A Appendix

A.1 Full Memorization Dynamics Over Training

For completeness, in this section we plot our memorization metric M (f) over training for all model
sizes. In any of these plots, observe that taking a horizontal slice for a fixed 7 is equivalent to
computing T'(N, 7). In Figure we plot M (f) over training for WIKITEXT103. We see that
generally (across language modeling tasks and and values of 7), larger models memorize faster. We
do notice a caveat in Figure where we observe that in initial stages of training, smaller models
memorize faster, but larger models eventually surpass smaller models.

Causal LM Masked LM
1.0 T . : 1.0]
//A/A o
0.81 /;./ _____________________________ H 0.81 Ll
£0.64 ,"i 2,3788 F £0.61 / ,/—ﬂ.—_a::‘.‘_f’.:.f.._.._..__._.._..__._.------'_i3B
= J 27 | = b o7
0.4 # : 0.41 i} --- 2.7B
{ —— 1.3B ,,/ —— 1.3B
0.21 355M L 0.21§/ 355M
- 125M i e 125M
10 20 30 40 50 60 70 10 20 30 40 50 60 70
Number of Epochs Number of Epochs

Figure 11: Proportion of training data memorized M (f) over training, for causal (Left) and masked
(Right) language modeling on WIKITEXT103. The x-axis describes the number of epochs, and
y-axis denotes M (f) as defined in § Generally, we see that larger models memorize training data
faster.

When we analyze larger datasets, performing multiple epochs of training becomes infeasible, and so
we track memorization with each gradient descent update. Similarly, we cannot analyze M (f) for
the entire training dataset. We use notation introduce in § specifically Mipdqte(f, U) where U is
the number of gradient updates performed on model f. This quantity is defined as the memorization
on the batch of data given to the model on the U’th update. In ﬁgure we take a rolling average
with window size 5 when plotting M,,,qate(f, U) to smooth out curves.

Causal LM Masked LM
0.6
0.8
i f —
S _;—_=_—..—.f;—_=.-._—,—_=,—_=.—_':-.=::=7:_ _____ = S 06 I —
2 0.4 =T == - ™ e
s o 138 E b 138
803 // 6.78 §0.41 i 6.78
S0.21 F --- 2.7B 3 ; ———. 2.7B
/[—— 138 S ool li —— 138
0.1{ 355M “1i 355M
e 125M . e 125M
0.0 v v 0.0 v v
0 4000 8000 12000 0 4000 8000 12000
U (Number of Updates) U (Number of Updates)

Figure 12: Proportion of training data memorized M (f) over training, for causal (Left) and masked
(Right) language modeling on the ROBERTA dataset. The z-axis describes the number of gradient
descent updates, and the y-axis denotes a rolling average (window size 5) of Mypqate(f) as defined
above. We again notice that larger models memorize training data faster.

To check that M, pqq¢e(f,U) is a viable proxy for M(f), in Figure , we plot both M (f) and
Mupdate(f, U) up to 30000 updates for two model sizes. We fix 30000 as the upper bound, because
we only train some model sizes up to 30000 updates in the ROBERTA experiments in § and therefore
can only completely assess the impact of scale on Mypqqte(f, U) dynamics up to 30000 updates. We
see that Mypaate(f, U) has periodic behavior, but overall does not deviate too much from M (f).

18

/10| R — — 1.0
5 0.81 i 5 0.81
Ro6| 3
~n0.67 ~ 0.6 T
E | !5 R —— .-
g 0.4 ;“ g 0.4 =
= 0.2¢/ Mupdate(f: U) = 0.24 Mupdate(f: U)

0.0/ ‘ — - M(f) | 0.01 ‘ — - M(f) |

0 10000 20000 30000 0 10000 20000 30000

U (Number of Updates)

U (Number of Updates)

Figure 13: We show training data memorization evaluated at the end of an epoch M (f), and at the
end of each gradient descent update M, ,qase(f, U), over training. Results shown are for causal
language modeling on WIKITEXT103 dataset for 13B (Left) and 125M (Right) model sizes. We note
that M., paqie(f, U) closely tracks M (f) throughout training.

A.1.1 Limitations of Definition 1]

We note that Deﬁnitionis not the best way to study memorization: it ignores model confidence and
it does not normalize for duplication in the training set (it is known that duplication in the training
set helps models memorize tokens [16}|50]). However, as mentioned in Section all previous
definitions of memorization seem to involve Deﬁnitionin some form. In this way, we study a metric
fundamental to memorization regardless of the precise definition of memorization.

A.2 Forgetting Baseline Analysis
A.2.1 Perplexity Versus Memorization

This section shows how perplexity and memorization on the special batch evolve over training. In
Figurewe see that perplexity continues to increase over training, while memorization flatlines.
This is a clear experimental setup where we find cross-entropy loss capturing different behavior from
memorization. We show plots for the 1.3B model scale, although all of the experiments in §exhibit
very similar trends.

1.0
30001
0.8 >
=
o6 £><, 20001
= e
& 1000]
041 S)
0.2 ‘ ‘ ‘ 01 : : ‘ !
0 50 160 150 200 50 100 150 200

Number of Epochs Number of Epochs

Figure 14: Proportion of special batch data memorized M (f) (Left) and perplexity of special batch
(Right) in the forgetting baseline experimental setup described in § Results are for causal language
modeling on WIKITEXT103 with 1.3B model size. We notice that memorization of the special batch
flattens, while perplexity continues increasing.

A.2.2 Verifying Existence of Baseline

To verify the existence of the forgetting baseline discussed in § we observe the sequential dif-
ference in M (f) of the special batch, from epoch to epoch. More formally, if M (f)7 denotes the
memorization at epoch T, we investigate diff(T") = M(f)r — M(f)r—1 on the special batch, for
T>1.1In Figurewe show this plot for a few model scales, and we clearly see that the sequential
difference in M (f) exponentially approaches 0.

