · x⊤b zbx⊤b vb

]︸ ︷︷ ︸
solved in Eq. (44)

.

The polynomial in the left inner term (the first summand) can be derived tediously, very much like
in the proof of Prop. 23, and shown to hold

E
[
u⊤a Qmzau

⊤
a Qmvax

⊤
a Qmzax

⊤
a Qmva

]
=
−m3(2p3+11p2+p−30)+m2(p4+p3+2p2+60p+72)+2m(p4+p3+18p2+14p−60)−8(2p+3)(p2+12)

(m+2)(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .

Overall, the first term is,
E
[
u⊤a Qmza · u⊤a Qmva

(
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
=
−m3(2p3+11p2+p−30)+m2(p4+p3+2p2+60p+72)+2m(p4+p3+18p2+14p−60)−8(2p+3)(p2+12)

(m+2)(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

(p−m)(−2m2p2−8m2p+mp3+4mp2+15mp+18m−6p2−6p−12)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

= 2m3p2+8m3p−5m2p3−23m2p2−16m2p+12m2+2mp4+9mp3+45mp2+86mp+24m−14p3−18p2−108p−144
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) .

Term 2. Notice that u,v, z,x are exchangeable in the sense that we can swap them freely (see
Prop. 9). Therefore,

E
[
u⊤b zb · u⊤b vb

(
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
[Cor. 12] = E

[
u⊤b zb · u⊤b vb

(
x⊤a Qmza · x⊤a Qmva + x⊤b zb · x⊤b vb

)]
= E

[
u⊤b zbu

⊤
b vbx

⊤
a Qmzax

⊤
a Qmva

]
+ E

[
u⊤b zbu

⊤
b vbx

⊤
b zbx

⊤
b vb

]
[swap] = E

[
u⊤a Qmzau

⊤
a Qmvax

⊤
b zbx

⊤
b vb

]︸ ︷︷ ︸
swapped x,u; solved in Eq. (44)

+E
[
u⊤b vbx

⊤
b zbu

⊤
b xbv

⊤
b zb

]︸ ︷︷ ︸
swapped v,u; solved in Eq. (47)

=
(p−m)

(
−2m2p2 − 8m2p+mp3 + 4mp2 + 15mp+ 18m− 6p2 − 6p− 12

)
(p− 3) (p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

+

m (p−m)
(
5m2p+ 6m2 − 5mp2 − 6mp+ p3 + p2 + 2p

)
(p− 3) (p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

= (p−m)
(

5m3p+6m3−7m2p2−14m2p+2mp3+5mp2+17mp+18m−6p2−6p−12
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
.
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Terms 3 and 4. First, we notice that subterms 3 and 4 are equivalent (we can swap z,v due to the
invariance; Prop. 9), that is

E
[
u⊤a Qmza · u⊤b vb

(
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
= E

[
u⊤b zb · u⊤a Qmva

(
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
[below] =

(p−m)(−2m2p2−3m2p+6m2+mp3−mp2+9mp+18m+p3−5p2−4p−12)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) ,

and so we focus on just one of them.

By employing Cor. 12, we see that

E
[
u⊤a Qmza · u⊤b vb

(
x⊤a Qmza + x⊤b zb

) (
x⊤a Qmva + x⊤b vb

)]
= E

[
u⊤a Qmza · u⊤b vb

(
x⊤a Qmza · x⊤b vb + x⊤b zb · x⊤a Qmva

)]
=

(p−m)((5m2p+6m2−5mp2−6mp+p3+p2+2p)+(−2m2p2−8m2p+mp3+4mp2+15mp+18m−6p2−6p−12))
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

=
(p−m)(−2m2p2−3m2p+6m2+mp3−mp2+9mp+18m+p3−5p2−4p−12)

(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) ,

where we used the following two derivations, i.e.,

E
[
u⊤a Qmza · u⊤b vb · x⊤b zb · x⊤a Qmva

]
= E

[(
u⊤b vb · x⊤b zb

)
· u⊤a Qmza · x⊤a Qmva

]
= E

(u⊤b vb · x⊤b zb
)
·

 m∑
i=1

m∑
j=1

uiqijzj

 ·

(
m∑

k=1

m∑
ℓ=1

xkqkℓvℓ

)
=

m∑
i,j,k,ℓ=1

E
[(
u⊤b vb · x⊤b zb

)
· uivℓxkzjqijqkℓ

]
=

m∑
i,j,k,ℓ=1

E
[(
u⊤b vb · x⊤b zb

)
· uivℓxkzjEQm [qijqkℓ]

]
[Prop. 10] =

m∑
i,j=1

EQm

[
q2ij
]︸ ︷︷ ︸

=1/m

E
[(
u⊤b vb · x⊤b zb

)
· uivjxizj

]
=

1

m
E
[
u⊤b vb · x⊤b zb · u⊤b xb · v⊤b zb

]︸ ︷︷ ︸
solved in Eq. (47)

=
(p−m)

(
5m2p+ 6m2 − 5mp2 − 6mp+ p3 + p2 + 2p

)
(p− 3) (p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

,

and

E
[
u⊤a Qmza · u⊤b vbx

⊤
a Qmza · x⊤b vb

]
= E

[
∥za∥2 Er∼Sm−1

(
u⊤a rr

⊤xa

)
· u⊤b vbx

⊤
b vb

]
=

1

m
E
[
∥za∥2 u⊤a xau

⊤
b vbx

⊤
b vb

]
︸ ︷︷ ︸

solved in Eq. (48)

=
(p−m)

(
−2m2p2 − 8m2p+mp3 + 4mp2 + 15mp+ 18m− 6p2 − 6p− 12

)
(p− 3) (p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

.
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Proposition 26. Let u ∼ Sp−1 and let ua consists of its first m coordinates. The expected nth

power of the squared norm is,

Eu∼Sp−1 ∥ua∥2n =

n−1∏
r=0

m+ 2r

p+ 2r
.

Specifically, it holds that

Eu∼Sp−1 ∥ua∥2 =
m

p

Eu∼Sp−1 ∥ua∥4 =
m

p
· m+ 2

p+ 2

Eu∼Sp−1 ∥ua∥6 =
m

p
· m+ 2

p+ 2
· m+ 4

p+ 4

Eu∼Sp−1 ∥ua∥8 =
m

p
· m+ 2

p+ 2
· m+ 4

p+ 4
· m+ 6

p+ 6

=⇒ Eu∼Sp−1 ∥ub∥8 =
p−m

p
· p−m+ 2

p+ 2
· p−m+ 4

p+ 4
· p−m+ 6

p+ 6

Proof. Notice that the squared norm can be parameterized as ∥ua∥2 = u⊤a ua ≜ X
X+Y ,

where X ∼ χ2
m, Y ∼ χ2

p−m. Consequently, it is distributed as ∥ua∥2 ∼ B
(
m
2 ,

p−m
2

)
. Moreover,

given n ∈ N+, the nth raw moment is given by (Chapter 25 in Johnson et al. (1995)),

Eu∼Sp−1 ∥ua∥2n =

n−1∏
r=0

m
2 + r
p
2 + r

=

n−1∏
r=0

m+ 2r

p+ 2r
.

E
[
∥ua∥4 u2

1v
2
1

]
= E

( m∑
i=1

u2
i

) m∑
j=1

u2
j

u2
1v

2
1

 =

m∑
i=1

m∑
j=1

E
[
u2
iu

2
ju

2
1v

2
1

]
= E

[
u6
1v

2
1

]︸ ︷︷ ︸
i=j=1

+2 (m−1)E
[
u4
1v

2
1u

2
2

]︸ ︷︷ ︸
i=1 ̸=j ∨ i ̸=1=j

+(m−1)E
[
u2
1u

4
2v

2
1

]︸ ︷︷ ︸
i=j≥2

+(m−1) (m−2)E
[
u2
1u

2
2u

2
3v

2
1

]︸ ︷︷ ︸
i ̸=j≥2

=
〈

6 2−→
0
−→
0

〉
+ 2 (m− 1)

〈
4 2
2 0−→
0
−→
0

〉
+ (m− 1)

〈
2 2
4 0−→
0
−→
0

〉
+ (m− 1) (m− 2)

〈 2 2
2 0
2 0−→
0
−→
0

〉
=

15 (p− 1) + (m− 1) (6 (p+ 1) + 3 (p+ 3) + (m− 2) (p+ 3))

(p− 1) p (p+ 2) (p+ 4) (p+ 6)

=
m2 (p+ 3) +m (6p+ 6) + 8p− 24

(p− 1) p (p+ 2) (p+ 4) (p+ 6)

(11)

64



Published as a conference paper at ICLR 2024

E
[
∥ua∥4 u2

1v
2
2

]
= E

( m∑
i=1

u2
i

) m∑
j=1

u2
j

u2
1v

2
2

 =

m∑
i=1

m∑
j=1

E
[
u2
iu

2
ju

2
1v

2
2

]
= E

[
u6
1v

2
2

]︸ ︷︷ ︸
i=j=1

+E
[
u2
1u

4
2v

2
2

]︸ ︷︷ ︸
i=j=2

+2 E
[
u4
1u

2
2v

2
2

]︸ ︷︷ ︸
i=2,j=1∨ i=1,j=2

+2 (m− 2) E
[
u4
1v

2
2u

2
3

]︸ ︷︷ ︸
i=1,j≥3∨ j=1,i≥3

+

2 (m− 2) E
[
u2
1u

2
2v

2
2u

2
3

]︸ ︷︷ ︸
i=2,j≥3∨ j=2,i≥3

+(m− 2) (m− 3)E
[
u2
1v

2
2u

2
3u

2
4

]︸ ︷︷ ︸
i ̸=j≥3

+(m− 2)E
[
u2
1v

2
2u

4
3

]︸ ︷︷ ︸
i=j≥3

=
〈

6 0
0 2−→
0
−→
0

〉
+
〈

2 0
4 2−→
0
−→
0

〉
+ 2

〈
4 0
2 2−→
0
−→
0

〉
+ 2 (m− 2)

〈 4 0
0 2
2 0−→
0
−→
0

〉
+ 2 (m− 2)

〈 2 0
2 2
2 0−→
0
−→
0

〉
+

(m− 2) (m− 3)

〈 2 0
0 2
2 0
2 0−→
0
−→
0

〉
+ (m− 2)

〈 2 0
0 2
4 0−→
0
−→
0

〉
=
〈

6 0
0 2−→
0
−→
0

〉
+
〈

2 0
4 2−→
0
−→
0

〉
+ 2

〈
4 0
2 2−→
0
−→
0

〉
+ 3 (m− 2)

〈 4 0
0 2
2 0−→
0
−→
0

〉
+ 2 (m− 2)

〈 2 0
2 2
2 0−→
0
−→
0

〉
+

(m− 2) (m− 3)

〈 2 0
0 2
2 0
2 0−→
0
−→
0

〉
= 15(p+5)+3(p+1)+2(3p+9)+(m−2)(9(p+5)+2(p+3)+(m−3)(p+5))

(p−1)p(p+2)(p+4)(p+6)

=
m2 (p+ 5) + 2m (3p+ 13) + 8 (p+ 3)

(p− 1) p (p+ 2) (p+ 4) (p+ 6)

(12)

We notice that the following derivation is symmetric in i, j. Thus, we assume j ≥ i and multiply
everything by 2.

E
[
∥ua∥4 u1u2v1v2

]
= E

( m∑
i=1

u2
i

) m∑
j=1

u2
j

u1u2v1v2

 =

m∑
i=1

m∑
j=1

E
[
u2
iu

2
ju1u2v1v2

]
= 2E

[
u5
1u2v1v2

]︸ ︷︷ ︸
i=j=1∨ i=j=2

+2E
[
u3
1u

3
2v1v2

]︸ ︷︷ ︸
i=1,j=2

+4 (m− 2) E
[
u3
1u2u

2
3v1v2

]︸ ︷︷ ︸
i=1,j≥3∨ i=2,j≥3

+

(m− 2) (m− 3)E
[
u1u2u

2
3u

2
4v1v2

]︸ ︷︷ ︸
i ̸=j≥3

+(m− 2)E
[
u1u2u

4
3v1v2

]︸ ︷︷ ︸
i=j≥3

= 2
〈

5 1
1 1−→
0
−→
0

〉
+ 2

〈
3 1
3 1−→
0
−→
0

〉
+ 4 (m− 2)

〈 3 1
1 1
2 0−→
0
−→
0

〉
+ (m− 2) (m− 3)

〈 1 1
1 1
2 0
2 0−→
0
−→
0

〉
+

(m− 2)

〈 1 1
1 1
4 0−→
0
−→
0

〉
=

−30− 18 + (m− 2) (−12− (m− 3)− 3)

(p− 1) p (p+ 2) (p+ 4) (p+ 6)

=
− (m+ 6) (m+ 4)

(p− 1) p (p+ 2) (p+ 4) (p+ 6)

(13)
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E.1 AUXILIARY DERIVATIONS WITH TWO VECTORS

Below we attached many auxiliary derivations of simple polynomials that we need in our main
propositions and lemmas.

Eu⊥v,Qm

(
u⊤a Qmua

)2 (
u⊤a Qmva

)2
= Eu⊥v

[
Er∼Sm−1

[
∥ua∥4

(∑m

i=1
riui

)2 (∑m

j=1
rjvj

)2]]
=

m∑
i=1

m∑
j=1

m∑
k=1

m∑
ℓ=1

Eu⊥v

[
Er∼Sm−1

[
∥ua∥4 riuirjujrkvkrℓvℓ

]]
=

m∑
i=1

m∑
j=1

m∑
k=1

m∑
ℓ=1

Eu⊥v

[
∥ua∥4 uiujvkvℓEr∼Sm−1 [rirjrkrℓ]

]
[Prop. 10] =

m∑
i=1

Eu⊥v

[
∥ua∥4 u2

i v
2
i Er

[
r4i
]]

︸ ︷︷ ︸
i=j=k=ℓ

+

m∑
i ̸=k=1

Eu⊥v

[
∥ua∥4 u2

i v
2
kEr

[
r2i r

2
k

]]
︸ ︷︷ ︸

i=j ̸=k=ℓ

+

2

m∑
i ̸=j=1

Eu⊥v

[
∥ua∥4 uiujvivjEr

[
r2i r

2
j

]]
︸ ︷︷ ︸

i=k ̸=j=ℓ∨ i=ℓ ̸=j=k

=
〈

4−→
0

〉
m

m∑
i=1

E
[
∥ua∥4 u2

i v
2
i

]
+

〈
2
2−→
0

〉
m

 m∑
i ̸=k=1

E
[
∥ua∥4 u2

i v
2
k

]
+ 2

m∑
i ̸=j=1

E
[
∥ua∥4 uiujvivj

]
= m

〈
4−→
0

〉
m
E
[
∥ua∥4 u2

1v
2
1

]
+

m (m− 1)
〈

2
2−→
0

〉
m

(
E
[
∥ua∥4 u2

1v
2
2

]
+ 2E

[
∥ua∥4 u1u2v1v2

])
=

3

m+ 2
E
[
∥ua∥4 u2

1v
2
1

]
︸ ︷︷ ︸

solved in Eq. (11)

+
m− 1

m+ 2

(
E
[
∥ua∥4 u2

1v
2
2

]
︸ ︷︷ ︸

solved in Eq. (12)

+2E
[
∥ua∥4 u1u2v1v2

]
︸ ︷︷ ︸

solved in Eq. (13)

)

=
3(m2(p+3)+m(6p+6)+8p−24)
(m+2)(p−1)p(p+2)(p+4)(p+6) +

(m−1)(m2(p+5)+2m(3p+13)+8(p+3))
(m+2)(p−1)p(p+2)(p+4)(p+6) −

2(m−1)·(m+6)(m+4)
(m+2)(p−1)p(p+2)(p+4)(p+6)

=
(m+ 2) (m+ 4) (m (p+ 3) + 2 (p− 3))

(m+ 2) (p− 1) p (p+ 2) (p+ 4) (p+ 6)
=

(m+ 4) (m (p+ 3) + 2 (p− 3))

(p− 1) p (p+ 2) (p+ 4) (p+ 6)

(14)
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Eu⊥v

[
∥ua∥4

(
u⊤b vb

)2]
= E

[
∥ua∥4

(
−u⊤a va

)2]
=

m∑
i,j=1

E
[
∥ua∥4 uiujvivj

]
=

m∑
i=1

E
[
∥ua∥4 u2

i v
2
i

]
︸ ︷︷ ︸

i=j

+

m∑
i ̸=j=1

E
[
∥ua∥4 uiujvivj

]
︸ ︷︷ ︸

i ̸=j

= mE
[
∥ua∥4 u2

1v
2
1

]
︸ ︷︷ ︸

solved in Eq. (11)

+m (m− 1)E
[
∥ua∥4 u1u2v1v2

]
︸ ︷︷ ︸

solved in Eq. (13)

= m

(
m2 (p+ 3) +m (6p+ 6) + 8p− 24

(p− 1) p (p+ 2) (p+ 4) (p+ 6)
− (m− 1) · (m+ 4) (m+ 6)

(p− 1) p (p+ 2) (p+ 4) (p+ 6)

)
= m

(m+ 2) (m+ 4) (p−m)

(p− 1) p (p+ 2) (p+ 4) (p+ 6)

(15)

Eu⊥v,Qm

[(
u⊤a Qmua

)2 (
u⊤b vb

)2]
= Eu⊥v

[
Er∼Sm−1

(
∥ua∥ r⊤ua

)2 (
u⊤b vb

)2]
= Eu⊥v

[
∥ua∥2 Er∼Sm−1u⊤a rr

⊤ua

(
u⊤b vb

)2]
=

1

m
Eu⊥v

[
∥ua∥4

(
u⊤b vb

)2]︸ ︷︷ ︸
solved in Eq. (15)

=
(m+ 2) (m+ 4) (p−m)

(p− 1) p (p+ 2) (p+ 4) (p+ 6)

(16)
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E
[
∥ua∥2

(
u⊤b vb

)2]
= E

 m∑
i=1

u2
i

 p∑
j=m+1

ujvj

2
 = mE

u2
1

p∑
j=m+1

p∑
k=m+1

ujvjukvk


= m (p−m)

p∑
k=m+1

E
[
u2
1upvpukvk

]

= m (p−m)