19

0.0001 ppiwinst s Mol
/
—0.0251 ﬁ
= !
¥ —0.0501 |
S !
© _0.075] | —— 278
1.3B
—0.100 —— 125M |
0 100 200 300

T (Number of Epochs)

Figure 15: Exploring the sequential difference in proportion of training data memorized M (f) on the
special batch over training. The x-axis denotes the number of epochs (i.e. T") and the y-axis denotes
the sequential difference in M (f) from the (7' — 1)’th epoch to the T"th epoch (i.e diff(7T)). Results
shown are for causal language modeling on WIKITEXT103. We show that sequential difference in
memorization exponentially approaches 0.

A.3 Analyzing Memory Unit Length Over Training

This section investigates a fundamental property of memories — memory unit length L. We look
at individual tokens memorized as having length L = 1, memorized bigrams as having length
L = 2, memorized trigrams as having length L = 3, etc. Analyzing memory length is interesting
because it has implications for how language models retain n-grams, which are an important part of
language. Moreover, recent work shows that chain-of-thought prompting improves language model
performance [93]; understanding memory unit length informs us whether a similar method might
work for improving performance when training (if a language model has low memory unit length,
then including chain-of-thought-type texts in the training set might not have a significant effect). An
empirical side note is that these experiments were run separately from the main paper experiments,
so we provide original M (f) curves for reference.

We track the average value of L across the entire training dataset for causal language modeling on
WIKITEXT103. Note that in our all our experiments, the sequence length is constrained to be less
than 512 tokens, with an average sequence length of 430.12 on WIKITEXT103. In the left plot of
Figure We analyze the average memory unit length over training for two model sizes. We observe
across model sizes that average memory unit length steadily increases over time, roughly taking a
sigmoidal shape. We notice that the larger 2.7B model has an average L increasing faster than the
125M model. This is consistent with our previous results because we know larger models memorize,
and some of these tokens are likely to be adjacent to each other, especially as the model achieves
higher values of M (f). Surprisingly, we see that the average memory unit length is much lower than
the average sequence length of 430.12, suggesting that even with high individual token memorization
(which is achieved as shown in the right plot of Figure , there are always tokens in the middle of a
text that the language model has not yet memorized, which break up the memories.

g 1.0] S —
—— 125M - o
1504 2.7B // [0.8 ",‘/"/
/ 7
—_ _ ,
=100 / L To06{ I/
o i /
> / = .
< / 0.41 /
50 y A
S —— 125M
S . I 2.78
0 100 200 300 0 100 200 300

Number of Epochs

Number of Epochs

Figure 16: Left: Examining average memory unit length L (averaged over the entire training dataset),
as function of number of epochs. As a reference, we show the memorization dynamics M (f) on the
right. Results shown are for causal language modeling on WIKITEXT103.

20

A.4 Model Training/Dataset Details

In this section, we layout the details of experiments, although most training details we pull directly
from publicly available references [[7//96]. As such, we provide the details of model architectures
using the same style as Table 1 in [96] for ease of comparison. All models use GELU activation [38]]
for nonlinearity. We leverage the Adam optimizer [48]], with 31 = 0.9, 8 = 0.98, and € = 1078,
For reproducibility, we set weight decay to 0, dropout to 0, and attention dropout to 0. We use a
polynomial learning rate schedule, and following [7||96] we scale up our learning rate from 0 to
the maximum learning rate over 375M tokens, and scale down to 0 over the remaining 1" — 375M
tokens (for all masked language modeling experiments, and all ROBERTA experiments, we have
T = 300B; for causal language modeling experiments on WIKITEXT103 we have T' = 100B).
We fix a sequence length of 512 across all experiments, but we break input text up into complete
sentences, so not all input texts have length exactly equal to 512. In masked language modeling
experiments, we use a mask probability of 0.15. When training language models, we use the standard
procedure of minimizing cross-entropy loss, and use dynamic loss scaling [63].

Table 1: Model architecture details. # L denotes the number of layers, # H denotes the number of
attention heads, and d,,,4¢; denotes embedding size. Global batch size denotes the total number of
tokens the model processes in a batch of data. Note that most of the values in this table are the same
as Table 1 in [96].

Model Scale #L #H d04e Learning Rate (LR) Global Batch Size

125M 12 12 768 6.0e-4 0.5M
355M 24 16 1024 3.0e-4 0.5M
1.3B 24 32 2048 2.0e-4 M
2.7B 32 32 2560 1.6e-4 M
6.7B 32 32 4096 1.2e-4 2M
13B 40 40 5120 1.0e-4 2M

As mentioned in § we use FairSeq [69] which relies on PyTorch [70]. When training models, we
leverage fully sharded data-parallel implementation of models in FairScale [9]]. We utilize NVIDIA
A100 GPUs with 40GB of memory. Increasing model scale requires different amounts of GPUS:
125M and 355M generally required 16 GPUS, 1.3B required 32 GPUS, and 2.7B, 6.7B, and 13B
generally required 64 GPUS (although some experiment runs were launched with 128 GPUS in order
to decrease training time). Exact training time varied depended on model scale and dataset size, but
all models were trained for up to 140 hours.

In both datasets we use, there is a possibility for sensitive or offensive text to be included in
the training set, since both benchmarks use data that is from the Internet. We also note that the
WIKITEXT103 benchmark we use throughout the work is available under the Creative Commons
Attribution-ShareAlike License. The ROBERTA dataset we use refers to the corpora of text originally
used to train the ROBERTa model (see [55]). This dataset not publicly available under any license,
however subsets of data that make up the corpus are publicly available.

21