E
[
u2
1u

2
pv

2
p

]︸ ︷︷ ︸
k=p

+(p−m− 1)E
[
u2
1up−1vp−1upvp

]︸ ︷︷ ︸
m+1≤k≤p−1


= m (p−m)

(〈
2 0
2 2−→
0
−→
0

〉
+ (p−m− 1)

〈 2 0
1 1
1 1−→
0
−→
0

〉)
= m (p−m)

(
p+1

(p−1)p(p+2)(p+4) +
−(p−m−1)

(p−1)p(p+2)(p+4)

)
=

(p−m)m (m+ 2)

(p− 1) p (p+ 2) (p+ 4)

(17)

Consequently,

E
[
∥ub∥2

(
u⊤a va

)2]
=

(p−m)m (p−m+ 2)

(p− 1) p (p+ 2) (p+ 4)
(18)

E
[
∥ua∥2 ∥va∥2 ∥ub∥2

]
=

m∑
i=1

m∑
j=1

p∑
k=m+1

E
[
u2
iu

2
kv

2
j

]
= (p−m)

m∑
i=1

m∑
j=1

E
[
u2
iu

2
pv

2
j

]
= m (p−m)

m∑
j=1

E
[
u2
1u

2
pv

2
j

]

= m (p−m)

E
[
u2
1u

2
pv

2
1

]︸ ︷︷ ︸
j=1

+(m− 1)E
[
u2
1u

2
pv

2
2

]︸ ︷︷ ︸
j≥2


= m (p−m)

(〈
2 2
2 0−→
0
−→
0

〉
+ (m− 1)

〈 2 0
0 2
2 0−→
0
−→
0

〉)
= m (p−m)

(
p+ 1 + (m− 1) (p+ 3)

(p− 1) p (p+ 2) (p+ 4)

)
=

m (p−m) (m (p+ 3)− 2)

(p− 1) p (p+ 2) (p+ 4)

(19)
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E
[
∥ua∥4 ∥va∥4

]
= E

[
∥ua∥4 ∥va∥4

]
= Eu⊥v

( m∑
i=1

u2
i

)2( m∑
i=1

v2i

)2


= E

 m∑
i=1

u4
i +

∑
i̸=j

u2
iu

2
j

 m∑
k=1

v4k +
∑
k ̸=ℓ

v2kv
2
ℓ


=

m∑
i=1

m∑
k=1

E
[
u4
i v

4
k

]
+

m∑
i=1

∑
k ̸=ℓ

E
[
u4
i v

2
kv

2
ℓ

]
+

m∑
k=1

∑
i ̸=j

E
[
u2
iu

2
jv

4
k

]
︸ ︷︷ ︸

same, due to the identical distributions (see Prop. 9)

+
∑
i ̸=j

∑
k ̸=ℓ

E
[
u2
iu

2
jv

2
kv

2
ℓ

]

=

m∑
i=1

m∑
k=1

E
[
u4
i v

4
k

]
+ 2

m∑
i=1

∑
k ̸=ℓ

Eu⊥v
[
u4
i v

2
kv

2
ℓ

]
+
∑
i̸=j

∑
k ̸=ℓ

Eu⊥v
[
u2
iu

2
jv

2
kv

2
ℓ

]
= m

m∑
k=1

E
[
u4
1v

4
k

]
+ 2m

∑
k ̸=ℓ

E
[
u4
1v

2
kv

2
ℓ

]
+m (m− 1)

∑
k ̸=ℓ

E
[
u2
1u

2
2v

2
kv

2
ℓ

]

= m

E
[
u4
1v

4
1

]︸ ︷︷ ︸
k=1

+(m−1)E
[
u4
1v

4
2

]︸ ︷︷ ︸
k≥2

+2m

2 (m−1)E
[
u4
1v

2
1v

2
2

]︸ ︷︷ ︸
k=1<ℓ∨ ℓ=1<k

+(m−1) (m−2)E
[
u4
1v

2
2v

2
3

]︸ ︷︷ ︸
k ̸=ℓ≥2


+m (m− 1)

 2E
[
u2
1u

2
2v

2
1v

2
2

]︸ ︷︷ ︸
k=1,ℓ=2∨ ℓ=1,k=2

+4 (m− 2)E
[
u2
1u

2
2v

2
2v

2
3

]︸ ︷︷ ︸
k≤2,ℓ≥3∨ ℓ≤2,k≥3

+(m− 2) (m− 3)E
[
u2
1u

2
2v

2
3v

2
4

]︸ ︷︷ ︸
k ̸=ℓ≥3


= m

(〈
4 4−→
0
−→
0

〉
+ (m− 1)

〈
4 0
0 4−→
0
−→
0

〉)
+ 2m

(
2 (m− 1)

〈
4 2
0 2−→
0
−→
0

〉
+ (m− 1) (m− 2)

〈 4 0
0 2
0 2−→
0
−→
0

〉)
+

m (m− 1)

(
2
〈

2 2
2 2−→
0
−→
0

〉
+ 4 (m− 2)

〈 2 2
2 0
0 2−→
0
−→
0

〉
+ (m− 2) (m− 3)

〈 2 0
2 0
0 2
0 2−→
0
−→
0

〉)

= 9m
p(p+2)(p+4)(p+6)+

9m(m−1)(p+3)(p+5)
(p−1)p(p+1)(p+2)(p+4)(p+6)+2m 6(m−1)(p+1)(p+3)+3(m−1)(m−2)(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6) +

m (m− 1)

(
2(p2+4p+15)+4(m−2)(p+3)2

(p−1)p(p+1)(p+2)(p+4)(p+6) +
(m−2)(m−3)(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)

= 9m(p−1)(p+1)+9m(m−1)(p+3)(p+5)+2m(6(m−1)(p+1)(p+3)+3(m−1)(m−2)(p+3)(p+5))
(p−1)p(p+1)(p+2)(p+4)(p+6) +

m(m−1)(2(p2+4p+15)+4(m−2)(p+3)2+(m−2)(m−3)(p+3)(p+5))
(p−1)p(p+1)(p+2)(p+4)(p+6)

=
m (m+ 2)

(
m2 (p+ 3) (p+ 5) + 2m (p+ 1) (p+ 3)− 8 (2p+ 3)

)
(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(20)
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E
[
∥ua∥2 ∥va∥2

]
=

m∑
i,j=1

E
[
u2
i v

2
j

]
= m

m∑
j=1

E
[
u2
1v

2
j

]
= mE

[
u2
1v

2
1

]︸ ︷︷ ︸
j=1

+m (m− 1)E
[
u2
1v

2
2

]︸ ︷︷ ︸
j≥2

= m
〈

2 2−→
0
−→
0

〉
+m (m− 1)

〈
2 0
0 2−→
0
−→
0

〉
=

m

p (p+ 2)
+

m (m− 1) (p+ 1)

(p− 1) p (p+ 2)

=
m (mp+m− 2)

(p− 1) p (p+ 2)

(21)

Eu⊥v,Qm

(
u⊤a Qmva

)2
= Eu⊥v,r∼Sm−1

(
∥ua∥ r⊤va

)2
= Eu⊥v

[
∥ua∥2 Er∼Sm−1

(
v⊤a rr

⊤va

)]
=

1

m
Eu⊥v

[
∥ua∥2 ∥va∥2

]
︸ ︷︷ ︸

solved in Eq. (21)

=
mp+m− 2

(p− 1) p (p+ 2)

(22)

E
(
u⊤a va

)2
= Eu⊥v

(
−u⊤b vb

)2
= Eu⊥v

(
u⊤b vb

)2
=

m∑
i,j=1

E [uiujvivj ]

= m

m∑
j=1

E [u1ujv1vj ] = m
(
E
[
u2
1v

2
1

]
+ (m− 1)E [u1u2v1v2]

)
= m

(〈
2 2−→
0
−→
0

〉
+ (m− 1)

〈
1 1
1 1−→
0
−→
0

〉)
= m

(
1

p (p+ 2)
+

−1 · (m− 1)

(p− 1) p (p+ 2)

)
=

m (p− 1 + 1−m)

(p− 1) p (p+ 2)
=

m (p−m)

(p− 1) p (p+ 2)

(23)
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Eu⊥v
(
u⊤a va

)4
= Eu⊥v

(
−u⊤b vb

)4
= E

(
u⊤a va

)2 (
u⊤b vb

)2
= E

(
m∑
i=1

uivi

)2( p∑
k=m+1

ukvk

)2

=

m∑
i,j=1

p∑
k,ℓ=m+1

E [uiviujvjukvkuℓvℓ] = m(p−m)

m∑
i=1

p∑
k=m+1

E [u1v1uiviukvkupvp]

= m(p−m)

(
E
[
u2
1v

2
1u

2
pv

2
p

]︸ ︷︷ ︸
i=1,k=p

+(p−m− 1)E
[
u2
1v

2
1up−1vp−1upvp

]︸ ︷︷ ︸
i=1,m+1≤k≤p−1

+

(m−1)E
[
u1v1u2v2u

2
pv

2
p

]︸ ︷︷ ︸
i≥2,k=p

+(p−m−1)(m−1)E[u1v1u2v2up−1vp−1upvp]︸ ︷︷ ︸
i≥2,m+1≤k≤p−1

)

= m(p−m)

(〈
2 2
2 2−→
0
−→
0

〉
+
(
(p−m−1) + (m−1)

)〈 2 2
1 1
1 1−→
0
−→
0

〉
+(p−m−1)(m−1)

〈 1 1
1 1
1 1
1 1−→
0
−→
0

〉)

= m (p−m)

(〈
2 2
2 2−→
0
−→
0

〉
+ (p− 2)

〈 2 2
1 1
1 1−→
0
−→
0

〉
+ (p−m− 1) (m− 1)

〈 1 1
1 1
1 1
1 1−→
0
−→
0

〉)

= m (p−m)

((
p2 + 4p+ 15

)
+ (p− 2) (−p+ 3) + 3 (p−m− 1) (m− 1)

(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

)

=
3m4 − 6m3p+ 3m2p2 − 6m2p− 12m2 + 6mp2 + 12mp

(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(24)

Eu⊥v
(
u⊤a Qmva

)4
= Eu⊥v,r∼Sm−1

(
∥ua∥ r⊤va

)4
= Eu⊥v

[
∥ua∥4 Er∼Sm−1

(
r⊤va

)4][
reparameterize r 7→ A⊤r

where Ava = e1

]
= Eu⊥v

[
∥ua∥4 Er∼Sm−1

(
∥va∥ r⊤e1

)4]
= Eu⊥v

[
∥ua∥4 ∥va∥4 Er∼Sm−1r41

]
=
〈

4−→
0

〉
m
E
[
∥ua∥4 ∥va∥4

]
= 3

m(m+2) ·
m(m+2)(m2(p+3)(p+5)+2m(p+1)(p+3)−8(2p+3))

(p−1)p(p+1)(p+2)(p+4)(p+6)

=
3
(
m2 (p+ 3) (p+ 5) + 2m (p+ 1) (p+ 3)− 8 (2p+ 3)

)
(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

.

(25)
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E
(
u⊤a Qmva

)2 (
u⊤b vb

)2
= E

(
u⊤a Qmva

)2 (
u⊤a va

)2
= Eu⊥v

[(
u⊤a va

)2 Er∼Sp−1

(
∥ua∥ r⊤va

)2]
=

1

m
Eu⊥v

[(
u⊤a va

)2 ∥ua∥2 ∥va∥2
]
=

1

m
Eu⊥v
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−u⊤b vb

)2 ∥ua∥2 ∥va∥2
]

=
1

m
E
[
∥ua∥2 ∥va∥2

(
u⊤b vb

)2]
=

1

m

m∑
i,j=1

p∑
k,ℓ=m+1

E
[
u2
i v

2
jukvkuℓvℓ

]
=

m∑
j=1

p∑
k,ℓ=m+1

E
[
u2
1v

2
jukvkuℓvℓ

]
= (p−m)

m∑
j=1

p∑
k=m+1

E
[
u2
1v

2
jukvkupvp

]
= (p−m)

(
E
[
u2
1v

2
1u

2
pv

2
p

]︸ ︷︷ ︸
j=1,k=p

+(p−m− 1)E
[
u2
1v

2
1up−1vp−1upvp

]︸ ︷︷ ︸
j=1,m+1≤k≤p−1

+

(m− 1)E
[
u2
1v

2
2u

2
pv

2
p

]︸ ︷︷ ︸
j≥2,k=p

+(p−m− 1) (m− 1)E
[
u2
1v

2
2up−1vp−1upvp

]︸ ︷︷ ︸
j≥2,m+1≤k≤p−1

)

= (p−m)

(〈
2 2
2 2−→
0
−→
0

〉
+ (p−m− 1)

〈 2 2
1 1
1 1−→
0
−→
0

〉
+ (m− 1)

〈 2 0
0 2
2 2−→
0
−→
0

〉
+

(p−m− 1) (m− 1)

〈 2 0
0 2
1 1
1 1−→
0
−→
0

〉)
= (p−m)

(
p2+4p+15+(p−m−1)(−p+3)+(m−1)(p+3)2+(m−1)(p−m−1)(−p−3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

(m+ 2) (mp+ 2p+ 3m) (p−m)

(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(26)

E
[
∥ub∥2 v⊤a Qmuau

⊤
a Qmva

]
= E

∥ub∥2
 m∑

i,j=1

viqijuj

 m∑
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=
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k,ℓ=1

E
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∥ub∥2 viujukvℓ

]
E [qijqkℓ]

[Prop. 10] =

m∑
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E
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∥ub∥2 uiujvivj
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E
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q2ij
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=
1

m

mE
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∥ub∥2 u2

1v
2
1

]
︸ ︷︷ ︸
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+m (m− 1)E
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∥ub∥2 u1u2v1v2
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︸ ︷︷ ︸

i ̸=j


= E
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p∑

k=m+1

u2
k

)
u2
1v

2
1

]
+ (m− 1)E
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u2
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u1u2v1v2

]
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u2
pu

2
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2
1

]
+ (m− 1) (p−m)E
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u2
pu1u2v1v2

]
= (p−m)
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2 2
2 0−→
0
−→
0

〉
+ (m− 1) (p−m)

〈 1 1
1 1
2 0−→
0
−→
0

〉
=

(p−m) (p+ 1)− (m− 1) (p−m)

(p− 1) p (p+ 2) (p+ 4)
=

(p−m) (p−m+ 2)

(p− 1) p (p+ 2) (p+ 4)

(27)
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2
j

(
m∑

k=1

u2
k

)(
m∑
i=1

v2ℓ

)]
= (p−m)

p∑
j=m+1

E

[
u2
1u

2
pu

2
j

(
m∑
i=1

v2ℓ

)]

= (p−m)

E

[
u2
1u

4
p

(
m∑
i=1

v2ℓ

)]
︸ ︷︷ ︸

j=p

+(p−m− 1)E

[
u2
1u

2
p−1u

2
p

(
m∑
i=1

v2ℓ

)]
︸ ︷︷ ︸

m+1≤j≤p−1


= (p−m)

((
E
[
u2
1u

4
pv

2
1

]︸ ︷︷ ︸
ℓ=1

+(m− 1)E
[
u2
1u

4
pv

2
2

]︸ ︷︷ ︸
2≤ℓ≤m

)
+

(p−m− 1)
(
E
[
u2
1u

2
p−1u

2
pv

2
1

]︸ ︷︷ ︸
ℓ=1

+(m− 1)E
[
u2
1u

2
p−1u

2
pv

2
2

]︸ ︷︷ ︸
2≤ℓ≤m

))

= (p−m)

(
E
[
u2
1u

4
2v

2
1

]
+ (m− 1)E

[
u2
1u

4
2v

2
3

]
+

(p−m− 1)
(
E
[
u2
1u

2
2u

2
3v

2
1

]
+ (m− 1)E

[
u2
1u

2
2u

2
3v

2
4

]))
= (p−m)

(〈
2 2
4 0−→
0
−→
0

〉
+ (m− 1)

〈 2 0
4 0
0 2−→
0
−→
0

〉
+

(p−m− 1)

(〈 2 2
2 0
2 0−→
0
−→
0

〉
+ (m− 1)

〈 2 0
2 0
2 0
0 2−→
0
−→
0

〉))
= (p−m)

((
3(p+3)+3(m−1)(p+5)

(p−1)p(p+2)(p+4)(p+6)

)
+ (p−m− 1)

(
p+3+(m−1)(p+5)

(p−1)p(p+2)(p+4)(p+6)

))
=

(p−m)
(
mp2 −m2p− 5m2 + 7mp+ 12m− 2p− 4

)
(p− 1) p (p+ 2) (p+ 4) (p+ 6)

(28)
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E
[
∥ua∥2 u⊤a va · v⊤b ub ∥vb∥2

]
=

m∑
i=1

m∑
j=1

p∑
k=m+1

p∑
ℓ=m+1

E
[
u2
i · ujvj · ukvk · v2ℓ

]
= m (p−m)

m∑
j=1

p∑
k=m+1

E
[
u2
1 · ujvj · ukvk · v2p

]
= m (p−m)

(
p∑

k=m+1

E
[
u3
1v1 · ukvk · v2p

]
+ (m− 1)

p∑
k=m+1

E
[
u2
1 · u2v2 · ukvk · v2p

])

= m (p−m)

(
E
[
u3
1v1upv

3
p

]
+ (p−m− 1)E

[
u3
1v1up−1vp−1v

2
p

]
+

(m− 1)

(
E
[
u2
1u2v2upv

3
p

]
+ (p−m− 1)E

[
u2
1u2v2up−1vp−1v

2
p

]))

= m (p−m)

(〈
3 1
1 3−→
0
−→
0

〉
+ (p−m− 1)

〈 3 1
1 1
0 2−→
0
−→
0

〉
+

(m− 1)

(〈 2 0
1 1
1 3−→
0
−→
0

〉
+ (p−m− 1)

〈 2 0
1 1
1 1
0 2−→
0
−→
0

〉))

= m (p−m)

(〈
3 1
1 3−→
0
−→
0

〉
+ (p− 2)

〈 3 1
1 1
0 2−→
0
−→
0

〉
+ (m− 1) (p−m− 1)

〈 2 0
1 1
1 1
0 2−→
0
−→
0

〉)

= m (p−m)

(
−9(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)

+ −3(p−2)(p+3)
(p−1)p(p+1)(p+2)(p+4)(p+6) +

(m−1)(p−m−1)(−p−3)
(p−1)p(p+1)(p+2)(p+4)(p+6)

)

=
m (p−m) (p+ 3)

(
m2 −mp− 2 (p+ 2)

)
(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(29)
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E
[
u⊤a Qmuav

⊤
a Qmva

(
v⊤b ub

)2]
= E

(v⊤b ub

)2 ∑
i,j,k,ℓ

uiqijujvkqkℓvℓ

 =

m∑
i,j,k,ℓ=1

E
[(
v⊤b ub

)2
uiujvkvℓ

]
E [qijqkℓ]

[By Prop. 10, most summands are zero]

=

m∑
i,j=1

E
[(
v⊤b ub

)2
uiujvivj

]
E
[
q2ij
]
=

1

m

m∑
i,j=1

E

( p∑
k=m+1

ukvk

)2

uiujvivj


=

1

m

m∑
i,j=1

p∑
k,ℓ=m+1

E [uiujukuℓvivjvkvℓ] =
m (p−m)

m

m∑
j=1

p∑
ℓ=m+1

E [u1ujupuℓv1vjvpvℓ]

= (p−m)

m∑
j=1

p∑
ℓ=m+1

E [u1ujupuℓv1vjvpvℓ]

= (p−m)

(
p∑

ℓ=m+1

E
[
u2
1upuℓv

2
1vpvℓ

]
+ (m− 1)

p∑
ℓ=m+1

E [u1u2upuℓv1v2vpvℓ]

)

= (p−m)

(
E
[
u2
1u

2
pv

2
1v

2
p

]
+ (p−m− 1)E

[
u2
1up−1upv

2
1vp−1vp

]
+

(m− 1)

(
E
[
u1u2u

2
pv1v2v

2
p

]
+ (p−m−1)E [u1u2up−1upv1v2vp−1vp]

))

= (p−m)

(〈
2 2
2 2−→
0
−→
0

〉
+ (p−m− 1)

〈 2 2
1 1
1 1−→
0
−→
0

〉
+

(m− 1)

(〈 1 1
1 1
2 2−→
0
−→
0

〉
+ (p−m− 1)

〈 1 1
1 1
1 1
1 1−→
0
−→
0

〉))

= (p−m)

(〈
2 2
2 2−→
0
−→
0

〉
+ (p− 2)

〈 2 2
1 1
1 1−→
0
−→
0

〉
+ (m− 1) (p−m− 1)

〈 1 1
1 1
1 1
1 1−→
0
−→
0

〉)
= (p−m)

(
p2+4p+15

(p−1)p(p+1)(p+2)(p+4)(p+6) +
(p−2)(−p+3)+(m−1)(p−m−1)·3
(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

3 (p−m)
(
−m2 +mp+ 2p+ 4

)
(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(30)

E
[
u⊤b ub

(
v⊤a ua

)2
v⊤b vb

]
= E

[
∥ub∥2

(
v⊤a ua

)2 ∥vb∥2
]

= E
[(

1− ∥ua∥2
) (

v⊤a ua

)2 ∥vb∥2
]

= E
[
∥vb∥2

(
v⊤a ua

)2]− E
[
∥ua∥2 ∥vb∥2

(
v⊤a ua

)2]
= E

[
∥vb∥2

(
v⊤a ua

)2]︸ ︷︷ ︸
solved in Eq. (18)

+E
[
∥ua∥2 ∥vb∥2 · u⊤a va · v⊤b ub

]
︸ ︷︷ ︸

solved in Eq. (29)

= (p−m)m(p−m+2)
(p−1)p(p+2)(p+4) +

m(p−m)(p+3)(m2−mp−2(p+2))
(p−1)p(p+1)(p+2)(p+4)(p+6)

=
(p−m)m(m2(p+3)−2m(p2+5p+3)+p(p2+7p+10))

(p−1)p(p+1)(p+2)(p+4)(p+6)

(31)
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E
[
u⊤b ubu

⊤
a Qmvav

⊤
a Qmuav

⊤
b vb

]
=

m∑
i,j=1

m∑
k,ℓ=1

E
[
u⊤b ubv

⊤
b vbuiqijvjvkqk,ℓuℓ

]
=

m∑
i,j=1

m∑
k,ℓ=1

E
[
u⊤b ubv

⊤
b vb · uivjvkuℓ

]
E [qijqk,ℓ]

[Prop. 10] =

m∑
i,j=1

E
[
∥ub∥2 ∥vb∥2 · uiujvivj

]
E
[
q2ij
]︸ ︷︷ ︸

=1/m

=
1

m

mE
[
∥ub∥2 ∥vb∥2 · u2

1v
2
1

]
︸ ︷︷ ︸

i=j

+m (m− 1)E
[
∥ub∥2 ∥vb∥2 · u1u2v1v2

]
︸ ︷︷ ︸

i̸=j


=

p∑
i=m+1

p∑
j=m+1

E
[
u2
1v

2
1 · u2

i v
2
j

]
+ (m− 1)

p∑
i=m+1

p∑
j=m+1

E
[
u1u2v1v2 · u2

i v
2
j

]

= (p−m)

 p∑
j=m+1

E
[
u2
1v

2
1 · u2

pv
2
j

]
+ (m− 1)

p∑
j=m+1

E
[
u1u2v1v2 · u2

pv
2
j

]
= (p−m)

(
E
[
u2
1v

2
1 · u2

pv
2
p

]︸ ︷︷ ︸
j=p

+(p−m− 1)E
[
u2
1v

2
1 · u2

pv
2
p−1
]︸ ︷︷ ︸

m+1≤j≤p−1

+

(m− 1)

(
E
[
u1u2v1v2 · u2

pv
2
p

]︸ ︷︷ ︸
j=p

+(p−m− 1)E
[
u1u2v1v2 · u2

pv
2
p−1
]︸ ︷︷ ︸

m+1≤j≤p−1

))

= (p−m)

(〈
2 2
2 2−→
0
−→
0

〉
+ (p−m− 1)

〈 2 2
0 2
2 0−→
0
−→
0

〉
+

(m− 1)

(〈 1 1
1 1
2 2−→
0
−→
0

〉
+ (p−m− 1)

〈 1 1
1 1
0 2
2 0−→
0
−→
0

〉))

= (p−m)

(
(p2+4p+15)+(p−m−1)(p+3)2

(p−1)p(p+1)(p+2)(p+4)(p+6) + (m−1)(−p+3−(p−m−1)(p+3))
(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

(p−m)
(
m2p+ 3m2 − 2mp2 − 10mp− 6m+ p3 + 7p2 + 10p

)
(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(32)

E
[
u⊤b ubu

⊤
b vb · u⊤a Qmvav

⊤
a Qmva

]
= E

[
∥va∥2 u⊤b ubu

⊤
b vb · Er∼Sm−1

(
u⊤a rv

⊤
a r
)]

=
1

m
E
[
∥va∥2 u⊤b ubu

⊤
b vbu

⊤
a va

]
= − 1

m
E
[
∥va∥2 ∥ub∥2

(
u⊤a va

)2]
= − 1

m
E
[(

1− ∥vb∥2
)
∥ub∥2

(
u⊤a va

)2]
= − 1

m
E
[
∥ub∥2

(
u⊤a va

)2]︸ ︷︷ ︸
solved in Eq. (18)

+
1

m
E
[
∥ub∥2 ∥vb∥2

(
u⊤a va

)2]︸ ︷︷ ︸
solved in Eq. (31)

= − (p−m)(p−m+2)
(p−1)p(p+2)(p+4) +

(p−m)(m2(p+3)−2m(p2+5p+3)+p(p2+7p+10))
(p−1)p(p+1)(p+2)(p+4)(p+6)

= − (p−m) (p+ 3) (3 (p+ 1) + (m− 1) (p−m− 1))

(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(33)
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E.2 AUXILIARY DERIVATIONS WITH THREE VECTORS

Eu⊥v⊥z,Qm

[(
u⊤a Qmza

)2 (
u⊤a Qmva

)2]
= Eu⊥v⊥z

[
Er∼Sm−1

[(
∥ua∥ r⊤za

)2 (∥ua∥ r⊤va

)2]]
=

m∑
i,j=1

m∑
k,ℓ=1

Eu⊥v⊥z

[
∥ua∥4 Er∼Sm−1 [rizirjzjrkvkrℓvℓ]

]

= Eu⊥v⊥z

∥ua∥4
m∑

i,j=1

m∑
k,ℓ=1

zizjvkvℓEr∼Sm−1 [rirjrkrℓ]


[by Prop. 10, most terms become zero]

=
〈

4−→
0

〉
m
E

[
∥ua∥4

m∑
i=1

z2i v
2
i

]
︸ ︷︷ ︸

i=j=k=ℓ

+

〈
2
2−→
0

〉
m

E

∥ua∥4
m∑

i ̸=k=1

z2i v
2
k


︸ ︷︷ ︸

i=j ̸=k=ℓ

+2E

∥ua∥4
m∑

i ̸=j=1

zizjvivj


︸ ︷︷ ︸

i=k ̸=j=ℓ∨ i=ℓ ̸=j=k


=

3

m (m+ 2)

m∑
i=1

E
[
∥ua∥4 z2i v2i

]
+

1

m (m+ 2)

 m∑
i ̸=k=1

E
[
∥ua∥4 z2i v2k

]
+ 2

m∑
i ̸=j=1

E
[
∥ua∥4 zizjvivj

]
=

3m

m (m+ 2)
E
[
∥ua∥4 z21v21

]
+

m (m− 1)

m (m+ 2)

(
E
[
∥ua∥4 z21v22

]
+ 2E

[
∥ua∥4 z1z2v1v2

])

=
3

m+ 2
E
[
∥ua∥4 z21v21

]
︸ ︷︷ ︸

solved in Eq. (36)

+
m− 1

m+ 2

E
[
∥ua∥4 z21v22

]
︸ ︷︷ ︸

solved in Eq. (37)

+2E
[
∥ua∥4 z1z2v1v2

]
︸ ︷︷ ︸

solved in Eq. (38)


= 3

m+2

(p+3)(m2(p+5)+2m(p+1))−16p−24
(p−1)p(p+1)(p+2)(p+4)(p+6) +

m−1
m+2

m2(p3+8p2+13p−2)+2m(p3+4p2−7p−10)−8(2p2+9p+6)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

2(m−1)
m+2

16p−8p2−(m−2)(mp2+7mp+14m+4p2+12p+24)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

= (m+2)(m(p+3)((m+2)p+5m+2)−16p−24)
(m+2)(p−1)p(p+1)(p+2)(p+4)(p+6) =

m (p+ 3) ((m+ 2) p+ 5m+ 2)− 16p− 24

(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(34)
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Eu⊥v⊥z,Qm

[(
u⊤a Qmza

)2 (
u⊤b vb

)2]
= Eu⊥v⊥z

[
Er∼Sm−1

(
∥ua∥ r⊤za

)2 (
u⊤b vb

)2]
= Eu⊥v⊥z

[
∥ua∥2 Er∼Sm−1

(
z⊤a rr

⊤za
) (

u⊤b vb

)2]
=

1

m
Eu⊥v⊥z

[
∥ua∥2 ∥za∥2

(
u⊤b vb

)2]
=

1

m

m∑
i,j=1

p∑
k,ℓ=m+1

E
[
u2
i z

2
jukuℓvkvℓ

]
=

m (p−m)

m

m∑
j=1

p∑
k=m+1

E
[
u2
1z

2
jukupvkvp

]

= (p−m)


p∑

k=m+1

E
[
u2
1z

2
1ukupvkvp

]
︸ ︷︷ ︸

j=1

+(m− 1)

p∑
k=m+1

E
[
u2
1z

2
2ukupvkvp

]
︸ ︷︷ ︸

j≥2


= (p−m)

(
E
[
u2
1z

2
1u

2
pv

2
p

]︸ ︷︷ ︸
k=p

+(p−m− 1)E
[
u2
1z

2
1up−1upvp−1vp

]︸ ︷︷ ︸
m+1≤k≤p−1

+

(m− 1)

(
E
[
u2
1z

2
2u

2
pv

2
p

]︸ ︷︷ ︸
k=p

+(p−m− 1)E
[
u2
1z

2
2up−1upvp−1vp

]︸ ︷︷ ︸
m+1≤k≤p−1

))

= (p−m)

(〈
2 2 0
2 0 2−→
0
−→
0
−→
0

〉
+ (p−m− 1)

〈 2 0 2
1 1 0
1 1 0−→
0
−→
0
−→
0

〉
+

(m− 1)

(〈 2 0 0
0 2 0
2 0 2−→
0
−→
0
−→
0

〉
+ (p−m− 1)

〈 2 0 0
0 0 2
1 1 0
1 1 0−→
0
−→
0
−→
0

〉))

= (p−m)

(
(p−2)(p+3)2−(p−m−1)(p2+3p+6)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

(m−1)(p3+6p2+3p−6−(p−m−1)(p2+5p+2))
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= (p−m)

(
mp2+3mp+6m+2p2−6p−12+(m−1)(mp2+5mp+2m+2p2+6p−4)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

(p−m) (m+ 2)
(
m
(
p2 + 5p+ 2

)
− 6p− 4

)
(p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(35)
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E
[
∥ua∥4 z21v21

]
=

m∑
i=1

m∑
j=1

E
[
u2
iu

2
jz

2
1v

2
1

]
= E

[
u4
1z

2
1v

2
1

]︸ ︷︷ ︸
i=j=1

+2 (m− 1)E
[
u2
1u

2
2z

2
1v

2
1

]︸ ︷︷ ︸
i=1 ̸=j ∨ i ̸=1=j

+(m− 1)E
[
u4
2z

2
1v

2
1

]︸ ︷︷ ︸
i=j≥2

+

(m− 1) (m− 2)E
[
u2
2u

2
3z

2
1v

2
1

]︸ ︷︷ ︸
i ̸=j≥2

=
〈

4 2 2−→
0
−→
0
−→
0

〉
+ 2 (m− 1)

〈
2 2 2
2 0 0−→
0
−→
0
−→
0

〉
+ (m− 1)

〈
0 2 2
4 0 0−→
0
−→
0
−→
0

〉
+

(m− 1) (m− 2)

〈 0 2 2
2 0 0
2 0 0−→
0
−→
0
−→
0

〉
= 3

p(p+2)(p+4)(p+6) +
2(m−1)(p+3)

(p−1)p(p+2)(p+4)(p+6) +
3(m−1)(p+3)(p+5)+(m−1)(m−2)(p+3)(p+5)

(p−1)p(p+1)(p+2)(p+4)(p+6)

=
3 (p− 1) (p+ 1) + 2 (m− 1) (p+ 1) (p+ 3) +

(
m2 − 1

)
(p+ 3) (p+ 5)

(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

=
(p+ 3)

(
m2 (p+ 5) + 2m (p+ 1)

)
− 16p− 24

(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(36)

E
[
∥ua∥4 z21v22

]
=

m∑
i=1

m∑
j=1

E
[
u2
iu

2
jz

2
1v

2
2

]
= 2E

[
u4
1z

2
1v

2
2

]︸ ︷︷ ︸
i=j∈{1,2}

+2 E
[
u2
1u

2
2z

2
1v

2
2

]︸ ︷︷ ︸
i=1,j=2∨ i=2,j=1

+2 (m− 2) E
[
u2
1u

2
3z

2
1v

2
2

]︸ ︷︷ ︸
i=1,j≥3∨ j=1,i≥3

+2 (m− 2)E
[
u2
2u

2
3z

2
1v

2
2

]︸ ︷︷ ︸
i=2<j ∨ i>2=j︸ ︷︷ ︸

equal

+

(m− 2)E
[
u4
3z

2
1v

2
2

]︸ ︷︷ ︸
i=j≥3

+(m− 2) (m− 3)E
[
u2
3u

2
4z

2
1v

2
2

]︸ ︷︷ ︸
i ̸=j≥3

= 2
〈

4 2 0
0 0 2−→
0
−→
0
−→
0

〉
+ 2

〈
2 2 0
2 0 2−→
0
−→
0
−→
0

〉
+

(m− 2)

(
4

〈 2 2 0
0 0 2
2 0 0−→
0
−→
0
−→
0

〉
+

〈 0 2 0
0 0 2
4 0 0−→
0
−→
0
−→
0

〉
+ (m− 3)

〈 0 2 0
0 0 2
2 0 0
2 0 0−→
0
−→
0
−→
0

〉)

= 6(p+1)(p+5)+2(p+3)2

(p−1)p(p+1)(p+2)(p+4)(p+6) +
4(m−2)(p3+6p2+3p−6)+3(m−2)(p3+8p2+13p−2)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +

(m−2)(m−3)(p3+8p2+13p−2)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

=
m2
(
p3 + 8p2 + 13p− 2

)
+ 2m

(
p3 + 4p2 − 7p− 10

)
− 8

(
2p2 + 9p+ 6

)
(p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(37)
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E
[
∥ua∥4 z1z2v1v2

]
=

m∑
i=1

m∑
j=1

E
[
u2
iu

2
jz1z2v1v2

]
= 2E

[
u4
1z1z2v1v2

]︸ ︷︷ ︸
i=j∈{1,2}

+2E
[
u2
1u

2
2z1z2v1v2

]︸ ︷︷ ︸
i=1,j=2∨ i=2,j=1

+

2 (m− 2)E
[
u2
1u

2
3z1z2v1v2

]︸ ︷︷ ︸
i=1,j≥3∨ j=1,i≥3

+2 (m− 2)E
[
u2
2u

2
3z1z2v1v2

]︸ ︷︷ ︸
i=2<j ∨ i>2=j︸ ︷︷ ︸

equal

+

(m− 2)E
[
u4
3z1z2v1v2

]︸ ︷︷ ︸
i=j≥3

+(m− 2) (m− 3)E
[
u2
3u

2
4z1z2v1v2

]︸ ︷︷ ︸
i ̸=j≥3

= 2
〈

4 1 1
0 1 1−→
0
−→
0
−→
0

〉
+ 2

〈
2 1 1
2 1 1−→
0
−→
0
−→
0

〉
+

(m− 2)

(
4

〈 2 1 1
0 1 1
2 0 0−→
0
−→
0
−→
0

〉
+

〈 0 1 1
0 1 1
4 0 0−→
0
−→
0
−→
0

〉
+ (m− 3)

〈 0 1 1
0 1 1
2 0 0
2 0 0−→
0
−→
0
−→
0

〉)
= −6

(p−1)p(p+2)(p+4)(p+6) +
−2(p−3)

(p−1)p(p+1)(p+2)(p+4)(p+6)+

−4(m−2)(p2+3p+6)−3(m−2)(p2+7p+14)−(m−2)(m−3)(p2+7p+14)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

=
−6(p−2)(p+1)−2(p−3)(p−2)−4(m−2)(p2+3p+6)−3(m−2)(p2+7p+14)−(m−2)(m−3)(p2+7p+14)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

=
16p− 8p2 − (m− 2)

(
mp2 + 7mp+ 14m+ 4p2 + 12p+ 24

)
(p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(38)
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Eu⊥v⊥z

[
∥ua∥2 v⊤a zau⊤b zbu⊤b vb

]
=

m∑
i,j=1

p∑
k,ℓ=m+1

E
[
u2
i vjzjukzkuℓvℓ

]
= m (p−m)

m∑
j=1

p∑
k=m+1

E
[
u2
1vjzjukzkupvp

]

= m (p−m)


p∑

k=m+1

E
[
u2
1v1z1ukzkupvp

]
︸ ︷︷ ︸

j=1

+(m− 1)

p∑
k=m+1

E
[
u2
1v2z2ukzkupvp

]
︸ ︷︷ ︸

j≥2


= m (p−m)

(
E
[
u2
1v1z1u

2
pvpzp

]︸ ︷︷ ︸
k=p

+(p−m−1)E
[
u2
1v1z1up−1zp−1upvp

]︸ ︷︷ ︸
m+1≤k≤p−1

+

(m− 1)

(
E
[
u2
1v2z2u

2
pvpzp

]︸ ︷︷ ︸
k=p

+(p−m−1)E
[
u2
1v2z2up−1zp−1upvp

]︸ ︷︷ ︸
m+1≤k≤p−1

))

= m (p−m)

(〈
2 1 1
2 1 1−→
0
−→
0
−→
0

〉
+ (p−m− 1)

〈 2 1 1
1 1 0
1 0 1−→
0
−→
0
−→
0

〉
+

(m− 1)

(〈 2 0 0
0 1 1
2 1 1−→
0
−→
0
−→
0

〉
+ (p−m− 1)

〈 2 0 0
0 1 1
1 1 0
1 0 1−→
0
−→
0
−→
0

〉))

= m (p−m)

(
−(p−3)(p−2)+4p(p−m−1)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6) +
(m−1)(−(p2+3p+6)+2(p−m−1)(p+2))

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

m (p−m)
(
(m+ 2) p2 + (2− 3m) p− 2m2 (p+ 2)− 6m+ 4

)
(p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(39)
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E
[(
u⊤b zb

)2 (
u⊤b vb

)2]
= E

[(
−u⊤a za

)2 (
u⊤b vb

)2]
= E

[(
u⊤a za

)2 (
u⊤b vb

)2]
=

m∑
i,j=1

p−m∑
k,ℓ=m+1

E [uiujukuℓzizjvkvℓ] = m (p−m)

m∑
j=1

p−m∑
k=m+1

E [u1ujukupz1zjvkvp]

= m (p−m)

(
E
[
u2
1u

2
pz

2
1v

2
p

]︸ ︷︷ ︸
j=1, k=p

+(p−m− 1)E
[
u2
1up−1upz

2
1vp−1vp

]︸ ︷︷ ︸
j=1,m+1≤k≤p−1

+

(m− 1)E
[
u1u2u

2
pz1z2v

2
p

]︸ ︷︷ ︸
2≤j≤m, k=p

+

(m− 1) (p−m− 1)E [u1u2up−1upz1z2vp−1vp]︸ ︷︷ ︸
2≤j≤m,m+1≤k≤p−1

)

= m (p−m)

(〈
2 0 2
2 2 0−→
0
−→
0
−→
0

〉
+ (p−m− 1)

〈 2 0 2
1 1 0
1 1 0−→
0
−→
0
−→
0

〉
+ (m− 1)

〈 1 0 1
1 0 1
2 2 0−→
0
−→
0
−→
0

〉
︸ ︷︷ ︸

equal due to invariance (Prop. 9)

+

(m− 1) (p−m− 1)

〈 1 0 1
1 0 1
1 1 0
1 1 0−→
0
−→
0
−→
0

〉)

= m (p−m)

(〈
2 0 2
2 2 0−→
0
−→
0
−→
0

〉
+ (p− 2)

〈 2 0 2
1 1 0
1 1 0−→
0
−→
0
−→
0

〉
+ (m− 1) (p−m− 1)

〈 1 0 1
1 0 1
1 1 0
1 1 0−→
0
−→
0
−→
0

〉)

= m (p−m)

(
(p+3)2

(p−1)p(p+1)(p+2)(p+4)(p+6) +
−(p−2)(p2+3p+6)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)+

(m−1)(p−m−1)
(p−1)p(p+1)(p+2)(p+4)(p+6)

)
= m (p−m)

(
(p+ 3)

2 −
(
p2 + 3p+ 6

)
+ (m− 1) (p−m− 1)

(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

)

=
m (p−m)

(
−m2 +mp+ 2p+ 4

)
(p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(40)

Eu⊥v⊥z

[
∥za∥2

(
v⊤b ub

)2]
= E

[
∥ua∥2

(
v⊤b zb

)2]
= E

 m∑
i=1

u2
i

 p∑
j=m+1

vjzj

2


=

m∑
i=1

p∑
j,k=m+1

E
[
u2
i vjzjvkzk

]
= m

p∑
j,k=m+1

E
[
u2
1vjzjvkzk

]
= m (p−m)E

[
u2
1v

2
pz

2
p

]︸ ︷︷ ︸
j=k

+m (p−m) (p−m− 1)E
[
u2
1vp−1zp−1vpzp

]︸ ︷︷ ︸
j ̸=k

= m (p−m)

(〈
2 2 0
0 0 2−→
0
−→
0
−→
0

〉
+ (p−m− 1)

〈 2 0 0
0 1 1
0 1 1−→
0
−→
0
−→
0

〉)
= m (p−m)

(
(p+3)

(p−1)p(p+2)(p+4) −
(p−m−1)(p+2)

(p−2)(p−1)p(p+2)(p+4)

)
=

m (p−m) (mp+ 2m− 4)

(p− 2) (p− 1) p (p+ 2) (p+ 4)

(41)
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E
[
∥ub∥2 v⊤a zau⊤a zau⊤b vb

]
= E

[
u⊤b ubu

⊤
b vbz

⊤
a uaz

⊤
a va

]
=

m∑
i,j=1

p∑
k,ℓ=m+1

E
[
u2
ℓukvkuizizjvj

]
= (p−m)m

m∑
j=1

p∑
k=m+1

E
[
u1u

2
pukvkz1zjvj

]
= (p−m)m

p∑
k=m+1

(
E
[
u1u

2
pv1z

2
1 (ukvk)

]
+ (m− 1)E

[
u1u

2
pv2z1z2 (ukvk)

])
= (p−m)m

(
E
[
u1u

3
pv1vpz

2
1

]
+ (p−m− 1)E

[
u1up−1u

2
pv1vp−1z

2
1

])
+

(p−m)m (m− 1)
(
E
[
u1u

3
pv2vpz1z2

]
+ (p−m− 1)E

[
u1up−1u

2
pv2vp−1z1z2

])
= (p−m)m

(〈
1 1 2
3 1 0−→
0
−→
0
−→
0

〉
+ (p−m− 1)

〈 1 1 2
1 1 0
2 0 0−→
0
−→
0
−→
0

〉)
+

(p−m)m (m− 1)

(〈 1 0 1
0 1 1
3 1 0−→
0
−→
0
−→
0

〉
+ (p−m− 1)

〈 1 0 1
0 1 1
1 1 0
2 0 0−→
0
−→
0
−→
0

〉)
= (p−m)m

(
−3(p+3)−(p+3)(p−m−1)

(p−1)p(p+1)(p+2)(p+4)(p+6) + (m− 1)
(

6(p+2)+2(p+2)(p−m−1)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

))
=

(p−m)m (p−m+ 2)
(
2mp+ 4m− p2 − 3p+ 2

)
(p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(42)

E
[
∥ua∥2 v⊤a za · v⊤b xb · x⊤b zb

]
=

m∑
i,j=1

p∑
k,ℓ=m+1

E
[
u2
i vjzjvkxkxℓzℓ

]
= m (p−m)

m∑
j=1

p∑
k=m+1

E
[
u2
1vjzjvkxkxpzp

]

= m (p−m)

E
[
u2
1v1z1vpx

2
pzp
]︸ ︷︷ ︸

j=1, k=p

+(m− 1)E
[
u2
1v2z2vpx

2
pzp
]︸ ︷︷ ︸

2≤j≤m, k=p

+

m (p−m) (p−m−1)

E
[
u2
1v1z1vp−1xp−1xpzp

]︸ ︷︷ ︸
j=1,m+1≤k≤p−1

+(m−1)E
[
u2
1v2z2vp−1xp−1xpzp

]︸ ︷︷ ︸
2≤j≤m,m+1≤k≤p−1


= m (p−m)

(〈
2 1 1 0
0 1 1 2−→
0
−→
0
−→
0
−→
0

〉
+ (m− 1)

〈 2 0 0 0
0 1 1 0
0 1 1 2−→
0
−→
0
−→
0
−→
0

〉)
+

m (p−m)

(
(p−m− 1)

〈 2 1 1 0
0 1 0 1
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉
+ (m− 1) (p−m− 1)

〈 2 0 0 0
0 1 1 0
0 1 0 1
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉)

= m (p−m)

(
−(p−2)(p+3)+2(p−m−1)(p+2)

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)+
(m−1)(2(p−m−1)p(p+4)−(p2+5p+2)(p−3))
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

m(p−m)(−2m2p2−8m2p+mp3+4mp2+15mp+18m−6p2−6p−12)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

(43)

E
[
u⊤a Qmzau

⊤
a Qmvax

⊤
b zbx

⊤
b vb

]
= Er∼Sm−1

[
∥ua∥2

(
z⊤a rr

⊤va

) (
x⊤b zb · x⊤b vb

)]
=

1

m
E
[
∥ua∥2 z⊤a va · x⊤b zb · x⊤b vb

]
︸ ︷︷ ︸

solved in Eq. (43)

=
(p−m)

(
−2m2p2 − 8m2p+mp3 + 4mp2 + 15mp+ 18m− 6p2 − 6p− 12

)
(p− 3) (p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(44)

83



Published as a conference paper at ICLR 2024

E
[
u⊤b ubz

⊤
b vb · u⊤a Qmvaz

⊤
a Qmua

]
=

m∑
i,j=1

m∑
k,ℓ=1

E
[
u⊤b ubz

⊤
b vb · uiqijvjzkqkℓuℓ

]
=

m∑
i,j=1

m∑
k,ℓ=1

E
[
u⊤b ubz

⊤
b vb · uivjzkuℓ

]
E [qijqkℓ]

[Prop. 10] =
1

m

m∑
i,j=1

E
[
u⊤b ubz

⊤
b vb · uivjziuj

]
E
[
q2ij
]︸ ︷︷ ︸

=1/m

=
1

m
E
[
u⊤b ubz

⊤
b vbu

⊤
a vau

⊤
a za

]
=

1

m
E
[
∥ub∥2

(
−z⊤a va

) (
−u⊤b vb

)
u⊤a za

]
=

1

m
E
[
∥ub∥2 v⊤a zau⊤a zau⊤b vb

]
︸ ︷︷ ︸

solved in Eq. (42)

=
(p−m) (p−m+ 2)

(
2mp+ 4m− p2 − 3p+ 2

)
(p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(45)

E
[
∥ub∥2 u⊤b vb · z⊤a Qmuaz

⊤
a Qmva

]
= E

[
∥za∥2 ∥ub∥2 u⊤b vbu

⊤
a Er∼Sm−1

(
r⊤r

)
va

]
= 1

mE

[
∥za∥2

(
p∑

ℓ=m+1

u2
ℓ

)
u⊤b vbu

⊤
a va

]

= (p−m)
m E

u2
p ∥za∥

2

(
p∑

i=m+1

uivi

)
·

 m∑
j=1

ujvj


= (p−m)E

[
u1v1u

2
p ∥za∥

2

(
p∑

i=m+1

uivi

)]
= (p−m)

(
E
[
u1u

3
pv1vp ∥za∥

2
]
+ (p−m−1)E

[
u1up−1u

2
pv1vp−1 ∥za∥

2
])

= (p−m)

(
E

[
u1u

3
pv1vp

(
m∑
i=1

z2i

)]
+ (p−m− 1)E

[
u1up−1u

2
pv1vp−1

(
m∑
i=1

z2i

)])
= (p−m)

(
E
[
u1u

3
pv1vpz

2
1

]
+ (m− 1)E

[
u1u

3
pv1vpz

2
2

])
+

(p−m) (p−m− 1)
(
E
[
u1up−1u

2
pv1vp−1z

2
1

]
+ (m− 1)E

[
u1up−1u

2
pv1vp−1z

2
2

])
= (p−m)

(〈
1 1 2
3 1 0−→
0
−→
0
−→
0

〉
+ (m− 1)

〈 1 1 0
0 0 2
3 1 0−→
0
−→
0
−→
0

〉)
+

(p−m) (p−m− 1)

(〈 1 1 2
1 1 0
2 0 0−→
0
−→
0
−→
0

〉
+ (m− 1)

〈 1 1 0
0 0 2
1 1 0
2 0 0−→
0
−→
0
−→
0

〉)
= (p−m) −3(p+3)

(p−1)p(p+1)(p+2)(p+4)(p+6)+

(p−m)
−3(m−1)(p2+5p+2)+(p−m−1)(−(p−2)(p+3)−(m−1)(p2+5p+2))

(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

= (p−m)
(

(p−2)(−3(p+3))+m2p2+5m2p+2m2−mp3−7mp2−16mp−12m+7p2+19p−2
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

(p−m)(m2p2+5m2p+2m2−mp3−7mp2−16mp−12m+4p2+16p+16)
(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

(46)
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E.3 AUXILIARY DERIVATIONS WITH FOUR VECTORS

E
[
u⊤b vb · x⊤b zb · u⊤b xb · v⊤b zb

]
= E

[
u⊤a va · x⊤a za · u⊤b xb · v⊤b zb

]
=

m∑
i,j=1

p∑
k,ℓ=m+1

E [uivixjzjukxkvℓzℓ] = m (p−m)

m∑
j=1

p∑
k=m+1

E [u1v1xjzjukxkvpzp]

= m (p−m)

(
E [u1v1x1z1upxpvpzp]︸ ︷︷ ︸

j=1, k=p

+(m− 1)E [u1v1x2z2upxpvpzp]︸ ︷︷ ︸
2≤j≤m, k=p

)
+

m (p−m)

(
(p−m− 1)E [u1v1x1z1up−1xp−1vpzp]︸ ︷︷ ︸

j=1,m+1≤k≤p−1

+

(m− 1) (p−m− 1)E [u1v1x2z2up−1xp−1vpzp]︸ ︷︷ ︸
2≤j≤m,m+1≤k≤p−1

)

= m (p−m)

(〈
1 1 1 1
1 1 1 1−→
0
−→
0
−→
0
−→
0

〉
+ (m− 1)

〈 1 1 1 1
1 0 1 0
0 1 0 1−→
0
−→
0
−→
0
−→
0

〉
+

(p−m− 1)

〈 1 1 1 1
1 1 0 0
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉
+ (m− 1) (p−m− 1)

〈 1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉)

= m (p−m)

(〈
1 1 1 1
1 1 1 1−→
0
−→
0
−→
0
−→
0

〉
+ (p− 2)

〈 1 1 1 1
1 1 0 0
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉
+

(m− 1) (p−m− 1)

〈 1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1−→
0
−→
0
−→
0
−→
0

〉)
= m (p−m)

(
3(p−3)

(p−3)(p−1)p(p+1)(p+2)(p+4)(p+6) +
(p−2)

(p−1)p(p+1)(p+2)(p+4)(p+6)

)
+

m (p−m)
(

(m−1)(p−m−1)(−5p−6)
(p−3)(p−2)(p−1)p(p+1)(p+2)(p+4)(p+6)

)
=

m (p−m)
(
5m2p+ 6m2 − 5mp2 − 6mp+ p3 + p2 + 2p

)
(p− 3) (p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(47)
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E
[
∥za∥2 u⊤a xau

⊤
b vbx

⊤
b vb

]
=

m∑
i,j=1

p∑
k,ℓ=m+1

E
[
z2i ujxjukvkxℓvℓ

]
= m (p−m)

m∑
j=1

p∑
k=m+1

E
[
z21ujxjukvkxpvp

]
= m (p−m)

(
E
[
u1x1z

2
1upv

2
pxp

]︸ ︷︷ ︸
j=1, k=p

+(m− 1)E
[
u2x2z

2
1upv

2
pxp

]︸ ︷︷ ︸
2≤j≤m, k=p

)
+

m (p−m) (p−m−1)

E
[
u1x1z

2
1up−1vp−1xpvp

]︸ ︷︷ ︸
j=1,m+1≤k≤p−1

+(m−1)E
[
u2x2z

2
1up−1vp−1xpvp

]︸ ︷︷ ︸
2≤j≤m,m+1≤k≤p−1


= m (p−m)

(〈
1 0 1 2
1 2 1 0−→
0
−→
0
−→
0
−→
0

〉
+ (m− 1)

〈 0 0 0 2
1 0 1 0
1 2 1 0−→
0
−→
0
−→
0
−→
0

〉
+

(p−m− 1)

〈 1 0 1 2
1 1 0 0
0 1 1 0−→
0
−→
0
−→
0
−→
0

〉
+ (m− 1) (p−m− 1)

〈 0 0 0 2
1 0 1 0
1 1 0 0
0 1 1 0−→
0
−→
0
−→
0
−→
0

〉)

= m (p−m)

(
− (p− 2) (p+ 3) + 2 (p−m− 1) (p+ 2)

(p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)
+

(m− 1)
(
− (p− 3)

(
p2 + 5p+ 2

)
+ 2 (p−m− 1) p (p+ 4)

)
(p− 3) (p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

)

=
m (p−m)

(
−2m2p2 − 8m2p+mp3 + 4mp2 + 15mp+ 18m− 6p2 − 6p− 12

)
(p− 3) (p− 2) (p− 1) p (p+ 1) (p+ 2) (p+ 4) (p+ 6)

(48)
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